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ABSTRACT

We introduce the Propensity Similarity guided Bidirectional Transformer (PSBT),
a novel framework designed to estimate causal effects in observational data while
addressing confounding bias. PSBT employs a pre-training and fine-tuning ap-
proach to learn causal representations, guided by propensity scores. In the pre-
training phase, the model predicts masked covariates (self-supervised learning)
and propensity similarity between unit pairs (weakly supervised learning), en-
abling the representation space to disentangle confounding factors. The fine-
tuning stage leverages these representations for causal outcome prediction, re-
fining them for counterfactual reasoning. Experiments on multiple benchmark
datasets demonstrate that PSBT significantly outperforms traditional and state-of-
the-art causal inference methods in estimating the Conditional Average Treatment
Effect (CATE) and other metrics. By emphasizing propensity-guided learning
over conventional balancing techniques, PSBT achieves robust and interpretable
representations, advancing deep learning model capabilities in causal effect infer-
ence tasks.

1 INTRODUCTION

With the rapid developments of artificial intelligence in wide areas, it is highly needed that deep
learning models should have the capability of reasoning, e.g., logic reasoning or mathematical rea-
soning. Answering questions like “What is cause?” and “What is effect?” from the observational
data is regarded as the initial step to build general artificial intelligence |Pearl (2019). Properly
answering questions like “What would the patient’s health condition be had they received medica-
tion A?” is the central concern of causal effect inference. These studies greatly benefit research in
healthcare (Casucci et al.| (2018} 2019), educational studies |[Zhao & Hefternan| (2017), economics
policy making |Smith & Todd| (2005); [Lalonde| (1984)) and sociology [Morgan & Harding| (2006)).
Although most of the research for causal inference is based upon Randomized Controlled Trials
(RCTs) |Bertsimas et al.| (2019), there are a lot of attempts focusing on observational data, also
known as observational studies Rosenbaum| (2002). The most important challenge for causal in-
ference in observational studies is to tackle confounding bias in the data collection process, where
confounders affect both the effects of intervention variables on the outcome variables, and the in-
tervention variables themselves. Techniques to mitigate confounding bias in causal inference range
from covariate matching based optimization methods |Stuart| (2010) to regression correction based
statistical methods |Chipman et al.| (2008). Recent advances in domain adaptation suggest that a
well constructed representation learning model could improve the performance of counterfactual
reasoning model significantly on multiple benchmarks [Johansson et al.| (2016); Du et al.| (2019).
However, matching-based methods require that all the confounders should be able to be measured,
so that the information from treatment variable to response variable could be blocked according to
the back-door principles [Pearl| (2010). In scenarios where only noisy and dependent proxy vari-
ables are available, latent variable methods are needed to recover the true confounders for causal
inference |Louizos et al.| (2017).

We explore a new framework to estimate causal effect under confounding bias. In this framework,
we use a bidirectional transformer model to learn the feature representations for the covariate fea-
tures. The representation learning framework is guided by two tasks. On the one hand, we randomly
mask the covariate features, and formulate a self-supervised task to predict the masked covariate
features. On the other hand, we combine two units to formulate a subsequent propensity similarity
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prediction task, where we use the propensity score model to guide the unit pairs as their supervision
for propensity similarity prediction. Hence, we are trying to distill the propensity knowledge into
the feature representation learning model. Rather than learning a balanced representation between
treatment and control groups, this method aims to learn the propensity model in the pre-training
stage.

In addition, we formulate a fine-tuning task based on the pre-trained propensity similarity prediction
modeling stage. In the fine-tuning stage, an additional layer of a neural network is formulated to
enable the causal outcome prediction task, where we fine-tune the learned representations as shared
input to the causal prediction layer for the final causal effect inference task.

In order to teach the model how to learn the differences between covariate pairs, rather than perform-
ing balancing, we propose to employ the propensity score as knowledge guidance for the attention
mechanism to jointly aggregate the covariate representations. Rather than learning a balanced repre-
sentation and performing counterfactual inference, we aim to teach the model to learn the propensity.
Thus, the representation space is able to disentangle the confounding factors, which would help the
counterfactual predictors learn the correct outcome patterns by satisfying the strong ignorability
condition.

1.1 MAIN CONTRIBUTIONS

* We explore propensity difference prediction as a task of transformer model for learning
causal representation.

* We leverage self-supervised learning as masked tokenization to restrict the latent represen-
tation while learning the propensity model.

* We perform fine-tuning with causal effect inference task from the pre-trained representa-
tions, which allows for causal modeling of treatment effect.

* We build a new framework called PSBT by employing the Propensity Similarity guided
Bidirectional Transformer model, using a pre-training fine-tuning regime. Various ex-
periments on multiple datasets have shown that our proposed PSBT could achieve great
performance in causal effect inference tasks. Source code for reproducing our experi-
ments are released for reviewing purposes https://anonymous.4open.science/
r/PSBT-635C/l

2 PROBLEM SETUP

Given a dataset D = {X,T,Y}, where X € R"™* and Y € R", and T = {0,1}". We have
covariate X, --- , Xy, where for each unit z, an interventional variable ¢ is assigned and the factual
outcome of that intervention is y . According to the Rubin-Neyman causal model Rubin| (2005)), for
t € {0,1}, we have a joint distribution P, = (z,t,yo,y1). Here yo,y; represent the factual and
counterfactual outcome, respectively, regarding to ¢ as y;,y;—;. Our target is to learn a model to
infer the potential outcome according to the interventional variables.

Unlike the variational auto-encoder-based deep latent model family, we explore the transformer-
based model family by self-supervised learning. We show that by properly designing the tasks with
a transformer structure, the learned latent representation is able to gain some causal representation
features useful for downstream causal inference tasks.

A directed graph model could be used to represent the relation between latent variables and the
observable variables in Bayesian formulas, which enables the discovery of true causal factors by
posterior approximation Scholkopf et al.|(2013). On the other hand, propensity score matching sat-
isfies the strong ignorability condition: it hence indicates the causal direction which aligns with the
directed graphic model Rosenbaum| (1996; 2002). We show that by pre-training with contrastive
framework under propensity guidance, and fine-tuning with causal effect prediction tasks, the trans-
former model could be capable of conducting causal effect inference tasks.

On the one hand, self-supervised learning maps the input covariates to the representation space with
implicit regularization of mutual information, so that the distribution of latents are formulated. On
the other hand, either an additive noise model or a variational auto-encoder requires to model the
latents in a Gaussian prior, which aligns with the propensity score interpreted as probit function.
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Hence, the propensity guidance for a representation learned from the transformer framework could
be equivalent to the directed graphic model.

In order to make causal inference identifiable via observational data, we make the following assump-
tions:

Assumption 1 (Strong Ignorability) Conditioning on x, the potential outcomes vy, y1 are indepen-
dent of t, which can be stated as: (yo,y1) L t|z.

Assumption 2 (No Interference) The treatment outcome of each individual is not affected by the
treatment assignment of other units, which can be formulated as: Y (t!,--- 1) = Y (t%).

Assumption 3 (Consistency) The potential outcome y; of each individual is equal to the observed
outcome YV, if the actual treatment received is T = t, which can be represented as: y = 1y, if
T = t,Vt.

Assumption 4 (Positivity) For all sets of covariates and for all treatments, the probability of treat-
ment assignment will always be strictly larger than 0 and strictly smaller than 1, which can be
expressed as: 0 < P(t|x) < 1, Vt and V.

Here, Assumption 1 indicates that all the confounders can be measured so that the confounders can
all be controlled for the adjustment to remove the bias. This is a restrictive but much used assumption
in a large subset of causal inference literature Rosenbaum & Rubin|(1983). Assumption 4 allows us
to estimate the treatment effects for any x in the covariate space. With these assumptions, we can
formalize the definition of the CATE as follows:

Definition 1 The Conditional Average Treatment Effect (CATE) for unit u is: CATE(u):=
Efy1|2"] — Elyo|z"].

This definition restricts the conditional probability as the formal definition of individual level causal
effects. Now we can define the Average Treatment Effect (ATE) and the Average Treatment effect on
the Treated (ATT) as:

Definition 2 ATE:= E[CATE(u)|, ATT:= E[CATE(u)|t = 1].

Here, since the counterfactual outcome cannot be known, we do not know the joint distribution
P(z,t,y0,y1). We can only estimate a function over the covariate space X which is defined as
f:X x{0,1} — Y. The estimate of CATE(«) can now be defined as:

Definition 3 Given a dataset {X,T,Y } and a function f, for each unit u, the estimate of CATE(u)
is: CATE(u) = f(z*,1) — f(z*,0).

Our main aim is to learn a proper function to approximate this quantity.

3 METHODOLOGY: PSBT

Our framework PSBT: Propensity Similarity guided Bidirectional Transformer consists of two steps
when training: pre-training and fine-tuning. During the pre-training step, the model is trained to
distinguish the propensity similarity on the covariate feature pairs, without accessing the outcome
variables. In this step, a propensity model parameterized by a neural network is first learned on
the covariate features with supervision of the treatment assignment. Then, this model is used to
supervise the covariate feature pairs to enable the propensity guidance. During the fine-tuning step,
the model is initialized with the whole parameters in the pre-training step. Here the treatment out-
come variable is used as the regression target, with an additional layer in the pre-training model as
the component for the prediction task. In the whole process, our model uses a unified architecture
design and there is little difference between the pre-training and fine-tuning downstream tasks.
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Figure 1: The model framework for the proposed method. In the upper figure, S represents the self-
supervised learning component that predicts masked tokens. P represents the propensity component
that predicts the propensitys scores. T represent the pretrained target that predicts the propensity
similarities. N represnts the next similarity prediction component that formulates the target loss.
In the lower figure, T represnts the target prediction that predicts the cls value, D1 and DO are two
causal prediction head that predicts tha causal quantities.

Fine-tuning

Latent variable model

Pre-training

Figure 2: The graphic model for the proposed method.

Model Architecture The basic architecture of PSBT is a multi-layer bidirectional transformer en-
coder that encodes the covariate features into latent representations. This architecture is based on
the implementation described in [Vaswani et al.|(2017); our implementation is based on the Pytorch
library. The official implementation of this architecture has been released in the tensor2tensor li-
brary|'| We denote the number of layers, the transformer blocks as L, the hidden size as H, and the
number of self-attention heads as A. The report is based on a model PSBT(L=8, H=192, A=8). For
the fine-tuning step, we keep most of the architecture the same and add two additional layers to
model the treatment outcomes from different interventional arms separately. Figure T] displays the
details of our architecture.

Input / Output Representations. As shown in Figure 2] our method firstly projects the input
features to token spaces, where a token is represented by two or three features. A single-layer
network is used as the project function to transform the input features to the sequential tokens. For
the pre-training stage, a CLS token is initialized to concatenate with the sequential tokens, the final
hidden state of representation corresponding to this token is used for the prediction tasks. Unit pairs
are packed together into a single sequence, where sequences of unit features are separated by a single
token Sep, and a learned embedding is added to every single token to indicate whether or not the
feature token belongs to the first or second unit. Positional encoding tokens are also included to add
to each token as the formulation of the final input representations to the transformer blocks. For a
given token, the final state of that token in the input space is summed by the corresponding token,
the segment and position embeddings.

'https://github.com/tensorflow/tensor2tensor
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3.1 PRE-TRAINING CAUSAL REPRESENTATION

Our architecture is used to encode the bidirectional sequential feature to pre-train PSBT. We train
PSBT with one weakly-supervised task and one self-supervised task, as illustrated in Figure|[T}

Predict the propensity similarity. The main goal of this step is to let the model understand the
relation between the unit pairs, regarding the propensity similarity. In order to guide the transformer
model with the knowledge of propensity scores, this framework sets up a classification token by
a learning target to predict the propensity similarity. Back-propagation of errors from neural net-
works output to the real-world annotation promotes the success of modern deep learning methods.
The model framework in this paper makes use of back-propagation from propensity similarity to
guide the transformer learning the causal representation for downstream inference tasks. Propen-
sity guidance allows for the representation learning to group the units within the same stratification
into a local manifold, so that treatment outcomes from both domains can be learned by the neural
networks function, which equals to the adjustment of latent variables.

We obtain the propensity score for each unit by using a pre-trained neural network, specifically: a
multi-layer fully connected neural network with BatchNormalization and ReLU layers. This net-
work is trained on the tasks with input as the feature vectors and output as the treatment assignment:
given a unit with covariate features, the network outputs the propensity of treatment assignment.
This pre-trained network generates propensity similarity for each unit pair.

Another issue to be considered in this method is the choice of metric for measuring the propensity
similarity. The output of nuisance functional model maps the covariates to the logit space, repre-
senting the similarity between propensities. In order to formulate a stable target space for the model
to learn the propensity similarity, this method uses soft binary cross entropy to model the prediction
error, by projecting the logit space into the probability space scaling from zero to one. An alternative
method is to model the output space with softplus function so that the value can be restricted to RT.

Self-supervised covariates feature regression. In order to train a deep bidirectional representa-
tion, we mask some percentage of the input tokens at random, and then predict those masked tokens.
Here, each token consists of feature compositions, for which real-valued features are projected into
real value spaces. This step is the same as the ‘masked language model’ but the sequential part is
not sentence sequences any more, but covariate features. The MASK tokens are transformed into
latent representations in the final hidden state of the transformer blocks and as the input of a final
regression layer. The ground truth feature values are used as the supervised signal to test the self-
supervised feature regression task. In order to mitigate the covariate shifts between pre-training and
fine-tuning, we do not always use a MASK token to replace the tokens. There are 10% positions of
token are marked by the MASK token, and among them 80% are kept with the masked condition,
10% are randomly replaced by other tokens, and 10% of the them remain the same.

In conclusion, the framework of our proposed method as illustrated in Figure[Tencompasses a mod-
eling process with two steps. First, pre-training is conducted by introducing the propensity model
for sequence level supervision and self-supervised learning is conducted to regulate the learned
representations. Subsequently, a task level supervision is conducted to enable the network to do
counterfactual reasoning.

3.2 FINE-TUNING CAUSAL MODEL

In the fine-tuning stage we keep all the parameters from the pre-training stage instead of two addi-
tional layers, where each layer represents the task of predicting the causal outcomes of the model, as
shown in the bottom figure in Figure[I] This step is straightforward due the self-attention mechanism
of transformer architectures. In the fine-tuning stage, only one unit is used as inputs to the network
and the final hidden state of the CLS token is used as the input to the causal layer. There are two
causal layers, each corresponding to one potential outcome Yp, ;. The fine-tuning stage enables the
model to further adjust the representation learning pre-trained from the last stage to adjust according
to each potential outcomes.
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Table 1: Statistics on the employed datasets. In the MIMIC-III dataset, the numbers of control and
treatment units are simulated. The details of both procedures are provided in the main text, specifi-
cally in the corresponding paragraphs of Section4.1] where each dataset is introduced. Additionally,
note that the control unit pool in the Jobs dataset consists of two components (cf. Section d.1] Jobs
paragraph).

Dataset Observations Control/treatment Covariates Reference

IHDP 747 608/139 25  Hill [Hill] (2011)

Jobs 3122 29157297 7 Lalonde Lalonde| (1984)
MIMIC-III 7413 -/- 25 Johnson et al. Johnson et al.|(2016)
Twins 25656 12828/12 828 43 Louizos et al.|Louizos et al.| (2017

4 EXPERIMENTS

Our experiments aim to answer the following questions:

» How effective is the Transformer-based model in learning representations for causal infer-
ence tasks?

* How much benefit could the propensity supervision bring for the causal inference tasks?

4.1 DATASETS

To properly assess our method, we run experiments on several datasets that are designed to evaluate
causal effect inference tasks. Because of the unobservable counterfactual outcomes, semi-simulated
or simulated datasets are used to create ground truth data[Hill| (2011)). Table[T]lists summary statistics
for the datasets.

IHDP Hill (2011). The Infant Health and Development Program (IHDP) examines the effect of
specialist home visits on infants’ future cognitive test scores. This semi-simulated dataset is derived
from covariates collected during a real-world randomized experiment. Treatment selection bias is
introduced by excluding a subset of the treatment group. Treatment outcomes are simulated using
Setting ‘A’ as described in |Dorie| (2016). The dataset includes 747 units: 608 in the control group
and 139 in the treatment group, with each unit characterized by 25 covariates.

Jobs Lalonde|(1984); Smith & Todd|(2005). The Jobs dataset evaluates the impact of job training
on employment outcomes. It combines a randomized component from the National Supported Work
program with a non-randomized component from observational studies. The randomized dataset
includes 722 units (425 control and 297 treated) with seven covariates. The non-randomized dataset
(PSID comparison group) consists of 2490 control units.

MIMIC-III |Johnson et al.|(2016). This benchmark dataset is derived from MIMIC-III, a database
of de-identified patient profiles and health outcomes for critical care unit patients. The dataset
includes demographic details and observed laboratory measurements (chemistry and hematology).
After filtering for missing values, the dataset comprises 7413 samples, each with 25 covariates.
The binary treatment examines the effect of prescription amount on ICU length of stay: ¢ = 0
represents a small prescription amount, and ¢ = 1 represents a large prescription amount. Treatment
outcomes are simulated as y|x, t ~ (w? + Bt +n), where n ~ N(0,1), w ~ N(0,0.5- (X +X7)),
and ¥ ~ U((—1,1)25%25), Treatment assignment follows t|z ~ Bern(o(sTz + m)), where
m ~ N(0,0.1) and s ~ N(0,0.1-I).

Twins [Louizos et al.|(2017). The Twins dataset is constructed from the “Linked Birth/Infant Death
Cohort Data” by NBER. Using a matching algorithm, it selects twin births in the USA from 1989 to
1991. The dataset contains 43 covariates, including parental demographics (education, age, race),
health factors (prenatal care timing, number of prenatal visits), and other conditions. Only same-
gender twin pairs weighing less than 2 000g are included. The treatment variable assigns ¢ = 0 for
the lighter twin and ¢ = 1 for the heavier twin, with the first-year mortality rate as the outcome.
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Table 2: In-sample and out-of-sample results with mean and standard errors on the IHDP dataset
(lower = better).

Methods In-sample Out-sample
/€PEHE €ATE +/€PEHE €ATE
OLS/LR; 58 £.3 .73+£.04 58 £.3 .94+.06
OLS/LR, 24 £.1 .14+£.01 25 £.1 .31+.02
S.Learner 1.7 £.6 .18+.04 3.0 £.5 .36+.06
T.Learner 15 +£.1 .17+.03 27 £.6 .33£.04
BLR 58 £.3 .72+.04 58 .3 .93+.05
BART 21 £.1 .23+.01 23 £.1 .34+.02
k-NN 21 +£.1 14+.01 41 +£.2 .794+.05
RF 42 £2 73£.05 6.6 £.3 .96+.06
CF 38 £2 18+.01 38 +£.2 .40+£.03
BNN 22 £.1 37+.03 21 £.1 .42+.03
TARNet 88+.0 .26+.01 95+.0 .28+£.01
CFR-Wass 71+.0 .25+.01 6.0 27T£.01
CEVAE 27 £.1 34+£.01 26 £.1 .46+.02
SITE 69+.0 .22+.01 h+.0 24+ .01
ABCEI 71+.0 .09+.01 713+£.0 .09+£.01
PSBT 51+.0 .03+.01 53+.0 .03+.01

Mortality is 19.02% for lighter twins and 16.54% for heavier twins. Observational outcomes for
both treatments are available. Selection bias is simulated by selectively observing one twin based
on covariates, modeled as t|z ~ Bern(o(w? 2 + n)), where w? ~ N(0,0.1-I) and n ~ N(1,0.1).

4.2 BASELINE METHODS
We consider three groups of baselines:

1. Statistical estimators: least square regression using treatment as a feature (OLS/LR,); sep-
arate least square regressions for each treatment (OLS/L R5); a single network with treat-
ment as covariates (S.learner [Kiinzel et al.| (2019)); separate neural regressors for each
treatment group (T.learner [Kiinzel et al.|(2019)); random forest (RF Breiman| (2001))).

2. Matching-based estimators: balancing linear regression (BLR); k-nearest neighbor (k-
NN (Crump et al.| (2008)); causal forest (CF |Wager & Athey| (2018)); Bayesian additive
regression trees (BART |Sparapani et al.|(2016)).

3. Learning-based estimators: balancing neural network (BNN Johansson et al. (2016));
treatment-agnostic representation networks (TARNet) and counterfactual regression with
Wasserstein distance (CFR-Wass |Shalit et al.| (2017)); causal effect variational autoen-
coders (CEVAE |Louizos et al.| (2017)); local similarity preserved individual treatment ef-
fect (SITE |Yao et al.| (2018)) and adversarial balancing-based representation learning for
causal effect inference (ABCEIDu et al.| (2019)).

We demonstrate a quantitative comparison between our proposed method and the baseline meth-
ods. All baseline methods are parameterized according to the recommended settings in the original
papers.

4.3 EVALUATION METRICS

We use a semi-simulated method to include the benchmark datasets like IHDP and MIMIC-III, so
that we can know the ground truth for the CATE estimation. Hence, we can use Precision in Esti-
mation of Heterogeneous Effect (PEHE) |Hill (2011)) as the evaluation metric of CATE estimation:

1 . U u u u
€PEHE = > ((Ely|2"] = Elyol2"]) — (f(x*,1) — f(2",0)))>.
u=1
Subsequently, the precision of ATE estimation can be evaluated based on the estimated CATE. On
the Jobs dataset, because we combine non-randomized components and randomized components,
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Table 3: In-sample and out-of-sample results with mean and standard errors on the Jobs dataset
(lower = better).

Methods In-sample Out-sample
Ryl EATT Ryl EATT
OLS/LR; .22+.0 .01+.00 .23+.0 \ .08 +.04
OLS/LR, 21+.0 .01+.01 .244+.0 .08+.03
S.Learner .21+.0 .02+.01 .244+.0 .08+.03
T.Learner .20+.0 .024+.01 .22+.0 .08+.03
BLR 22+£.0 .01+£.01 25+£.0 .08+.03
BART 23+£.0 .02+£.00 .25+.0 .08+.03
k-NN 23+.0 .02+.01 .26+.0 .13+.05
RF 23+.0 .03+£.01 .284.0 .09+.04
CF 19+.0 .03+£.01 .20+£.0 .07+.03
BNN 20+.0 .04+£.01 244+.0 .09+.04
TARNet A7+.0 05+£.02 21+.0 .11+.04
CFR-Wass .17+.0 .044+.01 21+.0 .08+.03
CEVAE 15+£.0 .02+.01 .26+.1 .03+.01
SITE A7+£.0 .04+.01 21+£.0 .09+.03
ABCEI A3+£.0 .02+.01 .17+.0 .03+.01
PSBT 10+.0 01+.01 .114+.0 .02+.01

Table 4: In-sample and out-of-sample results with mean and standard errors on the Twins dataset
(AUC: higher = better, earg: lower = better).

In-sample Out-sample
AUC €ATE AUC €ATE

OLS/LR;  .6604.005 .0044.003  .5004.028  .007 £ .006
OLS/LR;  .660 £.004  .004+.003 .5004.016  .007 £ .006
S.Learner  .680+.009  .1114.013  .520£.033  .131+£.015
T.Learner  .695+.008  .091+.008  .5804.024  .105 =+ .009

Methods

BLR .6114+.009  .006+.004  .510£.018  .033 +.009
BART 506 £.014  .1214+.024  .5004.011 127 £.024
k-NN .609 £.010  .003+.002  .4924.012  .005 £ .004
BNN .690 +£.008  .006 £.003  .676 £.008  .020 £ .007

TARNet 849 +£.002  .0114+.002  .8404.006  .015=£.002
CFR-Wass .850 £.002  .011+.002  .8424.005 .028 £.003
CEVAE .8454+.003  .0224.002  .841£.004  .032+.003

SITE 862+ .002  .0164+.001  .853£.006  .020 +.002
ABCEI 871 4.001 .003 £ .001 .863 & .001 .005 & .001
PSBT .885+.001 .001+.001 .876+.001 .001-+.001

we know parts of the ground truth, and hence we can evaluate the precision of ATT estimation and
policy risk estimation. Here:

Rpoi(m) =1 = E (y1|m (%) = 1) - P(r = 1) = E (yo|7 (z") = 0) - P(x = 0). (D
We consider w(z*) = 1 when f(2*,1) — f(z*,0) > 0.

For the Twins dataset, because we only know the observed treatment outcome for each unit, we
follow |Louizos et al.[(2017)) in using the Area Under the ROC Curve (AUC) as the evaluation metric.

4.4 RESULTS

Tables 2}{4]list experimental results on each of the four datasets. It would be inappropriate to aggre-
gate the statistical test results reported across these tables. Due to the varying availability of ground
truth, different evaluation metrics are used for each dataset, making it unsuitable to combine these
metrics into a single statistical hypothesis test. However, PSBT demonstrates superior performance
in 15 out of 16 cases. This is evident not only from having the best results in the columns but
also from often exhibiting non-overlapping empirical confidence intervals compared to the closest
competitor. This provides strong evidence that PSBT represents a significant improvement over the
current state of the art.

The Jobs and IHDP datasets have the smallest numbers of observations, the smallest numbers of
covariates, and a pronounced imbalance between control and treatment group sizes (cf. Table [T)).
Here, PSBT achieves competitive performance against baselines. On datasets with more observa-
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Table 5: In-sample and out-of-sample results with mean and standard errors on the MIMIC-III
benchmark (lower = better).

Methods In-sample Out-sample
/€PEHE €ATE +/€PEHE €ATE
OLS/LR;y 71 £.2 92+.15 82 £.2 97+.15
OLS/LR, 27 £.1 24+.11 33 £.2 .29+.13
S.Learner 2.2 +£.2 .36+.09 28 £.3 .394+.09
T.Learner 1.8 +£.1 31+.13 21 £.1 .33£.15
BLR 73 £.1 90%+.09 85 .3 .97+.09
BART 24 £2 31+.09 31 £.2 .37+.12
k-NN 28 +£.1 32+.11 36 .1 36+.11
RF 46 £3 8=£.10 53 £.3 89+.11
CF 41 £.1 22+£.13 49 +£.1 24+.14
BNN 25 £.1 45+.11 33 £.1 .49+.11
TARNet 191+.0 25+.16 211+.1 .31£.16
CFR-Wass 1.06+.0 .19+.14 1.09+.0 .21+.14
CEVAE 271+£.0 .23+.11 272+.0 .23+.12
SITE 129+.0 21+£.14 135+£.0 .25+.14
ABCEI 85+.0 11+.12 89+.0 .12+.14
PSBT b55+.0 .07+.05 B59+.0 .07+.04

tions, more covariates, and greater balance between control and treatment groups, PSBT consistently
performs better.

Regression-based methods struggle with high generalization error due to treatment selection bias.
Nearest neighbor-based methods address selection bias by considering unit similarity but fail to
achieve global balance. Recent advances in domain adaptation have improved causal effect esti-
mation but suffer from the imbalance between treatment and control groups. PSBT makes use of
propensity guidance to supervise the representation learning model to learn the causal knowledge,
enabling PSBT to make counterfactual prediction with fine tuned causal models. This makes PSBT
outperform baseline methods.

5 CONCLUSIONS

Properly answering questions like “What would patient’s outcome be had they taken medication
A?” is one of the central issues of the causal effect inference problems. Traditional methods focus
on tackling the confounding bias problem by covariate balancing, learning a balanced represen-
tation for the treatment and control groups. We propose a new framework PSBT: a Propensity
Similarity guided Bidirectional Transformer model for causal effect inference. PSBT makes use
of the propensity knowledge to supervise the representation learning in order to teach the model to
learn the differences between the propensities between the two units. A bidirectional transformer
model is trained by two supervising tasks: the one is to learn to predict the covariate features that are
randomly masked, the other is to learn to predict the propensity similarity. By learning the propen-
sity similarity, the model learns to disentangle the confounding factors. After the pre-training stage,
we apply a fine-tuning stage to fine-tune the pre-trained propensity model into the causal model.
An additional neural network layer is employed to enable the causal prediction task. By conduct-
ing multiple experiments on several real-world datasets, we demonstrate that PSBT significantly
outperforms traditional and state-of-the-art baseline methods.
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A RELATED WORK

Research on causal effect inference provides insights into the underlying data-generating processes
and enables us to answer counterfactual questions. Only one response can be observed at the same
time. The fundamental challenge in causal effect inference lies in the identifiability problem given
certain data and assumptions Tian & Pearl| (2002). Properly designed causal models are used to
guarantee the identifiable causal effect during the inference process Imbens & Rubin| (2015). In
order to satisfy the strong ignorability condition for unbiasedly estimate the causal effects, Ran-
domized Controlled Trials (RCTs) are designed to create comparable groups for treatment effect
estimation [Rosenbaum| (2002). In observational studies, these groups are achieved by matching
units from different groups to meet the identifiability condition, which lead to the formulation of Av-
erage Treatment effects on Treated (ATT) Nikolaev et al.[(2013). On the other hand, learning-based
algorithms are developed to estimate the Average Treatment Effects (ATE) to achieve a comprehen-
sive understanding about the causal effects on the population and individual level |(Chipman et al.
(2008); |Shalit et al.[(2017).

Matching-based methods aim to create comparable units from treated and untreated groups, achiev-
ing locally balanced distributions. Techniques Wu et al.| (2023) vary in their similarity measures.
Propensity score matching Rosenbaum & Rubin| (1983) is a notable example, using estimated
propensity scores to assess similarity between units. Tree-based methods |Wager & Athey| (2018)),
which employ adaptive similarity measures, are also a part of this category, though they are often
computationally intensive and challenging to apply in large-scale settings.

As opposed to matching-based methods, we employ the propensity model to estimate the distance
between covariate pairs in the latent space, so that the knowledge of propensity could be learned by
the representation learning model to ensure the identifiability condition. Propensity scores are often
estimated using logistic regression models (Chen et al.| (2021)); |Dai et al.| (2022)); |[Lee et al.| (2021),
with techniques such as feature selection Wang et al.| (2023ajb). A key example of an unbiased
estimator is the inverse propensity score method Rosenbaum & Rubin|(1983), which reweights each
unit inversely to its estimated propensity score. However, this method can suffer from high variance
in cases of low propensity and may introduce bias when propensity estimates are inaccurate|L1 et al.
(2023a). To address these issues, doubly robust estimators and variance reduction techniques have
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been developed [Li et al|(2023b), although these methods are still limited by their dependence on
propensity scores, impacting their practical effectiveness.

Learning-based methods attempt to map data into a feature space where distributional discrepancies
are minimized. The primary challenge is accurately measuring these discrepancies. Initial studies
employed metrics like maximum mean discrepancy and basic Wasserstein discrepancy Johansson
et al.| (2016); |Shalit et al.| (2017), while subsequent work introduced techniques such as local sim-
ilarity preservation |Yao et al.| (2018}; |2019), feature selection (Cheng et al.| (2022); [Hassanpour &
Greiner| (2019), representation decomposition Wu et al.| (2022), and adversarial training | Yoon et al.
(2018). Despite their effectiveness, these methods struggle in certain common scenarios, such as
outlier presence |Fatras et al.| (2021)) and unlabeled confounders, which can compromise the reliabil-
ity of discrepancy measures.

One of the core issues in representation learning is to learn a meaningful information encoding for
different modes of the input data. Contrastive information coding is one way to achieve this goal
in unsupervised and semi-supervised learning scenarios. In general, contrastive learning aims to
formulate a learning target by sampling similar pairs of data plus dissimilar ones. This allows for
the representation to be formulated as clusters of latent classes [Saunshi et al.| (2019). In a causal
inference scenario, these latent clusters can be related to the stratifications of covariate representa-
tions, which is indicated by the propensity models. We propose to achieve this goal by formulating
sequential pairs and learn the distinguished representations in the transformer framework.
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