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ABSTRACT

Large pre-trained vision-language models such as CLIP provide compact and
general-purpose representations of text and images that are demonstrably effective
across multiple downstream zero-shot prediction tasks. However, owing to the
nature of their training process, these models have the potential to 1) propagate
or amplify societal biases in the training data and 2) learn to rely on spurious
features. This paper proposes FairerCLIP, a general approach for making zero-shot
predictions of CLIP more fair and robust to spurious correlations. We formulate the
problem of jointly debiasing CLIP’s image and text representations in reproducing
kernel Hilbert spaces (RKHSs), which affords multiple benefits: 1) Flexibility:
Unlike existing approaches, which are specialized to either learn with or without
ground-truth labels, FairerCLIP is adaptable to learning in both scenarios. 2)
Ease of Optimization: FairerCLIP lends itself to an iterative optimization involv-
ing closed-form solvers, which leads to 4x-10x faster training than the existing
methods. 3) Sample Efficiency: Under sample-limited conditions, FairerCLIP
significantly outperforms baselines when they fail entirely. And, 4) Performance:
Empirically, FairerCLIP achieves appreciable accuracy gains on benchmark fair-
ness and spurious correlation datasets over their respective baselines.

1 INTRODUCTION

Vision-Language Models such as CLIP (Radford et al., 2021) are trained on large-scale datasets
of image-text pairs to learn representations that have high similarity for related image-text pairs.
While these models have gained significant attention in recent years due to their remarkable zero-shot
classification capabilities, they are not flawless. There is growing evidence that such models suffer
from biases w.r.t. demographic (e.g., sex or skin tone) attributes (Agarwal et al., 2021} |Wang et al.,
2021} Birhane et al., [2023ajb; [Dehdashtian et al., [2024) and even non-demographic(e.g., image
background or illumination) attributes (Du et al.l 2022} Zhang & Ré|,[2022).

The above-mentioned biases can be viewed based on de- G)\

pendencies between the data attributes. We show these ° @ ° ° @ °
dependencies in Fig.[I} X is the data (e.g., face images) “ a

that depends on some attributes, including Y, the target (a) (b)
attribute we wish to predict, and .S, the attribute that leads

to bias. The goal of bias mitigation is to ensure that the Figure 1: Dependence graphs for debiasing.
prediction Y is independent of S. We group the biases into those arising from two scenarios: (1) Y
and S are dependent (Fig.[T]a): for example, high cheekbones as Y and sex as .S since males typically
have higher cheekbones than females. We refer to this type of correlation as intrinsic dependence.
(2) Y and S are independent (Fig. [I]b): for example hair color as Y and sex as S since the hair
color of a person does not depend on their sex. In this case, we refer to any observed correlation as a
spurious correlation.

Several efforts (Zhang & Ré| 2022 |Gao et al., 2021; | Kumar et al.| 2022; Kirichenko et al., 2022}
Chuang et al.,|2023; [Wortsman et al., 2022; |An et al.} 2023;|Adila et al., |2023)), have been made to
debias zero-shot predictions from CLIP models. However, they are limited in either one or more
respects: (1) Type of Bias: Existing CLIP debiasing methods only consider spurious correlations

*Equal Contribution.
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Figure 2: Overview of the train and inference phases of FairerCLIP. (a) Shows the label prediction
step. When labels are not available for training, FairerCLIP uses cosine similarity between the X
and X7, and Xrg and X7 to predict the target attributes and sensitive attributes, respectively. (b)
Shows the inputs and outputs for FairerCLIP in its training stage. FairerCLIP uses representation of
images and the corresponding text prompts that are constructed by target attribute (Y') along with
the predicted labels to find the image and text encoders, i.e., f7(.;0;) and f7(.; O7). (c) Shows
the inference phase of FairerCLIP in which we use the trained image and text encoders to generate
debiased representations from the ones generated by CLIP.

in the data (Fig. [T]b) and do not seek to address bias induced by pairs of attributes with intrinsic
dependencies (Fig.|l|a), (2) Labels for training: All existing approaches are tailored to train/fine-
tune either with (supervised) or without (unsupervised) ground-truth labels and, as such, cannot be
employed in both scenarios, (3) Efficiency: Some approaches adopt iterative methods to debias the
features. However, they are computationally expensive to train, i.e., slow to converge, leading to high
training latency and many parameters in the debiasing modules, increasing model sizes even further.

We propose FairerCLIP to address the aforementioned limitations of existing debiasing approaches.
FairerCLIP affords sufficient flexibility to mitigate bias arising from both spurious correlations and
intrinsic dependencies and, in both scenarios, learn with or without ground-truth labels. FairerCLIP
utilizes a non-parametric measure of statistical dependence that accounts for all linear and non-
linear relations between the debiased representation and the sensitive attribute of interest. Our
formulation lends itself to alternating optimization, with each update having a closed-form solution
and, in comparison to baselines, enjoying fast training convergence and requiring fewer parameters to
train. An overview of FairerCLIP in its train and inference phases along with how we integrate this
transformation over the underlying CLIP model is shown in Fig. 2]

Summary of Contributions: (1) We demonstrate that a single general method can debias the image
and text features from frozen CLIP backbones under different scenarios more effectively than those
specialized for each scenario. The scenarios include accounting for both spurious correlations and
intrinsic dependencies (Sec. 4.2)), learning with and without ground-truth labels (Sec. {.2), and
learning from small and medium-sized datasets (App. @ (2) We demonstrate that kernel methods
are particularly effective compared to shallow MLPs when operating on features and optimizing
possibly competing objectives, as is the case for debiasing CLIP representations. They enjoy closed-
form solutions that allow for significantly faster training, can scale to medium-sized datasets, and are
more effective under limited training data (Sec.[4.3] App.[A.4] and Tab. 3] (left)).

2 THE DEBIASING CLIP REPRESENTATIONS PROBLEM

Notation: Scalars are denoted by regular lower case letters, e.g. r, 7. Deterministic vectors are
denoted by boldface lowercase letters, e.g., x, s. We denote both scalar-valued and multi-dimensional
Random Variables (RVs) by regular uppercase letters, e.g. X, S. Deterministic matrices are denoted
by boldface uppercase letters, e.g. H, ©, and the entry at i*” row, j** column of matrix M is
denoted by (M) i OF Mj. I,, or simply I denotes an n x n identity matrix, 1,, or 1 and 0,, or O are
n x 1 vector of ones and zeros, respectively. We denote the trace of any square matrix K by Tr[K].
Finite or infinite sets are denoted by calligraphy letters, e.g., H, A.

Problem Setup: We assume that the joint RV (X7, X7,Y, S) contains the pre-trained image features
X; € R?, pre-trained text features of target attribute X7 € R?, target attribute Y € R%¥, and
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sensitive attribute S € R%s. Their joint distribution will be p X, Xr,v,s- Furthermore, Y and S can
also belong to any finite set, such as a categorical set.

Our aim is to debias X; and X by generating representations, Z; = f;(X;) and Zr = fr(Xr),
with no or reduced statistical dependence on S. To measure this dependency, we need to employ a
metric capable of capturing both linear and non-linear statistical dependencies.

Choice of Dependence Measure: We will adopt a simplified definition of the Hilbert-Schmidt
Independence Criterion (HSIC) (Gretton et al., 2005) introduced by [Sadeghi et al.|(2022), defined as,

Dep(Z, S) Z Z Cov? B8(9)), (1
Jj=1peUs
where Us is a countable orthonormal basis set for the separable universal RKHS Hg, and Z; = f;(X)
for f; € HxVj = 1,...,r. Dep(Z, S) can be estimated (see Lemma 1 in Sadeghi et al (2022))
empirically as,

Dep(Z,S) := — |@Kx HLg|>, )

2)II

where n is the number of data samples, Kx € R”X” is the Gram matrix corresponding to Hx, ©
is the encoder parameter in f(X) =Olkx, . kx,, - kx, )", H=1I, — 11,17 is the centering
matrix, and Lg is a full column-rank matrix correspondmg to the Cholesky factorlzatlon of Kg,i.e.,
LgLL ¢ = Ks. While HSIC and related measures like Maximum Mean Discrepancy (MMD) |Gretton
et al.| (2012) have been employed by prior fairness approaches (Bahng et al., [2020; |Quadrianto et al.,
2019; Jung et al.| [2021), the HSIC variation we use in Eq. (2)) has several attractive properties (Sadegh1
et al., 2022). This includes a convergence rate of O(n~!/ 2)' a practical ability to capture all
non- hnear modes of dependencies when projecting from a high-dimensional representation to a
low-dimensional representation, and, as we demonstrate next, analytical tractability.

In addition to the above-mentioned dependence metric, we also need another metric that can mimic
the cosine similarity-based classification employed by CLIP. This metric will be used to make the
representations of images and their corresponding text prompts align with each other to improve the
accuracy of the predictions. As a result, we modify the definition of Dep metric in Eq. () and use a
linear kernel as 8 in Lemmal[I}

Lemma 1. Let Kx,, Kx, € R"*" be the Gram matrices corresponding to Hx, and Hx.., re-
spectively, ie., (Kx,);; = kx,(zr,,z1,) and (Kx,);; = kx, (@1, T1,), where covariance is
empirically estimated as

B\H

Cov (f] (XI)7 gm XT

Z Dgm(@r,) — %ij(fﬂlp)zgm(mn)-

It follows that, the corresponding empirical estimator for Dep (Z;, Zr) is

1
Dep(Z1.Zr) = — |©Kx, HKx, OF][;., 3

where ®; and ©r are the parameters of the image and text encoders, respectively, and Kx, and
K x . are the kernel matrices for the image and text features, respectively.

Proof. The main idea for proving equality equation [3]is to employ the representer theorem to express
f; and g,,. The complete proof is available in the supplementary material. O

Objective Function: After choosing the appropriate dependence measure, we now define our
objective function. Our goal is to mitigate bias in CLIP’s zero-shot predictions by debiasing the
underlying representations. This can be achieved by (1) reducing the information related to the
sensitive attribute while (2) preserving information about the target attribute as much as possible in the
pair of image-text representations and (3) keeping the image and corresponding text representations
aligned with each other.

We formulate the above-mentioned learning objective through the following optimization problem.

'In scenarios where only a single or few samples are available, to an extent, heavy data augmentation can
compensate for the lack of sufficient samples to accurately estimate Dep. However, this is beyond the scope of
this paper, and all our experiments are performed without data augmentation.
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Definition 1.
sup {J (f1, fr.71,70,7.) :==Dep (Z1,Y) — 7/Dep (Z1, 5)
freAL fre AT
+ Dep (Z7,Y) — 7rDep (Z7, S) “)
+ TzDep (Zla ZT) }

where Dep(-,-) > 0 is the statistical dependence measure defined in Eq. (2). Dep(Q,U) = 0
implies @ is independent of U (i.e., @ 1L U), and Dep(Q, U) > 0 implies @ is dependent on U
(i.e., @ AL U), with larger values indicating greater degrees of dependence. 7; and 7 control the
contribution of the corresponding debiasing terms and 7, controls the alignment of the debiased
image and text features Z; = f;(X7) and Zr = fr(Xy), respectively.

In the above definition, the terms Dep(Z;,Y') and Dep(Zr, Y) contribute to maximizing the statistical
dependence between the representations and the target label Y, the terms —7;Dep(Z;,.S) and
—7rDep(Zr, S) seek to make the representations independent of S, and the term 7,Dep(Z;, Zr)
ensures that the text and image features are still aligned with each other after debiasing.

Choice of Encoder: We construct the mappings through a set of r functions from R%* — R in a
reproducing kernel Hilbert space (RKHS) (Hx, kx (-, -)), such as the RBF Gaussian kernel. Hence,
the representation Z can be expressed as,

Z=fX):=[Z,-, 2" €eR", Z;=f;(X),f; e HxVj=1,...,r, 5)

where 7 is the dimensionality of the transformed representation.

Our choice of RKHS is motivated by several reasons. As we observe in Eq. (), debiasing is
inherently an optimization problem with multiple competing objectives. In such cases, optimization
is the primary bottleneck rather than model expressivity. This was also observed in [Sadeghi et al.
(2022)). The closed-form solution afforded by our approach mitigates the optimization challenges
(Sec. and App.[A.6). RKHS has nice universal approximation properties and has performance
comparable to shallow MLPs while being more computationally efficient for training (Sec. 4.3) and
is performant under limited data scenarios (Sec.[4.2)).

3 A SOLUTION TO THE DEBIASING CLIP REPRESENTATIONS PROBLEM

Given the choice of dependence measure in Eq. (2), the optimization problem in Eq. (@) can be
expressed as,

1 1
{J(f1, fr 70,70, 72, X1, X0, Y, S) := 2 |©:Kx,HLy|? — T |©:Kx, HLs||;,

max
fr€Ar,freA,

1 1
2 |©rKx HLy|7 — ™oy |©7rKx, HLs|7

1 |2
+ Ty H@IKX,HKXTGTHF}
(6)

Our solution to the constrained optimization problem in Eq. (6] is based on the observation that it
has a closed-form solution when either f; or fr are fixed. Let Z be the feature corresponding to
the fixed parameter and f the optimization parameter of the other feature of interest. Then Eq. ()
reduces to two optimization problems of the following general form,

1 1 1
;IéaAX{'](fvTv TZvX’sz7 ZO) = ﬁ ||®KxHLY|I§‘_Tﬁ H(-)KxHLSHi‘—’—TZﬁ HerHZOH??‘}
(N

This is easy to see since fixing either of the parameters in Eq. (6) renders the terms involving them to
a constant w.r.t. the variable of interest, and hence can be ignored during optimization.

Theorem 2. Let the Cholesky factorization of Ky be Kx = Lx L%, where Ly € R"*? (d < n)
is a full column-rank matrix. Let r < d, then a solution to Eq. is

fopt(X) =™ [kX(m17X)v T 7kX(x7laX)]T’
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Figure 3: FairerCLIP acts on representations extracted from a frozen CLIP model. It has two
mapping functions, f; and fr, for the image and text representations. These functions are learned
through an alternating optimization algorithm with two closed-form solvers. When ground-truth
labels are unavailable for training, FairerCLIP learns from pseudo-labels ¢, which are initialized from
CLIP’s zero-shot predictions and refined iteratively. The bold words in the input text prompts are the
information of the target task label included in the text prompts.

where @' = U TL} and the columns of U are eigenvectors corresponding to the r largest
eigenvalues of the following generalized eigenvalue problem.

LY (HKyH —tHKsH + TZHZoZZ;H) Lyu=A\ <% LYHLx + w) u. (8)

Furthermore, the objective value of is equal to 22:1 Aj, where {\1,---, A} are r largest
eigenvalues of Theorem 2]

Proof. The objective in Eq. (/) can be expressed as a trace optimization problem, which reduces to
a generalized eigenvalue problem (Kokiopoulou et al.,2011). See the supplementary material for
detailed proof. O

Building upon the above closed-form solution, we adopt alternating optimization to solve Eq. (6),
by fixing f; and solving for f7 and vice-versa (Fig.[3). The formulation in Eq. (4) requires labels
of the downstream target task Y and the sensitive labels S to learn FairerCLIP’s parameters. While
such labels are readily available for supervised learning and partially available for semi-supervised
learning (Jung et al.,|2022; |Chen et al.,2023)), this is not the case for unsupervised learnlng Therefore,
in this case, we initialize the labels Y and S by the original zero-shot predictions Y and S from CLIP
(Fig.|2 I a). Then we refine ¥ by predicting it after every iterative update of f; and fr. However, note
that we do not update S in the same way since our initial prediction of S has the most information
about the label S, but as we debias the representations in the subsequent iterations, we remove the
information of S. Therefore, updated values of S will lead to inaccurate estimates of Dep(Z, S) and
affect the overall optimization. This procedure is detailed in Algorithm|[I]of App.

3.1 A GEOMETRIC ILLUSTRATION OF FAIRERCLIP

A geometric illustration of the steps that FairerCLIP takes to debias the representations is shown
in Fig.|4] In theory, the RBF kernels used in our encoder (¢;(X) and ¢ (X)) map the image and
text features into an infinite-dimensional space, where the samples corresponding to different target
attributes are linearly separable. In the infinite-dimensional space, the encoder that optimizes Eq. ()
for ®; and O by alternating between closed-form solvers and seeks a direction for mapping the
image and text features that have low angular distance w.r.t. the direction of (1) Y labels (small ary
and ary), (2) S1 (small ays, and arg) ), and (3) the other representation (small o ;7).

5



Published as a conference paper at ICLR 2024

A
appe” S1
17
’Z{
Q,
2o o Tl
> <
K
R
Ay ary

=l

Figure 4: A geometric illustration of FairerCLIP training steps. The encoder utilizes the implicit
mapping functions ¢;(X) and ¢ (X) of the RBF kernel to map image and text features into an
infinite-dimensional space, facilitating linear separability of samples with different target attributes.
The optimization process seeks a direction that aligns with labels Y, statistically independent of .S,
and aligned with the other representation.

4 EXPERIMENTAL EVALUATION

We evaluate FairerCLIP on datasets with spurious correlation and intrinsic dependence and compare it
to several existing baselines. In summary, the experimental results indicate that the baseline methods
are effective in mitigating spurious correlations, but they are not as effective at mitigating the bias
caused by the intrinsic dependencies. In contrast, FairerCLIP effectively and efficiently mitigates
both spurious correlations and intrinsic dependencies in CLIP’s zero-shot predictions. In all our
experiments, to overcome the O(n?) computational and O(n?) memory complexity of the kernel
matrices K, we use random Fourier features (RFF) (Rahimi & Recht, [2007). All the implementation
details are provided in App.[AJ]

4.1 DATASETS

We evaluate FairerCLIP on an assortment of classification tasks across many datasets. This includes
Waterbirds (Sagawa et al., 2019), which contains spurious correlations between the types of birds
and background of the images, different settings of CelebA (Liu et al., |2015) that contains more
than 200,000 face images of the celebrities in the wild annotated with 40 binary attributes and
contains both spurious correlations and intrinsic dependencies among its attributes, FairFace dataset
(Karkkainen & Joo, [2021)) which contains more than 108,000 face images from 7 different race
groups (White, Black, Indian, East Asian, Southeast Asian, Middle Eastern, and Latino) collected
from the YFCC-100M Flickr dataset and labeled with race, sex, and age groups, and Chicago Face
Database (CFD) (Ma et al., 2015) which includes face images with different annotations such as
facial attributes, ethnicity, age, and sex.

4.2 EMPIRICAL RESULTS

We report the results of FairerCLIP and compare them with the performance of related baselines on
various datasets and settings. Following the experimental settings of prior work (Zhang & Ré} 2022}
Koh et al., 2021} |Chuang et al.,|[2023)), we do not presume sensitive attributes (5) during the training
process but assume them in the validation dataset for hyperparameter tuning and model selection,
as proposed in [Koh et al.|(2021)). Thus, following prior work (Zhang & Ré}2022), for FairerCLIP
and other baselines that need label S, we use the zero-shot predictions of S (S ) from CLIP as the
sensitive attribute.

4.2.1 MITIGATING INTRINSIC DEPENDENCY

To evaluate the ability of FairerCLIP to mitigate intrinsic dependency, we conduct numerical eval-
uations on the CelebA dataset with high cheekbones as the target attribute and sex as the sensitive
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attribute. As discussed in Sec. [T} these two attributes are intrinsically dependent. To measure the
fairness of predictions, we employ the Equal Opportunity Difference (EOD) (Hardt et al.| [2016)

metric, defined as, EOD := ‘P(Y =1y =1,§=1)— P(Y = 1|Y = 1,5 = 0)|, where S is the

sensitive attribute, and Y and Y are the predicted and the ground-truth target labels, respectively. Our
choice of EOD is justified since other fairness definitions, like Demographic Parity Violation (DPV),
are not well suited for many practical scenarios (Hardt et al.,|2016; |Chouldechova, |[2017)).

Table[T|compares the performance of FairerCLIP and
the baselines on the CelebA dataset with intrinsic de-
pendency. For this experiment, we train all methods
except the zero-shot baseline, which is included to  methoa

Table 1: Fairness on the CelebA dataset with
intrinsic dependency. All values are in %.

CLIP ResNet-50 CLIP ViT-L/14

Avg EOD Av; EOD
demonstrate the level of unfairness in the CLIP fea-  Zeroshot - 505 58 4s§ 28
tures with the ground-truth labels. We observe that — fy ks o s us oo
among all baselines, Contrastive Adapter (Zhang &  D* Eﬁ;‘;;:‘g;j{g 52 R o
Ré, [2022) performs well and achieves appreciable — Consive precal 0 T I S S

EOD for the CLIP ResNet-50 model. However, most
other methods seem to even amplify the bias in the original CLIP features while improving average
accuracy. FairerCLIP performs the best in terms of debiasing, achieving an EOD of 0.002% and
0.005% for CLIP ResNet-50 and CLIP ViT-L/14, respectively. Overall, FairerCLIP is very effective at
mitigating unfairness to a significant extent, achieving an EOD value close to zero while maintaining
a high classification accuracy.

4.2.2 MITIGATING SPURIOUS CORRELATION

To evaluate FairerCLIP’s effectiveness in mitigating spurious correlation, we perform numerical
experiments on spurious correlation benchmarks, Waterbirds and CelebA, following the settings
in Zhang & Ré|(2022). Since FairerCLIP can be learned with or without ground-truth labels, we
compare it against methods from these two categories. For performance evaluation, we use three
metrics: 1) Average accuracy (Avg.), 2) Worst-Group accuracy (WG), i.e., the lowest accuracy of all
subgroups, and 3) Gap, which is the difference between average and worst-group accuracy.

Table 2: Comparison of prior methods and FairerCLIP in terms of worst group accuracy (WG),
average accuracy (Avg), and their gap on the WaterBirds and CelebA datasets. For the latter, the
target and sensitive attributes are blonde hair and sex for two different variants of CLIP, CLIP
ResNet-50 and CLIP ViT-L/14, in two different settings—w/ and w/o labels. 1st / 2nd best results are
in bold / underlined.

CLIP ViT-L/14 CLIP ResNet-50

Method / Acc. Waterbirds CelebA Waterbirds CelebA
WG () Avg(1)  Gap() WG A Gapd) WG Avg()  Gapd) WG M) Avet Gap ()
654405  97.7+0.1 323+05 304+15  94.6+0.1 642+15 132407 94.640.1 81.4:0.7 13.14£0.9  94.8+0.0 81.6+0.8

76.1£1.8 97.8+0.1  21.7£1.7 40.0£5.6 943403 54.3+5.6 63.0£04  96.0+1.1 32.9+0.8 41.9+45 947404 52.8+4.1
58.8+0.8 95.9+0.2  37.1+0.8 78.7+£3.6  91.8+0.2 13.1+£3.6 66.1£5.5 929422 26.9+6.5 80.9£0.6 91.7+0.5 10.8+3.2

DFR (Subsample
DFR (Upsample)

66.5+0.8  96.4+0.9 29.8+1.5 83.9+23 912408 7.2+3.1 542462 903420 36.1£7.9 89.9+0.2 91.3+03 1.4+0.5

w/ labels

Contrastive Adapter o|  85.3+23 945424 9.3+£1.1 83.9+1.1 904402 64=£1.1 82.5+0.9 882426 5.7+3.1 884417 90.8+12 2.5%1.5
FairerCLIP (ours) 86.0+1.8  922+0.8  6.1+1.9 852423 87.8+1.7 2.5+09 754419 843422  8.9+3.1 81.5+£0.7 85409  3.5%0.3

o Zero-shotirador 2 45.3+£0.0 84.4+0.0  39.1£0.0 72.8+0.0 87.6£0.0 14.9+0.0 39.6+£0.0 77.3£0.0 37.74+0.0 75.9£0.0 823+0.0 6.4+0.0
3 .’-é Orth-CalilChuan, 688+0.0 845+00 157£0.0 76.1£0.0  86.24+0.0  10.1£0.0 74.04£0.0 78.7£0.0  4.7+0.0 822+0.0 84.4+0.0 2.2+0.0
~  FairerCLIP (ours) 78.1+1.4  85.1+11  7.1+24 86.1+0.8 88.0+1.0 1.9+0.6 74.8+1.7 814409 6.6+2.5 80.4+1.0 84.7+0.7 43104

Tab. 2]shows the results of our empirical evaluation. We make the following observations: (i) On CLIP
ViT-L/14, FairerCLIP has the lowest Gap and highest WG accuracy. (ii) For the CLIP ResNet-50,
FairerCLIP outperforms the baselines in the w/o labels setting but not in the w/ label setting. The
discrepancy between the performance FairerCLIP with CLIP ViT-L/14 and CLIP ResNet-50 can be
attributed to the fact that CLIP ResNet-50 features contain less information about target attributes than
CLIP ViT-L/14 features, as shown in App. Overall, the results of Tab. 2] indicate that FairerCLIP
effectively improves the worst group’s accuracy and reduces the Gap. Notably, our approach can be
applied to and is effective in both scenarios, with and without ground-truth labels. At the same time,
the baselines are specialized to operate in one or the other scenario only.

In Tab.[3] we evaluate FairerCLIP on the FairFace dataset. Here, we consider sex and race as the sensi-
tive attributes and follow the experimental setup in (Chuang et al.| (2023)). We use five target attributes
and ten text prompts (2 prompts per attribute) unrelated to the samples’ facial or sensitive attributes; we
do not have access to ground-truth labels. As an example, the text prompt can be “A photo of a crimi-
nal person" or “A photo of a friendly person". All the ten specific prompts are in App. To evalu-
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ate the models, we calculate MaxSkew @ 1000 (Geyik et al.l 2019), which assesses the maximum im-
balance in certain sensitive attributes within a dataset. As is shown in Tab. [3| FairerCLIP outperforms

the other baselines for both sensitive attributes across  Typje 3: Comparison of FairerCLIP with base-

two different CLIP backbones. lines on FairFace dataset.

In summary, the results in Tab.[2] Tab.[3] and Tab. CLIPVITB/32  CLIP ViTL/14
suggest that FairerCLIP can effectively mitigate the ~Me"od/MaSkew@1000 “gex ™ Race Sex  Race
demographic bias caused by spurious correlation and - GRR TR G603 030 gos
intrinsic dependency in the data in both w/ and w/0  orth-Cali [cnns e o2 0102 0638 0200 0461
the ground-truth labels settings. FairerCLIP (ours) 0.097 0.408 0.099 0.428
Next, we consider a more challenging task to evaluate the data- 651 ‘ ‘
efficiency of FairerCLIP. We use CFD images with attractive . A : 3 °
and sex as the target and sensitive group attributes. The former 7] S S S S
is a continuous label, which we binarize by using the mean ~ | : : : :
value of all samples as a threshold. Moreover, the sex attribute % 55 (4] A 2o s Koo O]

is a binary label. This task presents challenges in two aspects. < | S ——
First, the number of samples in this dataset is very small (597 50144 A Contasive Adsptr Z R
samples), which may not be sufficient for training some of the A o FairerCLIP (ours)
baselines. Second, the performance of the zero-shot classifier 5
for this case shows that the features generated by the CLIP WG (%)

model are not well separated, rendering it difficult to correctly )

predict S (see Appendix [A.8). Fig. [3| shows the results of Figure 5: Results of FairerCLIP
this experiment. We first observe that all the baselines almost nd baselines on CFD

completely fail at mitigating the bias for the worst group. In contrast, FairerCLIP’s performance is
satisfyingly better, both in terms of the worst group (WG) and average (Avg) accuracy. Furthermore,
the Gap is significantly lower (21.8% vs 53.7% for (Zhang & Ré| [2022)).

4.3 COMPUTATIONAL EFFICIENCY OF TRAINING

To show the computational efficiency of FairerCLIP  Table 4: Training time comparison (in seconds).
we report and compare the training time of Fair-

erCLIP and other baselines in Tab. [l The results _Method Waterbirds _ CelebA

show that FairerCLIP is an order of magnitude faster L incar provelianmss st k2023 e e

than most baselines and almost two orders faster than EDI;gI(/;dﬁpleﬂ?a)?;F 18 1) E. %gé }ggg
. 7 ul sampe 1richenko et al.| )

Contrastive Adapter (Zhang & Ré€|2022). The un- DR (Upsample)(Kirichenko et al-| 2022 176 2662

derlying model for this experiment is CLIP ViT-L/14, ~_FrercLIP (oury) 32 2

and all the numbers are measured on the same machine.
5 ABLATION STUDIES

We conduct systematic ablation studies in different settings to investigate the effectiveness of indi-
vidual components of our approach. The settings include spurious correlation, intrinsic dependency
experiments, and scenarios where ground-truth labels are unavailable. The results are shown in Tab.[5]
where Tab. E] (left) shows results of training w/ labels and Tab. E] (right) shows training w/o labels. In
the following, we describe each of these studies. For more ablation studies please refer to App.[A.6

Effect of Dep(Z,Y") term: Here we study the effect of Dep(Z,Y") by only retaining Dep(Z,Y) in
the objective. In this case, the worst group accuracy dropped by 14.5% for the group robustness
experiment, and the EO increased to 0.195% for the fairness experiment. Although the new features
were still able to maintain good separation w.r.t. Y, they lost their debiasing ability to a large extent.

Effect of Dep(Z;, Zr) term: We remove Dep(Z;, Zr) to investigate its effect on the alignment
between the image and text embeddings. Results show that while maintaining a similar worst group
accuracy, there is a decrease in average accuracy for both under the w/ and w/o ground-truth setups.
This result demonstrates the contribution of this component in improving the predictions. Similarly,
the results for the fairness experiment show that Dep(Z;, Zr) also aids in enhancing the debiasing
ability of FairerCLIP.

Effect of updating Y': In this experiment, we predict Y once and fix it through the training process.
Updating it during the training iterations has a considerable impact on worst group accuracy. The
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Table 5: Ablation study w/ (left) and w/o (right) ground-truth labels on the CelebA dataset for
different target attributes with sex as the sensitive attribute. We compare the effect of different
components and parameters of FairerCLIP on its performance. Both Dep(Z;, Zr) and Dep(Z,Y")
prove to be necessary and effective in maximizing the metrics. All values are in %.

Blonde Hair High cheekbones Blonde Hair
Method
Method WG  Avg Gap Avg EOD WG Avg Gap
Dep(Z,Y) only (1 = 0) 75.0 877 127

Dep(Z,Y)only (r=0) 722 898 17.6 83.8 64 Dz ) (r—0) 818 861 43
wlo Dep(Z;, Zr) (. =0) 87.0 887 17 83.8 02 wo up‘ifm{é QT) : 811 873 62
FairerCLIP 86.7 893 2.6 83.8 0.005 FairerCLIP 86.1 888 27

initial zero-shot accuracy for this group was 72.8%. Using the same initial Y during training improves
the accuracy to 81.1% while updating Y while training improves it further to 86.1%.

6 RELATED WORK

CLIP and Bias: Recent advancements in CLIP like models utilize multimodal data to learn represen-
tations that demonstrably generalize well to many downstream tasks and associated datasets (Radford
et al., 2021} |Desai & Johnson| [2021}; |Singh et al., [2022; Zellers et al.l 2021} Zhang et al., 2021}
Alayrac et al, [2022). Radford et al.| (2021) demonstrated that utilizing a simple pretraining task
with massive amounts of image-text pairs collected from the Internet, lead to models with strong
transferability on different downstream tasks. FLAVA (Singh et al.|[2022) learns representations by
jointly pretraining on both unimodal and multimodal data. Flamingo |Alayrac et al.|(2022)) demon-
strated excellent generalization performance in few-shot and zero-shot scenarios. However, growing
evidence (Birhane et al., [2023a;b)) shows these models suffer from spurious correlations and bias
towards certain demographic groups. For instance, (Chuang et al.|(2023) showed that textual prompt
embeddings capture spurious correlations. In addition, |Agarwal et al.|(2021) discovered that zero-
shot prediction from CLIP representations showed a high misclassification rate for certain races.
Similarly, [Wolfe et al.| (2022)) observed that CLIP embeddings exhibit stereotypes about sex and race.
Dehdashtian et al.|(2024) numerically characterize two near-optimal accuracy-fairness trade-offs and
evaluate how far CLIP models are from them. Complementing these observations, we observe that
CLIP exhibits high levels of demographic bias on the CFD and CelebA datasets.

Debiasing CLIP: Several approaches have been proposed to debias CLIP embeddings. |Wang et al.
(2021) addressed bias in image search by combining balanced sampling and pruning spuriously
correlated embeddings. [Wang et al.|(2022) proposed a two-stage method that used learnable word
vector prefixes and a re-representation Matrix for debiasing image retrieval problems. Berg et al.
(2022) jointly trained an adversarial classifier and image-text contrastive loss, effectively reducing
different bias measures. Zhang & Ré| (2022) employed a contrastive adapter training strategy to
enhance group robustness. Following the group robustness evaluation, |(Chuang et al.| (2023)) proposed
to remove bias from text embeddings by projecting out the biased direction with text data only.
Seth et al.|(2023)) adapted an additive residual learner module that separates the protected attribute
information from the image representation generated by the visual encoder of CLIP.

7 CONCLUDING REMARKS

This paper proposed FairerCLIP to mitigate bias in zero-shot predictions from CLIP. It is versatile
enough to mitigate bias caused by both spurious correlations and intrinsic dependencies in data and
can be trained with or without ground-truth labels. Our key idea was to model the CLIP debiasing
problem in reproducing kernel Hilbert spaces and employ a non-parametric statistical dependence
measure that considers all linear and non-linear relations between the representation and the attribute
of interest. Our solution in the form of an alternating optimization algorithm is effective across a
diverse set of datasets, including Waterbirds, CelebA, FairFace, and the Chicago Face Database,
spanning a variety of intrinsic dependencies and spurious correlations among attributes. Lastly,
kernel-based approaches are underrepresented in current learning solutions, and FairerCLIP shows
their strong potential for the type of task considered in this paper due to its flexibility, ease of
optimization, and promising performance.
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A APPENDIX

In our main paper, we proposed FairerCLIP to debias the text and image features from pre-trained
vision-language models. Here, we provide some additional analysis to support our main results. The
supplementary material is structured as follows:

. Representation Disentanglement and Training Algorithm in App.[A.]

. Proofs Lemmas and Theorems in App.[A.2]

. Implementation details in App.

. Analysis of analytical computational complexity and memory complexity in App.
. Effect of data size on the performance of FairerCLIP in App.[A.5]

. More ablation studies in App.[A.6]

. Comparison of CLIP ViT-L/14 and CLIP ResNet-50 in App.

. Comparison of more than 100 Zero-Shot CLIP models on CFD in App.[A.§]

00 N N Lt A WD

A.1 TECHNIQUAL DETAILS

Representation Disentanglement: To ensure that the mapping functions avoid learning representa-
tions with redundant information where different dimensions are highly correlated with each other,
we seek a compact (Bengio et al., 2013)) debiased embedding space. Therefore, we impose additional
constraints on the representation. Specifically, we constrain the search space of the mapping functions
f(-) to learn a disentangled representation (Bengio et al.,[2013)) as follows

Ar = {(fr o) | i f5 € Hax, Cov (fi(X), f5(X) + 7 (fis fidaex = 0} - ®

In the above set, Cov (f;(X), f;(X)) part enforces the covariance matrix of Z = f(X) to be an
identity matrix and encourages the variance of each entry of Z to be one and different entries of Z to
be uncorrelated with each other. The regularization part, 7 ( f;, fj)# encourages the components
of the mapping functions to be of unit norm and as orthogonal as possible to each other. These
constraints also aid with numerical stability during empirical estimation (Fukumizu et al.,[2007).

Training Algorithm: Details of training FairerCLIP are presented in Algorithm |1} FairerCLIP uses
representation of images, representation of texts corresponding to target attribute labels (X7), and
representation of text corresponding to sensitive attribute labels (Xrg) as its inputs. FairerCLIPS goal
is to find the image encoder (f;) and text encoder (f7) that can map the biased features generated
by the CLIP to a debiased representation space. The training algorithm starts with initializing the
label predictions. Since this algorithm is used for scenarios where we do not have access to the
ground-truth labels of target attributes and sensitive attributes, we need to predict them by zero-shot
classification from CLIP features. However, in scenarios where we have access to the true labels of
the target attribute, we can skip the pseudo Y initialization step and use the ground truth Y instead. In
the last step of initialization, we need to initialize the representation of images since we are using an
alternating method to optimize the parameters of both the image encoder and text encoder. After the
initialization step, we start to train both models alternatingly. After each optimization iteration, we
update our prediction of Y labels. After reaching the stop condition, the training process is complete.

A.2 PROOFS

Lemma 1. Let Kx,, Kx, € R™ " be the Gram matrices corresponding to {x, and Hx,, re-
spectively, i.e., (KXI)ij = kx,(xp,xr;) and (KXT)ij = kg(xr;, Tr;), where covariance is
empirically estimated as

3\'—‘

Cov (f] (XI) 9m XT

Z (1) gm(21,) 22]‘} T, Z m(ZT)-

It follows that, the corresponding empirical estimator for Dep (Z 1, Z7) s

Dep (Z;, Z7) = QHGIKXIHKXT@ HF, (10)
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Algorithm 1: FairerCLIP Training Without Labels

Input: X; € R"*¢, Xp e RYIX4 X1g e RIS m e N
Output: f;, f1

Initialize: .

Y© {V.’B[ € X, xr € Xﬂargmax%}; /+ initialize pseudo Y */

S« {V:B[ € Xi,xrs € XTs’argqriaxm}; /* initialize pseudo S */

2« {fi(X1)|f7 « argmax J(fr, 71,0, X1, Y, 8,0)}; / Eq. <) Y
fr

1+ 0;

while i < m do
Z5) A Fa(X0)| fh  argmax J(fr, 7o, 7, X, YO, 8, Z0)): /4 solve Eq. ()
fr

*/ N )
Z§l+1><—{ff(X1)|ﬁ<—argmax J(f177'177'z,X1,Y<1),S,Z(Tl))};/* solve Eqg. () */

y U+ {Vz] c Z( i+1) 27 € Z( i+1) afgmaxuzfuli\zﬂ\} /+ refine pseudo Y */
t—1+1
end
Proof.
2
r r 1 n 1 n n
Dep(Zy, Zr) = {n ny (xr,)gm(xT,) 72 m(ka)}
m=1 j=1 i=1 p=1 ]f:1
r T 1 . 1 - - 2
- {fe,j Ky, Kx,0r, — —07 lelnanXTHTm}
m=1 j=1 n "
T T 1 - 2
= —OIjKXIHKXTGTm
m=1 j=1 n
1
= —2||(~)1KXIHKXT
m=1
1 T2
= @Ky, HKx, OF||; (11)

O

Theorem 2. Let the Cholesky factorization of Ky be Kx = Lx Lﬁ, where Ly € R"*? (d < n)
is a full column-rank matrix. Let » < d, then a solution to

1 1 1
max {J (f,7.7, X, Y, 8, Z0) = 3 ||G-)KXHLy||§,—Tﬁ H@KxHLsHiﬂ-i-Tzﬁ |I®@KxHZo|%}
(12)
is
FPUX) = O [kx (21, X), , kx (2, X)]"

where @' = U TLE( and the columns of U are eigenvectors corresponding to the r largest
eigenvalues of the following generalized eigenvalue problem.

L (HKYH — tHKsH + TZHZoZgH) Lxu =\ (l LYHLx + 71) u. (13)
n

Furthermore, the supremum value of the objective function is equal to 23:1 Aj, where {\,--- , A}
are 7 largest eigenvalues of equation [I3]

Proof. Using the representer theorem, the disentanglement property in

Av = {(fro o o) [ fis 5 € Hx, Cov (£5(X), £5(X)) + (fis fidrx = 0ig} - (14)
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can be expressed as

Cov (fi( ); fi(X)) +W<fufj>
= —Zfl T fJ a:k 2 Zfz 33]@ Z (mm) +’Y<f“f]>

1
= - ZZKX T, Tt)Oit Z Kx (k, @m)bjm — ﬁeiTKX]-n]-Z:KXGj + v (fis [i)x
k? 1t=1

1 1 n n
= = (Kx0,)" (Kx8;) — —0 Kx1,1TKx0; +7 <Zeikkx(~,wk),Zeith<',mt)>
n n k=1 t=1 Hx
1
= —0/KxHKx0; +~v760] Kx0;
n
1
= —60/Lx (LYXHLx +nyI)L%6;
n
= 0ij-

As aresult, f € A, is equivalent to

1
©Lx (—L§HLX + ﬂ) rte’ =1,
n

=C
where © := [0y, - ,BT}T e R,

Let V = LT ©T and consider the optimization problem in equationi

wp {||®KXHLy||F—7'||®KXHLSHF+7'Z |OKxHZol}}
FeA,

= sup % {Tr{6KxHKyHKxO®"} —tTr {0 KxHKsHKxO®"} + .-t {OKxHZo Z,HKx O }}

FeA,. T

=  max —Tr{@LXBLTQT}
vTCev=I, n?

= max —Tr{VTBV}
vTev=I,

where
B = L% (HKyH-THKsH +17.HZoZ,H) Lx

It is shown in |[Kokiopoulou et al.|(2011) that arﬂ optimizer of is any matrix U whose columns
are eigenvectors corresponding to r largest eigenvalues of generalized problem

Bu=7Cu (16)

and the maximum value is the summation of r largest eigenvalues. Once U is determined, then, any
© in which LY ©T = U is optimal © (denoted by @°"). Note that @™ is not unique and has a
general form of

©” = (LY) U+ Ay, R(Ao) SN (LF).

However, setting Ag to zero would lead to minimum norm for ®. Therefore, we opt @' =
UTLl. O

A.3 IMPLEMENTATION DETAILS

We conducted experiments on CelebA, Waterbirds, FairFace, and the Chicago Face Dataset (CFD).
For CelebA and Waterbirds, we follow their official train/val/test splits and only use ground truth

2Optimal V is not unique.
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labels from the val split for hyperparameter tuning. For CFD, since there is no official dataset split,
we randomly split it with a ratio of 0.5/0.1/0.4 for train/val/test. Following the standard setting Zhang
& Ré|(2022), we use val split to decide the optimal 7, 7., and dimensionality of the random Fourier
features (RFF). For CelebA, the optimal 7, 7,, and RFF dimensions are 0.8, 0.5, and 8000. For
Waterbirds, the optimal 7, 7., and RFF dimensions are 0.7, 0.7, and 3000. And for CFD, the optimal
T, T», and RFF dimensions are 0.6, 0.3, and 1000. In the scenario where the group labels are not
available, we follow the same setup as the scenario where the group labels of the val split are available.
For the CelebA dataset, we also conduct a pre-sampling process on the training split to balance the
number of each class from the predicted g.

For the FairFace dataset, we use 10 text prompts that are unrelated to the facial attributes or the
sensitive attributes of the samples. In this setting, the sensitive attribute is gender or race, and the text
prompts are constructed as “This is a photo of a [attribute] person” where [attribute] can be one
of the elements of the {good, evil, smart, dumb, attractive, unattractive, lawful, criminal, friendly,
unfriendly} set.

For all the above-mentioned experiments under different settings, we set the representation dimen-
sionality r to ¢ — 1 where c is the number of classes of the downstream target task.

For clarity, we summarized all the above-mentioned implementation details in Tab. []

Table 6: Implementation details of FairerCLIP for each dataset.

Dataset RFFDim. r 7 71z Train/Val/Test Training samples
CelebA 8000 1 08 0.5 Official Splits 162,770
Waterbirds 3000 1 0.7 0.7 Official Splits 4,795
FairFace 3000 1 0.8 0.8 Official Splits 86,744
CFD 1000 1 06 03 0.5/0.1/0.4 298

A.4 NUMERICAL COMPLEXITY

Computational Complexity: If L x in equation [13|is provided in the training dataset, then the
computational complexity of obtaining the optimal encoder is O(I%), where [ < n is the numerical
rank of the Gram matrix Kx. However, the dominating part of the computational complexity
is due to the Cholesky factorization, Kx = L XL)T(, which is O(n3). Using random Fourier
features (RFF) (Rahimi & Recht,[2007), kx (x,x’) can be approximated by 7x ()T rx ('), where
rx(x) € R%. In this situation, the Cholesky factorization can be directly calculated as

rx (iL‘l)T
Ly = ; e R™*4, (17)
TX(-'BH)T

As a result, the computational complexity of obtaining the optimal encoder becomes O(d?), where
the RFF dimension, d, can be significantly less than the sample size n with negligible error on the
approximation kx (x, ') ~ rx(x)T rx(x').

Memory Complexity: The memory complexity of equation if calculated naively, is O(n?) since
Ky, Kg,and Zp Z} are n by n matrices. However, using RFF together with Cholesky factorization
Ky = Lng, Kg = LgLZ, the left-hand side of equationcan be re-arranged as

(P%Ly) (L¥Lx) -7 (LXLs) (L5Ex) + 7 (P%Z0) (Z5Lx).  @9)

where Zg =HZo=Zo— lln(IZZO) and I~/$ =HLy =Ly — %ln(lgLy); therefore, the

n Y
required memory complexity is O(nd). Note that LY, and H L x can be calculated similarly.

A.5 EFFECT OF DATA SIZE ON THE PERFORMANCE OF FAIRERCLIP

To evaluate the effectiveness of the FairerCLIP under limited data samples condition we report
the performance of FairerCLIP as the size of the training dataset is varied. In this experiment, we
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Figure 6: Effect of 7 and 7, on the average accuracy (left) and worst group accuracy (right). For
every fixed 7., the worst group accuracy increases with 7 and then starts to decrease beyond a point.
Additionally, the variation of the metrics is smooth over the range of hyperparameters, indicating
lower sensitivity towards them.

randomly sampled 5, 25, 50, 75, and 100 percent of the training data as our training set. Then the
Avg., WG, and Gap are evaluated. Table |Z| shows the results of the evaluation for the Waterbird and
CelebA datasets. The results indicate that FairerCLIP is able to perform sufficiently well when a
small sub-sample of the dataset is used for its training. More specifically, in the CelebA dataset,
FairerCLIP is only losing 2.9% of its WG accuracy when only 25% of the original training data is
employed in its training phase. Moreover, on Waterbirds, a relatively smaller dataset, it loses less than
6% of WG accuracy when only 50% of training data is used. This experiment shows the effectiveness
of FairerCLIP under a limited number of training samples.

Table 7: Effect of training data size on the performance of FairerCLIP

CelebA Waterbird
#Samples “Ave (1) WG (1) Gap(l)  Avg. () WG(1) Gap())
5% 84.21 73.88 10.32 86.31 65.26 21.05
25% 88.26 83.88 4.37 86.54 78.66 7.88
50% 86.65 84.29 2.36 89.11 81.31 7.80
5% 90.44 85.56 4.88 87.04 84.11 2.92
100% 89.3 86.7 2.6 92.30 87.70 4.60

A.6 MORE ABLATION STUDIES

In[5] we studied the effect of different components of FairerCLIP such as Dep(Z,Y), Dep(Z;, Zr),
and updating the prediction of the target labels in each iteration. Here, we add another ablation study
on the effect of our control hyper-parameters, 7 and 7, on the performance of the method.

Effect of 7 and 7,: We illustrate the performance of average accuracy and worst group’s accuracy for
varying values of 7 and 7, in Figure[6} First, as 7 and 7, vary, there is a smooth change in the average
and worst group accuracy, which demonstrates the stability of FairerCLIP. Second, as 7 increases,
the worst group’s accuracy also improves, which alludes to the effectiveness of 7 as a control for the
degree of debiasing. However, when 7 reaches a certain value, a further increase in its value leads to
a degradation in the worst group’s accuracy. Similarly, 7, also plays a gradual but noticeable effect
on improving both the average and worst group accuracy for a given value of .

A.7 COMPARING FEATURES OF CLIP VIT-L/14 AND CLIP RESNET-50
To compare the features of CLIP ViT-L/14 and CLIP ResNet-50, we measure the amount of infor-

mation from the target attribute and sensitive attribute contained in their generated representations.
The embedded information is measured in terms of statistical dependency between the features and
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Table 8: Comparison between CLIP ViT-L/14 and CLIP ResNet-50 in terms of the amount of the
information from Y and S that each of them can embed into their feature space on the Waterbirds.

(X,Y) (X,9)
HSIC  KCC HSIC  KCC

CLIP ViT-L/14 0.1849 0.8267 0.2392 0.8661
CLIP ResNet-50  0.1423  0.7556 0.3823 0.8861

their ground-truth Y and S labels. To calculate these dependencies, Hilbert-Schmidt independence
criterion (HSIC) (Gretton et al.l 2005) and Kernel Canonical Covariance (KCC) |Bach & Jordan
(2002)) are used. Tab. |§|compares these two CLIP models. From the table, we can observe that CLIP
ViT-L/14 embeds more information about the target Y while containing less information about S
which indicates that the former provides better features for the Waterbirds dataset.

A.8 COMPARING MORE THAN 100 ZERO-SHOT CLIP MODELS ON CFD

As we mentioned in Section[d.2.2] zero-shot classification on CFD is a difficult task for the OpenAl
CLIP model. In Figure[7] we show that a majority of other publicly available CLIP models suffer
similarly on CFD. In fact, several models achieve only near-zero WG accuracy, irrespective of their
parameter count and the training dataset.

i i i ! Dataset COCO
‘ e Webll e CCl2M
L e S S DataComp o YFCC
! ! ! | @ e LAION2B Num Params
.4 7777777 L 7777777 L"’ 77777 ] e Merged2B 500
.(. 9. | e MetaCLIP 1000
O p i ‘ i e CommonPool 1500
.0” fffffff fmmees drmmmee] LAION400M 2000
R L | | | e OpenAl WIT 2500
.

D 20 30 40 50 60
WG (%)

Figure 7: Comparison of more than 100 publicly available CLIP models zero-shot performance on
CFD dataset. Colors show the pre-trained dataset and sizes show the number of parameters of each
model.
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