

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MINED: PROBING AND UPDATING WITH MULTIMODAL TIME-SENSITIVE KNOWLEDGE FOR LARGE MULTI- MODAL MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Multimodal Models (LMMs) encode rich factual knowledge via cross-modal pre-training, yet their static representations struggle to maintain an accurate understanding of time-sensitive factual knowledge. Existing benchmarks remain constrained by static designs, inadequately evaluating LMMs' ability to understand time-sensitive knowledge. To address this gap, we propose MINED, a comprehensive benchmark that evaluates temporal awareness along 6 key dimensions and 11 challenging tasks: cognition, awareness, trustworthiness, understanding, reasoning, and robustness. MINED is constructed from Wikipedia by two professional annotators, containing 2,104 time-sensitive knowledge samples spanning six knowledge types. Evaluating 15 widely used LMMs on MINED shows that Gemini-2.5-Pro achieves the highest average CEM score of 63.07, while most open-source LMMs still lack time understanding ability. Meanwhile, LMMs perform best on organization knowledge, whereas their performance is weakest on sport. To address these challenges, we investigate the feasibility of updating time-sensitive knowledge in LMMs through knowledge editing methods and observe that LMMs can effectively update knowledge via knowledge editing methods in single editing scenarios.

1 INTRODUCTION

Large Multimodal Models have demonstrated remarkable progress in understanding and reasoning tasks. However, real-world multimodal data often exhibit dynamic and time-sensitive characteristics, such as factual knowledge that evolves and updates continuously. To effectively handle such temporal data, LMMs must not only comprehend static visual and textual content but also incorporate temporal awareness. This capability enables them to track, interpret, and reason about cross-modal changes over time. Current research primarily focuses on temporal awareness in LLMs. Temporal QA benchmarks such as TimeQA (Chen et al., 2021) and TempReason (Tan et al., 2023) evaluate how models perceive time, but a more profound challenge lies in whether the model can effectively apply time-sensitive knowledge in a continuously evolving scenario.

Some studies assess temporal query capabilities through dynamically updated knowledge bases (Kasai et al., 2023) or by examining responses to rapidly changing news (Zhang et al., 2024), while EvoWiki (Tang et al., 2025) leverages real-time Wikipedia updates for evaluation. To align with real-world issues such as temporal misalignment, conflicting information, and outdated knowledge. EvolveBench (Zhu et al., 2025) systematically evaluates LLMs' ability to leverage temporal knowledge from both cognitive and conscious perspectives.

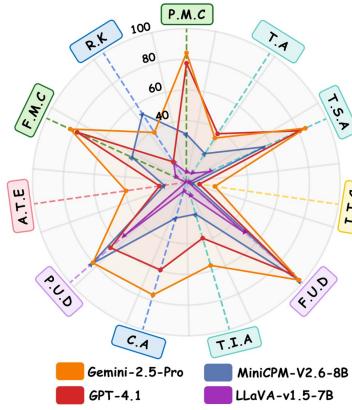
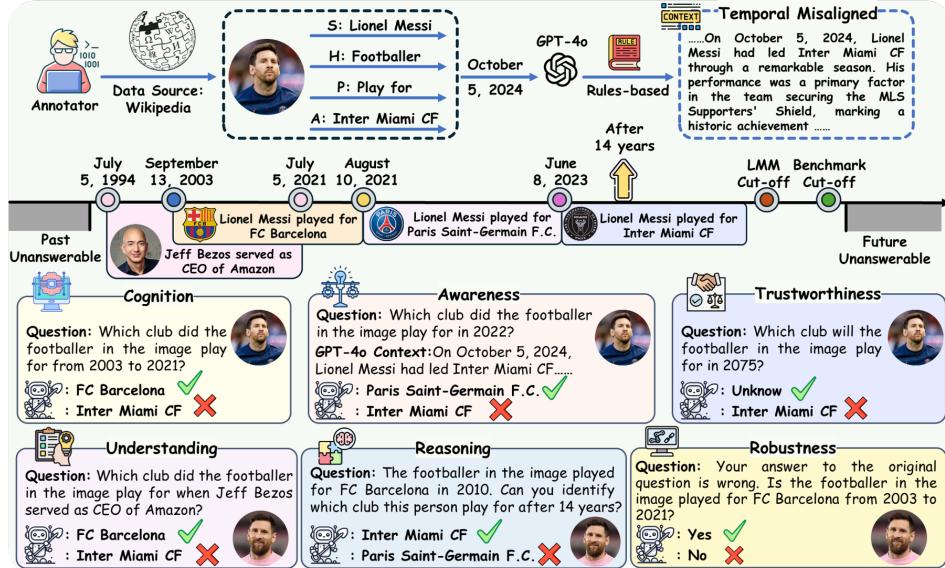


Figure 1: We evaluate temporal awareness of time-sensitive knowledge of SOTA LMMs across six capability dimensions.

054 Although progress has been made in temporal reasoning in the text domain, expanding to multimodal
 055 scenarios still faces challenges, especially in cross-modal temporal alignment. Recent studies have
 056 begun to explore temporal reasoning in LMMs, aiming to capture spatio-temporal dependencies
 057 and achieve visual-linguistic temporal alignment. LiveVQA (Fu et al., 2025) evaluates the ability
 058 of LMMs in real-time visual knowledge acquisition and updating by constructing a large-scale
 059 VQA dataset. However, LiveVQA still lacks a comprehensive evaluation of practical issues such as
 060 temporal misalignment, conflicting information, and outdated knowledge. Without addressing these
 061 factors, current evaluations fail to capture the full complexity of temporal reasoning in LMMs.



080 Figure 2: Overview of the construction of MINED.

081 To address this gap, we introduce **MINED**, a novel benchmark designed to evaluate LMMs' temporal
 082 awareness of time-sensitive knowledge across six key dimensions: ① **Cognition**, which measures a
 083 LMMs' ability to recall and extract internal knowledge and apply it effectively; ② **Awareness**, which
 084 tests LMMs' ability to detect temporal misalignment between an external context and user query;
 085 ③ **Trustworthiness**, which assesses the LMMs' ability to identify and refuse to answer queries
 086 that contain invalid temporal information; ④ **Understanding**, which examines the performance of
 087 LMMs when confronted with queries containing implicit temporal concepts; ⑤ **Reasoning**, which
 088 evaluates the analytical ability of LMMs for temporal reasoning tasks; and ⑥ **Robustness**, measuring
 089 the ability of LMMs to correct time comprehension errors. These dimensions collectively provide a
 090 holistic framework for assessing the temporal competence of LMMs. Constructed from Wikipedia by
 091 two professional annotators, MINED comprises 2,104 time-sensitive knowledge samples and 4,208
 092 questions spanning 6 fine-grained knowledge types.

093 We conduct extensive evaluations of 15 widely used LMMs on MINED to assess their temporal
 094 understanding capabilities. Experimental results indicate that Gemini-2.5-Pro achieve the highest
 095 CEM score of 63.07. However, most open-source LMMs, such as LLaVA-v1.5 (7B) and Qwen-VL
 096 (7B), still exhibit notable deficiencies in comprehending time-sensitive knowledge. Evaluated across
 097 6 fine-grained knowledge types, LMMs perform best on organization knowledge but exhibit notable
 098 weaknesses in sport knowledge. These findings underscore the need for further improvements in time-
 099 sensitive knowledge understanding among existing LMMs. To address this challenge, we employ
 100 knowledge editing methods to update time-sensitive knowledge that LLaVA-v1.5 (7B) and Qwen-VL
 101 (7B) initially failed to answer. Results indicate that knowledge editing methods can effectively update
 102 time-sensitive knowledge in single editing scenarios.

- 103 • We propose MINED, a novel multi-dimensional benchmark designed to evaluate LMMs' tempo-
 104 ral awareness of time-sensitive knowledge.
- 105 • We perform extensive experiments on 15 widely-used LMMs, the results reveal several limita-
 106 tions for current LMMs in handling temporal multimodal knowledge, establishing a foundation
 107 for further research on temporal understanding in multimodal systems.

108 • We explore the feasibility of knowledge editing methods for updating missing time-sensitive
 109 knowledge in LMMs, providing insights for enhancing temporal capabilities for such models.
 110

111 **2 RELATED WORK**

113 **2.1 LARGE MULTIMODAL MODEL**

115 The development of LMMs has transitioned from unimodal models to systems supporting joint
 116 vision-language reasoning. Early approaches like CLIP (Radford et al., 2021) used contrastive
 117 learning for representation alignment but were limited to recognition. Contemporary architectures
 118 typically combine visual encoders, language models, and cross-modal modules. Models such as
 119 LLaVA-v1.5 (Liu et al., 2024a), Qwen2.5-VL (Bai et al., 2025), and GPT-4o (OpenAI, 2023) employ
 120 projection, end-to-end transformers, or unified architectures for multimodal alignment. Further
 121 enhancements in Gemini-2.5-Pro (Gemini Team, 2025) and Kimi-Latest (Kimi Team et al., 2025)
 122 improve reasoning and long-context handling through dynamic routing and efficient decoding,
 123 significantly boosting performance in visual dialogue, scene understanding, and reasoning.

124 **2.2 TEMPORAL REASONING BENCHMARKS**

126 Temporal reasoning denotes a model’s capacity to identify, understand, and infer temporal expressions
 127 along with logical temporal relationships such as order, containment, and causality. Recent benchmarks
 128 like TimeQA (Chen et al., 2021), MenatQA (Wei et al., 2023), TempReason (Tan et al.,
 129 2023), and UnSeenTimeQA (Uddin et al., 2025) have been developed to evaluate these capabilities
 130 in large language models, focusing on contextual temporal understanding and reasoning. Existing
 131 temporal reasoning benchmarks largely ignore time-sensitive knowledge. EvolveBench (Zhu et al.,
 132 2025) addresses this gap by evaluating LLMs’ capacity to leverage temporal knowledge, providing
 133 new insights for dynamic knowledge integration. Current studies on temporal reasoning in LMMs are
 134 scarce. LiveVQA (Fu et al., 2025) evaluates real-time knowledge acquisition via visual recognition
 135 and multi-hop reasoning but overlooks the critical influence of time-sensitive knowledge.

136 **Recognizing the limitations of existing benchmarks which primarily focus on pure text temporal**
 137 **reasoning or lack a systematic evaluation of time-sensitive factual knowledge in multimodal settings ,**
 138 **we introduce MINED, a novel, multi-dimensional benchmark and addresses this critical evaluation**
 139 **gap providing a comprehensive and fine-grained diagnosis of LMMs’ time-sensitive knowledge**
 140 **understanding. Table 1 shows the comparison between other related benchmarks.**

141 **Table 1: Overall comparison with existing temporal knowledge benchmarks.** P-Agr is Prompt
 142 Agreement (Section 4.1).

Benchmark	Multimodal	Cog.	Awa.	Tru.	Und.	Rea.	Rob.	P-Agr.
TimeQA (Chen et al., 2021)	✗	✓	✗	✓	✓	✗	✗	✓
MenatQA (Wei et al., 2023)	✗	✓	✓	✓	✓	✗	✗	✗
TempReason (Tan et al., 2023)	✗	✓	✗	✗	✓	✗	✗	✗
DyKnow (Mousavi et al., 2024)	✗	✓	✗	✗	✗	✗	✗	✓
UnSeenTimeQA (Uddin et al., 2025)	✗	✗	✗	✗	✗	✓	✗	✗
EvoWiki (Tang et al., 2025)	✗	✓	✗	✗	✗	✗	✗	✗
EvolveBench (Zhu et al., 2025)	✗	✓	✓	✓	✓	✓	✗	✓
LiveVQA (Fu et al., 2025)	✓	✓	✗	✗	✗	✗	✗	✗
MINED (Ours)	✓	✓	✓	✓	✓	✓	✓	✓

155 **3 MULTIMODAL TIME-SENSITIVE KNOWLEDGE**

157 In this section, we introduce the construction pipeline of the MINED benchmark using Wikipedia
 158 data. In Figure 2, each time-sensitive knowledge sample is represented as a quadruple (S, H, P, A) ,
 159 where S is the subject (e.g., a person or visual entity name like Lionel Messi), H is the hypernym
 160 corresponding to the subject (e.g., Lionel Messi’s hypernym is footballer), P is the property (e.g., the
 161 property between Lionel Messi and club is “play for”), and $A = [a_1, a_2, \dots, a_n]$ is a list of attribute
 162 values for that property, which change over time.

To construct the foundational data for MINED, we employ two professional annotators to gather time-sensitive knowledge from Wikipedia across six domains: Country, Sport, Company, University, Organization, and Competition. Each data sample is manually verified to ensure high quality. In this benchmark, we set the knowledge cutoff date $T_{current}$ to June 23, 2025 (corresponding to the benchmark cut-off node in Figure 2).

3.1 BENCHMARK CONSTRUCTION

Dimension 1: Cognition of Time-Sensitive Knowledge. We propose three cognitive levels of varying difficulty to evaluate the ability of LMMs to probe for time-sensitive factual knowledge using their parameters. Given the image of the entity S and property P , we require the model to probe for the correct knowledge at a specific time by leveraging its internal knowledge.

- **Time-Agnostic (T.A)** refers to using “current” or “currently” to inform the model to provide the latest answer in A without giving a clear time node.
- **Temporal Interval-Aware (T.I.A)** refers to randomly selecting a time period (from T_{start} to T_{end}) from the attribute list to prompt the model to provide the corresponding answer.
- **Timestamp-Aware (T.S.A)** refers to using random dates between T_{start} and T_{end} to prompt the model to provide corresponding answers.

Dimension 2: Awareness of Temporal Misalignment. We evaluate how LMMs handle internal parametric knowledge when external context is temporal misaligned with timestamps in user queries.

- **Future Misaligned Context (F.M.C):** We randomly sample a past timestamp T_{past} from the attribute set A for property P to construct the query. Subsequently, we provide latest $a_{current}$ with S and P to GPT-4o, instructing it to generate a context $C_{current}$ that elaborately describes the knowledge triple $(S, P, a_{current})$. Under this setting, the temporal information contained in $C_{current}$ exhibits a temporal misalignment with the timestamp T_{past} specified in the query, indicating the information is accurate yet futuristic relative to the query timestamp.
- **Past Misaligned Context (P.M.C):** User query incorporates the current timestamp $T_{current}$. We randomly select a past attribute value a_{past} with S and P to GPT-4o and ask it to generate a context C_{past} that elaborately describes the knowledge triple (S, P, a_{past}) . This configuration evaluates the model’s capacity to process obsolete information in its responses to user queries.

Dimension 3: Trustworthiness of Unanswerable Date. We introduce credibility as a third dimension to evaluate whether LMMs produce hallucinations when facing unanswerable date-related queries. Specifically, a query is deemed unanswerable if the timestamp T provided by the user precedes the earliest record in attribute list A for subject S and property P , or refers to a future date.

- **Past Unanswerable Date (P.U.D):** We extract the earliest record from attribute list A and subtract a certain year from it to construct an unanswerable date in the past. For instance, as shown in Figure 2, Lionel Messi had not started his professional career before 2003, so we select a time point prior to that year as the past unanswerable date.
- **Future Unanswerable Date (F.U.D):** We take the latest record from attribute list A and add a certain year to construct an unanswerable future date. In Figure 2, “Which club will the footballer in the image play for in 2075?” is an example based on a future unanswerable date.

Dimension 4: Understanding of Temporal Concept. This dimension evaluates how effectively LMMs interpret temporal concepts expressed in different formats. In previous evaluations, explicit time formats (e.g., “DD Month YYYY”) were used to denote temporal information. For implicit temporal expressions, temporal intervals $[T_{start}, T_{end}]$ are defined based on historical events.

- **Implicit Temporal Concept (I.T.C):** In Figure 2, the phrase “when Jeff Bezos served as CEO of Amazon” corresponds to the period from July 5, 1994, to July 5, 2021. Such implicit temporal representations are denoted as $T_{implicit}$.

Dimension 5: Temporal Reasoning. We propose two tasks to evaluate temporal reasoning in LMMs: a ranking task for chronological ordering to assess temporal logic, and a calculation task involving time intervals and durations to measure numerical precision.

- **Ranking (R.K):** Two past events a_1 and a_2 are randomly selected from attribute list A of the tuple (S, P, A) . The model is required to determine their correct temporal order by first extracting their timestamps from the input, comparing them, and then providing the final chronological sequence.

216 • **Calculation (C.A):** For two events a_1 and a_2 , a date t_1 and t_2 is randomly selected from their
 217 respective time intervals $[T_{start}, T_{end}]$, and the number of days between them, denoted as T_{Δ} , is
 218 calculated. Given t_1 and T_{Δ} , the task requires the model to perform the necessary computation and
 219 infer the correct date corresponding to the target event a_2 .

220 **Dimension 6: Robustness of Time-Sensitive Knowledge.** Robustness serves as the final evaluation
 221 dimension to assess whether a model can effectively identify and self-correct its previous errors when
 222 provided with appropriate prompts.

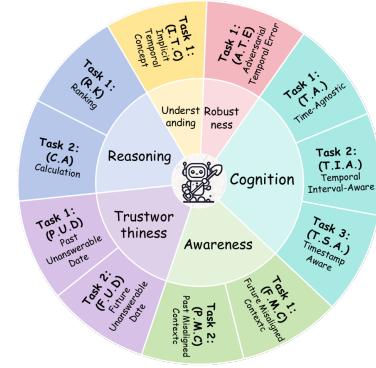
224 • **Adversarial Temporal Error (A.T.E):** We extract knowledge samples for which all LMMs provided
 225 incorrect answers across three cognitive subtasks. Using the prompt: “Your answer to the original
 226 question is wrong.” followed by a rephrased interrogative form, we examine whether the models
 227 can correct their previous errors.

228 **Benchmark Analysis: Category Distribution and Key Statistics.** In Table 2 and Figure 3, MINED
 229 comprises 4,208 questions, spanning 6 dimensions and 6 types of fine-grained knowledge, demon-
 230 strating substantial diversity (Bi et al., 2025a). As for quality, the original data of MINED is collected
 231 from Wikipedia by two expert annotators, with each entry manually verified to ensure high quality.

232 Regarding MINED’s details, chat templates and case studies, please refer to Appendix B, E and G.

233 Table 2: **Key Statistics of MINED.**

Statistic	Number
Total questions	4,208
- Cognition questions	1,328 (31.6%)
- Awareness questions	834 (19.8%)
- Trustworthiness questions	828 (19.7%)
- Understanding questions	510 (12.1%)
- Reasoning questions	324 (7.7%)
- Robustness questions	384 (8.1%)
Total dimension/subtasks	6/11
Total fine-grained knowledge types	6
Number of unique images	450
Maximum question length	54
Maximum answer length	13
Average question length	11.4
Average answer length	2



234 Figure 3: Subtasks for evaluating
 235 each capability dimension.

236 4 EXPERIMENT OF PROBING MULTIMODAL TIME-SENSITIVE KNOWLEDGE

237 4.1 EXPERIMENTAL SETUP

238 **Large Multimodal Models.** In this paper, we evaluate 15 widely used LMMs on MINED, including:
 239 LLaVA-v1.5 (Liu et al., 2024a), Qwen-VL (Bai et al., 2023), mPLUG-Owl2 (Ye et al., 2023),
 240 LLaVA-Next (Liu et al., 2024b), LLaVA-OneVision (Li et al., 2024a), mPlug-Owl3 (Ye et al., 2024),
 241 MiniCPM-V2.6 (Yao et al., 2024), Qwen2-VL (Wang et al., 2024), InternVL2.5 (Chen et al., 2024),
 242 Qwen2.5-VL (Bai et al., 2025), GPT-4.1 (OpenAI, 2023), Kimi-Latest (Kimi Team et al., 2025),
 243 Doubao-1.5-Vision-Pro, Gemini-2.5-Pro (Gemini Team, 2025), Seed-1.6-Vision.

244 **Evaluation Protocol:** In the evaluation of all subtasks, the model is considered to have correctly
 245 responded to the time-sensitive knowledge only when its output exactly matches the corresponding
 246 ground truth. Therefore, we evaluate the model’s outputs using Cover Exact Match (CEM) (Xu et al.,
 247 2023) score for each subtask. The model’s capacity in this dimension is defined as the average CEM
 248 score across all subtasks. CEM requires matching model’s outputs with ground truth.

$$249 C_d = \frac{1}{N} \sum_{i=1}^N CEM_i, \quad CEM = \begin{cases} 1, & \hat{y} \subseteq Y \\ 0, & \text{otherwise} \end{cases} \quad (1)$$

250 Where N is the number of subtasks in capacity dimension d , CEM_i is score of the i -th subtask, Y
 251 and \hat{y} represent the model’s output and the ground truth, respectively.

252 **Prompt Agreement:** To mitigate uncertainty from prompt variations, we designed four distinct
 253 prompts (“Question”, “Generalization Question”, “Image”, and “Generalization Image”) for each
 254 knowledge. These prompts share the same core meaning but differ in phrasing and are paired to form

270 four unique configurations. The final score is computed by averaging the CEM scores across these
 271 prompt variations, a strategy we term Prompt Agreement.
 272

273 4.2 ANALYSIS OF MAIN RESULTS

274 **Table 3: Overall Performance Comparison (%) on MINED.** The top two and worst performing
 275 results are highlighted in red (1st), yellow (2nd) and blue (bottom) backgrounds, respectively.
 276 Subscripts M . and I . stand for Mistral-7B and Instruct, respectively.
 277

(Release Time) Models	Cog.			Awa.			Tru.			Und.			Rea.			Rob.		Avg.
	T.A \uparrow	T.I.A \uparrow	T.S.A \uparrow	F.M.C \uparrow	P.M.C \uparrow	P.U.D \uparrow	E.U.D \uparrow	L.T.C \uparrow	R.K \uparrow	C.A \uparrow	A.T.E \uparrow							
<i>Open-source LMMs</i>																		
(2023.04) LLaVA-v1.5 (7B)	6.96	9.25	16.88	7.66	6.40	53.99	50.00	1.57	15.12	6.17	0.39	15.85						
(2023.08) Qwen-VL (7B)	12.45	17.30	42.09	6.04	6.91	81.28	70.17	3.53	25.00	17.59	0.00	25.67						
(2023.11) mPLUG-Owl2 (7B)	10.59	14.53	44.62	42.69	38.67	11.47	44.20	2.16	42.90	14.20	6.12	24.74						
(2024.01) LLaVA-Next _M . (7B)	10.69	14.53	41.14	33.69	28.87	96.74	90.22	3.73	38.58	20.99	0.00	34.47						
(2024.08) LLaVA-OV (7B)	11.86	11.34	26.79	30.93	31.35	39.61	76.21	3.63	51.54	8.95	2.21	26.77						
(2024.08) mPlug-Owl3 (8B)	9.80	10.03	29.01	29.77	28.31	97.95	99.76	3.14	41.98	7.10	3.65	32.77						
(2024.08) MiniCPM-V2.6 (8B)	22.16	21.66	55.70	38.88	31.35	81.52	97.83	4.22	52.78	24.38	14.45	40.45						
(2024.09) Qwen2-VL _I . (7B)	15.98	16.72	31.96	17.90	11.46	99.52	99.76	4.61	49.38	14.20	9.90	33.76						
(2024.12) InternVL2.5 (8B)	20.49	18.46	44.83	42.37	38.26	98.31	99.88	4.22	61.73	19.14	0.00	40.70						
(2025.02) Qwen2.5-VL _I . (7B)	18.33	16.86	41.67	40.04	33.98	99.64	99.76	4.02	38.89	25.00	16.86	39.55						
<i>Closed-source LMMs</i>																		
(2025.02) Kimi-Latest	26.41	26.60	72.43	68.64	67.27	72.10	85.39	7.06	45.99	42.59	6.38	47.35						
(2025.02) Douba-1.5-Vision-Pro	35.78	27.91	69.83	74.36	70.76	93.12	100.00	5.29	18.52	34.57	12.24	49.31						
(2025.03) Gemini-2.5-Pro	34.25	56.40	84.96	83.09	84.30	80.31	97.10	18.73	38.48	76.54	39.58	63.07						
(2025.04) GPT-4.1	37.58	37.94	80.91	78.07	77.49	65.22	91.30	8.63	15.74	59.57	17.58	51.82						
(2025.08) Seed-1.6-Vision	37.19	41.76	78.69	75.95	80.71	74.15	96.86	7.55	21.60	59.57	32.68	55.16						

292 We conduct extensive experiments to evaluate 15 widely used LMMs on MINED. Table 3 presents
 293 the main results and additional results are in Appendix C. Key observations from Table 3 include:

- 294 **Obs 1: LMMs exhibit improved cognitive performance when queries are framed as timestamp-aware task.** When evaluating the cognitive capacities of LMMs, we present queries conveying
 295 identical knowledge in three distinct temporal formats: Time-Agnostic, Temporal Interval-Aware,
 296 and Timestamp-Aware. For the knowledge “Lionel Messi played for Inter Miami CF”, Time-
 297 Agnostic, Temporal Interval-Aware, and Timestamp-Aware queries are formulated as follows:
 298 “Which club does the person in the image currently play for?”, “Which club did the footballer play
 299 for between 2023 and 2024?”, and “Which club did the footballer play for on 1 January 2024?”,
 300 respectively. In Table 3, all LMMs perform better on Timestamp-Aware tasks. This phenomenon
 301 may stem from the narrower temporal context required: Timestamp-Aware queries only necessitate
 302 knowledge retrieval for a specific point in time, whereas Time-Agnostic and Temporal Interval-
 303 Aware tasks demand recalling broader or time period-based information, which is more challenging.
 304 Despite this, the top-performing model, Gemini-2.5-Pro, still fails to recall approximately 15% of
 305 the knowledge, underscoring the importance of temporal sensitivity in model reasoning.
- 306 **Obs 2: LMMs are vulnerable to temporal misaligned context, especially from past temporal
 307 misaligned contexts.** Compared to T.S.A. results in Table 3, LMMs’ performance degrades when
 308 queries are accompanied by temporal misaligned context, which impedes correct knowledge recall.
 309 For the experiment in Figure 7, we use the same timestamp in the queries, with the only difference
 310 being whether the input query included the relevant but temporal misaligned text. We observe that
 311 more capable closed-source models and larger open-source models exhibit greater robustness to
 312 temporally misaligned context, whereas smaller open-source models suffer significant performance
 313 degradation. For instance, Qwen2-VL_I. (7B) shows declines of 43.84% on F.M.C and 56.43% on
 314 P.M.C. These results indicate that smaller models are more susceptible to misleading temporal
 315 context, with past misaligned information having a particularly strong negative impact.
- 316 **Obs 3: LMMs are better at rejecting questions with unanswerable future dates than those
 317 with past dates.** As indicated by P.U.D and F.U.D results in Table 3, most LMMs (except for
 318 mPLUG-Owl2 (7B)) are capable of effectively rejecting questions that contain unanswerable dates
 319 from either the past or the future. This is likely because such dates are absent from the training
 320 data, allowing the models to reject them with greater confidence. Furthermore, LMMs show a
 321 slightly stronger propensity to reject questions with unanswerable future dates, likely because these
 322 represent entirely unseen temporal concepts, resulting in even greater refusal certainty. Surprisingly,
 323 both Qwen2-VL_I. (7B) (average CEM score of 99.64) and Qwen2.5-VL_I. (7B) (average CEM
 324 score of 99.70) demonstrate exceptional performance in question refusal, a capability potentially
 325 attributable to enhanced defensive mechanisms from their instruction tuning process.

- **Obs 4: All LLMs perform terribly on tasks involving implicit temporal concepts.** In the I.T.C column of Table 3, all LLMs perform terribly, with even the top-performing model, Gemini-2.5-Pro, recalling less than 20% of relevant knowledge. This indicates a fundamental deficiency in understanding and utilizing implicit temporal concepts.
- **Obs 5: Open-source LMMs demonstrate stronger performance on simpler ranking task, whereas closed-source LMMs excel in more complex calculation task.** Unexpectedly, MiniCPM-V2.6 (8B) and InternVL2.5 (8B) achieved the highest performance on ranking task, while models such as GPT-4.1 and Doubao-1.5-Vision-Pro scored below 20% in CEM. Figure 5 further illustrates this phenomenon, showing a decline in ranking performance within the Qwen2.5-VL_L series as model size increases $50.3_{(3B)} \rightarrow 38.9_{(7B)} \rightarrow 11.4_{(72B)}$, potentially due to overthinking. Larger models, despite their enhanced reasoning capabilities, may overcomplicate simple tasks like ranking, leading to reduced effectiveness. In contrast, on more challenging calculation task, closed-source LMMs including Gemini-2.5-Pro and GPT-4.1 demonstrated superior performance.
- **Obs 6: Current LMMs demonstrate limited adversarial robustness against temporal errors.** According to the A.T.E results in Table 3, models such as Qwen-VL (7B), LLaVA-Next_M (7B), and InternVL2.5 (8B) fail to correct any prior errors, demonstrating severely limited robustness. Even the top-performing model, Gemini-2.5-Pro, corrects fewer than 40% of errors. These results indicate a significant need for improvement in temporal reasoning robustness across current models.
- **Obs 7: More recent LMMs exhibit better temporal awareness performance.** Avg. results in Table 3 reveal an approximate trend: more recent LMMs generally achieve superior overall performance, indicating a link between temporal awareness and recency of development.

4.3 ANALYSIS OF EXPLORATORY RESULTS

In this section, we present further explorations into evaluation of time-sensitive knowledge, yielding the following observations.

- **Exp 1: Fine-grained Knowledge Types.** All LMMs show consistent trends in recalling time-sensitive knowledge across domains. As shown in Figure 4, LMMs perform better on queries related to organization, company, and country leaders, but worse on athletes and competition champions, likely due to the broader coverage of the former in public knowledge sources. Furthermore, closed-source models outperform open-source variants on university president queries, indicating potential discrepancies in their pretraining corpora.

Performance Comparison of Fine-grained Knowledge Types

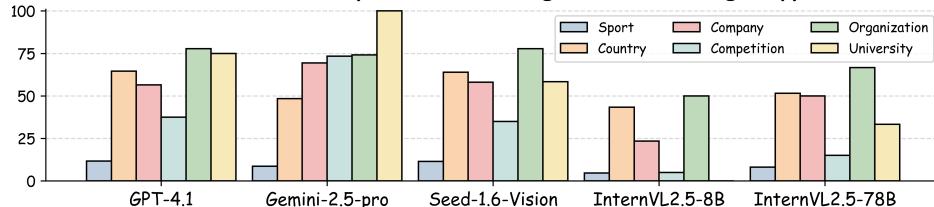


Figure 4: The cognitive capacity of various LMMs across six specific knowledge types when queried with Time-Agnostic tasks.

- **Exp 2: Model Size and Foundation LLM.** Observing Figure 5, we have the following findings: (1) Larger model sizes generally lead to improved performance on most tasks, except for R.K, P.U.D, F.U.D, and A.T.E. (2) Even with an identical architecture, LMMs exhibit divergent performance when using different foundation LLMs. For instance, while LLaVA-Next_L (8B) and LLaVA-Next_M (7B) perform poorly on A.T.E task, LLaVA-Next_V (7B) achieves a CEM score of 31.2.

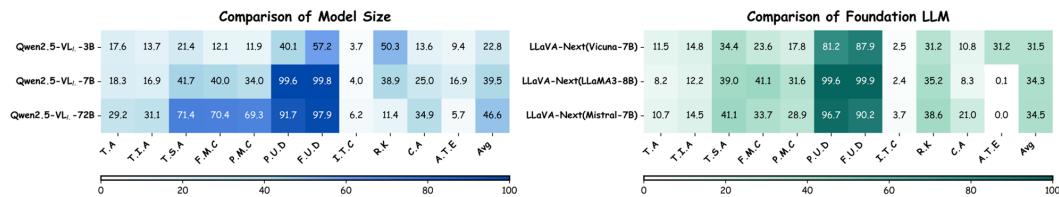


Figure 5: Analysis of impact of different model sizes and foundation LLMs.

- **Exp 3: Fine-grained Analysis of Time-Agnostic and Temporal Distribution.** In the Time-Agnostic task, we further categorize the model’s outputs into fine-grained labels. Since Prompt

378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 Agreement is adopted, each knowledge yields four outputs. If any output contains the most up-to-date value from the attribute list A , it is labeled as **Latest**. If none includes the latest value but at least one contains an outdated answer, it is marked as **Outdated**. All other cases are categorized as **Irrelevant**. In Table 4, open-source models not only produce a limited number of latest responses but also generate a substantial portion of irrelevant responses. In contrast, closed-source models reduce the frequency of irrelevant responses but still exhibit a high proportion of outdated responses. These statistical results indicate that a significant portion of model-generated responses are either outdated or irrelevant, highlighting a pronounced issue of inaccurate time-sensitive knowledge. Figure 6 provides an approximate visualization of the temporal distribution of knowledge within LMMs. Closed-source models demonstrate a broader temporal coverage. In contrast, the internal knowledge of open-source models is concentrated in more recent time periods, indicating a comparative difficulty in recalling information from distant historical contexts.

Table 4: Fine-grained analysis of predicted output in Time-Agnostic.

Model	Time-Agnostic		
	Lat. \uparrow	Out. \downarrow	Irr. \downarrow
Open-source LMMs			
LLaVA-v1.5 (7B)	14.90	27.45	57.65
LLaVA-Next _M (7B)	19.22	36.47	44.31
InternVL2.5 (1B)	14.12	33.73	44.31
InternVL2.5 (8B)	16.08	43.92	40.00
Qwen2.5-VL _I (7B)	20.00	56.86	23.14
Closed-source LMMs			
Kimi-Latest	24.71	58.82	16.47
GPT-4.1	28.04	53.53	18.43
Seed-1.6-Vision	21.57	64.31	14.12

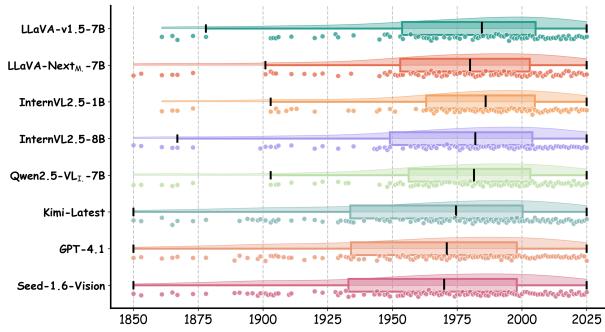


Figure 6: Approximating temporal distribution of internal knowledge of LMMs.

- **Exp 4: Error analysis of Awareness of Temporal Misalignment.** Table 5 provides a detailed error analysis of awareness experiment. The red values in the bracket mean a negative effect, while green means a positive. **Con.** to context-based answers, **Oth.** to other answers, and **Irr.** to irrelevant ones. Surprisingly, even when provided with relevant context, models still generate responses that are irrelevant to the query or contain incorrect values from attribute list A , rather than leveraging the given context. This finding underscores the need to further investigate how models integrate external information with their internal knowledge.

Table 5: Error analysis when provide misaligned context.

Model	Future Misaligned Context			Past Misaligned Context		
	Con. \downarrow	Oth. \downarrow	Irr. \downarrow	Con. \downarrow	Oth. \downarrow	Irr. \downarrow
<i>w/ Misaligned Context</i>						
GPT-4.1	7.94	5.61	8.37	10.64	4.83	7.04
Qwen2-VL _I (7B)	64.72	5.93	11.44	77.21	4.42	6.91
LLaVA-Next _M (7B)	52.44	4.98	9.11	57.46	5.39	8.29
Qwen2.5-VL _I (72B)	8.79	8.16	12.61	12.15	8.01	10.50
<i>w/o Misaligned Context</i>						
GPT-4.1	3.92 (-4.02)	6.78 (+1.17)	8.47 (+0.10)	6.01 (-4.63)	7.47 (+2.64)	8.12 (+1.08)
Qwen2-VL _I (7B)	5.51 (-59.21)	23.41 (+17.48)	39.41 (+27.97)	12.18 (-65.03)	20.62 (+16.20)	40.91 (+34.00)
LLaVA-Next _M (7B)	7.84 (-44.60)	15.15 (+10.17)	36.23 (+27.12)	12.5 (-44.96)	14.77 (+9.38)	39.29 (+31.00)
Qwen2.5-VL _I (72B)	5.72 (-3.07)	10.06 (+1.90)	12.92 (+0.31)	7.95 (-4.20)	9.58 (+1.57)	13.8 (+3.30)

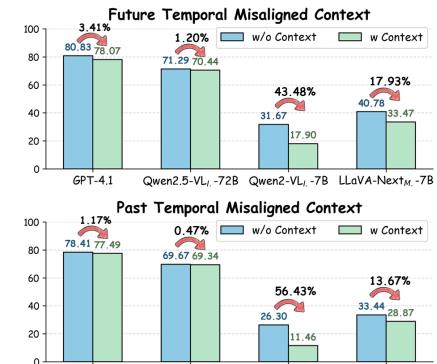


Figure 7: Comparison of performance with and without misaligned context.

5 CAN WE UPDATE LMMs WITH TIME-SENSITIVE KNOWLEDGE?

Section 4 reveals that existing LMMs struggle to effectively process time-sensitive knowledge, while also being hampered by substantial amounts of outdated and irrelevant information. Knowledge editing updates factual knowledge in LLMs and LMMs, enabling efficient correction of outdated or inaccurate information without full retraining. Building on prior work (Cheng et al., 2023; Huang et al., 2024; Li et al., 2024b; Zhang et al., 2025; Bi et al., 2025b), we ask: *Can LMMs be effectively updated with time-sensitive knowledge?* We explore multimodal time-sensitive knowledge editing and updating in real-world scenarios. We observe that LLaVA-v1.5 (7B) and Qwen-VL (7B) perform

poorly and are therefore used as outdated models for knowledge editing. Regarding the selection of editing data, we extracted samples from these two models where CEM score is not 100 across five dimensions: cognition, trustworthiness, understanding, reasoning and robustness. Evaluation metric follows the protocol in Section 4.1. For more details, please refer to Appendix F.

Methods and Editing Setting: We adopt two categories of multimodal knowledge editing approaches: parameter-modifying, like FT-LLM, FT-VIS, MEND (Mitchell et al., 2022a) and parameter-preserving, like SERAC (Mitchell et al., 2022b), IKE (Zheng et al., 2023). We adopt the following two types of editing settings: ① Single editing restores weights after each edit, whereas ② lifelong editing examines the cumulative effects of editing entire dataset before evaluating all instances.

Table 6: **Single Editing Performance Comparison (%) on MINED.** The top and worst performing results are highlighted in red (1st) and blue (bottom) backgrounds, respectively.

Method	Cog.			Tru.		Und.		Rea.		Rob.		Avg
	T.A	T.I.A	T.S.A	P.U.D	F.U.D	I.T.C	R.K	C.A	A.T.E			
<i>LLaVA-v1.5 (7B)</i>												
Modifying Parameters	FT-LLM	97.99	93.54	92.87	100.00	100.00	96.16	96.00	97.81	100.00	97.15	
	FT-VIS	85.78	82.92	94.88	79.17	76.49	78.33	93.33	88.60	99.64	86.57	
	MEND	66.81	69.79	73.95	26.62	18.09	65.71	73.78	69.74	100.00	62.72	
Preserving Parameters	SERAC	66.09	67.71	71.78	65.28	65.12	66.53	55.56	67.54	28.67	61.59	
	IKE	85.70	82.40	99.38	47.45	44.44	75.24	59.11	91.23	99.19	76.02	
<i>Qwen-VL (7B)</i>												
Modifying Parameters	FT-LLM	86.55	86.58	89.94	100.00	100.00	81.81	87.50	88.98	100.00	91.25	
	FT-VIS	81.14	79.64	80.50	69.92	74.27	75.70	74.07	80.19	100.00	79.49	
	MEND	68.13	70.47	54.93	79.67	84.80	64.14	65.74	50.24	100.00	70.90	
Preserving Parameters	SERAC	57.16	66.22	62.05	69.92	74.56	56.44	62.96	52.17	18.36	57.76	
	IKE	86.52	78.08	91.09	72.15	60.82	74.17	68.75	92.75	92.34	79.63	

Single Editing Shows Strong Effectiveness: By observing Table 6, we make the following observations: ① FT-LLM demonstrates strong performance as a knowledge updating method, achieving superior results across all evaluated tasks. ② In contrast, both the SERAC and MINED exhibit comparatively weaker performance, demonstrating limited effectiveness in knowledge updating tasks. ③ Exception of SERAC, all methods achieve excellent performance on A.T.E task, demonstrating the strong robustness of current knowledge editing approaches. ④ Knowledge updating significantly enhances the model’s performance on complex I.T.C and C.A tasks.

Table 7: **Lifelong Editing Performance on MINED.** All results are base on LLaVA-v1.5 (7B). Red and green values mean negative and positive effects relative to data in Table 6, respectively.

Method	Cog.			Tru.		Und.		Rea.		Rob.		Avg
	T.A	T.I.A	T.S.A	P.U.D	F.U.D	I.T.C	R.K	C.A	A.T.E			
FT-LLM	31.03 (-66.96)	32.29 (-61.25)	25.89 (-66.98)	100.00 (+0.00)	98.97 (-1.03)	9.33 (-86.83)	60.44 (-35.56)	27.63 (-70.18)	100.00 (+0.00)	53.95 (-43.20)		
FT-VIS	12.64 (-73.14)	12.50 (-70.42)	2.17 (-92.71)	73.61 (-5.56)	78.55 (+2.06)	6.45 (-71.88)	16.00 (-77.33)	10.96 (-77.64)	100.00 (+0.36)	34.76 (-51.81)		
SERAC	53.74 (-12.35)	53.33 (-14.38)	70.08 (-1.70)	65.97 (+0.69)	66.41 (+1.29)	5.87 (-60.66)	42.67 (-12.89)	61.84 (-5.70)	41.22 (+12.55)	51.24 (-10.35)		

Lifelong Editing Still Needs Improvement: By observing Table 7, we make the following observations: ① Except for P.U.D, F.U.D and A.T.E tasks, knowledge updating performance of FT-LLM, FT-VIS and SERAC has experienced varying degrees of loss. ② SERAC maintains excellent performance in lifelong editing scenario, with only 10.35% loss. Its memory-based architecture mitigates catastrophic forgetting through explicit caching, maintaining robust performance in lifelong editing. ③ Performance of SERAC in A.T.E has been improved by 12.55%, which may be due to lifelong editing making SERAC better suited for robustness tasks.

6 CONCLUSION AND DISCUSSION

We propose MINED, a comprehensive benchmark to evaluate LMMs on their time-sensitive knowledge capability. Our evaluation shows that while Gemini-2.5-Pro performs strongly, models still

486 struggle with temporal accuracy , a limitation we explored by using knowledge editing to effectively
 487 update missing knowledge in single-edit scenarios. Our observations provide crucial directions for
 488 future research: ① Poor performance in the Awareness dimension suggests future methods must
 489 focus on improving the model’s ability to distinguish the temporal consistency of internal knowledge
 490 and external context. ② Low scores in the Understanding dimension emphasize the urgent need to
 491 enhance the model’s semantic comprehension and transformation capability for implicit temporal
 492 concepts. ③ Poor performance in the Robustness dimension necessitates the development of more
 493 powerful self-correction and adversarial robustness mechanisms. These experimental results establish
 494 key technical hurdles and a clear roadmap for advancing LMMs toward dynamic knowledge systems.

495 ETHICS STATEMENT

496 During the development process, we recognize the ethical implications of deploying LMMs. Ensuring
 497 the integrity and reliability of multimodal time-sensitive knowledge is crucial for avoiding the spread
 498 of outdated and distorted information. Our research reveals the key limitations of existing LMMs in
 499 handling multimodal time sensitive knowledge, while verifying the reliability of knowledge editing
 500 methods in updating outdated multimodal time sensitive knowledge. Provided valuable insights for
 501 improving the reliability of LMMs.

504 REPRODUCIBILITY STATEMENT

505 To ensure the reproducibility of our findings, we will release our complete source code and MINED
 506 dataset on Hugging Face upon completion of the review process. Furthermore, all open-source
 507 models used in our experiments are downloaded from Hugging Face, ensuring that other researchers
 508 can access the identical model weights used in our study. We hope these measures will enable other
 509 researchers to verify and reproduce our results.

512 REFERENCES

513 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
 514 and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
 515 text reading, and beyond. *arxiv* 2023. *arXiv preprint arXiv:2308.12966*, 1(8), 2023. 5

516 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 517 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Ming-Hsuan Yang, Zhaohai Li, Jianqiang
 518 Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
 519 Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report.
 520 In *Proceedings of the Conference on Vision-Language Research 2025*, 2025. arXiv preprint
 521 *arXiv:2502.13923*. 3, 5

522 Jinhe Bi, Yifan Wang, Danqi Yan, Aniri, Wenke Huang, Zengjie Jin, Xiaowen Ma, Artur Hecker,
 523 Mang Ye, Xun Xiao, Hinrich Schuetze, Volker Tresp, and Yunpu Ma. Prism: Self-pruning intrinsic
 524 selection method for training-free multimodal data selection, 2025a. URL <https://arxiv.org/abs/2502.12119>. 5

525 Jinhe Bi, Yujun Wang, Haokun Chen, Xun Xiao, Artur Hecker, Volker Tresp, and Yunpu Ma.
 526 Llava steering: Visual instruction tuning with 500x fewer parameters through modality linear
 527 representation-steering, 2025b. URL <https://arxiv.org/abs/2412.12359>. 8

528 Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo, Wei Xue, Yike Guo, and Jie Fu. Rq-rag:
 529 Learning to refine queries for retrieval augmented generation. *arXiv preprint arXiv:2404.00610*,
 530 2024. 16

531 Wenhui Chen, Xinyi Wang, and William Yang Wang. A dataset for answering time-sensitive questions.
 532 *arXiv preprint arXiv:2108.06314*, 2021. 1, 3

533 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
 534 Ye, Hao Tian, Zhaoyang Liu, Lixin Gu, Xuehui Wang, Qingyun Li, Yimin Ren, Zixuan Chen,
 535 Jiapeng Luo, Jiahao Wang, Tan Jiang, Bo Wang, Conghui He, Botian Shi, Xingcheng Zhang, Han

540 Lv, Yi Wang, Wenqi Shao, Pei Chu, Zhongying Tu, Tong He, Zhiyong Wu, Huipeng Deng, Jiaye
 541 Ge, Kai Chen, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and
 542 Wenhui Wang. Expanding performance boundaries of open-source multimodal models with model,
 543 data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 1, 2024. 5

544 Siyuan Cheng, Bozhong Tian, Qingbin Liu, Xi Chen, Yongheng Wang, Huajun Chen, and Ningyu
 545 Zhang. Can we edit multimodal large language models? In *Proceedings of the 2023 Conference*
 546 *on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10,*
 547 *2023*, 2023. 8

548 Mingyang Fu, Yuyang Peng, Dongping Chen, Zetong Zhou, Benlin Liu, Yao Wan, Zhou Zhao,
 549 Philip S. Yu, and Ranjay Krishna. Seeking and updating with live visual knowledge. *arXiv preprint*
 550 *arXiv:2504.05288*, 2025. 2, 3

552 Google Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality,
 553 long context, and next generation agentic capabilities. *arXiv preprint arXiv:2507.06261*, 2025. 3, 5

555 Han Huang, Haitian Zhong, Tao Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. Vlkeb: A
 556 large vision-language model knowledge editing benchmark. In *Advances in Neural Information*
 557 *Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,*
 558 *NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024. 8

559 Jungo Kasai, Keisuke Sakaguchi, Yoichi Takahashi, Ronan Le Bras, Akari Asai, Xinyan Yu, Dragomir
 560 Radev, Noah A. Smith, Yejin Choi, and Kentaro Inui. RealTime QA: what's the answer right now?
 561 *Advances in Neural Information Processing Systems 36 (NeurIPS 2023)*, 2023. 1

562 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 563 Xiao, Chenzhuang Du, Chonghua Liao, Chunling Tang, Congcong Wang, Dehao Zhang, Enming
 564 Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
 565 Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze
 566 Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin
 567 Su, Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi,
 568 Ling Ye, Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong,
 569 Shaowei Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao,
 570 Weimin Xiong, Weiran He, Weixiao Huang, Weixin Xu, Wenhao Wu, Wenyang He, Xianghui
 571 Wei, Xianqing Jia, Xingzhe Wu, Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles,
 572 Yang Li, Yangyang Hu, Yangyang Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu,
 573 Ying Yang, Yiping Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei
 574 Li, Zhen Zhu, Zheng Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu,
 575 Zonghan Yang, and Zongyu Lin. Kimi k1.5: Scaling reinforcement learning with llms. *arXiv*
 576 *preprint arXiv:2501.12599*, 2025. 3, 5

577 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei Li,
 578 Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. In *Proceedings of the*
 579 *Conference on Vision-Language Research 2024*, 2024a. *arXiv preprint arXiv:2408.03326*. 5

580 Jiaqi Li, Miaozen Du, Chuanyi Zhang, Yongrui Chen, Nan Hu, Guilin Qi, Haiyun Jiang, Siyuan
 581 Cheng, and Bozhong Tian. MIKE: A new benchmark for fine-grained multimodal entity knowledge
 582 editing. In *Findings of ACL*, pp. 5018–5029, 2024b. 8

583 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 584 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 585 pp. 26296–26306, 2024a. 3, 5

586 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 587 Llava-next: Improved reasoning, ocr, and world knowledge. In *Proceedings of the Conference on*
 588 *Vision-Language Research 2024*, 2024b. 5

589 Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
 590 editing at scale. In *International Conference on Learning Representations*, 2022a. 9

591 Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Memory-
 592 based model editing at scale. In *International Conference on Machine Learning*, 2022b. 9

594 Seyed Mahed Mousavi, Simone Alghisi, and Giuseppe Riccardi. Dyknow: Dynamically verifying
 595 time-sensitive factual knowledge in llms. In *Findings of the Association for Computational*
 596 *Linguistics: EMNLP 2024*, pp. 8014–8029, 2024. 3

597

598 OpenAI. Gpt-4 technical report. In *Proceedings of the Conference on Artificial Intelligence Research*
 599 2023, 2023. arXiv preprint arXiv:2303.08774. 3, 5

600 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 601 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 602 Learning transferable visual models from natural language supervision. In *Proceedings of the 38th*
 603 *International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event*, 2021.
 604 3

605

606 Qingyu Tan, Hwee Tou Ng, and Lidong Bing. Towards benchmarking and improving the temporal
 607 reasoning capability of large language models. *Proceedings of the 61st Annual Meeting of the*
 608 *Association for Computational Linguistics, ACL 2023*, 2023. 1, 3

609 Wei Tang, Yixin Cao, Yang Deng, Jiahao Ying, Bo Wang, Yizhe Yang, Yuyue Zhao, Qi Zhang,
 610 Xuanjing Huang, Yu-Gang Jiang, and Yong Liao. Evowiki: Evaluating llms on evolving knowledge.
 611 In *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics*, pp.
 612 948–964, 2025. 1, 3

613 Md Nayem Uddin, Amir Saeidi, Divij Handa, Agastya Seth, Tran Cao Son, Eduardo Blanco,
 614 Steven R. Corman, and Chitta Baral. Unseentimeqa: Time-sensitive question-answering beyond
 615 llms' memorization. *arXiv preprint arXiv:2407.03525*, 2025. 3

616

617 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 618 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 619 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
 620 perception of the world at any resolution. In *Proceedings of the Conference on Vision-Language*
 621 *Research 2024*, 2024. arXiv preprint arXiv:2409.12191. 5

622 Yifan Wei, Yisong Su, Huanhuan Ma, Xiaoyan Yu, Fangyu Lei, Yuanzhe Zhang, Jun Zhao, and Kang
 623 Liu. MenatQA: A new dataset for testing the temporal comprehension and reasoning abilities of
 624 large language models. *Findings of the Association for Computational Linguistics: EMNLP 2023*,
 625 2023. 3

626

627 Peng Xu, Wenqi Shao, Kaipeng Zhang, Peng Gao, Shuo Liu, Meng Lei, Fanqing Meng, Siyuan
 628 Huang, Yu Qiao, and Ping Luo. Lvlm-ehub: A comprehensive evaluation benchmark for large
 629 vision-language models. *arXiv preprint arXiv:2306.09265*, 2023. 5

630

631 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
 632 Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. *arXiv preprint*
 633 *arXiv:2408.01800*, 2024. 5

634

635 Jiabo Ye, Haiyang Xu, Haowei Liu, Anwen Hu, Ming Yan, Qi Qian, Ji Zhang, Fei Huang, and Jingren
 636 Zhou. mplug-owl3: Towards long image-sequence understanding in multi-modal large language
 637 models. *arXiv preprint arXiv:2408.04840*, 2024. 5

638

639 Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Anwen Hu, Haowei Liu, Qi Qian, Ji Zhang, Fei
 640 Huang, and Jingren Zhou. mplug-owl2: Revolutionizing multi-modal large language model with
 641 modality collaboration. In *Proceedings of the Conference on Artificial Intelligence Research 2023*,
 642 2023. arXiv preprint arXiv:2311.04257. 5

643

644 Junzhe Zhang, Huixuan Zhang, Xunjian Yin, Baizhou Huang, Xu Zhang, Xinyu Hu, and Xiaojun
 645 Wan. MC-MKE: A fine-grained multimodal knowledge editing benchmark emphasizing modality
 646 consistency. *Findings of the Association for Computational Linguistics, ACL 2025*, 2025. 8

647

Zhihan Zhang, Yixin Cao, Chenchen Ye, Yunshan Ma, Lizi Liao, and Tat-Seng Chua. Analyzing
 648 temporal complex events with large language models? a benchmark towards temporal, long context
 649 understanding. *Proceedings of the 62nd Annual Meeting of the Association for Computational*
 650 *Linguistics (ACL 2024)*, 2024. 1

648 Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can
649 we edit factual knowledge by in-context learning? In Houda Bouamor, Juan Pino, and Kalika Bali
650 (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*,
651 pp. 4862–4876, Singapore, December 2023. Association for Computational Linguistics. 9
652

653 Zhiyuan Zhu, Yusheng Liao, Zhe Chen, Yuhao Wang, Yunfeng Guan, Yanfeng Wang, and Yu Wang.
654 Evolvebench: A comprehensive benchmark for assessing temporal awareness in llms on evolving
655 knowledge. In *Proceedings of the 63rd Annual Meeting of the Association for Computational
656 Linguistics*, pp. 16173–16188, 2025. 1, 3
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

APPENDIX CONTENTS

702	A THE USE OF LARGE LANGUAGE MODELS IN MINED	15
703		
704		
705	B MORE DETAILS ABOUT MINED	15
706		
707	B.1 MINED 'S QUALITY AND EVOLVABILITY	15
708		
709	B.2 MINED 'S DETAILED QUANTITY	15
710		
711		
712	C MORE EXPERIMENTAL RESULTS ABOUT MINED	16
713		
714	C.1 MORE MAIN RESULTS ABOUT MINED	16
715		
716	C.2 MORE MODEL SIZE RESULTS ABOUT MINED	17
717		
718	D EXPERIMENT RESOURCES ABOUT MINED	18
719		
720	E CASE STUDIES ABOUT MINED	18
721		
722	F UPDATING TIME-SENSITIVE KNOWLEDGE VIA KNOWLEDGE EDITING	22
723		
724	F.1 EDITING SETTING	22
725		
726	F.2 KNOWLEDGE EDITING METHODS AND PARAMETERS	22
727		
728	F.3 EDITING QUANTITY	23
729		
730	G MORE DETAILS ABOUT CHAT TEMPLATES AND QUANTITATIVE EXAMPLES	24
731		
732	H DETAILS OF THE DATA CONSTRUCTION PIPELINE	30
733		
734	H.1 ORIGINAL DATA CONSTRUCTION PIPELINE	30
735		
736	H.2 TASK DATA CONSTRUCTION PIPELINE	30
737		
738	I HUMAN STUDY ABOUT MINED	32
739		
740	I.1 HUMAN STUDY ABOUT MINED'S ORIGINAL DATA	32
741		
742	I.2 HUMAN STUDY ABOUT MINED'S TASK DATA	32
743		
744	J LLM JUDGE ON MINED	34
745		
746	K EXPERIMENTAL RESULTS OF PROMPT AGREEMENT	35
747		
748	L THOUGHTS ON FUTURE WORK	35
749	M CASE STUDIES OF OBSERVATION.	36
750		
751		
752		
753		
754		
755		

756 A THE USE OF LARGE LANGUAGE MODELS IN MINED
757758 In this section, we elaborate on the precise role of large language models within MINED, as detailed
759 below.760
761 • **Usage 1: MINED’s construction.** In the dimension of Awareness of Temporal Misalignment
762 (Section 3.1), GPT-4o is employed to generate contextual content related to temporal misalignment.
763 This approach is consistent with current academic research norms.
764 • **Usage 2: MINED’s evaluation.** In Section 4.2, we evaluate performance on MINED using Kimi-
765 Latest, Gemini-2.5-Pro, Doubao-1.5-Vision-Pro, Seed-1.6-Vision and GPT-4.1, following standard
766 benchmarking practices.
767 • **Usage 3: Paper grammar polishing.** The paper is initially drafted by human authors and
768 subsequently polished for grammar using a large language model. It is not generated entirely by
769 AI. This practice aligns with current academic norms.
770771 B MORE DETAILS ABOUT MINED
772

773 B.1 MINED ’S QUALITY AND EVOLVABILITY

774 Owing to the time-sensitive nature of MINED, we will perform quarterly updates to endow the
775 benchmark with evolvability. Unlike conventional benchmarks that merely replace outdated data,
776 MINED offers a fundamentally distinct form of evolution. It not only evaluates model performance
777 on time-sensitive knowledge but also probes models’ internal knowledge boundaries (in Section 4.3).
778 To this end, we design an efficient pipeline to update the attribute list of each knowledge entry every
779 quarter. This pipeline enables continuous renewal of knowledge, persistent evaluation of model
780 knowledge boundaries, and provides the community with a dynamic and evolving evaluation resource.
781 We outline MINED’s update pipeline:782
783 • (1) Leveraging existing MINED subject S data, we retrieve corresponding Wikipedia text data
784 offline (e.g., searching “Lionel Messi”).
785 • (2) For club affiliation information, we extract information from Wikipedia’s career sections
786 using GPT-4o with strict parsing rules(the career field contains Lionel Messi’s club affiliation
787 information).
788 • (3) Newly extracted club data is compared against MINED’s current records, triggering updates
789 when discrepancies occur. This efficient pipeline ensures automated, continuous MINED updates,
790 providing the community with an evolving evaluation resource.791 Combined with this automated update pipeline, our proposed MINED benchmark can not only
792 evaluate current state-of-the-art LMMs, **but also be used to evaluate newly emerging and more**
793 **powerful LMMs in the future.**

794 B.2 MINED ’S DETAILED QUANTITY

795 Table 8: The detailed quantity of time-sensitive knowledge for each task

796
797

Cog.			Awa.		Tru.		Und.	Rea.	Rob.	Sum	
T.A	T.I.A	T.S.A	EM.C	P.M.C	P.U.D	F.U.D	I.T.C	R.K	C.A		
255	172	237	236	181	207	207	255	81	81	192	2104

800
801
802
803
804
805
806
807
808
809

810 C MORE EXPERIMENTAL RESULTS ABOUT MINED

812 C.1 MORE MAIN RESULTS ABOUT MINED

814 In this section, we present the complete experimental results on MINED. To further validate the
 815 reliability of our conclusions, we also employed the F1-Score as an additional evaluation metric.

816 The F1-Score is a metric for assessing model performance by quantifying the word-level similarity
 817 between a model’s output and the ground truth answer. It is the harmonic mean of Precision and
 818 Recall (Chan et al., 2024).

820 To calculate it, we first represent both the ground truth and the prediction as sets of words. Let the
 821 ground truth be $\mathcal{W}(y_q) = \{y_1, \dots, y_m\}$ and the model’s prediction be $\mathcal{W}(\hat{Y}) = \{\hat{y}_1, \dots, \hat{y}_n\}$. The
 822 number of common words between these sets, known as the overlap $\mathcal{U}(\hat{Y}, y_q)$, is computed using an
 823 indicator function $\mathbf{1}[\cdot]$:

$$824 \quad \mathcal{U}(\hat{Y}, y_q) = \sum_{t \in \mathcal{W}(y_q)} \mathbf{1}[t \in \mathcal{W}(\hat{Y})] \quad (2)$$

826 Precision, $\mathcal{P}(\hat{Y}, Y)$, is the fraction of relevant words among the predicted words. It is formally
 827 defined as:

$$828 \quad \mathcal{P}(\hat{Y}, Y) = \frac{\mathcal{U}(\hat{Y}, y_q)}{|\mathcal{W}(\hat{Y})|} \quad (3)$$

830 Recall, $\mathcal{R}(\hat{Y}, Y)$, is the fraction of ground truth words that the model successfully identified. It is
 831 defined as:

$$833 \quad \mathcal{R}(\hat{Y}, Y) = \frac{\mathcal{U}(\hat{Y}, y_q)}{|\mathcal{W}(y_q)|} \quad (4)$$

835 **Table 9: Complete F1-Score Performance Comparison (%) on MINED.** The top two and worst
 836 results are highlighted in red (1st), yellow (2nd) and blue (bottom) backgrounds, respectively.
 837 Subscripts L , M , V and I stand for LLaMA3-8B, Mistral-7B, Vicuna-7B and Instruct, respectively.

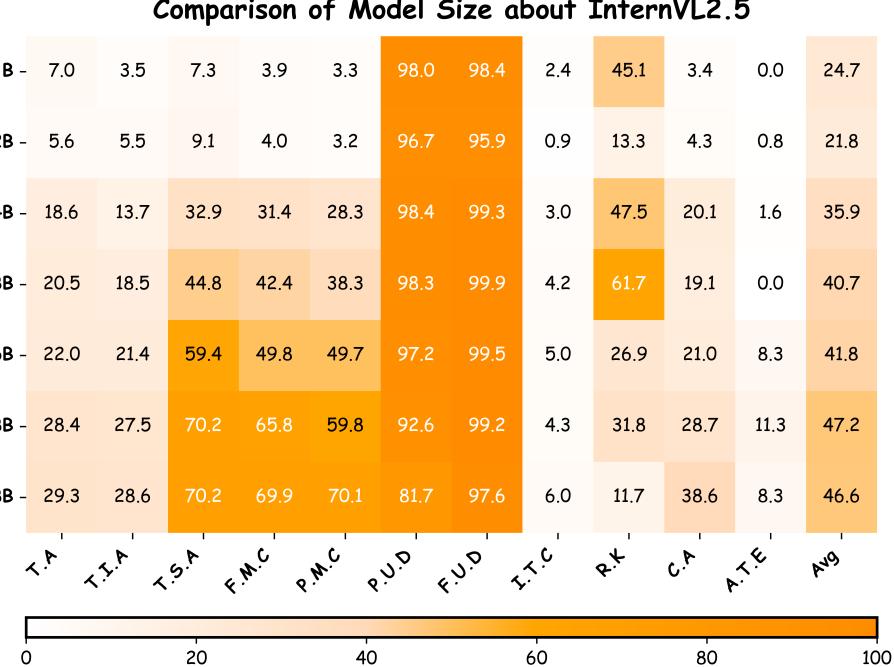
(Release Time) Models	Cog.			Awa.		Tru.		Und.	Rea.		Rob.	Avg.	
	T.A	T.I.A	T.S.A	F.M.C	P.M.C	P.U.D	E.U.D	I.T.C	R.K	C.A	A.T.E		
<i>Open-source LMMs</i>													
<i>Model size under 10B</i>													
(2023.04) LLaVA-v1.5 (7B)	7.89	11.44	16.88	10.60	9.49	53.99	50.00	1.95	15.33	6.38	0.39	16.76	
(2023.08) Qwen-VL (7B)	14.56	20.30	47.09	7.66	8.81	80.00	69.40	4.94	23.13	18.96	0.00	26.80	
(2023.11) mPLUG-Owl2 (7B)	13.40	17.05	50.94	48.26	44.21	11.19	44.20	3.34	43.40	16.59	6.12	27.15	
(2024.01) LLaVA-Next _L (8B)	9.39	16.68	46.39	47.51	38.20	99.64	99.88	3.47	36.08	10.85	0.13	37.11	
(2024.01) LLaVA-Next _M (7B)	13.37	18.74	46.59	37.34	32.05	96.74	90.22	4.43	38.85	24.23	0.00	36.60	
(2024.01) LLaVA-Next _V (7B)	13.89	18.34	39.15	27.60	22.54	81.16	87.92	3.99	32.23	15.25	31.25	33.94	
(2024.08) LLaVA-OV (7B)	14.22	15.24	31.91	35.12	34.84	39.61	76.21	4.86	52.56	14.73	2.21	29.23	
(2024.08) mPlug-Owl3 (8B)	9.94	14.07	33.09	21.87	20.86	97.60	99.76	3.27	41.53	7.62	3.65	32.11	
(2024.08) MiniCPM-V2.6 (8B)	24.11	25.91	58.78	41.37	34.63	81.52	97.83	5.81	53.67	27.74	14.45	42.35	
(2024.09) Qwen2-VL _I (7B)	19.20	21.34	37.49	21.92	14.71	99.52	99.76	6.09	50.27	18.40	9.90	36.24	
(2024.12) InternVL2.5 (1B)	4.53	2.65	4.86	3.48	3.06	97.95	98.43	1.19	42.35	3.85	0.00	23.85	
(2024.12) InternVL2.5 (2B)	6.67	7.29	10.21	5.96	4.98	96.74	95.89	2.04	13.77	5.27	0.78	22.69	
(2024.12) InternVL2.5 (4B)	21.02	17.35	35.32	34.06	31.36	98.43	99.28	4.26	47.74	22.07	1.56	37.50	
(2024.12) InternVL2.5 (8B)	21.71	23.29	49.14	47.38	42.64	98.31	99.88	6.00	62.11	24.52	0.00	43.18	
(2025.02) Qwen2.5-VL _I (3B)	19.55	16.39	25.16	15.20	14.61	40.10	57.25	5.28	50.58	16.46	9.38	24.54	
(2025.02) Qwen2.5-VL _I (7B)	21.59	22.29	47.47	45.77	38.83	99.64	99.76	5.74	39.22	28.35	22.29	42.81	
<i>Model size under 65B</i>													
(2024.12) InternVL2.5 (26B)	23.85	26.20	62.74	54.07	52.18	97.22	99.52	6.52	27.71	25.33	8.33	43.97	
(2024.12) InternVL2.5 (38B)	29.71	32.50	73.72	68.91	62.41	92.63	99.15	5.48	32.83	32.82	11.33	49.23	
<i>Model size under 100B</i>													
(2024.12) InternVL2.5 (78B)	30.44	35.91	75.35	74.59	73.79	81.16	97.58	7.75	12.80	43.09	8.33	49.16	
(2025.02) Qwen2.5-VL _I (72B)	32.42	36.97	76.21	75.32	73.56	91.67	97.95	7.78	11.91	38.07	5.73	49.78	
<i>Closed-source LMMs</i>													
(2025.02) Kimi-Lates	28.55	31.63	76.34	73.19	71.16	72.10	85.27	8.45	46.48	47.12	6.38	49.70	
(2025.03) Doubao-1.5-Vision-Pro	36.87	34.33	76.52	78.39	74.61	93.12	100.00	6.21	19.71	38.63	12.24	51.88	
(2025.03) Gemini-2.5-Pro	35.21	58.86	87.06	86.37	86.67	75.50	93.77	17.39	39.72	81.21	31.94	63.07	
(2025.04) GPT-4.1	37.26	43.42	84.93	82.47	82.02	64.44	91.30	10.11	16.77	62.03	17.58	53.85	
(2025.08) Seed-1.6-Vision	38.50	48.55	82.83	79.85	83.59	74.15	96.86	9.22	22.00	62.55	31.05	57.20	

862 According to the results in Table 9, we found that the conclusion drawn when using F1-Score as the
 863 evaluation metric is consistent with the conclusion drawn when using CEM as the evaluation metric,
 highlighting the reliability of our results and observations.

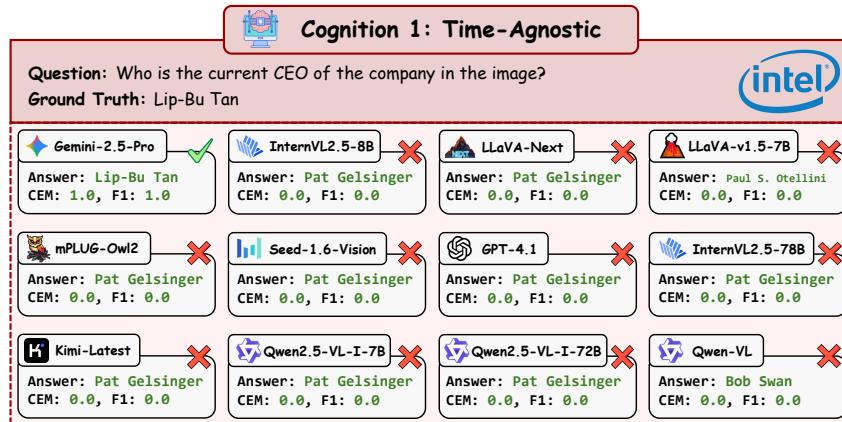
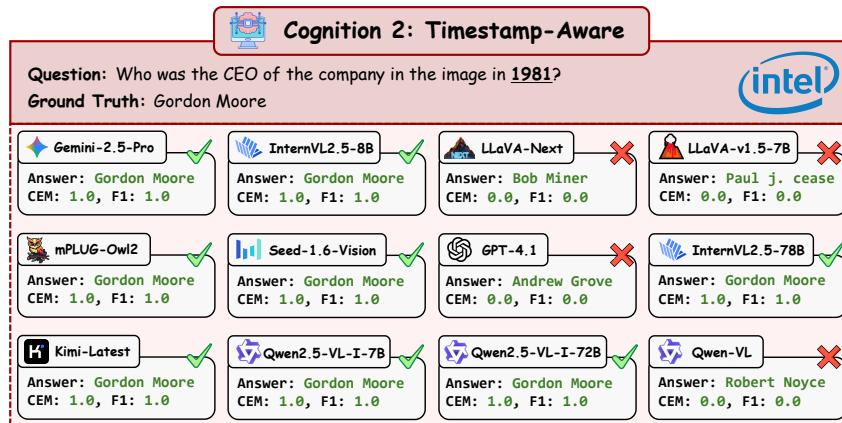
864
 865 **Table 10: Complete CEM Performance Comparison (%) on MINED.** The top two and worst
 866 results are highlighted in red (1st), yellow (2nd) and blue (bottom) backgrounds, respectively.
 867 Subscripts L , M , V and I stand for LLaMA3-8B, Mistral-7B, Vicuna-7B and Instruct, respectively.

(Release Time) Models	Cog.			Awa.		Tru.		Und.		Rea.		Rob.	Avg.
	T.A	T.I.A	T.S.A	F.M.C	P.M.C	P.U.D	E.U.D	I.T.C	R.K	C.A	A.T.E		
<i>Open-source LMMs</i>													
(2023.04) LLaVA-v1.5 (7B)	6.96	9.25	16.88	7.66	6.40	53.99	50.00	1.57	15.12	6.17	0.39	15.85	
(2023.08) Qwen-VL (7B)	12.45	17.30	42.09	6.04	6.91	81.28	70.17	3.53	25.00	17.59	0.00	25.67	
(2023.11) mPLUG-Owl2 (7B)	10.59	14.53	44.62	42.69	38.67	11.47	44.20	2.16	42.90	14.20	6.12	24.74	
(2024.01) LLaVA-Next _L (8B)	8.24	12.21	39.03	41.10	31.63	99.64	99.88	2.35	35.19	8.33	0.13	34.34	
(2024.01) LLaVA-Next _M (7B)	10.69	14.53	41.14	33.69	28.87	96.74	90.22	3.73	38.58	20.99	0.00	34.47	
(2024.01) LLaVA-Next _V (7B)	11.47	14.83	34.39	23.62	17.82	81.16	87.92	2.55	31.17	10.80	31.25	31.54	
(2024.08) LLaVA-OV (7B)	11.86	11.34	26.79	30.93	31.35	39.61	76.21	3.63	51.54	8.95	2.21	26.77	
(2024.08) mPlug-Owl3 (8B)	9.80	10.03	29.01	29.77	28.31	97.95	99.76	3.14	41.98	7.10	3.65	32.77	
(2024.08) MiniCPM-V2.6 (8B)	22.16	21.66	55.70	38.88	31.35	81.52	97.83	4.22	52.78	24.38	14.45	40.45	
(2024.09) Qwen2-VL _I (7B)	15.98	16.72	31.96	17.90	11.46	99.52	99.76	4.61	49.38	14.20	9.90	33.76	
(2024.12) InternVL2.5 (1B)	6.96	3.49	7.28	3.92	3.31	97.95	98.43	2.35	45.06	3.40	0.00	24.74	
(2024.12) InternVL2.5 (2B)	5.59	5.52	9.07	4.03	3.18	96.74	95.89	0.88	13.27	4.32	0.78	21.75	
(2024.12) InternVL2.5 (4B)	18.63	13.66	32.91	31.36	28.31	98.43	99.28	3.04	47.53	20.06	1.56	35.89	
(2024.12) InternVL2.5 (8B)	20.49	18.46	44.83	42.37	38.26	98.31	99.88	4.22	61.73	19.14	0.00	40.70	
(2025.02) Qwen2.5-VL _I (3B)	17.65	13.66	21.41	12.08	11.88	40.10	57.25	3.73	50.31	13.58	9.38	22.82	
(2025.02) Qwen2.5-VL _I (7B)	18.33	16.86	41.67	40.04	33.98	99.64	99.76	4.02	38.89	25.00	16.86	39.55	
<i>Model size under 10B</i>													
(2024.12) InternVL2.5 (26B)	21.96	21.37	59.39	49.79	49.72	97.22	99.52	5.00	26.85	20.99	8.33	41.83	
(2024.12) InternVL2.5 (38B)	28.43	27.47	70.15	65.78	59.81	92.63	99.15	4.31	31.79	28.70	11.33	47.23	
<i>Model size under 100B</i>													
(2024.12) InternVL2.5 (78B)	29.31	28.63	70.25	69.92	70.86	81.16	97.58	5.98	11.73	38.58	8.33	46.58	
(2025.02) Qwen2.5-VL _I (72B)	29.22	31.10	71.41	70.44	69.34	91.67	97.95	6.18	11.42	34.88	5.73	47.21	
<i>Closed-source LMMs</i>													
(2025.02) Kimi-Lates	26.41	26.60	72.43	68.64	67.27	72.10	85.39	7.06	45.99	42.59	6.38	47.35	
(2025.02) Doubao-1.5-Vision-Pro	35.78	27.91	69.83	74.36	70.76	93.12	100.00	5.29	18.52	34.57	12.24	49.31	
(2025.03) Gemini-2.5-Pro	34.25	56.40	84.96	83.09	84.30	80.31	97.10	18.73	38.48	76.54	39.58	63.07	
(2025.04) GPT-4.1	37.58	37.94	80.91	78.07	77.49	65.22	91.30	8.63	15.74	59.57	17.58	51.82	
(2025.08) Seed-1.6-Vision	37.19	41.76	78.69	75.95	80.71	74.15	96.86	7.55	21.60	59.57	32.68	55.16	

C.2 MORE MODEL SIZE RESULTS ABOUT MINED



914 Figure 8: Analysis of impact of different model sizes about InternVL2.5 series.
 915
 916
 917

918 D EXPERIMENT RESOURCES ABOUT MINED
919920 PROBING TIME-SENSITIVE KNOWLEDGE
921922 Regarding the validation experiments of LMMs on MINED, for models with parameter sizes of 38B
923 or less, we conduct experiments on 4 NVIDIA A100 PCIEs machines (40 GiB each); For models
924 with parameter sizes greater than 38B, we conduct experiments on 4 NVIDIA H100 (96 GiB each).
925926 EDITING TIME-SENSITIVE KNOWLEDGE
927928 We conduct knowledge editing experiment on one H100 (96 GiB each) regarding LMMs.
929930 E CASE STUDIES ABOUT MINED
931945 Figure 9: Case study of Time-Agnostic.
946962 Figure 10: Case study of Timestamp-Aware.
963
964
965
966
967
968
969
970
971

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Cognition 3: Temporal Interval-Aware					
Question: Who was the CEO of the company in the image from 1968 to 1975?					
Ground Truth: Robert Noyce					
Gemini-2.5-Pro		Answer: Robert Noyce CEM: 1.0, F1: 1.0			
InternVL2.5-8B		Answer: Gordon Moore CEM: 0.0, F1: 0.0	LLaVA-Next		Answer: Robert Noyce CEM: 1.0, F1: 1.0
LLaVA-v1.5-7B		Answer: Paul j. cease CEM: 0.0, F1: 0.0	InternVL2.5-78B		Answer: Robert Noyce CEM: 1.0, F1: 1.0
mPLUG-Owl2		Answer: ANSWER: Robert Noyce CEM: 1.0, F1: 0.8	Seed-1.6-Vision		Answer: Robert Noyce CEM: 1.0, F1: 1.0
GPT-4.1		Answer: Robert Noyce CEM: 1.0, F1: 1.0	InternVL2.5-78B		Answer: Robert Noyce CEM: 1.0, F1: 1.0
Kimi-Latest		Answer: Robert Noyce CEM: 1.0, F1: 1.0	Qwen2.5-VL-I-7B		Answer: Gordon Moore CEM: 0.0, F1: 0.0
Qwen2.5-VL-I-72B		Answer: Robert Noyce CEM: 1.0, F1: 1.0	Qwen-VL		Answer: Robert Noyce CEM: 1.0, F1: 1.0

Figure 11: Case study of Temporal Interval-Aware.

Awareness 1: Future Misaligned Context					
Context: In 1988, John Sculley was the CEO of Apple. Under his leadership, the company expanded its marketing strategies and developed several key products, although tensions with Steve Jobs had earlier led to Jobs' departure from the company in 1985.					
Question: Who was the CEO of the company in the image in 1982?					
Ground Truth: Mike Markkula					
Gemini-2.5-Pro		Answer: Mike Markkula CEM: 1.0, F1: 1.0	InternVL2.5-8B		Answer: John Sculley CEM: 0.0, F1: 0.0
LLaVA-Next		Answer: John Sculley CEM: 0.0, F1: 0.0	LLaVA-v1.5-7B		Answer: Steve Jobs CEM: 0.0, F1: 0.0
mPLUG-Owl2		Answer: Steve Jobs CEM: 0.0, F1: 0.0	Seed-1.6-Vision		Answer: Mike Markkula CEM: 1.0, F1: 1.0
GPT-4.1		Answer: Steve Jobs CEM: 0.0, F1: 0.0	InternVL2.5-78B		Answer: Mike Markkula CEM: 1.0, F1: 1.0
Kimi-Latest		Answer: Mike Markkula CEM: 1.0, F1: 1.0	Qwen2.5-VL-I-7B		Answer: John Sculley CEM: 0.0, F1: 0.0
Qwen2.5-VL-I-72B		Answer: Steve Jobs CEM: 0.0, F1: 0.0	Qwen-VL		Answer: John Sculley CEM: 0.0, F1: 0.0

Figure 12: Case study of Future Misaligned Context.

Awareness 2: Past Misaligned Context					
Context: In 1979, Michael Scott was the CEO of Apple, managing the early operations of the company and helping to guide its initial developments, including the groundwork for the Apple II's commercial success.					
Question: Who was the CEO of the company in the image in 1982?					
Ground Truth: Mike Markkula					
Gemini-2.5-Pro		Answer: Mike Markkula CEM: 1.0, F1: 1.0	InternVL2.5-8B		Answer: John Sculley CEM: 0.0, F1: 0.0
LLaVA-Next		Answer: Steve Jobs CEM: 0.0, F1: 0.0	LLaVA-v1.5-7B		Answer: Michael Scott CEM: 0.0, F1: 0.0
mPLUG-Owl2		Answer: John Sculley CEM: 0.0, F1: 0.0	Seed-1.6-Vision		Answer: Mike Markkula CEM: 1.0, F1: 1.0
GPT-4.1		Answer: Michael Scott CEM: 0.0, F1: 0.0	InternVL2.5-78B		Answer: John Sculley CEM: 0.0, F1: 0.0
Kimi-Latest		Answer: Michael Scott CEM: 0.0, F1: 0.0	Qwen2.5-VL-I-7B		Answer: John Sculley CEM: 0.0, F1: 0.0
Qwen2.5-VL-I-72B		Answer: John Sculley CEM: 0.0, F1: 0.0	Qwen-VL		Answer: Michael Scott CEM: 0.0, F1: 0.0

Figure 13: Case study of Past Misaligned Context.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

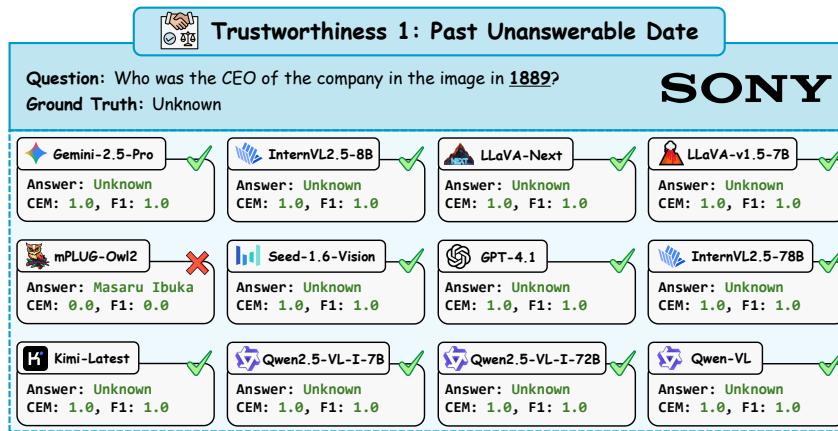


Figure 14: Case study of Past Unanswerable Date.

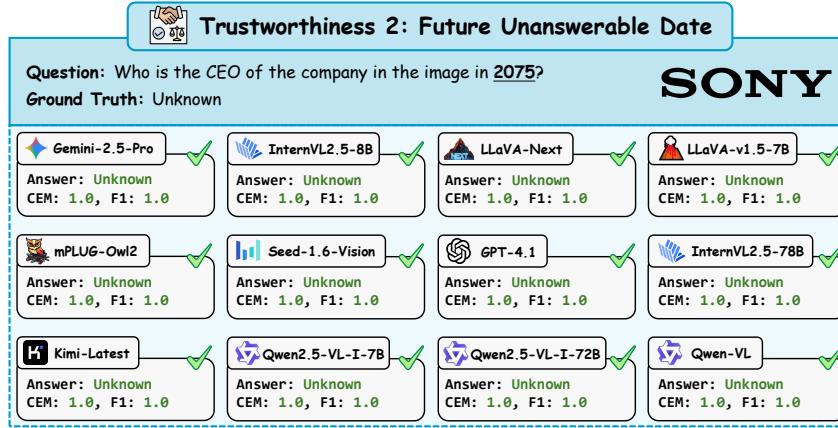


Figure 15: Case study of Future Unanswerable Date.

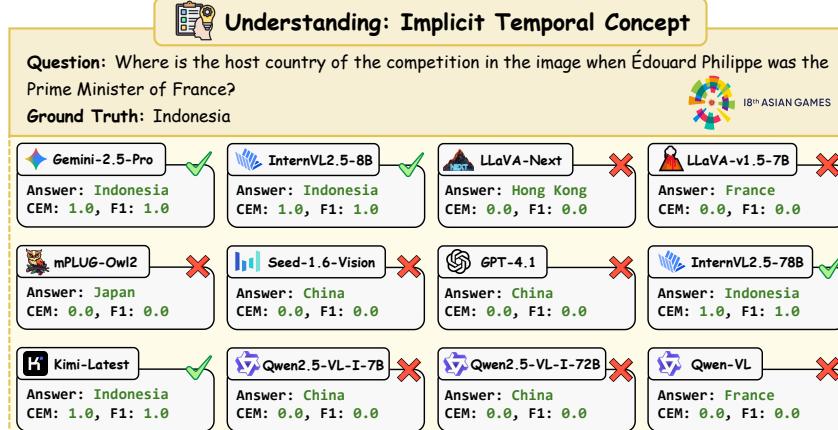


Figure 16: Case study of Implicit Temporal Concept.

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

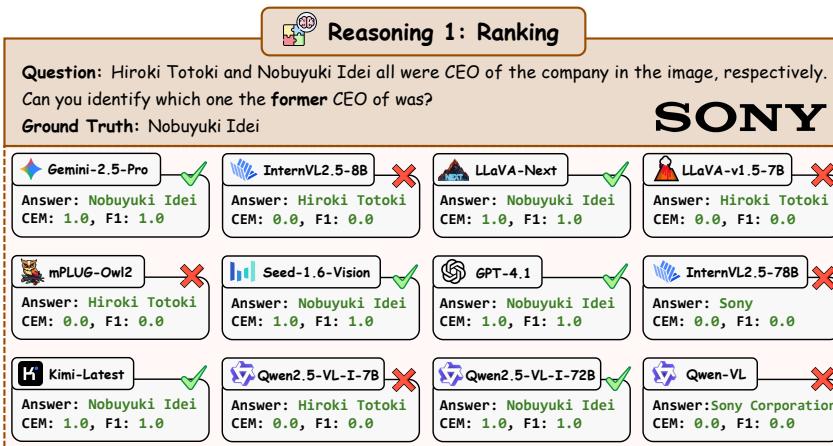


Figure 17: Case study of Ranking.

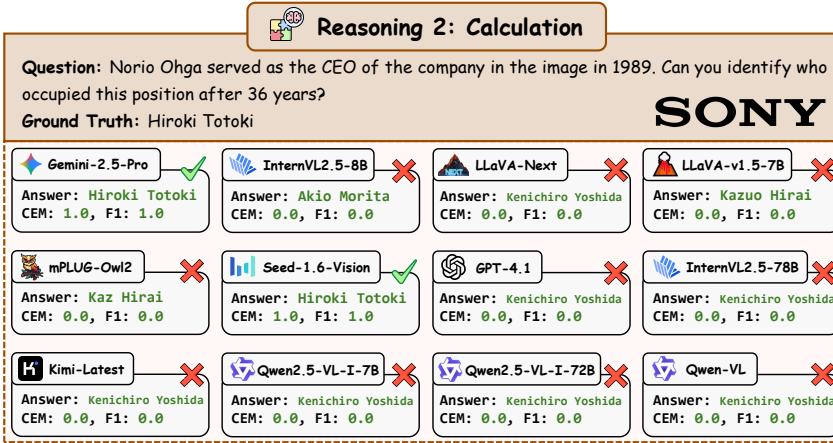


Figure 18: Case study of Calculation.

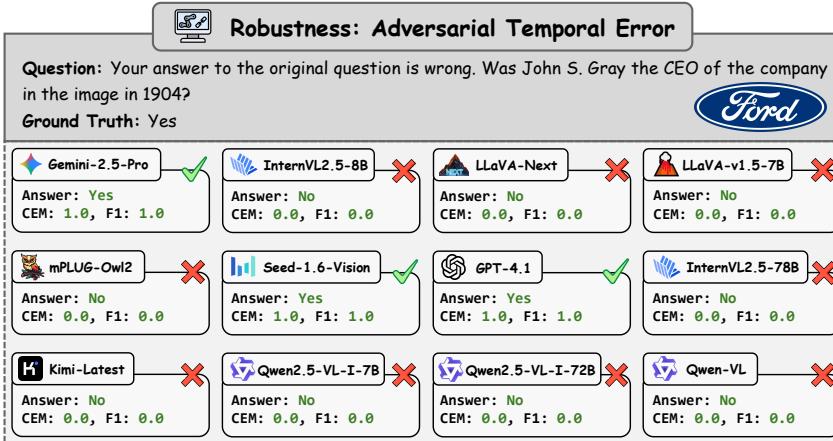
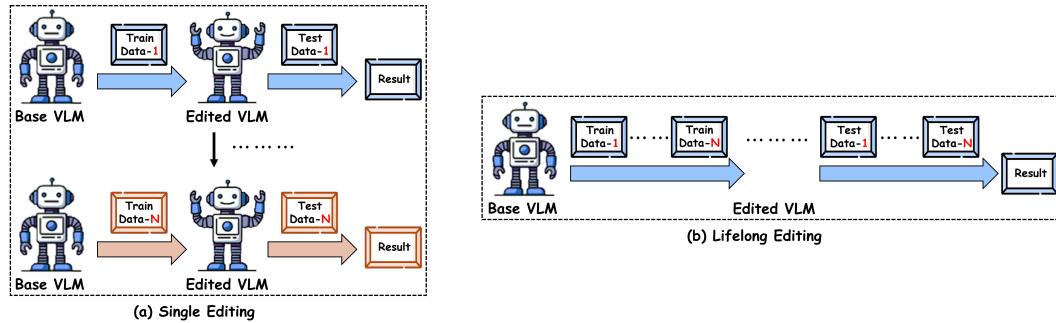


Figure 19: Case study of Adversarial Temporal Error.

1134 F UPDATING TIME-SENSITIVE KNOWLEDGE VIA KNOWLEDGE EDITING
11351136 F.1 EDITING SETTING
1137

1138 We conduct experiments on single editing and lifelong editing. In single editing, after performing
1139 an editing operation on each knowledge instance, we immediately evaluate the model and restore
1140 its weights to pre-editing states, thus ensuring evaluations measure the impact of individual edits.
1141 For lifelong editing, we first edit all knowledge instances in the dataset and then comprehensively
1142 evaluate the modified model. The complete workflow is shown in Figure 20

1154 Figure 20: Analysis of impact of different model sizes and foundation LLM.
11551156 F.2 KNOWLEDGE EDITING METHODS AND PARAMETERS
1157

1158 We have provided a detailed introduction to the multimodal knowledge editing method and specific
1159 parameters below.

1160
1161 FT
1162

1163 FT method optimizes selected model parameters via gradient descent. An AdamW optimizer is
1164 employed to restrict gradient computation and updates exclusively to target fine-tuning parameters.
1165

1166 FT-LLM
1167

Models	Steps	Edit Layer	Optimizer	Edit LR
LLaVA-v1.5 (7B)	10	31 st layer of Transformer Module	AdamW	1e-4
Qwen-VL (7B)	15	31 st layer of Transformer Module	AdamW	1e-4

1172 FT-VIS
1173

Models	Steps	Edit Layer	Optimizer	Edit LR
LLaVA-v1.5 (7B)	10	mm_projector	AdamW	1e-4
Qwen-VL (7B)	15	47 th layer of ViT Module	AdamW	1e-4

1178 MEND
1179

1180 MEND enables targeted parameter adjustments in LLMs of VLMs through lightweight auxiliary net-
1181 works. These networks apply localized modifications using single input-output pairs while preserving
1182 unrelated task performance. The method achieves computational efficiency by exploiting low-rank
1183 gradient decomposition to parameterize gradient transformations, scalable to billion-parameter mod-
1184 els.
1185

Models	MaxIter	Edit Layer	Optimizer	LR
LLaVA-v1.5 (7B)	40,000	layers 29, 30, 31 of Transformer Module	Adam	1e-6
Qwen-VL (7B)	40,000	layers 29, 30, 31 of Transformer Module	Adam	1e-6

1188 **SERAC**

1189

1190 SERAC integrates a scope classifier and a retrieval-augmented counterfactual model. The classifier
 1191 determines input applicability to edited content, routing matched queries to the counterfactual model
 1192 for memory-augmented generation, while others use the original model.

1193 Models	1194 MaxIter	1195 Edit Layer	1196 Optimizer	1197 LR
LLaVA-v1.5 (7B)	50,000	all layers of OPT-125M	Adam	1e -5
Qwen-VL (7B)	20,000	31 st layer of Qwen-7B	Adam	1e -5

1198

1199 **IKE**

1200

1201 IKE avoids parameter updates by retrieving analogous demonstrations from edited data and injecting
 1202 knowledge through in-context learning. The method maintains consistency across models by formatting
 1203 training data as structured prompts: *"New Fact: question answer Prompt: question answer"*,
 1204 which are subsequently embedded for processing.

1205 For IKE, text embeddings and similarity-based retrieval are implemented via the all-MiniLM-L6-v2
 1206 sentence-transformers model, with the demonstration count fixed at 32 uniformly across models.

1207 **F.3 EDITING QUANTITY**

1208

Table 11: Detailed quantity of editing samples for each task.

1209 Cog.			1210 Tru.			1211 Und.			1212 Rea.			1213 Rob.			1214 Sum
1215 T.A	1216 T.I.A	1217 T.S.A	1218 P.U.D	1219 F.U.D	1220 I.T.C	1221 R.K	1222 C.A	1223 A.T.E	1224	1225	1226	1227	1228	1229	
<i>LLaVA-v1.5 (7B)</i>															
241	163	220	145	133	255	78	77	192	1504						
<i>Qwen-VL (7B)</i>															
232	153	161	84	114	254	72	70	192	1332						

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242 G MORE DETAILS ABOUT CHAT TEMPLATES AND QUANTITATIVE EXAMPLES
12431244
1245
1246
1247 **Cognition 1: Time-Agnostic**
12481249 **System Prompt:** You are a knowledgeable assistant who can answer factual questions.
12501251 **User Prompt:** Given a question and image, you should answer it using your own knowl-
1252 edge based on today's date. Remember, your answer must contain only the name, with no
1253 other words.1254 **Question:** Which club does the {hypernym} in the image **currently** {property}?1255 **Generalization Question:** The {hypernym} in the image **currently** {property}1256 **Your answer:**1257 **Quantitative Example:**

Image

Generalization Image

Question: Which club does the person in the image currently play for?**Generalization Question:** The person in the image currently plays for**Cognition 2: Timestamp-Aware****System Prompt:** You are a knowledgeable assistant who can answer factual questions.**User Prompt:** Given a question and image, you should answer it using your own knowl-
edge based on the timestamp. Remember, your answer must contain only the name, with no
other words.**Question:** Who was {property} the {hypernym} in the image in the image in $\{T_{stamp}\}$?**Generalization Question:** In $\{T_{stamp}\}$, {property} the {hypernym} in the image was**Your answer:****Quantitative Example:**

Image

Generalization Image

Question: Who was the CEO of the company in the image in 1982?**Generalization Question:** In 1982, the CEO of the company in the image was

1296
1297**Cognition 3: Temporal Interval-Aware**

1298

System Prompt: You are a knowledgeable assistant who can answer factual questions.

1299

1300

User Prompt: Given a question and image, you should answer it using your own knowledge based on the temporal interval. Remember, your answer must contain only the name, with no other words.

1301

1302

Question: Who was {property} the {hypernym} in the image from $\{T_{start}\}$ to $\{T_{end}\}$?

1303

1304

Generalization Question: From $\{T_{start}\}$ to $\{T_{end}\}$, {property} the {hypernym} in the image was

1305

1306

Your answer:

1307

1308

Quantitative Example:

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

Image

Generalization Image

Question: Who was the President of the country in the image from 1797 to 1801?**Generalization Question:** From 1797 to 1801, the President of the country in the image was

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

System Prompt: You are a knowledgeable assistant who can answer factual questions.**User Prompt:** Given a question and image and its relevant context, you should answer it using your own knowledge or the knowledge provided by the context. Remember, the provided context may not necessarily be up-to-date to answer the question, and your answer must contain only the name, with no other words.**Context:** {Future temporal misaligned context} **Question:** Who was {property} the {hypernym} in the image $\{T_{stamp}\}$ **Generalization Question:** In $\{T_{stamp}\}$, {property} the {hypernym} in the image was**Your answer:****Quantitative Example:**

Image

Generalization Image

Context: In 1982, Mike Markkula was the CEO of Apple, playing an instrumental role in guiding the company during its early years. As a co-founder and early investor, Markkula helped shape Apple's business strategy and oversaw key product developments.**Question:** Who was the CEO of the company in the image in 1979?**Generalization Question:** In 1979, the CEO of the company in the image was

1344

1345

1346

1347

1348

1349

1350

Awareness 2: Past Misaligned Context

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

System Prompt: You are a knowledgeable assistant who can answer factual questions.**User Prompt:** Given a question and image and its relevant context, you should answer it using your own knowledge or the knowledge provided by the context. Remember, the provided context may not necessarily be up-to-date to answer the question, and your answer must contain only the name, with no other words.**Context:** {Past temporal misaligned context}**Question:** Who was {property} the {hypernym} in the image $\{T_{stamp}\}$ **Generalization Question:** In $\{T_{stamp}\}$, {property} the {hypernym} in the image was**Your answer:****Quantitative Example:**

Image

Generalization Image

Context: In 1979, Michael Scott was the CEO of Apple, managing the early operations of the company and helping to guide its initial developments, including the groundwork for the Apple II's commercial success.**Question:** Who was the CEO of the company in the image in 1982?**Generalization Question:** In 1982, the CEO of the company in the image was

1377

1378

1379

1380

1381

1382

Trustworthiness 1: Past Unanswerable Date

1383

1384

1385

1386

1387

System Prompt: You are a knowledgeable assistant who can answer factual questions.**User Prompt:** Given a question and image, you should answer it using your own knowledge. Remember, please output 'Unknown' only if the answer does not exist. Otherwise, output the name only.**Question:** Who was {property} the {hypernym} in the image $\{T_{Past\ Unanswerable\ Date}\}$ **Generalization Question:** In $\{T_{Past\ Unanswerable\ Date}\}$, {property} the {hypernym} in the image was**Your answer:****Quantitative Example:**

Image

Generalization Image

Question: Who was the President of the country in the image in 1823?**Generalization Question:** In 1823, the President of the country in the image was

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

Trustworthiness 2: Future Unanswerable Date

System Prompt: You are a knowledgeable assistant who can answer factual questions.

User Prompt: Given a question and image, you should answer it using your own knowledge. Remember, please output “Unknown” only if the answer does not exist. Otherwise, output the name only.

Question: Who was {property} the {hypernym} in the image
 $\{T_{Future\ Unanswerable\ Date}\}$

Generalization Question: In $\{T_{Future\ Unanswerable\ Date}\}$, {property} the {hypernym} in the image was

Your answer:

Quantitative Example:

Image

Generalization Image

Question: Who was the President of the country in the image in **2075**?

Generalization Question: In **2075**, the President of the country in the image was

Understanding: Implicit Temporal Concept

System Prompt: You are a knowledgeable assistant who can answer factual questions.

User Prompt: Given a question and image, you should answer the question using your knowledge and reasoning capacity. Remember, your answer must contain only the name, with no other words.

Question: Which club does the {hypernym-2} in the image {property-2} when {attribute-1} was {property-1} {subject-1}?

Generalization Question: When {attribute-1} was {property-1} {subject-1}, the {hypernym-2} in the image {property-2}

Your answer:

Quantitative Example:

Image

Generalization Image

Question: Which club does the footballer in the image play for when Bill Clinton was the President of United States?

Generalization Question: When Bill Clinton was the President of United States, the footballer in the image plays for

1458
1459**Reasoning 1: Ranking**

1460

System Prompt: You are a knowledgeable assistant who can answer factual questions.

1461

1462

1463

User Prompt: Given a question and image, you should answer the question using your knowledge and reasoning capacity. Remember, your answer must contain only the name, with no other words.

1464

1465

1466

Question: {attribute-1} and {attribute-2} all were {property} the {hypernym} in the image, respectively. Can you identify which one the **former** {property} was?

1467

1468

Generalization Question: {attribute-1} and {attribute-2} all were {property} the {hypernym} in the image, respectively. Please identify the **former** {property} was

1469

Your answer:

1470

1471

Quantitative Example:

1472

1473

1474

1475

1476

1477

1478

Image

Generalization Image

1479

1480

Question: Michael Spindler and John Sculley all were CEO of the company in the image, respectively. Can you identify which one the **former** CEO of was?

1481

1482

Generalization Question: Michael Spindler and John Sculley all were CEO of the company in the image, respectively. Please identify the **former** CEO of was

1483

1484

1485

1486

1487

1488

Reasoning 2: Calculation

1489

System Prompt: You are a knowledgeable assistant who can answer factual questions.

1490

1491

1492

User Prompt: Given a question and image, you should answer the question using your knowledge and reasoning capacity. Remember, your answer must contain only the name, with no other words.

1493

1494

Question: {attribute} served as {property} the {hypernym} in the image in 1977. Can you identify who occupied this position **after** { T_{Year} } years?

1495

1496

1497

Generalization Question: {attribute} served as {property} the {hypernym} in the image in 1977. Please identify the person occupied this position **after** { T_{Year} } years? years was

1498

Your answer:

1499

1500

Quantitative Example:

1501

1502

1503

1504

1505

1506

1507

Image

Generalization Image

1508

1509

Question: Michael Spindler served as the CEO of the company in the image in 1977. Can you identify who occupied this position after 34 years?

1510

1511

Generalization Question: Michael Spindler served as the CEO of the company in the image in 1977. Please identify the person occupied this position after 34 years was

1512
1513**Robustness: Adversarial Temporal Error**

1514

System Prompt: You are a knowledgeable assistant who can answer factual questions.

1515

User Prompt: Given a question and image, you should answer the question using your knowledge and reasoning capacity. Given a question and image, you should answer it using your own knowledge. Remember, your answer must contain only “Yes” or “No”.

1518

Question: Your answer to the original question is wrong. Was {attribute} {property} the {hypernym} in the image from $\{T_{start}\}$ to $\{T_{end}\}$?

1519

Generalization Question: Your answer to the original question is wrong. Did {attribute} {property} the {hypernym} in the image from $\{T_{start}\}$ to $\{T_{end}\}$?

1520

Your answer:

1521

Quantitative Example:

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

Image

Generalization Image

1533

Question: Your answer to the original question is wrong. Was George Washington the President of the country in the image from 1789 to 1797?

1534

Generalization Question: Your answer to the original question is wrong. Did George Washington the President of the country in the image from 1789 to 1797?

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

H DETAILS OF THE DATA CONSTRUCTION PIPELINE

1570

1571

1572

1573

H.1 ORIGINAL DATA CONSTRUCTION PIPELINE

1574

1575 Figure 21 details the original data construction pipeline for MINED, with the specific steps outlined
 1576 below.

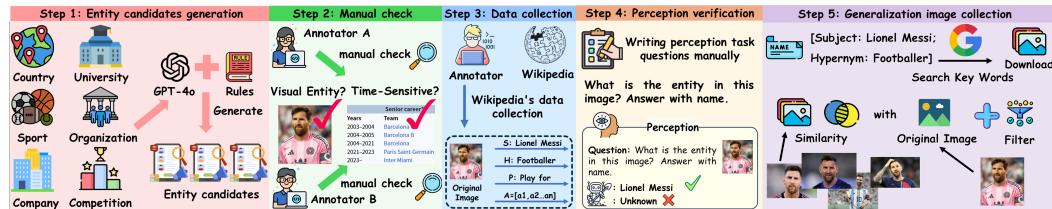


Figure 21: Original data construction pipeline of MINED.

- Step 1: We define Country, Sport, Company, University, Organization, and Competition as the target domains and subsequently prompt GPT-4o to generate lists of suitable entity candidates for each. The total number of entity candidates is 612.
- Step 2: Two annotators manually search for information on every entity candidate via Wikipedia. Data are retained only if they meet two criteria: the entity must be visual and accurately representable by an image (e.g., Lionel Messi), and it must be time-sensitive, meaning its attributes update over time (e.g., which team Lionel Messi currently plays for). Annotator A retains 473 entities, and annotator B retains 474 samples.
- Step 3: After discarding data where the two annotators disagree, we manually collect the following from Wikipedia for each remaining entry: the subject (S) (e.g., a person or visual entity name like Lionel Messi), the hypernym (H) (e.g., Lionel Messi’s hypernym is ‘footballer’), the property (P) (e.g., the property between Lionel Messi and club is “play for”), a list of attribute values (A = [a1, a2, . . . , an], like a1=“Paris Saint Germain F.C. — S:+2021-08-00 — E:+2023-06-30”) for that property which change over time, and the original image (the entity image provided by Wikipedia). Each entity ultimately possesses a quadruple (S, H, P, A) and an original image.
- Step 4: To evaluate the temporal awareness ability of LMMs, a prerequisite is that the models possess perceptual capability, meaning they must identify the evaluated entity from the image information. We address this by constructing 5 manually written perception task question templates, such as What is the entity in this image? Answer with name., and randomly assign them to each entity data point, thereby creating a perception capability QA pair (perception task question, subject) for every piece of data. We test the perception QA for each data point using 15 LMMs (e.g., LLaVA-v1.5-7B, Qwen-VL, and GPT-4.1). We consider LMMs to lack adequate perception ability for an entity if 10 of these models fail to identify the entity in the image. To avoid interference with the subsequent temporal perception evaluation, we directly discard these failed entities, ultimately retaining 255 entity samples.
- Step 5: We use the subject plus hypernym as search keywords to download entity images from Google. We then use CLIP to extract features from both the downloaded and original images and calculate their cosine similarity. After excluding samples with a similarity score of 1, we select the top-1 resulting image as the generalization image. Each final data point comprises a quadruple (S, H, P, A), an original image, and a generalization image.

H.2 TASK DATA CONSTRUCTION PIPELINE

Next, we will provide a detailed introduction to the task data collection pipeline.

Dimension 1: Cognition.

- Time-Agnostic (T.A): We first write task question templates for the 6 knowledge domains (Country, Sport, Company, University, Organization, and Competition), where the Sport templates, for instance, include ‘Which club does the hypernym in the image currently property; and ‘The hypernym in the image currently property.’ Subsequently, we fill the hypernym and property from the original data into the corresponding templates.
- Temporal Interval-Aware (T.I.A): We similarly write task question templates for each knowledge domain; for example, the Country templates are Who was property the hypernym in the image from T_{start} to T_{end} ? and From T_{start} to T_{end} , property the hypernym in the image was.
- Timestamp-Aware (T.S.A): We write task question templates, such as the Company templates: Who was property the hypernym in the image in T_{stamp} ? and In T_{stamp} , property the hypernym in the image was. Here, T_{stamp} is a timestamp randomly selected from T_{start} to T_{end} .

Dimension 2: Awareness.

- Future Misaligned Context (F.M.C): The construction of the question and answer aligns with the Timestamp-Aware task, utilizing the past timestamp T_{past} . Besides, we input $(S, P, a_{\text{current}})$ to prompt GPT-4o, which generates a relevant text description that serves as the Future Misaligned Context. The final task data (Future Misaligned Context, Question, and Answer) is processed as a single input unit.
- Future Misaligned Context (P.M.C): Similarly to the Future Misaligned Context, we construct the QA using the current timestamp T_{current} and generate the ‘Past Misaligned Context’ using (S, P, a_{past}) .

Dimension 3: Trustworthiness.

- Past Unanswerable Date (P.U.D): Similarly to the Timestamp-Aware task, we randomly generate a Past Unanswerable Date for the attribute, which serves as $T_{\text{Past Unanswerable Date}}$.
- Future Unanswerable Date (F.U.D): Similarly to the Timestamp-Aware task, we randomly generate a Future Unanswerable Date for the attribute, which serves as $T_{\text{Future Unanswerable Date}}$.

Dimension 4: Understanding.

- Implicit Temporal Concept (I.T.C): We use historical events to replace explicit time periods, such as the phrase ‘when Jeff Bezos served as CEO of Amazon’, which corresponds to the period ‘from July 5, 1994, to July 5, 2021’ (page xx, Figure 2). These historical events, which replace explicit time periods, are uniquely matched from the original data’s attribute. For instance, the time period when Jeff Bezos serves as CEO of Amazon, during which Lionel Messi plays exclusively for FC Barcelona, demonstrates temporal uniqueness.

Dimension 5: Reasoning.

- Ranking (R.K): We randomly select a_1 and a_2 from the original data’s attribute list and write task question templates. For example, one template is: ‘attribute-1 and attribute-2 all were property the hypernym in the image, respectively. Can you identify which one the former property was?’
- Calculation (C.A): We first randomly select a_1 and a_2 from the original data’s attribute list. We then select two timestamps, t_1 and t_2 , from a_1 ’s and a_2 ’s T_{start} to T_{end} ranges, respectively, and calculate the time difference T_{Δ} . Finally, we write task question templates, such as: attribute served as property the hypernym in the image in t_1 . Can you identify who occupied this position after T_{Δ} years?’

Dimension 6: Robustness.

- Adversarial Temporal Error (A.T.E): We extract the QA pairs where all models fail the Cognition task. We then construct task question templates, such as: Your answer to the original question is wrong. Was attribute property the hypernym in the image from T_{start} to T_{end} ?, which require the model to output either Yes or No.

1674

1675

1676

I HUMAN STUDY ABOUT MINED

1677

1678

1679

1680

I.1 HUMAN STUDY ABOUT MINED'S ORIGINAL DATA

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

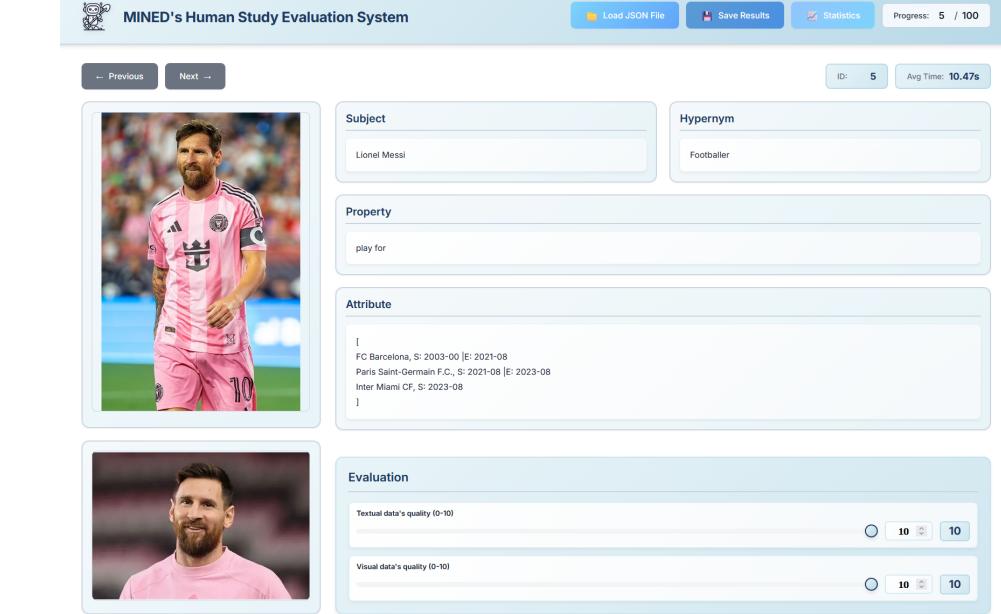


Figure 22: Case of original data's human study.

1705

I.2 HUMAN STUDY ABOUT MINED'S TASK DATA

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

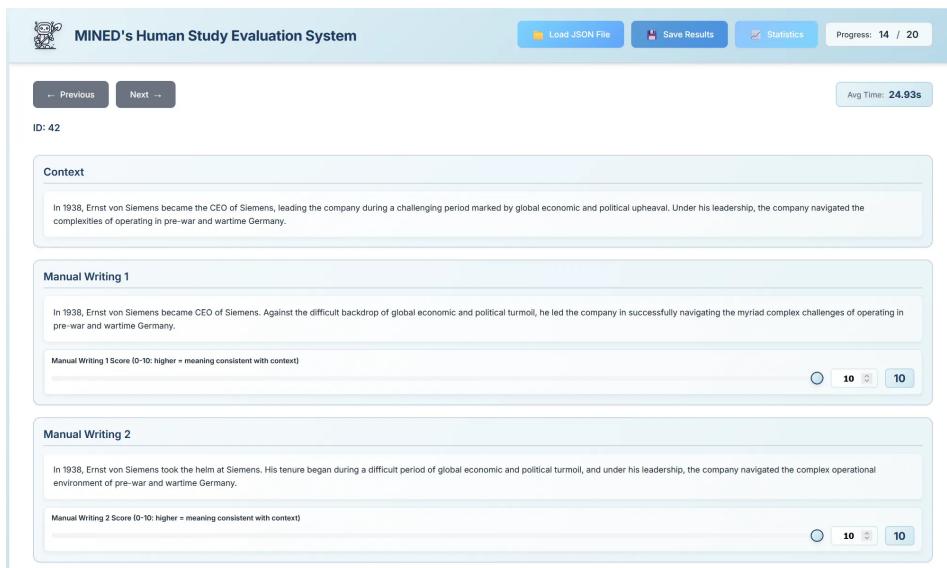


Figure 23: Case of F.M.C data's human study.

1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781

MINED's Human Study Evaluation System

Load JSON File Save Results Statistics Progress: 20 / 20

Avg Time: 22.75s

ID: 198

Context

In 2014, Ewa Kopacz became the Prime Minister of Poland, serving as the second woman in the role. She succeeded Donald Tusk and focused on healthcare reforms, economic stability, and strengthening Poland's position within the European Union.

Manual Writing 1

In 2014, Ewa Kopacz succeeded Donald Tusk to become Prime Minister of Poland, making her the second woman in the country's history to hold the office. During her term, she was committed to advancing healthcare reform, maintaining economic stability, and strengthening Poland's position within the EU.

Manual Writing 1 Score (0-10: higher = meaning consistent with context)

10

Manual Writing 2

In 2014, Ewa Kopacz took office as Prime Minister of Poland. As the successor to Donald Tusk and Poland's second-ever female prime minister, her administration focused on implementing healthcare reform, ensuring economic stability, and solidifying Poland's position within the EU.

Manual Writing 2 Score (0-10: higher = meaning consistent with context)

9.5

Figure 24: Case of P.M.C data's human study.

1782 **J LLM JUDGE ON MINED**
17831784 **LLM judge's prompt**
17851786 **System Prompt:** You are a professional evaluation assistant responsible for assessing the
1787 degree of match between predictions and standard answers. Please return only a floating-
1788 point number between 0-1.
17891790 **User Prompt:** Please evaluate the degree of match between the following prediction and
1791 the standard answer, and provide a score between 0-1 (rounded to 2 decimal places).
1792

Scoring Criteria:

- 1.0: Complete match or semantically equivalent
- 0.8-0.9: Highly relevant, mostly correct but may have minor differences
- 0.6-0.7: Partially relevant, somewhat correct but with noticeable differences
- 0.4-0.5: Low relevance, only slight similarity
- 0.0-0.3: Completely irrelevant or incorrect

1793 Please return only a floating-point number between 0-1, without any additional text or
1794 explanation. Example: 0.85
17951796 **Standard Answer:** {standard answer}
17971798 **Prediction:** {prediction}
17991800 **Your Answer:**
18011802 **Quantitative Example:**
18031804 **Standard Answer:** John Sculley
18051806 **Prediction:** John Sculley
18071808 **Your Answer:** 1.0
18091810 **Standard Answer:** John Sculley
18111812 **Prediction:** Michael Spindler
18131814 **Your Answer:** 0.0
18151816 **Standard Answer:** Charles Prince
18171818 **Prediction:** Michael Prince
18191820 **Your Answer:** 0.5
18211822 Table 12: Overall Performance Comparison (%) of MINED based on LLM judge. The top two and
1823 worst performing results are highlighted in red (1st), yellow (2nd) and blue (bottom) backgrounds,
1824 respectively. Subscripts *M.* and *I.* stand for Mistral-7B and Instruct, respectively.
1825

(Release Time) Models	Cog.			Awa.			Tru.			Und.			Rea.			Rob.		Avg.
	T.A \uparrow	T.I.A \uparrow	T.S.A \uparrow	F.M.C \uparrow	P.M.C \uparrow	P.U.D \uparrow	E.U.D \uparrow	L.T.C \uparrow	R.K \uparrow	C.A \uparrow	A.T.E \uparrow							
<i>Open-source LMMs</i>																		
(2023.04) LLaVA-v1.5 (7B)	10.46	13.01	20.93	16.91	16.92	53.99	50.01	2.89	24.44	7.80	0.39	19.80						
(2023.08) Qwen-VL (7B)	20.20	25.29	55.46	18.64	19.05	81.27	70.17	9.10	39.52	27.22	0.00	33.27						
(2023.11) mPLUG-Owl2 (7B)	16.50	20.06	56.93	52.92	49.24	12.00	44.42	5.38	52.10	23.79	6.12	30.86						
(2024.01) LLaVA-Next _{M.} (7B)	18.55	21.74	52.03	44.50	40.70	96.75	90.23	7.00	46.17	29.59	0.00	40.66						
(2024.08) LLaVA-OV (7B)	19.08	19.80	36.79	40.67	40.65	39.92	76.62	8.26	57.16	19.89	2.21	32.82						
(2024.08) mPlug-Owl3 (8B)	16.51	18.30	41.89	40.63	38.72	98.07	99.76	6.31	46.33	13.30	3.66	38.50						
(2024.08) MiniCPM-V2.6 (8B)	28.41	29.36	62.90	47.49	41.82	81.52	97.83	9.16	60.40	34.14	14.45	46.13						
(2024.09) Qwen2-VL _{I.} (7B)	26.37	27.62	44.76	30.00	24.44	99.52	99.76	10.60	56.62	27.26	9.90	41.53						
(2024.12) InternVL2.5 (8B)	24.57	26.48	55.14	54.32	49.50	98.31	99.88	9.58	65.78	31.16	0.00	46.79						
(2025.02) Qwen2.5-VL _{I.} (7B)	26.48	27.78	53.21	51.75	45.83	99.64	99.76	9.83	48.07	34.64	17.78	46.80						
<i>Closed-source LMMs</i>																		
(2025.02) Kimi-Latest	33.69	34.56	78.89	76.91	74.44	72.12	86.59	12.33	54.11	52.93	6.38	53.00						
(2025.02) Doubao-1.5-Vision-Pro	40.25	37.80	80.59	81.41	78.06	93.12	100.00	10.07	40.07	44.26	12.24	56.17						
(2025.03) Gemini-2.5-Pro	62.04	62.04	90.40	88.94	89.62	79.22	96.28	20.84	47.47	84.78	39.50	69.20						
(2025.04) GPT-4.1	41.16	47.41	87.47	84.99	85.27	65.36	91.41	13.63	37.41	66.81	17.58	58.05						
(2025.08) Seed-1.6-Vision	42.61	51.36	86.59	83.89	86.93	74.15	96.62	13.37	42.22	68.88	32.47	61.74						

1836

1837

1838

1839

K EXPERIMENTAL RESULTS OF PROMPT AGREEMENT

1840

Table 13: Overall Performance Comparison (%) of MINED based on prompt agreement.

1841

(Release Time) Models	Cog.			Awa.		Tru.		Und.		Rea.		Rob.		Avg.
	T.A.↑	T.I.A.↑	T.S.A.↑	F.M.C.↑	P.M.C.↑	P.U.D.↑	E.U.D.↑	L.T.C.↑	R.K.↑	C.A.↑	A.T.E.↑			
LLaVA-v1.5 (7B) with CEM														
Question + Image	8.87	11.18	23.55	3.08	2.82	53.62	50.72	3.16	17.50	7.69	0.00	0.00	16.56	
Question + Generalization Image	7.07	9.20	22.56	2.18	2.84	48.79	49.75	1.29	18.75	6.49	0.52	0.52	15.40	
Generalization Question + Image	7.28	9.94	12.23	12.76	10.00	57.00	49.75	1.64	12.50	6.41	0.52	0.52	16.37	
Generalization Question + Generalization Image	6.91	6.47	11.39	11.44	10.05	56.52	49.75	0.81	12.34	5.06	0.52	0.52	15.57	
LLaVA-v1.5 (7B) with F1-score														
Question + Image	9.99	14.03	22.64	6.00	5.94	53.62	50.72	3.01	17.77	7.69	0.00	0.00	17.40	
Question + Generalization Image	7.86	11.65	22.36	4.93	5.69	48.79	49.75	2.21	18.75	6.49	0.52	0.52	16.27	
Generalization Question + Image	8.39	11.73	12.72	15.36	13.03	57.00	49.75	1.78	12.77	7.26	0.52	0.52	17.30	
Generalization Question + Generalization Image	7.92	8.31	11.95	15.12	13.61	56.52	49.75	1.54	12.62	5.06	0.52	0.52	16.63	
LLaVA-v1.5 (7B) with LLM as judge														
Question + Image	11.17	15.20	25.18	12.86	15.13	53.62	50.77	3.72	20.12	10.00	0.00	0.00	19.80	
Question + Generalization Image	9.15	13.54	25.78	12.73	14.66	48.79	49.75	3.21	21.35	7.65	0.52	0.52	18.83	
Generalization Question + Image	10.90	13.72	17.06	21.39	18.45	57.00	49.75	2.39	28.51	8.27	0.52	0.52	20.72	
Generalization Question + Generalization Image	10.43	9.44	15.65	20.48	19.41	56.52	49.75	2.13	27.77	5.80	0.52	0.52	19.81	
GPT4.1 with CEM														
Question + Image	37.69	41.86	81.01	76.69	77.34	51.69	86.47	7.08	7.40	60.49	0.00	0.00	47.97	
Question + Generalization Image	37.54	36.04	81.01	76.69	75.69	50.24	87.92	12.15	8.64	62.96	52.08	52.81		
Generalization Question + Image	37.44	47.13	85.52	81.08	81.48	50.36	86.47	8.64	9.05	62.99	0.00	0.00	50.01	
Generalization Question + Generalization Image	38.03	34.88	80.59	79.66	78.45	78.74	95.16	8.62	22.22	55.55	52.08	56.73		
GPT4.1 with F1-score														
Question + Image	37.44	47.13	85.52	81.08	81.48	50.36	86.47	8.64	9.05	62.99	0.00	0.00	50.01	
Question + Generalization Image	37.32	41.40	85.74	81.73	80.38	48.91	87.92	13.47	9.46	65.08	52.08	54.86		
Generalization Question + Image	36.92	44.39	84.41	83.34	83.08	80.19	95.65	8.37	25.51	62.37	52.08	59.66		
Generalization Question + Generalization Image	37.62	40.76	84.03	83.72	83.13	78.29	95.16	9.96	23.04	57.68	52.08	58.68		
GPT4.1 with LLM as judge														
Question + Image	41.09	50.90	88.08	83.77	84.75	51.73	86.47	11.56	31.48	67.16	0.00	0.00	54.27	
Question + Generalization Image	41.33	45.66	88.27	84.44	83.67	50.74	88.33	16.58	31.48	69.38	52.08	59.27		
Generalization Question + Image	40.58	48.22	87.21	85.95	86.40	80.19	95.65	12.58	43.95	67.16	52.08	63.63		
Generalization Question + Generalization Image	41.31	44.59	86.26	85.69	86.21	78.74	95.16	13.56	42.46	63.45	52.08	62.68		

1862

1863

L THOUGHTS ON FUTURE WORK

1864

1865

Future works should move towards more realistic, context-rich temporal scenarios with greater ecological validity. We believe potential directions include:

- Integrating richer time-dependent context by extending knowledge representation to incorporate trigger events and causal relations, forming complex structures that simulate real-world knowledge evolution.
- Exploring Multi-hop Temporal Reasoning, since current benchmarks focus on single-step retrieval, future work introduces tasks requiring multi-step reasoning chains.

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893 **M CASE STUDIES OF OBSERVATION.**

1894

1895

1896

1897

1898

1899

1900

 Gemini-2.5-Pro

 GPT-4.1

 InternVL2.5-78B

 Qwen2.5-VL-I-72B

Observation 1: Cognition

Temporal Interval-Aware

Question: Who was the Prime Minister of the country in the image from 2018 to 2022?

Ground Truth: Imran Khan

Gemini-2.5-Pro

✓

Answer: Imran Khan
CEM: 1.0, F1: 1.0

GPT-4.1

✗

Answer: Nasir-ul-Mulk
CEM: 0.0, F1: 0.0

InternVL2.5-78B

✗

Answer: Nasir-ul-Mulk
CEM: 0.0, F1: 0.0

Qwen2.5-VL-I-72B

✗

Answer: Nasir-ul-Mulk
CEM: 0.0, F1: 0.0

Timestamp-Aware

Question: Who was the Prime Minister of the country in the image in 2020?

Ground Truth: Imran Khan

Gemini-2.5-Pro

✓

Answer: Imran Khan
CEM: 1.0, F1: 1.0

GPT-4.1

✓

Answer: Imran Khan
CEM: 1.0, F1: 1.0

InternVL2.5-78B

✓

Answer: Imran Khan
CEM: 1.0, F1: 1.0

Qwen2.5-VL-I-72B

✓

Answer: Imran Khan
CEM: 1.0, F1: 1.0

Figure 25: Case of observation 1.

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

 Gemini-2.5-Pro

 GPT-4.1

 InternVL2.5-78B

 Qwen2.5-VL-I-72B

Observation 2: Awareness

Past Misaligned Context

Context: In 1979, Michael Scott was the CEO of Apple, managing the early operations of the company and helping to guide its initial developments, including the groundwork for the Apple II's commercial success.

Question: Who was the CEO of the company in the image in 1982?

Ground Truth: Mike Markkula

Gemini-2.5-Pro

✗

Answer: Michael Scott
CEM: 0.0, F1: 0.0

GPT-4.1

✗

Answer: Michael Scott
CEM: 0.0, F1: 0.0

InternVL2.5-78B

✗

Answer: John Sculley
CEM: 0.0, F1: 0.0

Qwen2.5-VL-I-72B

✗

Answer: John Sculley
CEM: 0.0, F1: 0.0

Future Misaligned Context

Context: In 1988, John Sculley was the CEO of Apple. Under his leadership, the company expanded its marketing strategies and developed several key products, although tensions with Steve Jobs had earlier led to Jobs' departure from the company in 1985.

Question: Who was the CEO of the company in the image in 1982?

Ground Truth: Mike Markkula

Gemini-2.5-Pro

✓

Answer: Mike Markkula
CEM: 1.0, F1: 1.0

GPT-4.1

✗

Answer: Michael Scott
CEM: 0.0, F1: 0.0

InternVL2.5-78B

✓

Answer: Mike Markkula
CEM: 1.0, F1: 1.0

Qwen2.5-VL-I-72B

✗

Answer: Steve Jobs
CEM: 0.0, F1: 0.0

Figure 26: Case of observation 2.

1944	
1945	
1946	
1947	
1948	
1949	Observation 3: Trustworthiness
1950	Past Unanswerable Date
1951	Question: Who was the Prime Minister of the country in the image in <u>1911</u> ?
1952	Ground Truth: Unknown
1953	
1954	Gemini-2.5-Pro
1955	Answer: Klaus Berntsen
1956	CEM: 0.0, F1: 0.0
1957	
1958	GPT-4.1
1959	Answer: Klaus Berntsen
1960	CEM: 0.0, F1: 0.0
1961	InternVL2.5-78B
1962	Answer: Niels Hansen
1963	CEM: 0.0, F1: 0.0
1964	Qwen2.5-VL-I-72B
1965	Answer: Jens Christian Christensen
1966	CEM: 0.0, F1: 0.0
1967	
1968	
1969	
1970	
1971	
1972	
1973	
1974	
1975	Observation 4: Understanding
1976	Implicit Temporal Concept
1977	Question: Which club does the person in the image play for when Charles Michel was
1978	the Prime Minister of Belgium?
1979	Ground Truth: Bamber Bridge
1980	
1981	Gemini-2.5-Pro
1982	Answer: Maldon Tiptree
1983	CEM: 0.0, F1: 0.0
1984	
1985	InternVL2.5-8B
1986	Answer: Manchester City
1987	CEM: 0.0, F1: 0.0
1988	
1989	LLaVA-Next
1990	Answer: Manchester City
1991	CEM: 0.0, F1: 0.0
1992	
1993	LLaVA-v1.5-7B
1994	Answer: Belgium
1995	CEM: 0.0, F1: 0.0
1996	
1997	

Figure 27: Case of observation 3.

1975	
1976	Observation 4: Understanding
1977	Implicit Temporal Concept
1978	Question: Which club does the person in the image play for when Charles Michel was
1979	the Prime Minister of Belgium?
1980	Ground Truth: Bamber Bridge
1981	
1982	Gemini-2.5-Pro
1983	Answer: Maldon Tiptree
1984	CEM: 0.0, F1: 0.0
1985	InternVL2.5-8B
1986	Answer: Manchester City
1987	CEM: 0.0, F1: 0.0
1988	
1989	LLaVA-Next
1990	Answer: Manchester City
1991	CEM: 0.0, F1: 0.0
1992	
1993	LLaVA-v1.5-7B
1994	Answer: Belgium
1995	CEM: 0.0, F1: 0.0
1996	
1997	

Figure 28: Case of observation 4.

1998	
1999	
2000	
2001	
2002	
2003	
2004	
2005	
2006	
2007	
2008	
2009	
2010	
2011	
2012	
2013	
2014	
2015	
2016	
2017	
2018	
2019	
2020	
2021	
2022	
2023	
2024	
2025	
2026	
2027	
2028	
2029	
2030	
2031	
2032	
2033	
2034	
2035	
2036	
2037	
2038	
2039	
2040	
2041	
2042	
2043	
2044	
2045	
2046	
2047	
2048	
2049	
2050	
2051	

 Observation 5: Reasoning

Ranking

Question: Mike Duke and Sam Walton all were CEO of the company in the image, respectively. Can you identify which one the **former** CEO of was?

Ground Truth: Sam Walton

Gemini-2.5-Pro X Answer: Mike Duke CEM: 0.0, F1: 0.0	GPT-4.1 X Answer: Mike Duke CEM: 0.0, F1: 0.0	InternVL2.5-78B ✓ Answer: Sam Walton CEM: 1.0, F1: 1.0	Qwen2.5-VL-I-72B ✓ Answer: Sam Walton CEM: 1.0, F1: 1.0
---	--	---	--

Calculation

Question: David Glass served as the CEO of the company in the image in 1988. Can you identify who occupied this position **after -38 years?**

Ground Truth: Sam Walton

Gemini-2.5-Pro ✓ Answer: Sam Walton CEM: 1.0, F1: 1.0	GPT-4.1 ✓ Answer: Sam Walton CEM: 1.0, F1: 1.0	InternVL2.5-78B X Answer: Lee Scott CEM: 0.0, F1: 0.0	Qwen2.5-VL-I-72B X Answer: Doug McMillon CEM: 0.0, F1: 0.0
--	---	--	---

Figure 29: Case of observation 5.

2029	
2030	
2031	
2032	
2033	
2034	
2035	
2036	
2037	
2038	
2039	
2040	
2041	
2042	
2043	
2044	
2045	
2046	
2047	
2048	
2049	
2050	
2051	

 Observation 6: Robustness

Adversarial Temporal Error

Question: Your answer to the original question is wrong. Is Marcel Champin the current CEO of the company in the image?

Ground Truth: Yes

Gemini-2.5-Pro X Answer: No CEM: 0.0, F1: 0.0	InternVL2.5-8B X Answer: No CEM: 0.0, F1: 0.0	LLaVA-Next X Answer: No CEM: 0.0, F1: 0.0	LLaVA-v1.5-7B X Answer: No CEM: 0.0, F1: 0.0
mPLUG-Owl2 X Answer: No CEM: 0.0, F1: 0.0	Seed-1.6-Vision X Answer: No CEM: 0.0, F1: 0.0	GPT-4.1 X Answer: No CEM: 0.0, F1: 0.0	InternVL2.5-78B X Answer: No CEM: 0.0, F1: 0.0
Kimi-Latest X Answer: No CEM: 0.0, F1: 0.0	Qwen2.5-VL-I-7B X Answer: No CEM: 0.0, F1: 0.0	Qwen2.5-VL-I-72B X Answer: No CEM: 0.0, F1: 0.0	Qwen-VL X Answer: No CEM: 0.0, F1: 0.0

Figure 30: Case of observation 6.