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ABSTRACT

In open-world environments like Minecraft, existing agents face challenges in
continuously learning structured knowledge, particularly causality. These chal-
lenges stem from the opacity inherent in black-box models and an excessive re-
liance on prior knowledge during training, which impair their interpretability and
generalization capability. To this end, we introduce ADAM, An emboDied causal
Agent in Minecraft, that can autonomously navigate the open world, perceive mul-
timodal contexts, learn causal world knowledge, and tackle complex tasks through
lifelong learning. ADAM is empowered by four key components: 1) an interaction
module, enabling the agent to execute actions while documenting the interaction
processes; 2) a causal model module, tasked with constructing an ever-growing
causal graph from scratch, which enhances interpretability and diminishes reliance
on prior knowledge; 3) a controller module, comprising a planner, an actor, and a
memory pool, which uses the learned causal graph to accomplish tasks; 4) a per-
ception module, powered by multimodal large language models, which enables
ADAM to perceive like a human player. Extensive experiments show that ADAM
constructs an almost perfect causal graph from scratch, enabling efficient task de-
composition and execution with strong interpretability. Notably, in our modified
Minecraft games where no prior knowledge is available, ADAM maintains its per-
formance and shows remarkable robustness and generalization capability. ADAM
pioneers a novel paradigm that integrates causal methods and embodied agents in
a synergistic manner.

1 INTRODUCTION

Embodied agents exploring open-world environments mark a critical frontier in artificial intelligence
(AI) research (Cassell, 2000; Xia et al., 2018; Savva et al., 2019). The ultimate goal is to build gen-
erally capable agents (GCAs) (Team et al., 2021) that can autonomously perform a broad range of
tasks through perception, learning, and interaction (Mnih et al., 2015; Xi et al., 2023; Park et al.,
2023). Minecraft (Nebel et al., 2016), a globally renowned 3D video game, serves as a represen-
tative open-world environment for these agents. It offers a randomly generated world of massive
blocks, where players need to master complex crafting recipes (e.g., planks + sticks →
wood pickaxe ) and gather resources (e.g., mining cobblestone with wood pickaxe

), progressively unlocking new items in the technology tree. The substantial freedom and precise
simulation of physical laws in Minecraft render it an exceptional platform for researching GCAs.

In Minecraft, two primary approaches for developing GCAs have been extensively explored: rein-
forcement learning (RL)-based (Lin et al., 2021; Baker et al., 2022; Fan et al., 2022; Mao et al.,
2022; Hafner et al., 2023) and large language model (LLM)-based (Wang et al., 2023a; Zhu et al.,
2023; Qin et al., 2023a; Nottingham et al., 2023; Wang et al., 2023c;d). Specifically, RL agents learn
through interactions and updating their black-box model weights, which poses challenges for inter-
pretability, efficiency, and generalization. On the other hand, LLM-based agents possess and rely on
rich prior knowledge of both virtual games and real worlds (Ouyang et al., 2022; Wei et al., 2022a;
Achiam et al., 2023). Their reliance on omniscient data (e.g., GPS coordinates, voxel blocks, biome,
etc, which are not explicitly observable by the player) (Wang et al., 2023a; Zhu et al., 2023; Wang
et al., 2023d) presents challenges for generalization and human gameplay observation alignment.
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Figure 1: (a) The technology tree for acquiring diamonds in the Minecraft game. ADAM can
precisely discover item dependencies from scratch. (b) Modified Minecraft technology tree, where
the prior knowledge from the Internet or wiki does not align with the actual game dynamics. Red
arrows denote removed dependencies, while blue arrows denote added dependencies. (c) In the game
setting shown in (b), ADAM maintains the ability to learn the correct causal graph and successfully
obtains diamonds , whereas other methods can only acquire raw iron within the step limit,
and ADAM achieves a 4.6× speedup in obtaining raw iron compared to the SOTA.

To address these issues, we propose ADAM, An emboDied causal Agent in Minecraft, that can au-
tonomously navigate the open world, perceive multimodal contexts, learn causal world knowledge,
and tackle complex tasks through lifelong learning. Specifically, ADAM is composed of four key
modules as shown in Fig. 2: (1) Interaction module, which enables the agent to execute actions
from the action space and processes the agent’s observable information into formatted records. (2)
Causal model module, which includes two causal discovery (CD) methods. LLM-based CD utilizes
interaction records to make causal assumptions. Intervention-based CD refines these assumptions
to derive a causal subgraph. Multiple causal subgraphs are integrated into a comprehensive causal
graph (i.e., technology tree). (3) Controller module, which includes a planner, an actor, and a
memory pool. The planner can utilize the causal graph to perform task decomposition. The actor
uses the subtasks for action choosing. The memory pool ensures the long-term context dependence.
(4) Perception module, which is driven by multimodal LLMs (MLLMs), enabling ADAM to per-
ceive its surroundings without relying on omniscient data, thereby achieving human-like gameplay
observation.

Extensive experiments demonstrate that ADAM achieves a 2.2× speedup compared to the SOTA in
the task of obtaining diamonds . In scenarios where crafting recipes are modified (Fig. 1b),
only ADAM maintains the ability to obtain diamonds , while other methods can only acquire
raw iron within the step limit, and ADAM achieves a 4.6× speedup in obtaining raw iron
compared to the SOTA (Fig. 1c). ADAM demonstrates strong interpretability through constructing
a nearly perfect technology tree (Fig. 1a) from scratch, whereas other methods exhibit at least
30% errors or omissions. Meanwhile, ADAM closely aligns with human gameplay observation
without relying on omniscient metadata, while maintaining comparable environmental perception
performance to methods that utilize such data.

Overall, our contributions are as follows:

(1) We introduce ADAM, an embodied causal agent that autonomously navigate the open
world, perceive multimodal contexts, learn causal world knowledge, and tackle complex
tasks through lifelong learning.

(2) We tackle the limitations of existing embodied agents. Our ADAM demonstrates strong
robustness without relying on prior knowledge or omniscient metadata, unlike other LLM-
based agents, while aligns human gameplay observation during exploration.

(3) We pioneer the integration of causal methods into open-world embodied agents, allow-
ing the agent to organize the learned knowledge in a rigorous causal graph, thereby demon-
strating excellent interpretability.
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Figure 2: Four key modules of ADAM. The interaction module executes actions in the environment
according to the task and records the processes. The causal model module identifies the causal
relationship between items and actions to construct an ever-growing causal graph. The controller
module implements task execution based on the learned causal graph. The perception module
aligns the agent’s gameplay observation more closely with human.

(4) We improve the CD performance by employing embodied agent-driven interventions,
which enhances the accuracy and efficiency of CD compared to existing methods without
interventions.

2 PRELIMINARIES

Causal graphical models (CGMs). A CGM represents the structure of causality within a system
(Peters et al., 2017) by detailing the direct causal relationships among a set of variables X1, . . . , Xn.
It is characterized by a distribution over these variables and is associated with a directed acyclic
graph (DAG), known as a causal graph. In this graph, each node corresponds to a variable, and each
directed edge signifies a direct causal relation from Xi to Xj .

Causal discovery from interventions. Causal Discovery (CD) (Spirtes et al., 2001; Pearl, 2009;
Peters et al., 2017; Glymour et al., 2019) is a fundamental process to infer causal relationship from
data. The relationship is typically represented in the form of a causal graph. While observational
data reveals correlations, interventions allow us to analyze causal dependencies between variables.
Specifically, interventions alter the distribution of variables (e.g., types of initial items) during ex-
perimental sampling, which serves as a gold standard for CD (Eberhardt & Scheines, 2007). By
observing their effects, we can identify causal relationships rather than merely correlations.

3 METHOD

In this section, we begin with the basic notations and definitions in our work (Sec. 3.1). Then, we
give an overview of our ADAM framework (Sec. 3.2). Next, we detail the four modules of ADAM:
interaction module (Sec. 3.3), causal model module (Sec. 3.4), controller module (Sec. 3.5), and
perception module (Sec. 3.6).

3.1 NOTATIONS AND DEFINITIONS

We first introduce several key notations and definitions in our work. Sets are denoted by uppercase
letters, and their elements by lowercase letters.

Inventory: The set It of items possessed by the agent at any step t. Initialization: At the initial-
ization of Minecraft instances, the initial inventory I0 can be specified by the agent. Action Space:
The set A of actions whose names (e.g., gatherWoodLog) are replaced by letters and invisible.
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Initial Action Space
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Interaction Module
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End Inventory
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Sampling Record × N
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Action Space
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Figure 3: The interaction module has two core functionalities: sampling and recording. Sam-
pling involves executing actions in the environment, and recording involves processing and docu-
menting the observable information. For instance, the initial action space is {gatherWoodLog},
whose name is not exposed to ADAM and is denoted as {a} here (Note that, the original notation
{gatherWoodLog} is retained in the figure for the illustrative purpose.). The initial observed item
space is ∅. After executing a for one step, logs ( ) are obtained. A sampling can be represented as
(a,∅, { }), where ∅ is the initial inventory and { } is the inventory after this step. The result is
recorded as R = (∅,∅, { }), where the first ∅ is the initial inventory and the second ∅ indicates
that no items are consumed, and { } represents the items that are obtained. After sampling N
times, data Da = {R1, . . . , RN} is provided to the causal model module for CD. If the causal rela-
tion failed to be identified, resampling on a occurs; if successful, new actions like craftPlanks
are enabled by the acquisition of , and the observed item space is updated to { }.

ADAM must independently discover the effects of these actions. Movement Space: The set M
of basic movements whose names (e.g., moveForward, moveBackward) are visible to ADAM.
Step: The agent takes an action a in the environment. A step ends either when action completes or
when execution times out. Observed Item Space: The set S of all items that ADAM has encoun-
tered. Initially, S is empty. Environmental Factors: The set E of environment conditions (e.g.,
biome, surrounding block types). Task: Denoted by the tuple (Igoal, E), a task is accomplished at
step t if Igoal ⊆ It and the factors E are present within a certain distance around the agent.

3.2 OVERVIEW

ADAM comprises four modules as depicted in Fig. 2. Given a task (Igoal, E), the interaction mod-
ule enables the agent to execute each action a and records data Da. This data is then utilized
by the causal model module, which employs LLM-based CD to make causal assumptions and
intervention-based CD to refine these assumptions into causal subgraphs. These subgraphs are in-
tegrated into a causal graph (i.e., technology tree). Once the causal graph G contains all required
items Igoal in the task, the controller module completes the task from an empty inventory, aided
by visual descriptions from the perception module. Newly discovered items enable the execution
of new unknown actions and the CD on these actions. This iterative process ensures the lifelong
learning through continuous engagement and adaptation. ADAM is a general framework that can be
extended to other open-world environments, as discussed in Appendix F.

3.3 INTERACTION MODULE

The interaction module (Fig. 3) enables the agent to execute actions for sampling and records ob-
servable information. Initially, the action space A contains one element gatherWoodLog, which
is the most basic action in Minecraft and a common setup for Minecraft agents (Wang et al., 2023a).
As the agent acquires certain new items, new actions are unlocked in A. For example, the action of
mining becomes available only after the agent obtains a mining tool (e.g., a wooden pickaxe ).
By continuously collecting data on each action and coordinating with other modules, the nodes on
the technology tree are progressively discovered by the agent.

Sampling. This involves initiating a Minecraft instance with all observed items S as the initial
inventory I0, and then executing action a to observe the agent’s inventory I1 after this step. The
quantity of each item in S and I1 is recorded. This sampling, represented as (a, S, I1), is performed
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 Inference Result

 Role Playing
You are a Minecraft game analysis assistant. You are good at
inferring causal relationships between actions and items. 

 Letter Mapping
 Items involved in the game include:

 'a': 'log'        , 'b': 'planks'       , 'c': 'crafting_table'       , 

 Few-shot Prompting

  I will give you some examples
  1. Consumed items: ; Added items: redstone 
  Your inference: Because there is no item 
 consumption. Redstone is a higher-level mineral, 
  So my answer is:
  Cause; Effect={k; m}   Number of shot

 N. Initial items:
      Consumed items:
      Added items:

Data 

  LLM Raw Answer

  Because logs are comsumed and planks are get.
  this is a "Crafting" task. In addition to raw materials, the                 
  "Crafting" task also requires crafting_table ('c').
  So my answer is:
  Cause:[a, c];Effect:[b]

LLM inference

 Problem Setting
Our task is to infer the causal relationship.

  An action is a single, atomic action.

Your inference:

Prompt

  Matching

 'a': 'log'     , 'b': 'planks'     , 'c': 'crafting_table'      , 

 Cause:[a, c];Effect:[b]

Causal Assumption

Cause:[      ,      ,action       ]
Effect:[      ]

Cause:[      ,       ]
Effect:[      ]

Action  serves as an trivial cause
and is added to the cause

Depicted as

1. Initial items:
   Consumed items:
   Added items:

{      ,      }
{     }
{     }

{      ,      }
{     }
{     }

Figure 4: LLM-based CD performs causal reasoning under the guidance of the prompt. Role Playing
assigns an analysis assistant role to the LLM. Problem Setting provides the reasoning task. Letter
Mapping maps the item names to letters for the accurate output. Few-shot Prompting provides
examples for chain-of-thought (Wei et al., 2022b) reasoning. Data Da is presented in the same form
as the few-shot examples. The output of LLM serves as the causal assumption.

N times, focusing on one specific action at a time. Due to the same configuration of these N
samplings, parallelization is available and accelerates the exploration.

Recording. This involves processing the results of samplings and documenting them. For the
sampling (a, S, I1), consumed items are denoted by X , which includes items with decreased quan-
tities and items that are present in S but absent in I1. Conversely, obtained items are denoted by Y ,
which includes items with increased quantities and items that newly appear in I1. A single record is
denoted as R = (S,X, Y ). Such N records on action a collectively form data Da = {R1, . . . , RN}.

3.4 CAUSAL MODEL MODULE

The causal model module uses data Da to infer causal relationships and constructs causal subgraphs
for each action a. These subgraphs are then integrated into a comprehensive causal graph.

A causal relationship is a stable and repeatable dependence in any step, where the agent takes an
action a and the acquisition of items E (effect items) relies on the items C (cause items) possessed
by the agent before the step. Since ADAM focuses on item acquisition, causal relations where no
items are obtained do not contribute to the technology tree.

In the causal model module, LLM-based CD makes assumptions on the causal relationships, which
effectively reduces the number of item nodes that need to be confirmed in the causal subgraph
and achieves acceleration. Then, intervention-based CD refines these assumptions and accurately
constructs causal subgraphs. We also detail our optimization techniques employed in this module.

LLM-based CD. The input to LLM-based CD (Fig. 4) is the data Da containing N records, and
the output is a causal assumption, which consists of cause items C and effect items E. The prompt is
designed with five components: (1) Role Playing, which assigns a specific role to the LLM. In this
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context, the LLM serves as a causal analysis assistant, dedicated to extracting causal relationships
from data. (2) Problem Setting, which provides the reasoning task and the fundamental concepts
of the environment. We avoid introducing specific environmental knowledge for generalization. (3)
Letter Mapping, which involves mapping item names to letters, a simplification that facilitates
the formatted output. (4) Few-shot Examples, which involves providing the LLM with several
reasoning examples in a chain-of-thought (Wei et al., 2022b) style, including example questions,
the reasoning processes, and the expected answering format. The examples are independent of the
technology tree, thus preventing the introduction of prior knowledge. (5) Data Da, which consists
of N records from the interaction module, and is formatted consistently with the few-shot examples.

Intervention-based CD

Causal Assumption

Intervention Sampling

Can not obtain

is confirmed

do(       =0)

Update

is removed

Can still obtain Update

Save causal subgraph

Construct causal graph

do(       =0)

Figure 5: Intervention-based CD verifies causal as-
sumptions. An example of causal assumption is that,
under the action a, log ( ) and crafting table
( ) contribute to the acquisition of planks ( ).
This assumption is denoted as (a, { , }, { }).
Intervention-based CD will verify each item in { ,
}. When removing from the inventory and execut-

ing action a, cannot be obtained, proving that is a
dependency of , and this edge ( → ) is retained in
the causal graph (represented in green). When remov-
ing and executing action a, still can be obtained,
which shows that is not a dependency of , and this
edge ( → ) is removed from the causal graph (rep-
resented in red). Intervention-based CD results in a
corrected causal subgraph. Multiple subgraphs can be
combined into the technology tree in Minecraft. The
actions are not shown in the technology tree for the
sake of simplicity.

Intervention-based CD. Intervention
is a method to experimentally verify
causal relationships among variables.
Intervention-based CD (Fig. 5) can refine
the causal assumptions and construct a
highly accurate causal graph.

Before interventions, it has to be con-
firmed that C is a sufficient condition for
E. If C has already lacked the necessary
items to achieve E, then the vital edges are
missing and the graph can not be corrected
by excluding redundant edges. Specifi-
cally, by performing sampling (a,C, I1)
as described in Sec. 3.3, if E is consis-
tently absent from I1, the assumption is
deemed incorrect, leading the LLM-based
CD to re-infer the assumption. If these
inferences continue to fail, the interaction
module will resample data Da.

Intervention-based CD performs sam-
plings (a,C\{c}, I1) for each item c ∈ C.
For each item e ∈ E, if there is always
e ̸∈ I1 within a maximum number of sam-
plings, then c is the cause of e, and the
edge c → e is retained. If at least one
sample includes e ∈ I1, then c is not indis-
pensable for e, and the edge c → e is re-
moved. Intervention-based CD yields ac-
curate causal subgraphs, which are subse-
quently integrated into a complete causal
graph.

Optimization techniques. (1) Temporal Modeling (TM): Temporal information can help deter-
mine causal direction. Events occurring later cannot be the cause of events occurring earlier. This
eliminates some edges in the causal graph. (2) Subgraph Decomposition (SD): By focusing on the
causal effects of individual actions, the causal model module processes a manageable number of
items (only those in each cause-effect pair) at a time. This significantly reduces the complexity of
the CD process.

3.5 CONTROLLER MODULE

During the execution of task (Igoal, E), ADAM starts from an empty inventory (i.e., I0 = ∅) to
ensure the fair comparison with other methods. After all items in Igoal have been obtained in the
causal graph, the controller module (Fig. 6) is responsible for executing the task. If there are newly
discovered items, they will be added to the observed item space S and pend for a new cycle of CD,
thus achieving lifelong learning. The controller module comprises three components as described
below.
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Controller Module
Planner

Causal
Graph

Inventory
Info

Discovered causal graph:
[[A], a]
[[B, a], b]
[[C, b], c]
...

Formatted prompt

action_names = [A, B ...]
material_names = [a, b...]
material_names_dict =
{   a: log      ,
    b: planks      ,...}

[      ,       ]

Newly discovered item

Interaction Module

Decompose task
LLM

(1) craft planks
(2) craft sticks

...
(n) smelt iron

Subtasks

Memory
Action trajectories [A, A, B, ...]

Inventory at every step [{}, {log}, {log}, ...]

Actor

Choose Action B

Your Task:  Smelting
iron       near grass     .

LLM

The scene featuring a lush
green forest with trees,
mushrooms, and a grassy
area...

Image description

Action Space: [A, B ...]
Movement Space:
[Forward, Backward ...]

Operations

Figure 6: The controller module comprises three components. The Planner utilizes the reasoning
capabilities of LLMs to decompose the task. It receives the current inventory and the learned causal
graph as input. The Actor leverages LLMs to choose an action a in the the action space A or a
movement m in the movement space M , and execute it in the environment. The Memory records
the step information, including action trajectories and item changes every step.

Planner. The Planner utilizes LLMs to decompose the task with current inventory It at step t and
the learned causal graph. Relying solely on the causal graph is suboptimal as actions may fail or
have side effects. LLMs can fully utilize the inventory information and provide detailed thought
process of the decomposition process, which is passed to the Actor for action choosing.

Actor. The Actor leverages LLMs to choose an action a ∈ A or a movement m ∈ M to execute.
It receives the task decomposition from the Planner, the description of game image at this step, and
the records from the Memory. In the task (Igoal, E), the Actor prioritizes obtaining the items Igoal,
because this process involves changing positions, which may affect the acquisition of E .

Memory. The Memory records observable information during task execution, including action
trajectories and inventory changes at each step. It plays a crucial role in tracking long-term depen-
dencies and facilitates robust task execution.

3.6 PERCEPTION MODULE

The perception module utilizes MLLMs for environmental observation, enabling ADAM to perceive
the world without relying on metadata such as the names of surrounding blocks, GPS coordinates,
or the biome names, which are typically invisible to human players. This module captures first-
person screenshots between steps, which are processed by MLLMs to generate descriptions. This
text description is subsequently passed to the Actor in the controller module for action choosing.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In our study, we employ Mineflayer (PrismarineJS, 2023a), a JavaScript-based framework provid-
ing control APIs for the commercial Minecraft (version 1.19) 1. The encapsulation of Mineflayer
uses the implementation in VOYAGER (Wang et al., 2023a). For visual processing, we utilize
prismarine-viewer (PrismarineJS, 2023b), an API for rendering game scenes from the agent’s per-
spective. ADAM and our baselines all use GPT-4-turbo (gpt-4-0125-preview) (Achiam et al., 2023)
for LLM inference, with the temperature set to 0.3 based on our experiments in Appendix A. For
visual description, we utilize LLaVA-v1.5-13B (Liu et al., 2024) in our perception module.

1https://www.minecraft.net
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Model SHD Model SHD
ADAM 2± 2 CDHRL 10± 4
ADAM w/o TM,SD 19± 6 CDHRL w/ SD 6± 2
Reflexion 24± 9 React w/ TM,SD 5± 2
AutoGPT 24± 6 Reflexion w/ TM,SD 4± 2
Empty Graph 32 AutoGPT w/ TM,SD 4± 2

Table 1: Structural Hamming Distance (SHD) between the learned causal graph and the target graph.
For non-embodied agents without built-in interventions, even with our TM and SD (Section 3.4), the
causal graph learned by these agents remains suboptimal. The CD used by CDHRL is based on SDI
(Ke et al., 2019), which incorporates temporal modeling (TM) into its implementation, and still
exhibits over 30% errors or omission, while ADAM can identify a nearly perfect causal graph.

4.2 BASELINES

In the absence of directly comparable works, we select representative methods as baselines and fo-
cus on their comparable aspects, including: (1) ReAct (Yao et al., 2023), which explicitly expresses
the thought processes through chain-of-thought prompting (Wei et al., 2022b). (2) Reflexion (Shinn
et al., 2024), derived from ReAct, which can reflect on its exploration history. (3) AutoGPT (Sig-
nificant Gravitas), which can autonomously decompose tasks and execute subtasks in a ReAct-style.
Baselines 1–3 can only perform text-based tasks and lack embodied components to interact with the
environment. Hereafter, they are referred to as non-embodied agents, and we have adapted them
with our interaction module for embodied exploration. (4) VOYAGER (Wang et al., 2023a) is an
LLM-based embodied lifelong learning agent in Minecraft, featuring an automatic curriculum aim-
ing to “discover as many diverse things as possible”. We also add our benchmarking tasks (e.g., ob-
taining diamonds ) to the curriculum for oriented explorations, denoted as VOYAGER-Guided.
(5) CDHRL (Peng et al., 2022) introduces an RL agent that constructs hierarchical structures based
on causal relationships. Given that RL agents have disparate action spaces and magnitudes of
difference in episode length compared to LLM-based methods (105 ∼ 108 in DreamerV3 (Hafner
et al., 2023) and DEPS (Wang et al., 2023d) versus 101 ∼ 102 in VOYAGER and our ADAM),
we focus our comparison on the CD component of CDHRL. Detailed discussion of other Minecraft
agents that are not directly comparable can be found in Appendix C.

4.3 MAIN RESULTS

Interpretability. We evaluate the interpretability of agents by assessing their ability to construct a
causal graph. Structure Hamming Distance (SHD) (Zheng et al., 2024) can quantify the discrepancy
between the learned causal graph and the target graph as presented in Tab. 1. Despite applying
our TM and SD optimization (Section 3.4), non-embodied agents without built-in interventions fail
to achieve the optimal accuracy. For CDHRL, we directly provide ADAM’s sampling data for its
CD. CDHRL performs CD with all nodes in the causal graph, which hampers its performance as
CDHRL shows improved performance when integrated with our SD optimization. Nevertheless,
these competitive methods exhibit at least 30% errors or omissions, whilst ADAM is capable of
learning a nearly perfect causal graph. VOYAGER does not organize knowledge in a causal graph.

Efficiency. Efficiency is evaluated in the original Minecraft as shown in Tab. 2. ADAM achieves
a 2.2× speedup compared to the SOTA in the task of obtaining diamonds . Its design facili-
tates parallel sampling (Section 3.3), which significantly boosts exploration efficiency. Due to the
absence of intervention-based CD, non-embodied agents are unable to refine their causal assump-
tions, limiting their exploration speed and confining them to the lower levels of the technology tree.
Additionally, ADAM achieves higher success rate across most tasks compared to other methods.

Robustness. We assess the robustness of agents in a modified Minecraft environment where craft-
ing recipes are altered. The result is shown in Fig. 1c. In this scenario, there exists a misalignment
between the LLM’s prior knowledge and the actual game dynamics. ADAM successfully obtains
diamonds in the modified Minecraft. The baselines lack a CD approach to learn and verify
causal knowledge, and struggle with complex dependencies. The most advanced item that baseline
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Framework Wooden Tool Stone Tool Iron Tool Diamond
React w/ TM w/ SD 51± 19(2/3) 96(1/3) N/A (0/3) N/A (0/3)
Reflexion w/ TM w/ SD 60± 27(3/3) 122± 56(2/3) N/A (0/3) N/A (0/3)
AutoGPT w/ TM w/ SD 49± 20(2/3) 103± 45(2/3) N/A (0/3) N/A (0/3)
VOYAGER 8± 2(3/3) 10± 3(3/3) 27± 11(3/3) 113± 41(2/3)
VOYAGER Guided 7± 2(3/3) 11± 2(3/3) 24± 9(3/3) 75± 20(2/3)
ADAM 23± 5(3/3) 33± 8(3/3) 53± 16(3/3) 68± 21(3/3)
ADAM Parallel 12± 2(3/3) 18± 3(3/3) 29± 5(3/3) 34± 7(3/3)

Table 2: Exploration steps in different tasks. Fewer steps indicates higher efficiency. Each method
has three trials for a maximum length of 200 steps. The success rate is depicted in the parentheses.
ADAM achieves a 2.2× speed compared to the SOTA in the task of obtaining diamonds, with a
higher success rate.

VOYAGER VOYAGER w/o Meta ADAM ADAM w/o MLLM
Find a river 16± 8(2/3) N/A (0/3) 21± 16(2/3) N/A (0/3)
Gather log near river 36(1/3) N/A (0/3) 40± 23(2/3) N/A (0/3)
Smelting iron near grass N/A (0/3) N/A (0/3) 95(1/3) N/A (0/3)

Table 3: Performance of ADAM and VOYAGER in tasks requiring environmental factors E . Each
method has three trials for a maximum length of 100 steps. The success rate is depicted in the paren-
theses. VOYAGER’s performance significantly declines when metadata is not accessible, whereas
ADAM do not rely on metadata. MLLM contributes ADAM’s performance in this type of tasks.

agents manage to acquire is raw iron . In terms of exploration speed, ADAM achieves a 4.6×
speedup in obtaining raw iron . For more details, please refer to Tab. 7 in the Appendix.
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Figure 7: The causal graph learned in lifelong
learning. ADAM successfully unlocks all 41 ac-
tions we implement and discovers accurate causal
relationships.

Lifelong learning. ADAM utilizes CD meth-
ods to learn the effects of each action, obtain-
ing causal subgraphs that include new items.
These new items make it possible to perform
more unknown actions, thereby continually ex-
panding the knowledge of the game world in
a bootstrapping manner and achieves lifelong
learning. ADAM successfully learns a complex
causal graph of all 41 actions we implement, as
demonstrated in Fig. 7.

Human gameplay alignment. Avoiding the
use of human-invisible metadata demonstrates
ADAM’s alignment with human gameplay. We
compare VOYAGER, a fully text-based agent
that relies on metadata2. We test three tasks that
requires environmental factors E . The results
are shown in Tab. 3. VOYAGER’s performance
significantly declines when metadata is not ac-
cessible. ADAM performs well on tasks with E relying solely on observable information. Ablation
experiments demonstrate that MLLMs contribute to ADAM’s performance on this type of tasks.

4.4 ABLATION STUDIES

Ablation of LLM-based CD Prior knowledge and inference capabilities are key factors in ab-
lating LLM-based CD. Prior knowledge can be ablated in modified environments and enhanced
through fine-tuning LLMs on MC-QA datasets. Inference capabilities can be ablated by replac-
ing SOTA LLMs to smaller LLMs. Our result in Tab. 4 shows that ADAM primarily utilizes the
reasoning abilities of LLMs rather than relying on prior knowledge.

2The information used by VOYAGER and ADAM is compared in Tab. 5 in the Appendix.
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Model R&E (success/all) Model R&E (success/all)
gpt-4-turbo-preview 0.0 (35/35) gpt-4 0.1 (35/35)
gpt-4-turbo-preview† 0.1 (35/35) gpt-4† 0.1 (35/35)
gpt-3.5-turbo 0.2 (34/35) Llama-2-70B 0.6 (23/35)
gpt-3.5-turbo† 0.3 (32/35) Llama-2-70B† 0.9 (16/35)
Llama-2-70B-finetuned 0.4 (27/35) Llama-2-13B-finetuned 1.8 (5/35)
Llama-2-70B-finetuned† 0.9 (15/35) Llama-2-13B-finetuned† N/A (0/35)

Table 4: Ablation of LLM-based CD. † means “in a modified environment”. We record the aver-
age number of redundant/error items (represented as R&E) in the causal assumption proposed by
LLM-based CD, and the success rate after the intervention-based CD. LLMs with only strong prior
knowledge but weak inference abilities cannot perform well.

Figure 8: Average number of steps and success
rate to learn the causal subgraphs of “Collecting”
actions (e.g., gatherIronOre), which are rep-
resentative due to higher noise in their sampling
data. We perform up to 20 steps for each action,
and if the CD fails, it is counted as 20. Inter-
vention contributes up to 4.4× acceleration and
higher success rate in the exploration.

Ablation of intervention-based CD. With-
out intervention-based CD, agents are forced
to rely on exhaustive trials to learn the game
knowledge, significantly impairing their effi-
ciency and effectiveness. Our experimental re-
sults are shown in Fig. 8. Through inter-
ventions, ADAM achieves up to 4.4 × speed
and a higher accuracy compared to the ablated
group.

5 RELATED WORK

Causality in Agent. The integration of
causality (Pearl, 2009; Peters et al., 2017;
Schölkopf, 2022) into agents is primarily aimed
at enhancing the learning efficiency (Méndez-
Molina et al., 2020; Seitzer et al., 2021; Gasse
et al., 2021; Sun et al., 2021; Peng et al., 2022). Peng et al. (2022) propose CDHRL to build high-
quality hierarchical structures in complicated environments. Méndez-Molina et al. (2020) employ
the causal models to restrict the search space. Zeng et al. (2023) distinguish agents with causality in
two categories: ones relying on prior causal information and ones learn causality by causal discov-
ery algorithms (Spirtes et al., 2000; Sun et al., 2007; Zhang & Hyvärinen, 2009; Zhang et al., 2011;
Peters et al., 2014; Zhu et al., 2019). Our work aligns with the latter category and extends to a wider
range of scenarios where prior knowledge is unknown.

LLM/MLLM-Based Agent. Leveraging the generalization capabilities of LLM (Brown et al.,
2020; Touvron et al., 2023a;b) to empower agent systems with tools (Qin et al., 2023b; Schick et al.,
2024; Shen et al., 2024) is an essential task (Xi et al., 2023; Wang et al., 2023b). Schick et al. (2024)
design a framework to allow LLM to use external APIs to complete tasks. Qin et al. (2023b) build
related benchmarks to evaluate performance in such tasks. In tasks involving interaction with the
environment, Shinn et al. (2024) enhance the agent’s ability through language feedback signals. Wei
et al. (2022b) employ Chain-of-Thought prompting method to optimize the reasoning capabilities
of the LLM agent. However, the hallucination and interpretability challenges (Zhang et al., 2023)
of LLMs also accompany these systems. In this work, we prove that the perspective of causal
architecture can reduce the reliance on priors and enhance the robustness of inferences.

6 CONCLUSION

In this work, we introduce ADAM, an embodied causal agent in open-world environments. ADAM
innovatively incorporates CD with embodied exploration, significantly improving the accuracy of
CD while enhancing the efficiency and interpretability of embodied exploration. Not relying on
prior knowledge, ADAM demonstrates strong robustness, and its multimodal perception aligns with
human behavior. Our work sets a foundation for developing autonomous agents that can understand
and manipulate environments in a causal manner.
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REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our experimental setup in Section 4.1, and we use the same
OpenAI API (gpt-4-0125-preview) for all LLM-based methods to ensure comparability and repro-
ducibility. After the paper is published, we commit to releasing our code to support reproducibility.
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A LLM’S PRIOR ON MINECRAFT.

We utilize the Minecraft crafting recipes to construct an MC-QA dataset (introduced in Appendix
B), aiming to evaluate the prior knowledge of various LLMs on Minecraft. We test and determine
that 0.3 is the optimal temperature as shown in Fig. 9a. Then we test various LLMs on this dataset.
The GPT series (Ouyang et al., 2022; Achiam et al., 2023) show significantly stronger Minecraft
prior knowledge than other LLMs as shown in Fig. 9b.

Utilizing this dataset to fine-tune LLMs can improve their prior knowledge on Minecraft as shown
in Fig. 9c. On the other hand, by modifying the crafting recipes in Minecraft, we can make the
SOTA LLMs (e.g., GPT series) have no prior of this modified environment. This setup enables us
to distinctively analyze the roles of prior knowledge and inference capability as shown in Fig. 9d,
which serves as the basis of our ablation study.

(a) (c) (d)(b)

Strong
Prior

Weak Inference

Weak
Prior

GPT-4-turbo
GPT-4

In modified Game:

LLaMA2-13B-finetuned
LLaMA2-7B-finetuned

LLaMA2-13B
LLaMA2-7B

Strong Inference

GPT-4-turbo
GPT-4

In original Game:

Figure 9: (a) LLaMA2 (Touvron et al., 2023b) demonstrates optimal accuracy in answering crafting
recipes at a temperature of 0.3, measured as the ratio of correct answers to total questions. (b) Per-
formance of open-source LLMs and GPT series models, showcasing their inherent prior knowledge
of Minecraft. (c) Illustration of the improvement in performance for open-source LLMs fine-tuned
with the crafting recipe dataset. (d) Categorizing the LLMs into four types based on their prior
knowledge of Minecraft recipes and inference capabilities.

B MC-QA DATASET

Input prompt:
Q: In the game Minecraft, to craft a "diamond_sword", what materials are needed?
A: {diamond, stick}

Q: In the game Minecraft, to craft a "furnace", what materials are needed?
A: {cobblestone}

Q: In the game Minecraft, to craft a "birch_chest_boat", what materials are needed?
A: {birch_boat, chest}

Q: In the game Minecraft, to craft a "acacia_chest_boat", what materials are needed?
Answer:
A: {acacia_boat, chest}

MC-QA Dataset

Figure 10: An example of the questions in MC-QA dataset.

Minecraft is an open-world game with a high degree of freedom. Players can freely gather materials
(e.g., log ), mine ore (e.g., iron ore ), craft tools (e.g., wooden pickaxe ), and more.
Crafting recipes (e.g., planks + sticks → wood pickaxe ) are the main knowledge in
the Minecraft game, and serve as the basis for players to climb the technology tree and obtain more
advanced items.
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Given this, LLMs’ mastery of crafting recipes can reflect the strength of their prior knowledge in the
Minecraft game. We utilize the crafting recipes in Minecraft (version 1.19) to create the MC-QA
dataset. An example of the QA pairs in the dataset is shown in Fig. 10. The questions in this dataset
ask for the crafting ingredients required to obtain higher-level items in the technology tree, and the
answers are the ingredient items. LLMs need to give their answers in the specified format. The order
of the items in the answer is not required. For each question, we provide 3 examples to help LLMs
understand the QA task and the format of the answers. For situations where there are multiple ways
to craft the same item, we take them all into account to avoid the model being biased toward a fixed
understanding of the game. The dataset contains 754 QA pairs on the knowledge of obtaining items
in the Minecraft.

C AGENT IN MINECRAFT

RL explorations in Minecraft agents focus on the efficient use of data (Baker et al., 2022; Fan et al.,
2022), hierarchical RL design (Lin et al., 2021; Mao et al., 2022), innovative architecture modeling
(Hafner et al., 2023), etc. Hafner et al. (2023) use world models to achieve a general and scalable RL
without human data or curricula. Much work (Guss et al., 2019; 2021; Kanervisto et al., 2022; Fan
et al., 2022) has made different simplifications for the Minecraft environment to facilitate the RL
agent systems. The MineDojo framework (Fan et al., 2022) provides an internet-scale knowledge
database and game environments for CLIP model (Radford et al., 2021) and RL training. These
efforts provide efficient optimization for agent sampling and interaction, but there is still a gap to
commercial Minecraft games with complete game features like in VOYAGER (Wang et al., 2023a)
and our work.

The reasoning capabilities and rich prior knowledge of LLMs have contributed to much work on
Minecraft agents (Yuan et al., 2023; Zhu et al., 2023; Wang et al., 2023a; Qin et al., 2023a; Notting-
ham et al., 2023; Wang et al., 2023d;c). VOYAGER (Wang et al., 2023a) and GITM (Zhu et al.,
2023) use LLMs’ prior knowledge of Minecraft and environment feedback to complete exploration
tasks in a text-based manner. Qin et al. (2023a) leverage MLLMs to introduce visual information as
the contextual basis for action execution. These methods more or less rely on prior knowledge of
Minecraft. Our ADAM shows effectiveness even when the game rules are modified.

There are also agents that operate in non-commercial Minecraft environments and utilize frame-level
control, including Plan4MC (Yuan et al., 2023), DEPS (Wang et al., 2023d), JARVIS-1 (Wang
et al., 2023c), OmniJARVIS (Wang et al., 2024), and Optimus-1 (Li et al., 2024). They need
approximately 104 steps for a task, in contrast to the action-level control in our system, which
involves around 102 steps for a task. Furthermore, these RL methods require training stages, whereas
our system does not involve weight updates. Notably, JARVIS-1 incorporates crafting recipes as an
integral part of the system, utilizing prior knowledge rather than learning from scratch.

Due to the complexity of the Minecraft environment, Crafter (Hafner, 2022) simplifies the game
space while maintaining the game rules of Minecraft. Crafter is a 2D game environment with craft-
ing routes similar to Minecraft. Agents such as SPRING (Wu et al., 2024) and Mars (Tang et al.,
2024) have been developed on this environment.

In the original implementation of VOYAGER, the environment feedback provides detailed infor-
mation such as crafting recipe errors (e.g., ”I cannot make an iron chestplate because I need: 7 more
iron ingots.”). We retain this informative feedback in all our experiments with VOYAGER, even in
environments with modified crafting recipes where the feedback may not align with the changes.

Tab. 5 shows the environmental information used by ADAM and VOYAGER. This setup is used in
our experiments at Sec. 4.3. VOYAGER does not have a visual input and needs omniscient metadata
(Meta) which is not explicitly exposed to human players, while ADAM utilizes visual input and other
observable information to make decisions.
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VOYAGER VOYAGER w/o Meta ADAM ADAM w/o MLLM
Observation
Space

Environment Feedback,
Inventory,
Meta

Environment Feedback,
Inventory

Pixels,
Inventory

Inventory

Action
Space

Code Code Discrete Discrete

Table 5: Comparison of environmental information used by ADAM and VOYAGER. VOYAGER
does not have a visual input and needs to directly read the game information (Meta) which is not
explicitly exposed to human players, while ADAM relies on the visual input and the information
observable by human players to make decisions.

Action Type Action-Item Dependency Data Quality Skill Level
Collecting Simple Noise Low
Crafting Complex Clean High
Smelting Complex Noise High

Table 6: Three action types in our experiment setting. ”Smelting” actions have complex causal
subgraphs, often leading to omissions in LLM-based CD. ”Collecting” actions have noisy sampling
data, and the results of the LLM-based CD are often redundant. The ”Crafting” actions have complex
causal subgraphs and clean sampling data.

D IMPLEMENTATION DETAILS

D.1 PROMPT

The prompt for LLM-based CD is shown in Fig. 11, which is composed of 5 components: (1) Role
Playing, which assigns a specific role to the LLM; (2) Problem Setting, which provides specific
details of the inference task; (3) Letter Mapping, which involves mapping item names to letters, a
simplification that facilitates the formatted output; (4) Few-shot Prompting, which involves provid-
ing the LLM with several inference examples in chain-of-thought (Wei et al., 2022b) style; (5) Data
Da, which is the data collected by the interaction module for inference.

D.2 ACTION SPACE AND MOVEMENT SPACE

We have implemented 41 discrete actions and 6 movements to ensure the agent can freely explore
the Minecraft world through a diverse range of combinations. The actions can be divided into
three categories: “Smelting”, “Collecting”, and ”Crafting”. ”Smelting” actions have complex causal
subgraphs, often leading to omissions in LLM-based CD. ”Collecting” actions have noisy sampling
data, and the results of the LLM-based CD are often redundant. The ”Crafting” actions have complex
causal subgraphs and clean sampling data.

The movement space corresponds to the low-level movement control visible to human players, in-
cluding moving forward / backward, lowering / raising the agent’s coordinates and turning left /
right.

E ROBUSTNESS

Tab. 7 shows our experiment result in the modified Minecraft environment where the crafting recipes
are altered. ADAM can maintain its performance as it is equipped with CD methods, whereas agents
that rely on prior knowledge struggle to explore efficiently. The result demonstrates the robustness
and generalization capabilities of our ADAM architecture.
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You are a Minecraft game analysis assistant. Our task is to infer the effect of an action and explore the causal
relationship by analyzing the items consumed and generated before and after an action. An action is a single, atomic
action consisting of
1. "Crafting" type actions, that is, combining raw materials into an item.
2. "Collecting" type actions, that is, collecting certain items. There may be some by-products in this process.
3. "Smelting" type actions, that is, consuming fuel and raw metal materials, and obtaining smelted items. A furnace is
needed.

It's possible that the action didn't have the expected effect, or that some additional items were collected, and we'll give
multiple sampling records to ensure robustness. Such records all correspond to the execution of the same action. Your
answer will only refer to the alphabetical codes of these items.
The answer should be in the format {Cause; Effect}

(Comment: The following is an example of the Observed Item Space. "m" and "n" are for few-shot learning and are not
included in the technology tree to avoid prior)
Items involved in the game include
'a': 'log'
'b': 'planks'
'c': 'crafting_table'
'd': 'stick'
'e': 'wooden_pickaxe'
'f': 'cobblestone'
'g': 'stone_pickaxe'
'h': 'raw_iron'
'i': 'furnace'
'j': 'iron_ingot'
'k': 'iron_pickaxe'
'l': 'diamond'
'm': 'redstone'
'n': 'redstone_torch'

log corresponds to a variety of log named xx_log
planks correspond to a variety of planks named xx_planks

1. Initial items: iron_pickaxe, crafting_table ; Consumed items: ; Added items: redstone, cobblestone,
cobbled_deepslate
2. Initial items: iron_pickaxe, crafting_table ;Consumed items: ; Added items: cobblestone, redstone, andesite
3. Initial items: iron_pickaxe, crafting_table ;Consumed items: ; Added items: granite
4. Initial items: iron_pickaxe, crafting_table ;Consumed items: ; Added items: cobblestone, cobbled_deepslate
5. Initial items: iron_pickaxe, crafting_table ;Consumed items: ; Added items: redstone, cobblestone

Your inference:
Because there is no item consumption, this is a "Collecting" task. Redstone is a higher-level mineral and needs to be
collected with an iron_pickaxe ('k'). The rest of the items are considered additional items obtained during collection and
will not be considered. So my answer is:
Cause; Effect={k; m}

1. Initial items: stick, redstone, crafting_table ; Consumed items: stick, redstone; Added items: redstone_torch
2. Initial items: stick, redstone, crafting_table ; Consumed items: ; Added items:
3. Initial items: stick, redstone, crafting_table ; Consumed items: redstone, stick; Added items: redstone_torch
4. Initial items: stick, redstone, crafting_table ; Consumed items: stick, redstone; Added items: redstone_torch
5. Initial items: stick, redstone, crafting_table ; Consumed items: redstone, stick; Added items: redstone_torch

Your inference:
Because redstone and sticks are being used to craft redstone torches, this is a "Crafting" task. In addition to raw
materials, the "Crafting" task also requires crafting_table ('c'). So my answer is:
Cause; Effect={c, d, m; n}

(Our Data )
Your inference:

Figure 11: The prompt for LLM-based CD. The contents in red will be replaced in the inference
process.

F GENERALIZATION

The ADAM architecture is a general framework for embodied agents operating in various open-
world environments including Minecraft. When adapting ADAM to other application scenarios,
some modifications may be necessary:

(1) The world knowledge in Minecraft is the dependence between items and actions. Conse-
quently, in this paper, items and actions are designed as causal graph nodes. When mi-
grating to other environments, key elements related to the agent’s task objectives can be
similarly designed as causal graph nodes.
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Framework Wooden Tool Stone Tool Iron Tool Diamond
React w/ TM w/ SD 91± 34(2/3) 139(1/3) N/A (0/3) N/A (0/3)
Reflexion w/ TM w/ SD 76± 28(2/3) 120± 40(2/3) N/A (0/3) N/A (0/3)
AutoGPT w/ TM w/ SD 82± 25(2/3) 124(1/3) N/A (0/3) N/A (0/3)
VOYAGER 95± 33(2/3) 152± 43(2/3) N/A (0/3) N/A (0/3)
VOYAGER Guided 108± 35(2/3) 176(1/3) N/A (0/3) N/A (0/3)
ADAM 28± 4(3/3) 52± 14(3/3) 94± 27(3/3) 109± 34(2/3)
ADAM Parallel 15± 2(3/3) 31± 7(3/3) 54± 14(3/3) 61± 18(2/3)

Table 7: Performance in the modified Minecraft game. Each method has three trials for a maximum
length of 200 steps. The success rate is depicted in the parentheses. ADAM can maintain its per-
formance as it is equipped with CD methods, whereas agents that rely on prior knowledge struggle
to explore efficiently. The result demonstrates the robustness and generalization capabilities of our
ADAM architecture.

(2) In ADAM, the perception module utilizes a vision-based MLLM and does not rely on om-
niscient metadata. This allows the module to adapt well to other visual tasks. If conditions
permit (e.g., a robot equipped with LiDAR), the perception module can provide more pre-
cise information, potentially further improving performance.

(3) To model actions as a finite set of causal graph nodes, it is necessary to discretize the
continuous action space. The granularity of this discretization should be determined based
on the specific environment.
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