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ABSTRACT

Aligning machine representations with human understanding is key to improving
interpretability of machine learning (ML) models. When classifying a new image,
humans often explain their decisions by decomposing the image into concepts and
pointing to corresponding regions in familiar images. Current ML explanation
techniques typically either trace decision-making processes to reference prototypes,
generate attribution maps highlighting feature importance, or incorporate inter-
mediate bottlenecks designed to align with human-interpretable concepts. The
proposed method, named COMiX, classifies an image by decomposing it into
regions based on learned concepts and tracing each region to corresponding ones
in images from the training dataset, assuring that explanations fully represent the
actual decision-making process. We dissect the test image into selected internal
representations of a neural network to derive prototypical parts (primitives) and
match them with the corresponding primitives derived from the training data. In
a series of qualitative and quantitative experiments, we theoretically prove and
demonstrate that our method, in contrast to post hoc analysis, provides fidelity
of explanations and shows that the efficiency is competitive with other inherently
interpretable architectures. Notably, it shows substantial improvements in fidelity
and sparsity metrics, including 48.82% improvement in the C-insertion score on
the ImageNet dataset over the best state-of-the-art baseline.

1 INTRODUCTION

Neural networks (NNs) have been successfully applied across various computer vision tasks, achieving
notable results in safety-critical domains such as medical image classification (Huang et al., 2023),
autonomous driving (Geiger et al., 2012), and robotics (Robinson et al., 2023) amongst others.
However, explaining their decisions remains an ongoing research challenge (Samek et al., 2021).

The two key factors in interpreting neural network decisions are: (1) representing the reasoning behind
the prediction in human-understandable terms and (2) ensuring that the explanations accurately reflect
the underlying computations of the neural network. Beyond their face value, such interpretations can
also help meet the legal requirements. The recently adopted EU AI Act (EUA, 2024) mandates that
individuals should fully understand high-risk AI systems, enabling them to monitor these systems
effectively, specifically requiring the ability to ‘correctly interpret the high-risk AI system’s output’.

Most existing explanation methods address this problem using attribution-based techniques, which
highlight the parts of the input that contribute to a particular decision (Selvaraju et al., 2017; Chattopad-
hay et al., 2018; Omeiza et al., 2019). However, these methods lack reliability as their explanations
have been shown to be sensitive to factors which do not contribute to the model prediction (Kin-
dermans et al., 2019). To address this issue, concept- and prototype-based explanations have been
proposed, which aim to link the decision to examples that illustrate the underlying concepts (Kim et al.
(2018); Ghorbani et al. (2019); Koh et al. (2020); Tan et al. (2024)). Nevertheless, such explanations
have also been demonstrated to be insufficient for human understanding as they do not point to the
reasons why the input is linked to the associated concept prototypes (Kim et al., 2016).

Studies of human understanding show that concepts can be decomposed into smaller constituents
representing particular properties. These subconcepts can then be exemplified by the individual
instances called prototypes (Murphy, 2004). In this work, we propose a concept-based interpretable-
by-design method, which highlights common class-defining features between the input image and the
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Figure 1: Humans often make sense of new or complex objects by comparing their parts to previously
encountered prototypes (Smith et al. (1974)). For example, when describing something unfamiliar,
people tend to point out resemblances between parts of the new object and familiar prototypes by
stating that ‘this part of the object looks like that other one I have seen before’. We propose a method
to classify an image by decomposing it into regions based on learned concepts and tracing each
region to the corresponding regions in images from training datasets. We refer to such interpretations
as to ’COMiX panels’

samples in the training dataset. This approach goes beyond attribution map predictions and presents a
model, by design, that traces the decision to the original training data. Such decision-making process
can be motivated by a number of safety-critical applications, for example, medical data analysis,
where a doctor wants to find out the aspects that make this image similar to the previous ones.

We illustrate the idea of the proposed method, called COMiX, in Figure 1. For every test sample,
we predict the output by linking them to a set of features in the training data. This link, by design,
provides interpretations through the relationship between the testing image and the samples from
the training set. This idea also extends to counterfactual interpretations, which demonstrate how the
test sample relates to the classes that the model did not predict. It can also address the diagnostics
of the misclassification cases, attributing the misclassification to the training data conditioned on
class-defining features. We follow the convention from Rudin (2019) which contrasts post hoc
explainability with ante hoc interpretability. COMiX is not post hoc and the interpretability comes
from the decision-making. We formulate the following desiderata and demonstrate, in sections 3.3
and 4.2 how COMiX meets the demands of:

• Fidelity: The method should faithfully and wholly reflect the decision-making procedure,
which is achieved by-design.

• Sparsity: For meaningful interpretation, the given class should activate only a handful of
concepts. We enforce sparsity by restricting the decision-making to class-defining features.
We also measure sparsity in Section 4.2 against the standard ViT (Dosovitskiy et al., 2021)
baseline.

• Necessity: The concept is important for making the decision and its presence in the input is
necessary. We evaluate this using the causal matrices (Petsiuk et al., 2018) in Section 4.2.

• Sufficiency: The concept presence in the input is sufficient for making the given decision.
We present the proof in Section 3.3

The contributions of our paper are as follows:

• We propose a novel method, called COMiX, which reliably points prototypical regions in a
testing image and matches them to regions in training images.

• Based on this method, we demonstrate how this method can be built upon existing inherently
interpretable architectures with an additional value of concept discovery.

• We demonstrate, in a number of settings, the efficiency of COMiX through a series of
qualitative and quantitative experiments, showing the advantages of the method over existing
baselines in terms of fidelity and sparsity.
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2 RELATED WORK

Explainable and interpretable AI. The early methods for neural network post hoc explanations,
such as the work by Simonyan et al. (2013) and Grad-CAM (Selvaraju et al. (2017)), were grounded
in the idea of differentiating through the model. Other important backpropagation-based models
include Bach et al. (2015); Sundararajan et al. (2017). Perturbation-based methods, such as Ribeiro
et al. (2016); Lundberg & Lee (2017); Petsiuk et al. (2018); Štrumbelj & Kononenko (2014), use
perturbations to figure out input features’ contributions. However, such a line of research is limited
in its ability to capture the true inner workings of the original model (Rudin, 2019). To address
this concern, a number of by-design interpretable machine learning models have been proposed,
presenting the interpretable architectures (Böhle et al. (2022; 2024)), concept-bottleneck models (Koh
et al. (2020); Shin et al. (2023); Schrodi et al. (2024); Losch et al. (2019); Qian et al. (2022)) and
prototype-based interpretations (Chen et al., 2019; Donnelly et al., 2022; Angelov & Soares, 2020).
Fel et al. (2023b) tackles a similar problem to the one in this paper: first, automatic extraction of
concepts and then highlighting the similarities between such concepts and the testing image. However,
the main conceptual difference between Fel et al. (2023b) and COMiX is that this work aims for
by-design explanation of the decision-making while Fel et al. (2023b) addresses the problem of post
hoc analysis. In contrast to these works, the described method is both inherently interpretable and
offers interpretation through the training data.

Concept discovery. Closely related to the studied problem interpretation is the challenge of concept
discovery, motivated by the neuroscience studies in human reasoning (Bruner et al., 1957). Kim
et al. (2018) proposed a paradigm of concept activation vectors. Another study by Ghorbani et al.
(2019) proposes extracting visual concepts through segmentation. Concept bottleneck models (Koh
et al., 2020; Shang et al., 2024; Sheth & Ebrahimi Kahou, 2023; Havasi et al., 2022) introduce
constraints into training so that the classifier is limited to using human-understandable features.
Similar to these models, COMiX also leverages concept discovery, where the concepts are individual
interpretable classifier features. On the contrary, we do not constrain the classifier to learn the
human-understandable features and instead project the learned features into human-understandable
space. In addition, COMiX traces these concepts back to the training data and provides inherent,
by-design, interpretations, which have not, to the best of our knowledge, provided in the existing
literature. ProtoPNet method (Chen et al. (2019)) is a well-known baseline for concept discovery
through patch prototypes. It has been further developed in a number of works such as Donnelly
et al. (2022); Ma et al. (2024); Sacha et al. (2023); Hase et al. (2019). Tan et al. (2024) propose to
combine post hoc explainability methods with transparent concept-based reasoning. Bontempelli
et al. (2022) analyses the problem of attainment of confounders within ProtoPNet and addresses it
with human-in-the-loop model debugging.

Evaluation of interpretability. Hesse et al. (2023) propose a synthetic dataset and benchmark for
part-level analysis of explainable models for image classification. Fel et al. (2023a) propose a set of
metrics for explainable AI which assesses the quality of attribution-based explanations. They use
the Insertion and Deletion metrics from Petsiuk et al. (2018) for attribution assessment. Important
desiderata for concept extraction include sparsity of the outputs: not only do these outputs need to
faithfully reflect the decision-making, but only a handful of concepts need to be activated for every
testing image. To measure this ability, we leverage the metrics from the sparsity literature. Diao
et al. (2022) propose a new PQ index metric, which measures the representation sparsity. One of the
aspects, however, is that most of these metrics target the problem of attribution-based explanations.
In our case, however, we combine concept-based and inherent attribution-based explanations, which
allows us to evaluate the results using both C-insertion and C-deletion as well as the sparsity of
concepts.

3 COMPOSITIONAL EXPLANATIONS USING COMIX

An overview of COMiX is presented in Figure 2. The figure demonstrates an example where a single
Class Defining Feature (CDF) is used for prediction. For every test image, the final decision-making
step aligns with human-interpretable reasoning: ’This image is classified as a dog because this
region of the image resembles the corresponding region of this training image’. This explanation
fully corresponds to the underlying computations, providing a faithful and complete representation
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Figure 2: COMiX method overview.

of the decision process, i.e. not an approximation of the computation. We train a B-cos network,
an inherently interpretable model, on the training data. Using the train features from this encoder,
we compute the CDFs. During inference, we project the test image into the CDF space using a
pseudo-label. For each CDF feature, we retrieve the closest matching training data point. Projecting
the CDF features into image space allows us to localize the prototypical regions in the test image that
correspond to the training data. The final prediction is obtained through majority voting of the labels
assigned by each CDF feature.

3.1 PRELIMINARIES: B-Cos ARCHITECTURE

A B-cos encoder generates a reliable explanation of its computation. B-cos networks are neural
networks in which all the linear layers (along with activations) are replaced by B-cos layers. For
more details on the formulation and training of these networks, we refer the reader to Böhle et al.
(2022; 2024) and to Appendix A. Operation of a B-cos layer at a node for an input x and weights w
leading to the node is given by

B-cos(x;w) = ∥x∥ · ∥w∥ · |cos(∠(x,w))|B · sign (cos(∠(x,w))) , (1)

where B is a hyper-parameter that influences the extent to which alignment between x and w
contributes to the magnitude of the output. Replacing linear layers with B-cos layers removes the
need for other explicit non-linearity while training the network. Given an input, B-cos layer becomes
a linear layer followed by a scalar multiplication (the cosine score: Equation 1). As each layer
becomes a linear operation, the neural network collapses into a single linear transform that faithfully
summarises the entire model computations. Moreover, the B-cos layers introduce alignment pressure
on their weights during optimization. For the output of a node to be high, the input must align well
with the node’s incoming parameters, indicated by a high value of cos(∠(x,w)). In short, we choose
the B-cos network for two reasons: (a) B-cos has an input-dependent non-linearity which collapses
the encoder computations into a linear transformation for a test sample, and (b) the collapsed linear
operation (i.e., matrix) is aligned to the input sample when the output is high.

Given an input image x, (L + 1)-layer B-cos network collapses into a linear layer. This matrix is
aligned with the input if the output is high. The (L+ 1)-layer transformation can be presented as a
shortcut representation

W1→(L+1)(x; θ) = W(L+1) ◦WL... ◦W1(x; θ), (2)

The final output is obtained as

f(x; θ) = W1→(L+1)(x; θ)x, (3)
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We modify the previous formulation of B-cos to get the explanation of features that are activated by
the input. Previous work has also shown that B-cos transformers inherently learn human-interpretable
features. We compute the explanation for a feature i in the Lth layer as W1→L(x; θ)

i.

3.2 COMPOSITIONAL EXPLANATIONS USING PROTOTYPES (COMIX)

We present the complete methodology in Algorithm 1. Hereafter argx topk[·] denotes the generalisa-
tion of the argmaxx[·] operator where the maximum is replaced with top k values. The algorithm
starts (Step 1) with calculation of embeddings W1→L(x; θ) (Encoder stage in Figure 2). It proceeds
with the pseudo-label prediction (Step 2), and the selection of the CDFs for a given pseudo-label
(Step 3). The per-feature predictions are calculated from the CDFs for top M CDFs for the pseudo-
label and K nearest neighbours (Step 4). In Step 5, we calculate the corresponding explanations.
It is important to see that instead of one label the method gives a number of predictions, one per
every feature and per every nearest neighbour. Further in the experimental section, we calculate the
aggregated prediction as a mode of the prediction set G(x; θ).

Algorithm 1: Compositionally explainable classifier COMiX

Data: Image x; training dataset D;
class-defining features PC = {P c ∀c ∈ C}; a number of features M to be explained;
a number of nearest neighbours K

Result: M ×K per-feature predictions G(x, θ) = {gi, j(x; θ)}i∈[1...PC ],j∈[1,K];
explanations E(x;D, PC) for retrieved concepts

1. Calculate W1→L(x; θ) as per Equation (2)

2. Predict the nearest-neighbour pseudo-label class using Equation (5)

3. Using the pseudo-label, select the top M scalar class-defining features P g̃(x;θ) (see
Equation (7)

4. Calculate the per-feature predictions G(x; θ, PC) from the class-defining features P g̃(x;θ)

according to Equations (9) and (10)

5. Calculate the explanations for the K nearest neighbours for every class-defining feature
according to Equation 11

We define a training dataset D = {d1,d2, . . .dn} which contains a set of reference image samples,
annotated by the labels L = {l1, l2, . . . ln} from a label set C as l(di) = li ∀i ∈ [1, n].

We focus our experiments on the final layer and analyse its properties through the lens of transforma-
tion W1→L, which has shape CL × (W ·H ·D). Here CL is the number of features in the last layer
(Lth layer). The per-feature attribution explanations for a given input x is given by s·L(x; θ) defined
as follows:

W1→L(x; θ) =
(

s1L(x; θ), s2L(x; θ), . . . , sCL

L (x; θ)
)T

, (4)

Step 2 uses the following equation to compute the pseudo-label class:

g̃(x; θ) = l(argmin
d

{ℓ2(W1→L(x; θ)x,W1→L(d; θ)d) ∀d ∈ D}) (5)

In Step 3, for the dataset D, we calculate the top M scalar class-defining features P c for class
c ∈ C by using maximum mutual information:

F = {W1→L(d, θ)d ∀d ∈ D}, Fj = {sjL(d, θ)d ∀d ∈ D}, (6)

P c = {argj topMI(Fj , l(Fj) = c) ∀j ∈ [1 . . . CL]}, (7)
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This is a British shorthair cat as this part looks like this one from this image This is a Green Violetear as this part looks like this one from this image

Figure 3: Examples of COMiX panel interpretations for Oxford-IIIT Pets (left) and CUB-200-211
dataset (right).

where c ∈ C is a label for class c, l(Fj) is a ground-truth label operator for the feature Fj , and the
mutual information I(X,Y ) is defined as

I(X,Y ) =
∑

⟨x,y⟩∈⟨X,Y ⟩

p(x, y) log

(
p(x, y)

p(x)p(y)

)
. (8)

The introduction of pseudo-labels is necessary for the selection of a small number of CDFs and
therefore restricting the explanation to a small number of features. They constitute the initialisation
for the decision-making process, which allows bootstrapping the selection of class-defining features.

Step 4 calculates the per-feature predictions G(x; θ, PC) through the following equations:

G(x; θ, PC) = l(D∗(x, θ, PC)), (9)

D∗(x, θ, PC) = {argd topK{−ℓ2([W1→L(x; θ)x]f , [W1→L(d; θ)d]f ) ∀d ∈ D}}f∈P g̃(x;θ) (10)

In Step 5, explanations for the CDF are calculated using the following equations:

E(x;D, PC) = E(x;D, P g̃(x;θ)) = {
〈
siL(xi, θ), s

i
L(d

nearest
i , θ)

〉
∀i ∈ P g̃(x;θ)}, (11)

where the training samples’ features, nearest to a class-defining feature of the testing image x,
are calculated as dnearest

i = argd topK{ℓ2((W1→L(d; θ)d)i, (W1→L(x; θ)x)i),∀d ∈ D∗} and
siL(d, θ) is i-th row of W1→L(d, θ)}.

3.3 DEMONSTRATION OF MEETING THE DESIDERATA

We define the criterion of sufficiency of the explanation and demonstrate how and in which conditions
we meet this criterion. In Table 5 the experimental section, we also outline how COMiX addresses the
requirements of sparsity. We address the question of fidelity experimentally, by measuring insertion
and deletion metrics in Section 4.2.

We address necessity (i.e., presence of the elements of the explanation necessary for the decision
making) of the explanations E(x,D, PC) from Equation 11 by visualising the elements of exact
same nearest-neighbour samples that are present in the decision-making procedure in Equation 10.

We define sufficiency of the explanations E(x;D, PC) in a way that the same explanation would
imply the same output:

∀x,x′E(x′;D, PC) = E(x;D, PC) =⇒ G(x′; θ,D, PC) = G(x; θ,D, PC) (12)

Theorem 1. Assume g̃(x; θ) = g(x; θ) ∀g(x; θ) ∈ G(x; θ). Then the explanation E(x;D) is
sufficient for the prediction G(x; θ,D) according to Algorithm 1.

Proof. Suppose that E(x′;D, PC) = E(x;D, PC) and G(x′; θ,D, PC) ̸= G(x; θ,D, PC) for
some x,x′. Using the assumption that g̃(x; θ) = g(x; θ) ∀g(x; θ) ∈ G(x; θ), one can note that the
two sets D∗(x, θ, PC),D∗(x′, θ, PC) cannot possibly be the same as the labels of the two sets are
different and the same training datum d cannot have two different labels, i.e. G(x′; θ,D, PC) ̸=
G(x; θ,D, PC) means that D∗(x, θ, PC) ̸= D∗(x′, θ, PC). This means that the explanations
E(x,D, PC) and E(x′,D, PC) are calculated in Equation 11 over two different subsets of training
samples and therefore cannot possibly be the same. Therefore, we can see that, by contradiction,
Equation 12 holds true for Algorithm 1.
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Table 1: Evaluation of performance against ProtoPNet (Chen et al. (2019)), B-Cos (Böhle et al.
(2024)) and common deep-learning baselines on CUB-200-2011 (full images), the values denoted by
∗ are obtained from Donnelly et al. (2022)

Architecture Baseline ProtoPNet B-cos COMiX

ResNet34 (He et al. (2016)) 76.0∗ 72.4∗ 74.3 73.8
ResNet152 (He et al. (2016)) 79.2∗ 74.3∗ 76.5 76.2
DenseNet121 (Huang et al. (2017)) 78.2∗ 74.0∗ 73.6 73.2
DenseNet161 (Huang et al. (2017)) 80.0∗ 75.4∗ 76.1 76.1

Table 2: Evaluation of performance against B-Cos (Böhle et al. (2024)) and baseline ViT (Dosovitskiy
et al. (2021)), K-NN refers to the baseline of B-cos + K = 3 nearest neighbours, pretrained on
ImageNet

Dataset ViT B-cos k-NN COMiX

Oxford-IIIT Pets 90.32± 0.03 89.32± 0.13 89.23± 0.11 87.73± 0.21
CUB-200-2011 79.62± 0.04 79.23± 0.08 78.98± 0.06 74.14± 0.18
Stanford Cars 90.72± 0.32 86.53± 0.31 87.95± 0.24 86.81± 0.24
CIFAR-10 93.34± 0.08 93.10± 0.15 93.28± 0.09 91.21± 0.19
CIFAR-100 78.61± 0.03 76.07± 0.06 74.23± 0.04 76.42± 0.12
ImageNet 78.90± 0.24 77.78± 0.24 75.16± 0.24 74.28± 0.38

4 EXPERIMENTS AND DISCUSSION

In this section, we evaluate COMiX through a series of quantitative and qualitative experiments. We
assess the model’s performance on standard benchmarks (accuracy, fidelity, and sparsity) to validate
the method’s effectiveness. We compare the accuracy of COMiX with other baseline methods. We
also show the robustness of the model performance across different backbones. We demonstrate
the fidelity of COMiX by evaluating the method using causal matrices (Ghorbani et al. (2019)).
Additionally, we present qualitative analyses by visualizing the prototypical regions identified during
inference, providing insights into the interpretability and decision-making process of the model.
These experiments highlight the model’s ability to provide transparent and faithful explanations while
maintaining competitive accuracy.

Figure 3 shows the explanation generated by the method using only one evidence sample and
one feature alone used for prediction. The second image in the panel shows the super-pixel like
segmentation generated based on the dominant CDF feature for every pixel (argmaxi{siL(x, θ)}∀i ∈
(s1L(x, θ), · · · , siL(x, θ)), · · · s

CL

L (x, θ)). We present more interpretation examples in Appendix E.

4.1 DATASETS

Datasets We train and evaluate the presented model on a number of commonly-used computer
vision datasets. CIFAR-10&100 (Krizhevsky et al., 2009) contain generic natural images from 10 and
100 diverse classes respectively. CUB-200-2011 (Welinder et al., 2010) is a commonly used dataset
for evaluating interpretable vision models, which contains 200 fine-grained classes of birds. Stanford
cars dataset (Krause et al., 2013) contains 196 classes of cars. Oxford-IIIT Pets (Parkhi et al., 2012)
contains a fine-grained collection of images of 37 classes of cats and dogs. Finally, we present the
results on ImageNet (ILSVRC 2012) (Russakovsky et al., 2015) which has 1000 diverse classes.
Baselines We compare COMiX to the following well-known baselines: (1) Standard architectures
such as ResNet He et al. (2016), DenseNet Huang et al. (2017) and ViT Dosovitskiy et al. (2021)
(2) the B-Cos counterparts of the aforementioned architectures (Böhle et al., 2022; 2024) and (3)
a number of interpetable and explainable ML methods including ProtoPNet (Chen et al., 2019),
Deformable ProtoPNet (Donnelly et al., 2022) and CAM (Zhou et al., 2016).
Experimental setup We pretrain the backbone B-cos models on ImageNet (Russakovsky et al.,
2015) and then on target datasets. The details of the experimental setup, hardware configuration and
hyperparameters are described in Appendix B.
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Table 3: Interpretability vs accuracy, % (adopted from Donnelly et al. (2022), all values except from
ViT, B-cos, and COMiX, come from there)

Interpretability Method CUBS Method Cars

None ViT
(Dosovitskiy et al. (2021)) 79.6

ViT
(Dosovitskiy et al. (2021)) 92.72

Part-level
attention

TASN
(Zheng et al. (2019)) 87.0

FCAN
(Liu et al. (2016))

RA-CNN
(Fu et al. (2017))

84.2
87.3

Part-level
attention

+ Prototypes

ProtoPNet
(Chen et al. (2019))

Def. ProtoPNet
(Donnelly et al. (2022))

81.1
86.4

ProtoPNet
(Chen et al. (2019))

Def. ProtoPNet
(Donnelly et al. (2022))

77.3
86.5

Object-level
attention

CAM
(Zhou et al. (2016))

CSG
(Liang et al. (2020))

B-cos
(Böhle et al. (2024))

63.0
78.5
79.2

B-cos
(Böhle et al. (2024)) 86.5

Object-level
attention

+ Prototypes
COMiX 74.0 COMiX 86.80

Accuracy evaluation Table 1 shows that COMiX provides competitive accuracy compared to the
baselines of B-Cos/ViT on the full-frame CUB-200-2011 dataset (Welinder et al., 2010). In all cases,
the accuracy is calculated as the mode of the values of output predictions G(x, θ). In this experiment,
the B-cos architecture for both B-cos and COMiX mirrors the corresponding deep-learning baseline,
i.e. B-Cos/ViT is a B-cos counterpart of the ViT model as described in Böhle et al. (2024). Table
1 does not list the ViT results. This is due to the reason that, as suggested in Xue et al. (2022),
ProtoPNet cannot be used with the ViT architecture without substantial modifications.

In Table 2, we evaluate the performance of the model on a variety of datasets using just the B-cos/ViT
backbone as outlined in Appendix B. Additionally, in Appendix C, we show that surprisingly, COMiX
provides impressive capabilities for learning without finetuning on the target data, opening up the
potential for adaptation of the method to the new datasets without finetuning. In this setting, the
models were pretrained on ImageNet, and then, during the inference stage, matched by the nearest
neighbours procedure as described in Algorithm 1. The k-NN results were calculated for k = 3 using
the B-cos backbone.

In Table 3, we demonstrate the trade-off between interpretability and accuracy across the categories.
Following Chen et al. (2019), we compare different types of explainable and interpretable models.
Many of the post hoc attribution-based methods, as well as original B-cos model, provide interpreta-
tion through object-level attention, while patch-based methods such as, notably, ProtoPNet (Chen
et al. (2019)) are referred to as part-level attention methods.

4.2 EVALUATION OF THE INTERPRETABILITY PROPERTIES

Table 4 presents the evaluation of Average Drop, Average Increase, C-insertion, and C-deletion metrics
(Ghorbani et al. (2019)), which are the standard metrics to quantify fidelity of the explanations both
for ante hoc (by-design) and post hoc methods. The average drop (increase) metrics are calculated
as the drop (increase) in performance of prediction when we drop (add) 50% of the pixels with the
lowest (highest) attribution. The C-insertion and C-deletion metrics represent the area under the
curve for insertion (deletion) of pixels in the increasing (decreasing) order of pixel attribution value.

The property of sparsity is crucial for selecting meaningful class-defining features. Low sparsity
would mean that more CDF need to be selected to meaningfully represent the class. To measure
sparsity, we use the PQ-Index sparsity measure (Diao et al. (2022)). For the vector w ∈ Rd it
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Table 4: Evaluation of Average Drop, %, Average Increase, %, C-insertion and C-deletion metrics
(results marked with ∗ are taken from Zeng et al. (2023))

Method Drop ↓ Increase ↑ C-insertion ↑ C-deletion ↓

Grad-CAM (Selvaraju et al. (2017)) 41.5∗ 20.8∗ 0.4626∗ 0.1110∗

Grad-CAM++ (Chattopadhay et al. (2018)) 40.8∗ 22.3∗ 0.4484∗ 0.1179∗

SGCAM++ (Omeiza et al. (2019)) 41.1∗ 23.4∗ 0.4504∗ 0.1169∗

Score-CAM (Wang et al. (2020)) 35.6∗ 29.5∗ 0.4929∗ 0.1099∗

Group-CAM (Zhang et al. (2021)) 35.7∗ 29.7∗ 0.4930∗ 0.1108∗

Abs-CAM (Zeng et al. (2023)) 34.2∗ 30.1∗ 0.4949∗ 0.1096∗

COMiX 41.3 36.5 0.7365 0.1214

Table 5: Evaluation of sparsity using PQ-index (larger is better) between COMiX and ViT (Dosovit-
skiy et al. (2021))

Method/
Dataset

Oxford-IIIT
Pets CUB-200-2011 Stanford Cars CIFAR-10 CIFAR-100

ViT 0.21 0.42 0.61 0.63 0.45
COMiX 0.26 0.52 0.67 0.65 0.48

is defined as Ip,q(w) = 1 − dq
−1−p−1 |w|p

|w|q , where |w|q > 0 is a ℓq norm, 0 < p ≤ 1 < q are
hyperparameters. In our analysis, we use the values p = 1, q = 2.

Figure 4: Final prediction
vs pseudo-label confusion
matrix on Oxford-IIIT Pets
dataset

In Table 5, we measure the backbone B-cos/ViT architecture spar-
sity for the extracted features W1→L(x, θ)x against its standard ViT
counterpart, trained on the target data. We found that COMiX, based
on B-cos/ViT features, benefits from better feature sparsity compared
to the ViT baseline, which justifies the use of class-defining features.

Analysis of the impact of pseudo-labels In Figure 4, we present the
confusion matrices for the Oxford-IIIT Pets dataset, which compares
the final prediction vs pseudo-labels. The extended version of this
figure which compares between the true labels, the final predictions,
and the pseudo-labels is included in Appendix F.

Testing image Class-defining feature interpretations (testing image)

Class-defining feature interpretations (training images)

Bombay Bombay Bombay Bombay Boxer Bombay Bombay Bombay
Training data

Figure 5: Interpretation for a sample image from the Oxford-IIIT Pets dataset: the model correctly
classifies the input image as ’Bombay cat’. This visualization demonstrates the similarity between
the test image and seven training images of the ’Bombay cat’ class and one image of a boxer dog
(highlighted in red), offering insight into the model’s decision-making process.
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(a) CUBS (b) Oxford-IIIT Pets (c) CIFAR-10 (d) Stanford Cars (e) CIFAR-100

Figure 6: The performance of COMiX with different choice of hyperparameters. Each of the curves
corresponds to a value of K (K nearest neighbours), and the horizontal axis shows the number of
features M used for prediction.

4.3 DEMONSTRATION OF PROTOTYPICAL EXPLANATION

We qualitatively show the examples for the prototypical explanation in Figure 5. In this figure as
well as in Appendix E, we demonstrate that on a number of use cases, the model can present both
factual and counterfactual interpretations for a number of complex scenarios. The reader can note the
correspondence between the features of the training and testing image attribution maps arising from
explanations by class-defining features.

4.4 PARAMETER SENSITIVITY ANALYSIS

In Figure 6 we compare the performance of the method depending upon the number K of nearest
neighbours as well as the number of features M used for the prediction. This analysis shows that there
is an inherent trade-off between the performance and the conciseness of explanation. In Appendix
D we also show similar experimental results in a setting similar to the state-of-the-art work. In this
setting, instead of performing the predictions feature-by-feature as in Algorithm 1, Step 4, we show
the prediction performance using ℓ2 distances over the whole set of CDFs as common in the current
literature. This creates another trade-off: while it may increase the performance, the downside of
such an alternative approach would be that the explanations, and the decisions, would not follow
directly from the given features but from their combination.

5 CONCLUSION

COMiX demonstrates a novel form of interpretable machine learning, which performs decision-
making through the similarity of the concepts within the test image to the corresponding concepts
in the training set. We demonstrate that this allows both factual (Why did the model predict this
class?) and counterfactual analysis (How would the model explain the predictions if the alternative
class was predicted?). The experimental results show both a competitive accuracy of the method
and demonstrate, empirically and theoretically, that the method has favourable properties of fidelity,
necessity, sufficiency, and sparsity. Surprisingly, it also demonstrates impressive finetuning-free
k-NN generalisation to new datasets.

It is also worth noting that the training dataset D from Algorithm 1 can be, without any changes in
the method, be replaced with a trusted dataset, which can contain a private collection of data which
the predictor could relate the testing image to. It can be motivated by both lack of access to training
images or by lack of trust in the training data due to an inherent noise and can be especially useful in
safety-critical domains such as medical imagery.

While the current work only focuses on image classification, future work can expand this method to
the segmentation scenarios. To reflect upon this, we demonstrate, in Appendix G, the potential for
concept-based segmentation using COMiX. Such concept-based segmentation can enable human-
in-the-loop decision-making: a human can change class-defining features in the model by selecting
the corresponding segments. One can see the potential of the method to detect manipulated imaging
and adversarial attacks by highlighting the areas of forgery and comparing them with training-set
examples. We outline the limitations and broader impacts in Appendices H and I respectively.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 REPRODUCIBILITY STATEMENT

To ensure reproducibility of the results presented in this paper, we provide detailed information on
the following key aspects:

• Datasets: The experiments were conducted on well-known datasets, including CIFAR-10,
CIFAR-100, CUB-200-2011, Stanford Cars, and Oxford-IIIT Pets. These datasets are
publicly available and widely used in computer vision research.

• Model Architectures: We used B-cos (Böhle et al. (2022)) and ViT models, which are
described in detail in both the main text and the Appendix. The model architecture, in-
cluding any modifications for our method (COMiX), is fully explained, ensuring that the
implementation can be reproduced by others. The training details are given in the Appendix
6.

• Training Details: The model training process is described with exact hyperparameters
provided in Appendix B. We also offer details on hardware used (e.g., GeForce RTX 2080
Ti with CUDA version 12.5) and software packages (e.g., NumPy, PyTorch, Torchvision),
making it easy to replicate the experiments.

• Evaluation Metrics: All metrics used for evaluation, such as accuracy, fidelity, sparsity, and
C-insertion/C-deletion metrics, are well-documented, ensuring consistency in reproducing
the reported performance.

• Code Availability: To support reproducibility, we will provide the code used to conduct
these experiments, including tables and analysis. This code, including all prompt templates
and post-processing scripts, will be made publicly available upon publication.
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A B-COS NETWORKS

B-cos networks offer a novel approach to improving the interpretability of deep learning models
by ensuring that input features align with the model’s weights throughout training. This innovation
arises from the realization that although deep neural networks excel in performance across various
tasks, their internal workings remain largely opaque and hard to interpret. Typically, deep models
rely on linear transformations coupled with non-linear activations, a design that contributes to their
"black box" nature.

In contrast, B-cos networks replace traditional linear transformations with the B-cos transformation,
which promotes alignment between inputs and weights. This transformation is defined as

B-cos(x;w) = ∥w∥∥x∥ cosB(θ) · sign(cos(θ)), (13)

where θ denotes the angle between the input vector x and the weight vector w, and B is a hyperparam-
eter that amplifies the model’s sensitivity to alignment. This transformation shifts the model’s focus
from merely achieving high performance to fostering interpretability by emphasizing the relationship
between the input data and model features.

The training of B-cos networks integrates this alignment directly into the optimization process. By
applying alignment pressure during weight adjustment, B-cos networks encourage the model to align
its weights with the most relevant input features, making this alignment a key objective rather than a
byproduct of training, which is a departure from conventional methods focused solely on minimizing
prediction error.

The integration of B-cos transformations into existing architectures is seamless since they can serve
as direct replacements for typical linear layers. This compatibility enables the application of B-cos
networks to a broad array of architectures such as VGG, ResNet, InceptionNet, DenseNet, and Vision
Transformers (ViTs) Böhle et al. (2024), without significant changes to their core structure. Empirical
results demonstrate that this transformation maintains competitive performance on standard datasets
like ImageNet while enhancing model interpretability.

During inference, a key advantage of B-cos networks becomes apparent. The sequence of B-cos
transformations throughout the network simplifies into a single linear operation, as the successive
alignment-focused layers collapse into a single transformation. Mathematically, this is expressed as:

W1→L(x) = W1 ×W2 × . . .×WL, (14)

where W1→L(x) represents the effective weight matrix over all L layers, and W1,W2, . . . ,WL are
the weight matrices of the individual B-cos layers. This reduces the network’s computation at test
time to:

y = W1→L(x) · x, (15)

where y is the output. This reduction to a single matrix-vector multiplication significantly improves
both computational efficiency and transparency, offering a clear view of how input features affect the
output. The network’s behavior, represented by θ1→L in the main text, becomes fully interpretable,
as emphasized in Böhle et al. (2022).

B EXPERIMENTAL SETUP

B.1 HARDWARE AND SOFTWARE CONFIGURATION

We trained and tested our models using GeForce RTX 2080 Ti with CUDA version 12.5. In our work
we use the following software packages for Python:

1. NumPy 1.26.2

2. PyTorch 2.1.2

3. Torchvision 0.16.2

4. Matplotlib 3.8.2
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Table 6: Hyperparameters of the B-cos model training

Hyperparameter Value Comments

Learning rate 0.01
Max # epochs 500 with early stopping

Batch size 16
Drop out value 0.5

B-value in B-cos 1.5
Loss BCE Loss

Final activation sigmoid

Table 7: Comparison between the performance of finetuned and non-finetuned model based on
B-cos/Vit backbone

Dataset COMiX COMiX (no finetuning)

Oxford-IIIT Pets 87.73 85.52
CUB-200-2011 74.14 70.04
Stanford Cars 86.81 84.03
CIFAR-10 91.21 90.04
CIFAR-100 76.42 72.92

B.2 MODEL TRAINING AND EVALUATION DETAILS

Except for zero-shot learning settings, the B-cos models has been trained with the hyperparameters
outlined in Table 6. For more details on the meaning of the training parameters for the B-cos model,
please follow the work Böhle et al. (2024).

For the pretrained baselines and models, we use the models from the open sources, which can be
downloaded from the following repository: https://github.com/B-cos/B-cos-v2. For B-cos/ViT, we
use vitc_l_patch1_14 model pretrained on ImageNet

C NON-FINETUNED MODEL PERFORMANCE

Table 7 demonstrates comparative performance between the finetuned and non-finetuned method.

D FURTHER DETAILS ON HYPERPARAMETER CHOICE

In Figure 8 we present the hyperparameter sensitivity analysis graphs for the ℓ2 distances between
the whole set of CDFs. The experimental scheme is given in Figure 7.

E ADDITIONAL QUALITATIVE RESULTS

In Figures 9, 10, 11, we show additional qualitative results.

F CONFUSION MATRICES FOR PSEUDO-LABELS

In Figure 12, we present the complete confusion matrices for pseudo-labels.

G INPUT SEGMENTATION

The images can be segmented according to the dominant feature activated at the pixel level within the
input. In Figure 13, we highlight some of the segmentation outputs.
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Figure 7: A method ablation for for sensitivity analysis, which uses the ℓ2 distances

(a) CUBS (b) Oxford-IIIT Pets (c) Stanford-Cars

(d) CIFAR-10 (e) CIFAR 100 (f) ImageNet

Figure 8: The performance of COMiX with different choices of hyperparameters. Each of the lines
corresponds to a value of K (K nearest neighbours), and the horizontal axis shows the number of
features M used for prediction.
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Figure 9: Additional qualitative results (Oxford-IIIT Pets)
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Figure 10: Additional qualitative results (Oxford-IIIT Pets)
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Figure 11: Additional qualitative results (CUB-200-2011)
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Figure 12: Confusion matrices for pseudo-labels: comparison between the ground-truth, final and
pseudo-label on Oxford-IIIT Pets dataset

Oxford-IIIT Pets CUB-200-2011

Figure 13: Image segmentation results: testing image, segmentations by leading CDFs, and segmen-
tations by all features
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H BROADER IMPACTS

While some of the existing post hoc explanation methods can explain the decision making, they do
not follow the original decision making process Rudin (2019). This, therefore, cannot satisfy the
current legal, ethical and policy-making needs. In contrast, by-design methods provide explanations
which are causally linked with the decision making process. Such alternative is especially important
for safety-critical applications, such as autonomous driving, robotics, medical imagery.

As finetuning-free learning was not considered the primary goal of this work, it was merely docu-
mented and not investigated further. It remains to be seen as to why COMiX results in surprisingly
good finetuning-free performance.

I LIMITATIONS

Use of the pseudo-labels for preliminary selection of features can be also considered as a limitation,
which is common for other works using concept-based interpretations due to the fact that feature
selection necessitates pre-selection of the proposal class for subsequent refinement. Tan et al. (2024)
describes the similar problem for their post hoc analysis method as a feature refinement problem.
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