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ABSTRACT

This study proposes a novel memory-efficient recurrent neural network (RNN)
architecture specified to solve the object localization problem. This problem is
to recover the object states along with its movement in a noisy environment. We
take the idea of the classical particle filter and combine it with GRU RNN architec-
ture. The key feature of the resulting memory-efficient particle filter RNN model
(mePFRNN) is that it requires the same number of parameters to process envi-
ronments of different sizes. Thus, the proposed mePFRNN architecture consumes
less memory to store parameters compared to the previously proposed PFRNN
model. To demonstrate the performance of our model, we test it on symmetric
and noisy environments that are incredibly challenging for filtering algorithms. In
our experiments, the mePFRNN model provides more precise localization than
the considered competitors and requires fewer trained parameters.

1 INTRODUCTION

We consider the object localization problem and propose a novel GRU-like architecture to solve it.
The object localization problem aims to filter the state vector of the object from the noise in motion
and measurements. Typically standard GRU-like models (Shi & Yeung, 2018) are used to process
sequential data, e.g. to predict the next item in a sequence, and classify or generate texts, audio, and
video data. The considered object localization problem differs from the aforementioned problems
since auxiliary data about the environment and particular measurements are available. Therefore,
this additional knowledge should be incorporated into the GRU architecture properly to improve
the model performance. Such a modification can be based on the existing approaches to solve the
considered problem, which are discussed further.

One of the classical non-parametric methods to solve the object localization problem is particle fil-
ter (Gustafsson, 2010), which estimates the filtered object state from the states of auxiliary artificial
objects that are called particles. A modification of GRU and LSTM recurrent neural networks with
particle filter ingredients is presented in (Ma et al., 2020), where a particle filter recurrent neural
network (PFRNN) is proposed. The core element of PFRNN is the modified cell (GRU or LSTM)
equipped with analogs of particles and the corresponding weights of particles to estimate the filtered
state. However, PFRNN does not consider specific features of the object localization problem and
its performance can be improved with additional available data.

Therefore, we propose the novel memory-efficient PFRNN (mePFRNN) that combines the model
assumptions used in the classical filtering methods (e.g. Kalman filter and particle filter) and
parametrization from the GRU architecture. Such a combination provides more accurate state esti-
mation and improves robustness in noisy and symmetric environments. Also, the Soft resampling
procedure is used to avoid the degeneracy issue and improve the stability of the filtered states.

The main contributions of our study are the following.

1. We modified the general-purpose PFRNN model and proposed the mePFRNN model fo-
cused on the object localization problem.

2. The proposed mePFRNN model requires the same number of parameters for environments
of different sizes.
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3. We perform an extensive experimental comparison of our mePFRNN model with the exist-
ing RNN models and other non-parametric methods like the particle filter.

Related works. The object localization problem appears in a lot of applications like driving au-
tonomous vehicles (Woo et al., 2018), navigation (Barczyk & Lynch, 2012; Lim et al., 2012), image
processing (Costagli & Kuruoğlu, 2007), finance (Racicot & Théoret, 2010) and fatigue predic-
tions (Yang et al., 2017). Therefore, there are a lot of different approaches to solving it. We can split
them into two classes: non-parametric and parametric. The first class consists of classical methods
that do not require a training stage and perform filtering of the object states on the fly. Examples
of such methods are Kalman filter (Auger et al., 2013; Grewal & Andrews, 2010), and its modi-
fications like extended (Julier & Uhlmann, 1997), unscented (Julier & Uhlmann, 2004), invariant
extended (Bonnable et al., 2009) and ensembled (Houtekamer & Mitchell, 1998) Kalman filters.
Also, methods related to the particle filter, e.g. multiparticle Kalman filter (Korkin et al., 2023),
particle filters combined with genetic algorithms (Moghaddasi & Faraji, 2020), and particle swarm
technique (Zhao & Li, 2010), box particle filter (Gning et al., 2013) and others are non-parametric
filtering methods. The second class consists of parametric methods such that a pre-training stage
is necessary before starting filtering. Such methods are typically based on neural networks that are
trained on the collected historical data and then tested on the new data from real-world simulations.
Although the pre-training stage may require a lot of time, one can expect that the inference stage,
in which filtering is performed, is sufficiently fast due to modern hardware acceleration. Moreover,
since the neural network models can efficiently treat sequential data (Wang et al., 2020a; LeCun
et al., 2015), the parametric methods can provide more accurate filtering results compared to non-
parametric methods.

Although the Transformer model (Vaswani et al., 2017) demonstrates superior performance over the
considered GRU RNN in sequence processing tasks, it consumes a lot of memory to store param-
eters, requires special techniques for training (Gusak et al., 2022) and may not fit in the on-device
memory limits. The memory-efficient Transformer models (Wang et al., 2020b; Kitaev et al., 2020;
Jaszczur et al., 2021) may be a remedy for the observed issue and will be investigated in future
work.

2 PROBLEM STATEMENT

Consider the trajectory of object states encoded as a sequence of d-dimensional vectors xi ∈ Rd,
where i is an index of the time moment ti. For example, if the object’s state consists of 2D coordi-
nates and 2D velocity, then state dimension d = 4. The states are changed according to the motion
equation, which combines the physical law and the control system of the object. Formally we can
write the motion equation as follows

xi = f(xi−1,ui,ηi), (1)

where ui is a vector of control at the time moment ti, for example, external forces, and ηi is a vector
of noise corresponding to the object motion at the time moment ti. Since the object moves with
some noise, we should use additional measurements to estimate states more precisely. Typically
there are several beacons in the environment, which are used by objects to measure some quantities
that can improve their state estimate. For example, distance to the k-nearest beacons can improve
the estimate of the object’s location. Formally, denote by yi ∈ Rk a vector of measurements at time
moment ti that is related with state estimate through the measurement function g : Rd → Rk:

yi = g(xi, ζi), (2)

where ζi is the additional noise of measurement.

Object localization problem is the problem of estimating object trajectory from the given motion and
measurement functions that represent the physical law of the environment and beacons’ configura-
tion, respectively. In this study, we introduce the parametric model hθ : Rd × Rk × Rn → Rd that
depends on the unknown parameters θ ∈ Rn and performs filtering of the inexact state estimate xi

based on the additional measurements yi. Assume we have training trajectory of the ground-truth
states {x∗

i }Ni=1. Then we can state the optimization problem to fit our parametric model to the train-
ing data {x∗

i }Ni=1 and evaluate the generalization ability of the resulting model. In particular, the
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standard loss function in such a problem is the mean square error loss function

MSE =
1

N

N∑
i=1

∥hθ(xi,yi)− x∗
i ∥22 (3)

such that the motion function f and the measurement functions g give the state estimate xi and
measurement vector yi, respectively.

We further focus on the plane motion setup, where the state vector consists of 2D coordinates c ∈
R2 and a heading α ∈ [0, 2π], which defines the direction of movement, i.e. x = [c, α] ∈ R3.
Therefore, we follow (Ma et al., 2020) in slightly adjusting the MSE objective function equation 3
to treat coordinates and angles separately and compose the weighted MSE loss function:

wMSE =
1

N

N∑
i=1

∥ci − c∗i ∥22︸ ︷︷ ︸
=MSEc

+
β

N

N∑
i=1

(αi−α∗
i )

2, where [ci, αi] = hθ(xi,yi), x∗
i = [c∗i , α

∗
i ],

(4)
where β > 0 is a given weight. However, the wMSE loss function treats angles 2π − ϵ and ϵ as
essentially different while they are physically close. Thus, we propose a novel modification of the
mean squared loss function equation 3, that treats headings differently. In particular, we compare
not angles but their sine and cosine in the following way:

L(θ) = MSEc +
β

N

N∑
i=1

[
(sinαi − sinα∗

i )
2 + (cosα− cosα∗

i )
2
]
, (5)

where we use the same notation as in equation 4. Thus, we have the following optimization problem:

θ∗ = argmin
θ

L(θ),

s.t. xi = f(xi−1,ui,ηi)

yi = g(xi, ζi).

(6)

Additionally to the MSE-like loss function, we evaluate the resulting model with the Final State
Error (FSE) loss function, which reads as

FSE = ∥cN − c∗N∥2, (7)

where [c∗N , α∗
N ] = x∗

N , [cN , αN ] = hθ(xN ,yN ) and tN is a last-time moment in the considered
period. Although the FSE loss function is widely used in previous studies (Ma et al., 2020; Zhu et al.,
2020b), it may overestimate the filter performance due to the uncertainty in the filtering process. The
final coordinates may be filtered very accurately by accident while filtering the previous coordinates
may be quite poor. Thus, we focus on the MSEc loss function as the main indicator of the filter
performance.

The key ingredient of this approach is the selection of the proper parametric model hθ. Follow-
ing (Ma et al., 2020) we modify the GRU model such that it solves the object localization problem
specifically. A detailed description of our modification is presented in the next section.

3 PARTICLE FILTER

One of the most efficient non-parametric approaches to solving the localization problem is the par-
ticle filter. This filter considers artificially generated particles with states p(k)

i ∈ Rd at the i-th time
step and the corresponding weights wk

i ≥ 0,
∑K

k=1 w
k
i = 1 such that the estimate of the object state

at the i-th time step is computed as follows

x̂i =

K∑
k=1

wk
i p

(k)
i ,

where K is the number of particles. Particles’ weights are updated according to the corresponding
measurements and state updates based on the Bayes rule and likelihood estimation, see (Chen et al.,
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2003) for details. The important step in the particle filter is resampling, which corrects the updated
particle weights and states to improve the accuracy of estimate x̂i. The resampling step addresses the
degeneracy issue, which means a few number of particles have non-zero weights. This phenomenon
indicates the poor representation of the target object state. The purely stochastic resampling samples
particles’ indices from the multinomial distribution according to the updated weights and then update
particle states, respectively, see (8).

i1, . . . , iK ∼ Multinomial(w1
i+1, . . . , w

K
i+1)

p1
i+1, . . . ,p

K
i+1 ← pi1

i+1, . . . ,p
iK
i+1

wk
i+1 =

1

K
.

(8)

After resampling the resulting particle states are slightly perturbed with random noise to avoid equal
particles’ states. Since the particle filter processes sequential data through the recurrent updates of
the particles and weights, the natural idea is to incorporate a similar approach in the recurrent neural
network architecture. The particle filter recurrent neural network is proposed in (Ma et al., 2020) and
we briefly describe it in the next section to highlight the difference with the proposed mePFRNN.

4 RECURRENT NEURAL NETWORKS INSPIRED BY PARTICLE FILTER

This section presents our RNN cell based on the particle filter idea, explicitly measured data, and
beacons’ positions. Since our model is a modification of the PFRNN (Ma et al., 2020) model, we
briefly provide the main ingredients of this model.

PFRNN. Denote by K a number of particles that are emulated in the PFRNN model. Below we
consider motion x

(k)
i and measurement y(k)

i vectors corresponding to the k-th particle at the i-th
time moment, so k = 1, . . . ,K and i = 1, . . . , N . PFRNN considers the environment as a 2D array
and constructs its embedding through the following encoder subnetwork:

Conv→ ReLU→ Conv→ ReLU→ Conv→ ReLU→ Flatten→ Linear→ ReLU, (9)

where Conv is a convolution layer, ReLU denotes element-wise ReLU non-linearity, Linear denotes
a linear layer and Flatten denotes a vectorization operation that reshapes the input tensor to a vector.
The output of this subnetwork is the environment embedding vector eenv . After that, the input to
the PFRNN cell is constructed according to the following subnetwork:

x
(k)
i Linear ReLU

y
(k)
i Linear ReLU

⊙

⊙

Concatenation

ReLU Linear ReLU Linear

eenv

ReLU Linear ReLU Linear

v
(k)
i

(10)

Note that, from (10) follows that the environment embedding eenv is explicitly used in the construc-
tion the input to the PFRNN cell. The baseline PFRNN cell is presented in both a graphical way (see
Figure 1) and an analytical way (see equation (12)) for the reader’s convenience. We note that this
cell includes a reparametrization trick and updates not only the hidden states for every particle h

(k)
i

but also the corresponding weights w(k)
i that are used in the resampling step. These weights typically

correspond to the probability of the particle being equal to the ground-truth object state. However,
in our experiment such weights are the logarithm of the corresponding probabilities, therefore the
normalization step after update has the given form (see the last line in (12). After that, we adjust the
resampling step to deal with the logarithms of the weights properly, see the paragraph below.

Resampling procedure. After the inference stage in the considered RNN cells, one has to make
resampling, to mitigate the potential degeneracy problem. There are different approaches to per-
forming resampling (Li et al., 2015; Zhu et al., 2020a). The main requirement for the resampling
procedure in the parametric model is to be differentiable. Therefore, the stochastic resampling (8) is
not directly fitted to the considered model. Instead, the Soft Resampling procedure (Ma et al., 2020)
was proposed as a trade-off between the accuracy and the related costs. This approach to resam-
pling considers a mixture of the distribution induced by weights and the uniform distribution with
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probabilities 1/K. Therefore, the formula for updating weights and hidden states reads as follows.

i1, . . . , iK ∼ Multinomial(αw1
i+1 + (1− α)/K, . . . , αwK

i+1 + (1− α)/K)

h1
i+1, . . . ,h

K
i+1 ← hi1

i+1, . . . ,h
iK
i+1

wk
i+1 ←

wik
i+1

αwik
i+1 + (1− α)/K

,

(11)

where α > 0 to make the operation differentiable. Note that similar to the stochastic resampling,
the updated hidden states hk

i are slightly perturbed. Section 5 provides more details on the usage of
soft resampling in our experiments.

hi−1

ReLU
o

a

ReLU c

σ

z

σ

⊙

1−

µ Σ

Reparam
BatchNorm

LeakyReLU

⊙

⊙

vi

Linear

+ hi

wi

wi−1

+

Norm

Figure 1: Baseline PFRNN cell design, where a,o, z, c
denote the linear layers that are used in computing the
corresponding intermediate embeddings. For simplic-
ity, we skip the superscript k that indicates the particle
index. This cell updates both particle hidden states and
weights. Denote elementwise addition and multiplica-
tion by + and ⊙.

a
(k)
i =ReLU(Wav

(k)
i + ba)

o
(k)
i =ReLU(Wov

(k)
i + bo)

c
(k)
i =σ(Wc[a

(k)
i ,h

(k)
i−1] + bc)⊙ h

(k)
i−1

z
(k)
i =σ(Wz[a

(k)
i ,h

(k)
i−1] + bz)

µ
(k)
i =Wµ[a

(k)
i , c

(k)
i ] + bµ

Σ
(k)
i =WΣ[a

(k)
i , c

(k)
i ] + bΣ

ϵ ∼ N (0, I)

d
(k)
i =LeakyReLU(BN(µ

(k)
i +Σ

(k)
i ⊙ ϵ))

h
(k)
i =(1− z

(k)
i )⊙ d

(k)
i + z

(k)
i ⊙ h

(k)
i−1

p
(k)
i =Ww[oi,h

(k)
i ] + bw

w
(k)
i =p

(k)
i + w

(k)
i−1−

− LogSumExp(p
(k)
i + w

(k)
i−1)

(12)

mePFRNN. Since PFRNN encodes the environment with the convolution operation, it requires
training a number of parameters proportional to the environment size. To reduce the number of
trainable parameters, we do not use the data about an environment as input to our model. Thus, the
subnetwork (9) is removed from the mePFRNN architecture. We expect that beacons’ and obstacles’
positions, have to be implicitly extracted in the training stage of mePFRNN since the environment
is the external factor to the localization problem and stays the same over the particular trajectory.
The motion and measurement vectors corresponding to every particle are embedded into a high
dimensional space via linear layers and ReLU non-linearity. Then, the obtained embeddings are
concatenated and processed by a linear layer with LeakyReLU non-linearity. The result of the latter
operation is motion embedding e

(k)
u for every particle, which is additional input to the proposed

mePFRNN cell. The encoding procedure described above is summarized in scheme (13), which is
alternative to the scheme (10) in the baseline.

x
(k)
i → Linear→ ReLU ↘

Concatenation→ Linear→ LeakyReLU→ e
(k)
u

y
(k)
i → Linear→ ReLU ↗

(13)

Thus, mePFRNN is a voxel-independent model that can be easily used in very large environments
without increasing the number of trainable parameters. One more benefit of the proposed approach
becomes crucial if the beacons in the environment are located not in the middle of the artificially
generated voxels in the PFRNN model. These voxels compose a grid for the considered environ-
ment to identify the beacons and obstacles with convolution encoding. In this case, the convolution
operation does not adequately encode the beacons’ positions and makes further filtering more noisy.
The resulting cell is shown in Figure 2 graphically and in equations (14) analytically, where MLP
consists of two sequential linear layers and intermediate LeakyReLU nonlinearity. Note that, the
Soft Resampling procedure is also used here similar to the PFRNN model described above. Thus,
the key differences between the baseline PFRNN and mePFRNN are summarized below:
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• mePFRNN does not include the subnetwork (9) that constructs embedding of the entire
environment;

• The input to the mePFRNN cell is constructed with the subnetwork (13) instead of the more
complicated subnetwork (10);

Such modifications lead to the mePFRNN model that does not depend on the environment size and
therefore is memory-efficient with respect to the increasing environment size.

hi−1

z

σ

r

σ

Concat MLP

⊙

1−

µ Σ

Reparam
BatchNorm

LeakyReLU

Square

⊙

⊙

+

+

Norm

hi

wi

eu yi wi−1

Figure 2: The proposed mePFRNN cell. Square block
means elementwise square of the input. MLP consists
of two linear layers and LeakyReLU intermediate non-
linearity. Other notation is similar to Figure 1.

e
(k)
i =[e(k)u ,y

(k)
i ]

z
(k)
i =σ(Wz[h

(k)
i−1, e

(k)
i ] + bz)

r
(k)
i =σ(Wr[h

(k)
i−1, e

(k)
i ] + br)

µ
(k)
i =Wµ[r

(k)
i ⊙ h

(k)
i−1, e

(k)
i ] + bµ

Σ
(k)
i =WΣ[r

(k)
i ⊙ h

(k)
i−1, e

(k)
i ] + bΣ

ϵ ∼ N (0, I)

d
(k)
i =LeakyReLU(BN(µ

(k)
i +Σ

(k)
i ⊙ ϵ))

h
(k)
i =(1− z

(k)
i )⊙ d

(k)
i + z

(k)
i ⊙ h

(k)
i−1

wi =MLP (y
(k)
i )2 + wi−1−

− LogSumExp(MLP (y
(k)
i )2 + wi−1)

(14)

Alternative GRU-based models. In addition to the proposed mePFRNN model, we also propose
two approaches to exploiting the classical GRU model (see Figure 3 and equations (15)) in the object
localization problem. Namely, the EnsembleGRU model consists of many small GRU cells whose
predictions are averaged to estimate the target object state. The number of models in the ensemble
and the number of trained parameters in every model are selected such that the total number of
the trained parameters is approximately equal to # parameters in PFRNN times # particles. The
complementary approach is just to use the single GRU cell, where the number of trained parameters
is equal to # particles times # parameters in PFRNN. Both approaches are complementary to the
PFRNN and mePFRNN models since they do not exploit particles. Also, note that the input to the
GRU cell in EnsembleGRU and HeavyGRU models is the same as the input to the PFRNN cell.

hi−1

z

σ

r

σ

Linear ⊙

Linear

1−

+

⊙

tanh

⊙

+ hi

vi

Figure 3: Standard GRU cell, where z and r denote the lin-
ear layers to compute zi and ri, Linear denotes linear layers
to compute ĥi, see (15).

zi =σ(Wz[vi,hi−1] + bz)

ri =σ(Wr[vi,hi−1] + br)

ĥi =tanh(Whvi + bh+

ri ⊙ (Uhhi−1 + bu))

hi =(1− zi)⊙ hi−1 + zi ⊙ ĥi

(15)

5 COMPUTATIONAL EXPERIMENT

In this section, we demonstrate the performance of our model and compare it with alternative neu-
ral networks and non-parametric models. For training the compared neural networks we use RM-
SProp optimizer (Tieleman & Hinton, 2012) since it shows more stable convergence compared to
Adam (Kingma & Ba, 2014) and SGD with momentum (Goodfellow et al., 2016), learning rate
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equal to 5 · 10−4 and every batch consists of 150 trajectories. The maximum number of epochs
is 5000 for the considered environments. During the training stage, a validation set of trajectories
is used to identify the overfitting. Therefore, different environments require a different number of
epochs before overfitting occurs. In particular, overfitting does not occur after 5000 epochs in the
world 10 × 10. At the same time, overfitting is observed after 600 and 200 epochs in the World
18× 18 and WORLD 27× 27, respectively.

Trajectories generation procedure. To evaluate the considered methods and demonstrate the per-
formance of the proposed mePFRNN, we consider four environments, see Figure 4. Environments
world 10 × 10, World 18 × 18, and WORLD 27 × 27 are symmetric and therefore challenging
for object localization since symmetric parts can be confused by a filtering method. Environment
Labyrinth is not symmetric and medium challenging for filtering methods. Thus, the considered
filtering methods are compared comprehensively due to the diversity in the testing environments.
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(a) world 10× 10
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(b) World 18× 18
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(c) WORLD 27× 27

0 5 10 15 20 25 30
x coordinate

0

2

4

6

8

10

12

14

y 
co

or
di

na
te

(d) Labyrinth

Figure 4: Visualization of test environments. Black crosses denote beacons, and grey blocks denote
obstacles. The upper row represents the very symmetric environments that are especially challenging
for solving the localization problem. The Labyrinth environment is not symmetric and is similar to
the environment, which was used for the evaluation of filtering methods in (Zhu et al., 2020b).

To train the parametric models we need to generate a set of trajectories {x∗
i }Ni=1. Since our tests

assume that the object’s initial state is unknown, we set the initial state x∗
0 randomly for all generated

trajectories. Initial states do not intersect with obstacles. Then, every next iteration updates the
object state according to the motion equation, where external velocity u ∈ [0, 0.2] is known and
the direction is preserved from the previous step within the noise. In the case of a collision with an
obstacle, the object’s direction is changed randomly such that the next state does not indicate the
collision. To simulate engine noise, the velocity u is perturbed by ηr ∼ U [−0.02, 0.02]. To simulate
uncertainty in the object control system, the direction ϕ is also perturbed by ηϕ ∼ 2πα, where
α ∼ U [−0.01, 0.01]. The measurements yi are the distances to the five nearest beacons, which are
also noisy with the noise distributed as ζ ∼ U [−0.1, 0.1]. In the considered environments, we set
the number of time steps in every trajectory N = 100.

To train the considered parametric models, we generate 8000 trajectories, 1000 trajectories for val-
idation, and an additional 10000 trajectories for the testing stage. During the training process, the
MSE loss is computed for the validation trajectories and if the obtained value is smaller than the
current best one, then the best model is updated. This scheme helps to store the best model during
the training and avoid overfitting.

The list of compared models. We compare the proposed mePFRNN model with the following
competitors combined in two groups. The first group consists of alternative recurrent neural net-
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works that can solve the object localization problem, in particular the baseline PFRNN model
from (Ma et al., 2020), HeavyGRU, and EnsembleGRU models. Following the study (Ma et al.,
2020) we use the wMSE loss function equation 4 to train alternative neural network models and
use L loss function equation 5 to train the proposed mePFRNN model. Such a choice of training
setup highlights the benefit of the proposed loss function L. In both settings, we use β = 0.1.

The second group consists of the particle filter (PF) and the multiparticle Kalman filter (MKF).
We include these methods in the experiments to compare the performance of the parametric and
non-parametric models. The performance is measured in terms of MSEc, FSE, number of trained
parameters, training time, and inference time. Note that, non-parametric models do not require train-
ing, therefore they are more lightweight. However, to get high accuracy a lot of particles are needed
which leads to long runtime. Thus, for adequate comparison with neural methods, the classical fil-
ters were used with fewer particles to show a similar runtime as neural network-based models in the
inference mode. In addition, we use stochastic resampling in the non-parametric models and Soft
Resampling in the parametric ones. However, the Soft Resampling procedure for the non-parametric
models does not significantly change the final performance. The comparison of the aforementioned
models is presented in the next paragraph.

Discussion of the results. In experiment evaluation, we compare non-parametric and parametric
models with the four test environments described above. The obtained results are summarised in
Table 1. Also, we track the number of trained parameters, the amount of memory that is necessary
to store them, and the runtime to update the object state in one step. From this table follows that
the proposed mePFRNN model gives the best or the second-best MSEc score for the considered en-
vironments. At the same time, the FSE score is typically smaller for HeavyGRU or EnsembleGRU
in the considered environments. One more important factor is the number of trainable parame-
ters. The smaller the number of parameters, the easier embedding the model in hardware. The
mePFRNN model requires fewer trainable parameters compared with other parametric models, i.e.
PFRNN, HeavyGRU, and EnsembleGRU. The last but not least feature of the considered models is
the inference time, i.e. the runtime to update the object state from the i-th to the (i + 1)-th time
step. mePFRNN is slightly slower than PFRNN, and HeavyGRU appears the fastest model in the
inference stage. Thus, we can conclude that the proposed mePFRNN model provides a reason-
able trade-off between MSEc score, number of trainable parameters, and inference time among the
considered parametric and non-parametric models tested in the selected benchmark environments.

The number of particles chosen in Table 2 is such that the inference runtime is close to the inference
runtime of the considered neural networks. Since in Table 1 we fix the particular number of particles
in non-parametric models, we present the MSEc and FSE losses for the larger number of particles in
Table 2. It shows that if the number of particles is sufficiently large, both MSEc and FSE values are
smaller than the corresponding values for parametric models. However, such an accurate estimation
of states requires a much slower inference runtime compared to the considered parametric models.
Thus, the neural network-based filters are of significant interest since they can show better accuracy
compared to non-parametric models and provide faster updates of the object’s state.

6 CONCLUSION

We present the novel recurrent neural network architecture mePFRNN to solve the object localiza-
tion problem. It combines the standard GRU RNN, particle filter, and explicit measurements of
distances from the object to the beacons. The latter feature makes the proposed model memory-
efficient since the number of trainable parameters does not depend on the environment size. We
compare the proposed mePFRNN model with the general-purpose PFRNN model and two modifica-
tions of standard GRU RNN. The test environments consist of symmetric environments of different
sizes and the non-symmetric Labyrinth environment. Such diversity of the test environments leads
to the comprehensive comparison of the considered parametric models to solve the object localiza-
tion problem. Although mePFRNN appears slightly slower in inference than the baseline PFRNN, it
filters the object’s coordinates more precisely in the considered symmetric environments. Moreover,
mePFRNN does not exploit explicit data about the environment or the corresponding embeddings.
At the same time, the proposed mePFRNN model outperforms competitors in MSE values for the
most of considered test environments.
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Table 1: Performance comparison of the filtering methods. Mean values averaged over 10000 runs
and standard deviations in braces. The number of particles for PF and MKF is selected such that
their filtering time is close to the inference time in neural network models. Dashes indicate non-
parametric models, which do not have any trainable parameters and therefore do not consume mem-
ory. Note that we report mean MSEc and FSE values corresponding to object position only and
ignore the angle component of the state vector. To estimate statistical significance between results
of mePFRNN and competitors, we use t-test and obtain p-values that are less or equal 10−5. There-
fore, decreasing of MSEc observed almost in all considered environments is significant.

Environment Model MSEc FSE # parameters # particles Memory, Mb Inference time, ms.

world 10× 10

mePFRNN (our) 0.77 (3.97) 0.13 (0.09) 28802 30 0.46 1.0
PFRNN 1.30 (5.70) 0.05 (0.18) 99472 30 1.5 1.1

HeavyGRU 1.01 (5.31) 0.07 (0.13) 2453239 1 37 0.4
EnsembleGRU 1.24 (4.49) 0.04(0.13) 95283 30 45 4.4

PF 13.70 (25.47) 1.73 (2.81) − 200 − 2.0
MKF 10.77 (23.87) 1.37 (2.60) − 50 − 4.7

World 18× 18

mePFRNN (our) 7.08 (25.69) 0.51 (0.63) 28802 30 0.46 1.0
PFRNN 10.74 (29.57) 0.30 (0.71) 214160 30 1.6 1.1

HeavyGRU 6.83 (26.13) 0.22(0.49) 2682615 1 41 0.4
EnsemleGRU 9.79 (22.04) 0.24 (0.54) 209971 30 99 4.3

PF 74.17 (91.80) 5.73 (5.37) − 200 − 2.4
MKF 96.13 (114.14) 7.08 (6.57) − 50 − 4.6

WORLD 27× 27

mePFRNN (our) 59.65 (55.59) 5.52 (3.76) 28802 30 0.46 1.0
PFRNN 68.28 (64.16) 5.86 (3.96) 465392 30 7.1 1.1

HeavyGRU 73.36 (67.87) 6.22 (3.99) 3169367 1 48 0.4
EnsembleGRU 67.41 (59.13) 5.86 (3.67) 461203 30 220 4.3

PF 181.75 (171.81) 11.09 (6.76) − 200 − 2.8
MKF 200.36 (201.07) 12.02 (7.60) − 50 − 6.8

Labyrinth

mePFRNN (our) 1.43 (13.27) 0.30 (0.24) 28802 30 0.46 1.0
PFRNN 6.26 (29.28) 0.18 (0.11) 307696 30 2.5 1.1

HeavyGRU 1.78 (13.80) 0.12 (0.11) 2838263 1 45 0.4
EnsembleGRU 5.57 (5.66) 0.12 (0.08) 303507 30 135 4.4

PF 87.23 (163.00) 4.74 (6.92) − 200 − 1.8
MKF 77.90 (169.20) 4.19 (7.40) − 50 − 4.4

Table 2: Dependence of the PF and MKF performance and inference time to update the state vector
on the number of particles. The more particles are used in these filters, the more accurate trajectories
are recovered and the slower filtering is. Here we focus only on the loss functions that evaluate the
accuracy of object coordinates filtering.

Environment Filter # particles MSEc FSE Inference time, ms.

world 10× 10

PF 200 13.70 (25.47) 1.73 (2.81) 0.8
MKF 50 10.77 (23.87) 1.37 (2.60) 4.7

PF 10000 0.58 (3.67) 0.20 (0.09) 45
MKF 10000 0.82 (3.75) 0.20 (0.03) 58

World 18× 18

PF 200 74.17 (91.80) 5.73 (5.37) 2.4
MKF 50 96.13 (114.14) 7.08 (6.57) 4.6

PF 10000 3.04 (18.24) 0.22 (0.51) 48
MKF 10000 3.25 (13.89) 0.21 (0.11) 66

WORLD 27× 27

PF 200 181.75 (171.81) 11.09 (6.76) 2.8
MKF 50 200.36 (201.07) 12.02 (7.60) 6.8

PF 10000 74.86 (79.48) 5.94 (5.06) 37
MKF 10000 55.83 (52.68) 5.16 (3.93) 50

Labyrinth

PF 200 87.23 (163.00) 4.74 (6.92) 1.8
MKF 50 77.90 (169.20) 4.19 (7.40) 4.4

PF 10000 1.53 (15.06) 0.50 (0.02) 40
MKF 10000 1.50 (14.81) 0.50 (0.03) 90

REPRODUCIBILITY

To reproduce the presented results, we attach the source code in zip-archive format with README
file inside. This file consists of comprehensive instructions on running code and corresponding
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hyperparameters for both considered models and optimizers. Upon acceptance, the source code will
be released in the public GitHub repository.
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