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Abstract

Annealing processors, which efficiently solve a quadratic unconstrained binary1

optimization (QUBO), are a potential breakthrough in improving the accuracy2

of score-based Bayesian network structure learning. However, currently, the bit3

capacity of an annealing processor is very limited. To utilize the power of an-4

nealing processors, it is necessary to encode score-based learning problems into5

QUBO within the upper bound of bits. In this paper, we propose a novel approach6

with direct encoding of candidate parent sets in the form of Cartesian products.7

Experimental results on benchmark networks with 27 to 70 variables show that8

our approach requires lesser bits than the bit capacity of the second-generation9

Fujitsu digital annealer, a fully coupled annealing processor developed by with10

semiconductor technology. Moreover, we demonstrate that the digital annealer11

with our conversion method consistently outperforms the state-of-the-art heuristic12

algorithms on the benchmark networks.13

1 Introduction14

A Bayesian network is a probabilistic graphical model that represents the structure of a joint probabil-15

ity distribution among random variables in a directed acyclic graph (DAG) [Pearl, 1988]. One class16

of associated computational problems is learning the structure of a Bayesian network from data. We17

focus on score-based Bayesian network structure learning for finding the DAG with a maximal score18

that depends on the data [Cooper and Herskovits, 1992, Cowell, 2001].19

The Bayesian network learning problem is NP-hard [Chickering et al., 2004]; therefore, the standard20

methodology is using heuristic approaches. Many algorithms have been proposed to improve the21

accuracy and to reduce the running time. A search over the space of orderings [Teyssier and Koller,22

2005, Scanagatta et al., 2015] is one of the most successful heuristic approaches.23

Annealing processors may contribute to finding a high-scoring network structure in a realistic24

timeframe. An annealing processor is expected to be an alternative hardware to von Neumann25

computers for quadratic unconstrained binary optimization (QUBO) problems. In particular, it is26

reported that complementary metal oxide semiconductor (CMOS) annealing processors already27

outperform conventional computers on the speed of solving max-cut problems [Gyoten et al., 2018].28

We note that the bit capacity of an annealing processor is currently limited. Therefore, we need an29

efficient conversion method of Bayesian network structure learning into QUBO within the limited30

bits. Additionally, it is also important to show the lower bounds of penalty coefficients because the31

precision for the biases and variable couplers is limited.32

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



Annealing processors are classified into the nearest neighbor type and the fully connected type33

[Yamamoto, 2020]. While the coupling nodes of a nearest neighbor annealing processor is limited to34

only between adjacent nodes, the coupling exists between arbitrary nodes of a fully coupled annealing35

processor. Though the scalability of nearest neighbor annealing processors is high, it is necessary to36

consider the additional bits for minor embedding [Choi, 2008, 2010].37

O’Gorman et al. 2014 proposed a method to convert score-based Bayesian network structure learning38

into QUBO that requires O(n2) bits for n random variables and a maximum parent set size m = 2.39

They also demonstrated the sufficient lower bounds of penalty coefficients. However, when m ≥ 3,40

the number of necessary auxiliary variables for a quadratization [Boros and Gruber, 2014] is at most41

O(n(n− 1)
m
2 ). This is a significant disadvantage for the current limited bit capacity of annealing42

processors.43

In this study, we propose an efficient conversion method based on the advanced identification of44

candidate parent sets and their representation in the form of Cartesian products. We also provide a45

greedy algorithm to decompose the candidate parent sets into the form of Cartesian products and46

prove the sufficient lower bounds of penalty coefficients.47

Experimental results on benchmark networks with 27 to 70 variables show that our conversion method48

reduces the required bits significantly in comparison to the previous work [O’Gorman et al., 2014].49

Our approach allows us to utilize the power of the second generation Fujitsu digital annealer, a fully50

coupled CMOS annealing processor [Aramon et al., 2019]. We demonstrate that the digital annealer51

consistently outperforms the ordering space search algorithms on the benchmark networks.52

2 Background53

2.1 Score-based Bayesian Network Structure Learning54

The goal of score-based Bayesian network structure learning is to find a DAG with maximal score.55

Given to random variablesX = (Xi)
n
i=1 and a complete data set ofN instancesD = {D1, · · · , DN},56

we optimize the parent set Πi of each random variable,57

Π∗1, · · · ,Π∗n = arg min
Π1,··· ,Πn⊂X
G∈DAG

n∑
i=1

− logS(i)(Πi | D), (1)

where G = (V, E),V = {1, · · · , n}, E = {(j, i) | j, i ∈ {1, · · · , n}, Xj ∈ Πi}, and Si : Πi → R is58

a local score function corresponding to Xi. The Bayesian Dirichlet equivalent uniform (BDeu) score59

[Buntine, 1991] is one of the commonly used scores,60

S
(i)
BDeu(Πi | D) ≡

βi∏
j=1

Γ(αi,j)

Γ(Ni,j + αi,j)

γi∏
k=1

Γ(Ni,j,k + αi,j,k)

Γ(αi,j,k)
, (2)

where N =
∑βi

j=1Ni,j , Ni,j =
∑γi
k=1Ni,j,k, αi,j =

∑γi
k=1 αi,j,k, βi is the number of joint states of61

Πi, γi is the number of states of Xi, Ni,j,k is the number of cases of the parent set Πi in its j-th state62

and Xi in its k-th state, αi,j,k = α
βiγi

is the hyperparameter of the Dirichlet function, and 0 < α ∈ R63

is called equivalent sample size [Heckerman et al., 1995a].64

2.2 Hamiltonian65

The Hamiltonian, which is the objective function of an annealing processor, is a quadratic pseudo-66

Boolean function,67

H(σ) =
∑
i∈VAP

hiσi +
∑

(i,j)∈EAP

Ji,jσiσj , (3)

where σ = (σi)
|VAP|
i=1 ∈ B|VAP|, the biases hi ∈ R for all i ∈ VAP, the couplers Ji,j ∈ R for all68

(i, j) ∈ EAP, and the graph GAP = (VAP, EAP). Higher degree problems are reformed into quadratic69

ones using auxiliary variables. This reformulation is called quadratization.70
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Definition 1. If a quadratic polynomial function g(v,h) is a quadratization of a pseudo-Boolean71

function f(v), then f(v) = minh∈BJ g(v,h) for all v ∈ BI .72

Anthony et al. 2016 proved that every pseudo-Boolean function of I variables and of degree K has73

a quadratization involving at most O(I
K
2 ) auxiliary variables. In particular, at most O(2

I
2 ) when74

K = I . It is well known that every pseudo-Boolean function can be uniquely represented as a75

multilinear polynomial in its variables [Boros and Hamme, 2002].76

2.3 Basic Conversion of Score-based Bayesian Network Structure Learning77

Using n(n − 1) bits to encode the paths into d = ((dj,i)1≤j≤n,j 6=i)
n
i=1 ∈ Bn(n−1) (dj,i = 1 if78

Xj is the parent of Xi, dj,i = 0 otherwise) and
(
n
2

)
bits to encode the topological orders into79

r = (ri,j)1≤i<j≤n ∈ B(n
2) (ri,j = 0 if the order of Xi is higher than Xj , ri,j = 1 otherwise), it is80

possible to represent eq. (1) on the Hamiltonian,81

Htotal(d, r) ≡
n∑
i=1

H(i)
score(d·,i) +Hcycle(d, r). (4)

The states of d·,i are mapped one-to-one to the states of Πi. Let Πi = π(i)(d·,i) for all 1 ≤ i ≤ n.82

The local score of the Hamiltonian is83

H(i)
score(d·,i) ≡ − logS(i)(π(i)(d·,i) | D) + logS(i)(φ | D), (5)

for all 1 ≤ i ≤ n. The score function has a quadratization involving at most O(n2
n−1
2 ) auxiliary84

variables. O’Gorman et al. 2014 added the maximum parent set size constraint to the Hamiltonian.85

In this case, the number of auxiliary variables is at most O(n(n− 1)
m
2 ). The cycle constraint of the86

Hamiltonian consists of the topological order constraint and the consistency constraint,87

Hcycle(d, r) ≡
∑

1≤i<j<k≤n

δ1R(ri,j , rj,k, ri,k) +
∑

1≤i<j≤n

δ2(di,jri,j + dj,i(1− ri,j)), (6)

where R(r1, r2, r3) = r1r2(1− r3) + (1− r1)(1− r2)r3 for all r1, r2, r3 ∈ B. When the penalty88

coefficients 0 < δ1, δ2 ∈ R are sufficiently large, the DAG constraint is satisfied indirectly through89

the relationship of the paths d and the topological order r. If it holds that90

max{0, max
1≤j∗,i∗≤n
j∗ 6=i∗

max
d·,i∗∈B

n−1

dj∗,i∗=1

(H(i∗)
score(d

(j∗,i∗)
·,i∗ )−H(i∗)

score(d·,i∗))} < δ1 <
δ2

n− 2
, (7)

then there is no cycle on the paths of the ground state, where d(j∗,i∗) = ((dj,i)
(j∗,i∗)
1≤j≤n,j 6=i)

n
i=1,91

d
(j∗,i∗)
j,i = 0 if (j, i) = (j∗, i∗), d(j∗,i∗)

j,i = dj,i otherwise. The computational cost to obtain the left92

side of eq. (7) is at most O(nm+1). In particular, at most O(n22n−2) when m = n− 1.93

3 Candidate Parent Set Decomposition94

Parent set identification is a major technique to narrow the search space of structure optimization,95

based on the relationship between parent sets and local scores under the DAG constraints [de Campos96

and Ji, 2011, Correia et al., 2020]. The collection of candidate parent sets of a random variable Xi is97

{W ⊆ X \ {Xi} |W ′ ⊂ W ⇒ S(i)(W ′ | D) < S(i)(W | D)}. To reduce the required bits of the98

score component of the Hamiltonian, we propose an efficient conversion method with the parent set99

identification. We directly encode the candidate parent sets instead of using the paths d.100

Moreover, we decompose the candidate parent sets (Wh,i)
λi

h=0 of each random variable into the form101

of Cartesian products as follows:102

1. Decompose (Wh,i)
λi

h=0 into (Wh,i ∩ Zi)λi

h=0, (Wh,i ∩ (X \ Zi))λi

h=0,103

2. Remove duplicates in the elements of (Wh,i ∩ Zi)λi

h=0, (Wh,i ∩ (X \ Zi))λi

h=0,104
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3. Store (Wh,i ∩ Zi)
λ1,i

h=0, (Wh,i ∩ (X \ Zi))
λ2,i

h=0 in (Uh,i)
λ1,i

h=0, (Vh,i)
λ2,i

h=0,105

where Zi ⊆ ∪λi

h=0Wh,i,W0,i = U0,i = V0,i = φ, λi, λ1,i, λ2,i ∈ N ∪ {0} for all 1 ≤ i ≤ n. There106

is a clear relationship,107

{W0,i, · · · ,Wλi,i} ⊆ {U ∪ V | (U, V ) ∈ {U0,i, · · · , Uλ1,i,i} × {V0,i, · · · , Vλ2,i,i}}, (8)

for all 1 ≤ i ≤ n. Here, given that the Hamiltonian is a quadratic pseudo-Boolean function, we can108

represent the score against Uh,i∪Vh′,i by allocating Uh,i, Vh′,i to two bits on the Hamiltonian. There-109

fore, it is possible to encode the candidate parent sets into the Hamiltonian using (Uh,i)
λ1,i

h=0, (Vh,i)
λ2,i

h=0.110

The number of required bits of the score component of the Hamiltonian is
∑n
i=1(λ1,i + λ2,i).111

Example 1. An example of the candidate parent sets in the form of Cartesian products as follows:112

X = {X1, X2, X3, X4}, Zi = {X1, X2}, λi = 5, λ1,i = 2, λ2,i = 1

(Wh,i)
λi

h=0 = (φ, {X1}, {X1, X2}, {X3, X4}, {X1, X3, X4}, {X1, X2, X3, X4}),
(Wh,i ∩ Zi)λi

h=0 = (φ, {X1}, {X1, X2}, φ, {X1}, {X1, X2}),
(Wh,i ∩ (X \ Zi))λi

h=0 = (φ, φ, φ, {X3, X4}, {X3, X4}, {X3, X4}),

(Uh,i)
λ1,i

h=0 = (φ, {X1}, {X1, X2}), (Vh,i)
λ2,i

h=0 = (φ, {X3, X4}).

We optimize Zi ⊆ ∪λi

h=0Wh,i to minimize λ1,i + λ2,i. However, it is often infeasible to search all113

elements of the power set P(∪λi

h=0Wh,i). Therefore, we heuristically search Zi adding elements one114

by one, as algorithm 1. The computational cost is at most O(λ3
i ) for all 1 ≤ i ≤ n.

Algorithm 1 Greedy Candidate Parent Set Decomposition

1: Input: (Wh,i)
λi

h=0 Output: Z Initialize: λ← λi, Z
′ ← φ,Z ← φ.

2: for d = 1 to | ∪λi

h=0 Wh,i| − 1 do
3: for X in ∪λi

h=0Wh,i \ Z do
4: if λ1,i + λ2,i < λ for Zi = Z ∪ {X} then λ← λ1,i + λ2,i, Z

′ ← Z ∪ {X}.
5: if Z 6= Z ′ then Z ← Z ′ else break

115

Example 2. An example of the bit reduction flow of algorithm 1 is as follows:116

Zi = φ, λ1,i = 0, λ2,i = 5 : (φ)× (φ, {X1}, {X1, X2}, {X3, X4}, {X1, X3, X4}, {X1, X2, X3, X4}),
Zi = {X1}, λ1,i = 1, λ2,i = 3 : (φ, {X1})× (φ, {X2}, {X3, X4}, {X2, X3, X4}),
Zi = {X1, X2}, λ1,i = 2, λ2,i = 1 : (φ, {X1}, {X1, X2})× (φ, {X3, X4}).

4 Efficient Conversion of Score-based Bayesian Network Structure Learning117

We make (Uh,i)
λ1,i

h=0, (Vh,i)
λ2,i

h=0 correspond to (ph,i)
λ1,i

h=0, (qh,i)
λ2,i

h=0 one-to-one, where ph,i, qh′,i ∈ B118

for all 0 ≤ h ≤ λ1,i, 0 ≤ h′ ≤ λ2,i, 1 ≤ i ≤ n. To identify the parent sets, we use the one-to-one119

correspondence constraint that
∑λ1,i

h=0 ph,i =
∑λ2,i

h=0 qh,i = 1 for all 1 ≤ i ≤ n. The Hamiltonian120

consists of the score component, the one-to-one correspondence constraint, and the cycle constraint,121

H∗total(p, q, r) ≡
n∑
i=1

(H∗(i)score(p·,i, q·,i) +H∗(i)one (p·,i, q·,i)) +H∗cycle(p, q, r), (9)

where p = ((ph,i)
λ1,i

h=0)ni=1, q = ((qh,i)
λ2,i

h=0)ni=1. Under the one-to-one correspondence constraint,122

we can represent the paths among random variables indirectly using p, q without additional auxiliary123

variables,124

d∗j,i ≡
∑

1≤h≤λ1,i

Xj∈Uh,i

ph,i +
∑

1≤h≤λ2,i

Xj∈Vh,i

qh,i, (10)
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1 → 2

1 → 3

1 → 4

2 → 3

2 → 4

3 → 4

{2, 3} → 1 {2} → 1

{3} → 1

{4} → 1

{3} → 2

{1} → 3
{4} → 3

Figure 1: An example of bit allocation for our conversion method. n = 4, λ1,1 = 3, λ2,1 = 1, λ1,2 =
1, λ2,2 = 0, λ1,3 = 1, λ2,3 = 1, λ1,4 = 0, λ2,4 = 0, U1,1 = {2, 3}, U2,1 = {3}, U3,1 = {2}, V1,1 =
{4}, U1,2 = {3}, U1,3 = {1}, V1,3 = {4}. Circle : p, q. Square : r. Red lines include in the score
component of the Hamiltonian, a green line in the one-to-one correspondence constraint, and blue
lines in the cycle constraint.

for all 1 ≤ j, i ≤ n. Figure 1 is an example of bit allocation using our conversion method. The125

number of bits required in our conversion method is
∑n
i=1(λ1,i + λ2,i) +

(
n
2

)
. Note that we do not126

directly encode p0,i, q0,i on the Hamiltonian.127

Score Component. The local score component of the Hamiltonian is128

H∗(i)score(p·,i, q·,i) ≡
λ1,i∑
h=1

s1,h,iph,i +

λ2,i∑
h=1

s2,h,iqh,i +

λ1,i∑
h=1

λ2,i∑
h′=1

th,h′,iph,iqh′,i, (11)

for all 1 ≤ i ≤ n. We can get these coefficients by solving simultaneous equations under the129

one-to-one correspondence constraint, s1,h,i = − logS(i)(Uh,i | D) + logS(i)(φ | D), s2,h,i =130

− logS(i)(Vh,i | D) + logS(i)(φ | D), th,h′,i = − logS(i)(Uh,i ∪ Vh′,i | D) + logS(i)(Uh,i | D) +131

logS(i)(Vh′,i | D)− logS(i)(φ | D).132

One-to-One Correspondence Constraint. We penalize the connection among bits to select each133

element from (Uh,i)
λ1,i

h=0, (Vh,i)
λ2,i

h=0,134

H∗(i)one (p·,i, q·,i) ≡
∑

1≤h<h′≤λ1,i

ξ1,iph,iph′,i +
∑

1≤h<h′≤λ2,i

ξ2,iqh,iqh′,i, (12)

for all 1 ≤ i ≤ n, where the penalty coefficient 0 < ξ1,i, ξ2,i ∈ R. If ξ1,i, ξ2,i is sufficient large,135 ∑λ1,i

h=0 ph,i =
∑λ2,i

h=0 qh,i = 1 is induced indirectly.136

Cycle Constraint. Compared to eq. (6), the cycle constraint of the Hamiltonian is137

H∗cycle(p, q, r) ≡
∑

1≤i<j<k≤n

δ∗1R(ri,j , rj,k, ri,k) +
∑

1≤i<j≤n

δ∗2(d∗i,jri,j + d∗j,i(1− ri,j)), (13)

where the penalty coefficients 0 < δ∗1 , δ
∗
2 ∈ R. By setting δ∗1 , δ

∗
2 appropriately, we can prevent the138

cycle from occurring.139
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5 Sufficient Lower Bounds of Penalty Coefficients140

We demonstrate the sufficient lower bounds of penalty coefficients. The basic idea is that we find the141

range of penalty coefficients so that the change in return value of the Hamiltonian is negative when142

the input state changes to the state we desire to induce.143

One-to-One Correspondence Constraint. We consider to decrease the value of
∑λ1,i∗

h=1 ph,i∗ by144

one until it reaches 1. In the case of ph∗,i∗ = 1,
∑λ1,i∗

h=1 ph,i∗ > 1, it holds that H∗total(p, q, r) −145

H∗total(p
(h∗,i∗), q, r) ≥ ξ1,i∗ + s1,h∗,i∗ +

∑λ2,i

h=1 th∗,h,i∗qh,i∗ , where p(h∗,i∗) = ((p
(h∗,i∗)
h,i )

λ1,i

h=0)ni=1,146

and p(h∗,i∗)
h,i = 0 if (h, i) = (h∗, i∗), p(h∗,i∗)

h,i = ph,i otherwise. Considering the case where p and q147

are swapped in the above, if ξ1,i, ξ2,i satisfy that148

max
0≤h≤λ1,i

(−s1,h,i −
λ2,i∑
h′=1

min{0, th,h′,i})) < ξ1,i, (14)

max
0≤h≤λ2,i

(−s2,h,i −
λ1,i∑
h′=1

min{0, th′,h,i})) < ξ2,i, (15)

for all 1 ≤ i ≤ n, then the grand state does not violate the one-to-one correspondence constraint.149

The computational cost to obtain the left side of eq. (14) and eq. (15) is at most O(λ1,iλ2,i) for all150

1 ≤ i ≤ n.151

Cycle Constraint. We consider four patterns of (ri∗,j∗ , d
∗
j∗,i∗ , d

∗
i∗,j∗) violating the consistency152

constraint. It is assumed that Xj∗ ∈ Uh∗,i∗ , Xj∗ /∈ Uh∗∗,i∗ ⊂ Uh∗,i∗ , ph∗,i∗ = 1, ph∗∗,i∗ = 0.153

In the case of (0, 1, 0), it holds that H∗total(p, q, r) − H∗total(p, q, r
(i∗,j∗)) ≥ δ∗2 − (n − 2)δ∗1 ,154

where r(i∗,j∗) = (r
(i∗,j∗)
i,j )1≤i<j≤n, and r(i∗,j∗)

i,j = 1 − ri,j if (i, j) = (i∗, j∗), r(i∗,j∗)
i,j = ri,j155

otherwise. Similarly, it is possible to consider the case of (1, 0, 1). In the case of (0, 1, 1),156

it holds that H∗total(p, q, r) − H∗total(p
(h∗,h∗∗,i∗), q, r) ≥ δ∗2 + s1,h∗,i∗ +

∑λ2,i

h=1 th∗,h,i∗qh,i∗ −157

s1,h∗∗,i∗ −
∑λ2,i

h=1 th∗∗,h,i∗qh,i∗ , where p(h∗,h∗∗,i∗) = ((p
(h∗,h∗∗,i∗)
h,i )

λ1,i

h=0)ni=1, and p(h∗,h∗∗,i∗)
h,i = 0158

if (h, i) = (h∗, i∗), p(h∗,h∗∗,i∗)
h,i = 1 if (h, i) = (h∗∗, i∗), p(h∗,h∗∗,i∗)

h,i = ph,i otherwise. Sim-159

ilarly, it is possible to consider the case of (1, 1, 1). These results suggest the relationship of160

δ∗1 , δ
∗
2 to induce the consistency constraint. Here, based on theorem 1, we consider a strategy161

to repeat picking up one element from r and switching its value until Htrans(r) = 0. It is as-162

sumed that Htrans(r) > Htrans(r
(i∗,j∗)). In the case of (1, 1, 0), it holds that H∗total(p, q, r) −163

H∗total(p
(h∗,h∗∗,i∗), q, r(i∗,j∗)) ≥ δ∗1+s1,h∗,i∗+

∑λ2,i

h=1 th∗,h,i∗qh,i∗−s1,h∗∗,i∗−
∑λ2,i

h=1 th∗∗,h,i∗qh,i∗ .164

Similarly, it is possible to consider the case of (0, 0, 1). In the case of (1, 0, 0) or (0, 0, 0), it holds165

that H∗total(p, q, r) − H∗total(p, q, r
(i∗,j∗)) ≥ δ∗1 . These results suggest the lower bound of δ∗1 to166

induce the topological order constraint. Considering the case where p and q are swapped in the167

above, if δ∗1 , δ
∗
2 satisfy that168

max
1≤i≤n

max{η1,i, η2,i} < δ∗1 <
δ∗2

n− 2
, (16)

η1,i ≡ max
1≤j≤n

max
0≤h≤λ1,i

Xj∈Uh,i

max
0≤h′≤λ1,i

Xj /∈Uh′,i⊂Uh,i

max
0≤h′′≤λ2,i

(−s1,h,i − th,h′′,i + s1,h′,i + th′,h′′,i),

η2,i ≡ max
1≤j≤n

max
0≤h≤λ2,i

Xj∈Vh,i

max
0≤h′≤λ2,i

Xj /∈Vh′,i⊂Vh,i

max
0≤h′′≤λ1,i

(−s2,h,i − th′′,h,i + s2,h′,i + th′′,h′,i),

for n ≥ 3, then the grand state does not violate the cycle constraint under the one-to-one cor-169

respondence constraint. The computational cost to obtain the left side of eq. (16) is at most170

O(
∑n
i=1 nλ1,iλ2,i(λ1,i + λ2,i)).171

Theorem 1. If it holds that Htrans(r) ≡
∑

1≤i<j<k≤nR(ri,j , rj,k, ri,k) > 0, then there exists172

at least one index pair 1 ≤ i∗ < j∗ ≤ n which satisfy Htrans(r) > Htrans(r
(i∗,j∗)), where173

R(r1, r2, r3) = r1r2(1− r3) + (1− r1)(1− r2)r3 for all r1, r2, r3 ∈ B, r = (ri,j)1≤i<j≤n ∈ B(n
2),174

r(i∗,j∗) = (r
(i∗,j∗)
i,j )1≤i<j≤n, and r(i∗,j∗)

i,j = 1− ri,j if (i, j) = (i∗, j∗), r(i∗,j∗)
i,j = ri,j otherwise.175
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Table 1: The benchmark networks from Bayesian network repository.

Name n m
∑n
i=1 |Πi|

∑n
i=1 βi(γi − 1)

∑n
i=1 λi

*

N = 100 N = 1000 N = 10000

insurance 27 3 52 984 353 883 4036
water 32 5 66 10083 165 216 735
alarm 37 4 46 509 1829 2272 9081
barley 48 4 84 114005 181 310 1552

hailfinder 56 4 66 2656 144 692 4277
hepar2 70 6 123 1453 4837 665 4782

* The average for 10 simulated datasets.

Proof. It does not lose the generality by considering the case of (r1,2, r2,3, r1,3) = (1, 1, 0). Here, it176

holds that R(r1,2, r2,3, r1,3)−R(1− r1,2, r2,3, r1,3) +R(r1,2, r2,3, r1,3)−R(r1,2, 1− r2,3, r1,3) +177

R(r1,2, r2,3, r1,3)−R(r1,2, r2,3, 1− r1,3) = 3. Additionally, it holds that R(r1,2, r2,i, r1,i)−R(1−178

r1,2, r2,i, r1,i)+R(r2,3, r3,i, r2,i)−R(1−r2,3, r3,i, r2,i)+R(r1,3, r3,i, r1,i)−R(1−r1,3, r3,i, r1,i) =179

0 for all 3 < i. Therefore, it holds that Htrans(r)−Htrans(r
(1,2)) +Htrans(r)−Htrans(r

(2,3)) +180

Htrans(r)−Htrans(r
(1,3)) = 3. From this result, it holds that Htrans(r)−Htrans(r

(i∗,j∗)) > 0 for181

at least one index pair (i∗, j∗) ∈ {(1, 2), (2, 3), (1, 3)}.182

6 Experimental Results183

To validate the performance of our approach, we use 10 simulated datasets for each instance size184

N = 100, 1000, 10000 and each benchmark network. The benchmark networks are discrete networks185

from Bayesian network repository 1. The score function is the BDeu score with α = 1. It is often186

infeasible to identify exact candidate parent sets by searching the power set P(X \{Xi}) in a realistic187

timeframe. We use the candidate parent sets from algorithm 2. Note that the candidate parent sets188

depend on the heuristic search algorithms, but we do not focus on their performance in this study.189

Table 1 displays the information of benchmark networks. The code to replicate each experiment in190

this paper is available 2.191

Algorithm 2 Greedy Candidate Parent Set Identification

1: Input: D, i, m Output: L Initialize: L ← {φ},L′ ← {φ},L′′ ← φ
2: for d = 1 to m do
3: for W in L′ do
4: for X in X \ {Xi} \W do
5: if Si(W ′ | D) < Si(W ∪ {X} | D) for all W ′ ⊂W ∪ {X},W ′ ∈ L then
6: L′′ ← L′′ ∪ {W ∪ {X}}.
7: if L′′ 6= φ then L ← L ∪ L′′,L′ ← L′′,L′′ ← φ else break
8: for W in L do
9: if there exist W ′ ⊂W that satisfies Si(W | D) ≤ Si(W ′ | D) then L ← L \ {W}.

6.1 Number of Required Bits for Score Component192

In comparison to the existing method [O’Gorman et al., 2014], we reduce the number of required bits193

for the score component by encoding the candidate parent sets directly. While
∑n
i=1 λi candidate194

parent sets is encoded in our approach, n(n−1) paths plus at mostO(n(n−1)
m
2 ) auxiliary variables195

for m > 2 in the existing method. The left side of table 2 shows the reduction rate of the number of196

required bits for the score component. Moreover, we reduce the number of required bits for the score197

component to
∑n
i=1(λ1,i + λ2,i) by decomposing the candidate parent sets in the form of Cartesian198

1https://www.bnlearn.com/bnrepository/
2See supplemental material.
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Table 2: The reduction rate of the number of required bits for score component.

Name

∑n
i=1 λi / n(n− 1)

m
2 * ∑n

i=1(λ1,i + λ2,i) /
∑n
i=1 λi

*

N = 100 N = 1000 N = 10000 N = 100 N = 1000 N = 10000

insurance 0.09873 0.24677 1.12742 0.61367 0.47285 0.32476
water 0.00097 0.00126 0.00429 0.72680 0.70588 0.44014
alarm 0.03814 0.04738 0.18938 0.45332 0.35537 0.21617
barley 0.00171 0.00292 0.01464 0.76717 0.75538 0.54149

hailfinder 0.00085 0.00409 0.02525 0.82773 0.60178 0.33365
hepar2 0.00021 0.00003 0.00021 0.49694 0.63346 0.31284

* The average ratio for 10 simulated datasets.

Table 3: The number of required bits for fully coupled and nearest neighbor annealing processors.

Name

∑n
i=1(λ1,i + λ2,i) +

(
n
2

)
* ∑n

i=1(λ1,i + λ2,i)(λ1,i + λ2,i + 1) +
(
n
2

)
*

N = 100 N = 1000 N = 10000 N = 100 N = 1000 N = 10000

insurance 566 767 1661 3375 9023 85482
water 613 648 820 1434 1720 5881
alarm 1489 1472 2628 36761 27985 169004
barley 1247 1362 1968 6758 3446 24796

hailfinder 1659 1957 2967 2212 7084 80578
hepar2 4777 2836 3910 449916 9164 136939

* The average ratio for 10 simulated datasets.

products. The right side of table 2 shows that algorithm 1 reduces the number of required bits for the199

score component although there is some variation among the networks.200

6.2 Selection of Annealing Processor201

From the following discussion, the Fujitsu digital annealer is suitable for our approach from the202

viewpoint of bit capacity.203

Fully Connected Type. To the best of our knowledge, the bit capacity of the Fujitsu digital annealer204

is the largest in fully coupled annealing processors. The second generation Fujitsu digital annealer205

can deal with problems on a scale of 8192 bits [Matsubara et al., 2020]. The left side of table 3 shows206

that it is possible to encode all the logical conversion results for benchmark networks to the circuit of207

the digital annealer within bit capacity.208

Nearest Neighbor Type. The number of additional bits required for minor embedding depends on209

the design of the hardware graphs. Oku et al. 2019 proposed a heuristic minor embedding algorithm210

for the Hitachi CMOS annealing machine [Masanao et al., 2010]. Using this algorithm, the number211

of required physical spins when embedding a fully connected graph is I2 + I for I variables. The212

conversion method proposed in this study has n local fully connected graphs on p, q. Therefore, the213

number of required physical spins must be at least
∑n
i=1(λ1,i + λ2,i)(λ1,i + λ2,i + 1) +

(
n
2

)
. From214

the right side of table 3, it is currently infeasible to encode logical conversion results for at least some215

networks to the circuit of CMOS annealing machine within its 102400 nodes [Sugie et al., 2021]. As216

far as we know, the bit capacity of the Hitachi CMOS annealing machine is the largest in nearest217

neighbor annealing processors.218

6.3 Score Maximization219

We demonstrate the performance of Fujitsu digital annealer for score-based Bayesian network220

structure learning using the conversion results of N = 10000 simulated datasets. The running time221

for each simulated dataset is 6000 [s].222
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Figure 2: Results of score maximization by the baseline algorithms. For each simulated dataset and
each baseline algorithm, we normalized

∑n
i=1(logS(i)(Πi |D)− logS(i)(φ |D)) by dividing it by the

corresponding value of the Fujitsu digital annealer. In this experiment, we used the second-generation
Fujitsu digital annealer. SA : simulated annealing, OBS : ordering-based search, ASOBS : acyclic
selection ordering-based search.

Baselines. We compare the results obtained by the digital annealer with those of three heuristic223

algorithms. One algorithm is the simulated annealing algorithm [Heckerman et al., 1995b] with a224

QUBO same as the one encoded into the digital annealer. Other algorithms are the ordering space225

search algorithms, i.e., ordering-based search and acyclic selection ordering-based search. For a fair226

comparison, the running time of the simulated annealing algorithm for each simulated dataset is 6000227

[s] and that of the ordering space search algorithms is 6000 [s] plus the running time of algorithm 1.228

The computing environment is Microsoft Windows 10 Pro, 3.6 GHz Intel Core i9 processor, and 64229

GB memory.230

Result. Figure 2 shows that the digital annealer is better than all the baselines for all the simulated231

datasets from all the benchmark networks.232

7 Conclusion233

We proposed a novel approach of converting a score-based Bayesian network structure learning234

into QUBO. The essence of this approach lies in reducing the number of required bits through the235

advanced identification of candidate parent sets and their representation as Cartesian products. The236

Fujitsu digital annealer with our conversion method improved the BDeu score for 27 to 70 variables237

benchmark networks over existing methods. The bit capacity limitation of annealing processor is238

being relaxed rapidly 3. Though our approach is still a disadvantage for larger-scale networks, we239

expect that our proposed algorithms will be effectively applied to larger-scale score-based Bayesian240

network structure learning in the near future.241

Potential Negative Societal Impacts. The development of annealing processor technology could242

have an impact on various industry fields. However, the number of companies that have commer-243

cialized the API usage of annealing processors is still small. Therefore, there is a concern that the244

market of annealing processors will not work well and the disparities among stakeholders will be245

widen. Researchers are required to properly evaluate the value of technology and communicate it to246

the business side.247

3Fujitsu announced that they achieved a megabit-class performance with digital annealer
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