
WABER: EVALUATING RELIABILITY AND EFFI-
CIENCY OF WEB AGENTS WITH EXISTING BENCH-
MARKS

Su Kara ∗

Department of Computer Science
Stanford University
{sukara}@cs.stanford.edu

Fazle Faisal & Suman Nath
Microsoft Research
Redmond, USA
{fafisal,suman.nath}@microsoft.com

ABSTRACT

Most existing web agent benchmarks evaluate agents solely based on their task
completion rate, excluding other crucial aspects of agent behavior that impact their
usability and deployability in real-world. We propose incorporating two important
metrics into a web agent benchmark: reliability that assesses how consistently the
agent completes tasks despite transient web unreliability that are common in the
wild, and efficiency that measures the speed and cost-effectiveness of the agent’s
task completion. Developing new benchmarks to measure these metrics would
take significant efforts. To address this, we introduce a novel network proxy-based
solution called WABER, which enables the evaluation of these two metrics on
existing agents and benchmarks without requiring any modifications to them. This
allows agent developers to adopt it effortlessly on any agent and benchmark, with
zero developer effort. Using our WABER prototype, we evaluated two existing
agents on the WebArena benchmark: Stacked LLM Policy and Agent Workflow
Memory. Our results show that current SoTA agents struggle to complete tasks on
the WABER framework, demonstrating the need to design agents that are able to
generalize to real-word, unreliable scenarios. We make WABER available as an
open-source tool.

1 INTRODUCTION

Autonomous web agents can boost human productivity by automating complex workflows and per-
forming daily tasks on websites using natural language commands. Recent advances in reasoning
and acting (ReACT) patterns (Yao et al., 2023), vision-based large language models (VLLMs), and
agentic workflow frameworks like AutoGen (Wu et al., 2023) improve such agents’ ability to under-
stand user intent, perceive their environment, and take actions accordingly. Many agents developed
in academia and industry showcase the rapid progress of these capabilities (e.g., SteP (Sodhi et al.,
2024b), Agent Workflow Memory (AWM) (Wang et al., 2024c), WebPilot (Zhang et al., 2024),
AutoAgents (Chen et al., 2023), WebNaviX (Shlomov et al., 2024a), Agent Q (Putta et al., 2024),
Magentic-One (Fourney et al., 2024)).

Benchmarking is essential for evaluating and comparing different agents, as it provides a standard-
ized set of realistic and deterministic tasks and evaluators. Benchmarking helps identify an agent’s
strengths and weaknesses, highlights areas for improvement, and ensures the agent is capable of per-
forming the tasks defined by the benchmark. Many benchmarks exist for web agents that perform
tasks on websites; examples include WebArena (Zhou et al., 2023), Visual WebArena (Koh et al.,
2024), WorkArena (Drouin et al., 2024), Mind2Web (Deng et al., 2023), Web Voyager (He et al.,
2024), WebLINX (Lù et al., 2024), and Windows Agent Arena (Bonatti et al., 2024).

Most existing benchmarks evaluate agents mainly by their success rate, the percentage of tasks they
complete correctly. Typically, benchmarks use evaluators that check the binary outcome of a task, for
example, by matching the URL or content of the final web page. However, success rate alone does
not fully capture an agent’s capabilities. For example, two agents can have the same success rate,

∗Work done while at Microsoft Research.

1



Unmodified 
web agent

Unmodified 
web-agent 
benchmark

Foundation 
model service

Other services

WABER sandbox

WABER network proxy

Efficiency 
logger

Unreliability 
injector

Figure 1: WABER architecture

but one can be much faster, more efficient, and more robust than the other. A benchmark that only
measures the success rate cannot differentiate them or identify relative strengths and weaknesses of
the underlying techniques.

To address this, we propose two additional metrics for evaluating web agents: reliability and effi-
ciency. These metrics align with prior work emphasizing human similarity and efficiency in agent
design(Wang et al. (2024a); Shlomov et al. (2024b); Goyal et al. (2024)). The reliability metric
assesses how well an agent handles web tasks under transient failures, such as network slowdowns,
server errors, or unexpected client-side pop-ups, that may happen in the wild. While humans adapt
to such issues by reloading pages or dismissing pop-ups, agents may struggle. Measuring reliability
highlights an agent’s ability to mimic human resilience in unpredictable environments.

The efficiency metric measures an agent’s speed and resource usage. Fast, cost-effective agents
improve usability, especially in time-sensitive tasks like checking out a book online. Excessive
use of resources, such as LLM tokens, can lead to higher costs or hitting usage limits, making the
agent impractical. Prior research notes that many SoTA agents are unnecessarily slow and resource-
intensive (Kapoor et al., 2024), undermining user experience despite task success.

It is possible to develop new benchmarks to evaluate these two metrics, with unreliable behav-
iors built into the benchmarks and efficiency explicitly measured by the web agents. For exam-
ple, existing works introduce new benchmarks to assess metrics beyond success rate (e.g., ST-
WebAgentBench (Levy et al., 2024) and R-judge for safety (Yuan et al., 2024)). However, creating
new benchmarks require significant efforts. In this paper, we propose a novel technique that can
evaluate reliability and efficiency metrics for existing web agents on existing benchmarks without
any modification to them.

Our key insight is that web agents interact with benchmarks and LLM services through the network,
and it is possible to introduce unreliabile behavior to the benchmarks and to measure efficiency of
the agent by intercepting their communication, without any modification to the agent and the bench-
mark. Our solution runs agents in a sandbox, routing all network communication through a network
proxy (Cortesi et al., 2010–) that (1) simulates client-, network-, and server-side unreliability dur-
ing interactions with benchmarks and external services (e.g., LLMs), and (2) measures efficiency
metrics like token usage and latency. The ability to use unmodified agents and benchmarks enables
developers measure efficiency and reliability of their agents with low effort, with the flexibility of
using their favorite benchmarks.

We have implemented a prototype of this solution, called WABER1, and we release it as an open-
source project. Our experimental results show that current SoTA agents, despite high success rates
on the WebArena benchmark (Koh et al., 2024), struggle with the unreliable scenarios introduced
by the WABER framework. Additionally, our framework enables seamless evaluation of agent
efficiency, offering new insights into performance beyond success rates.

1WABER : Web Agent Benchmarking for Efficiency and Reliability, https://github.com/
SumanKNath/WABER.git

2

https://github.com/SumanKNath/WABER.git
https://github.com/SumanKNath/WABER.git


2 WABER DESIGN

Figure 1 shows the high-level architecture of WABER. It consists of two main components: the
WABER sandbox and the WABER network proxy. The sandbox isolates the web agent in a con-
trolled environment that enforces all network interactions from inside the sandbox to go through the
network proxy. An agent inside the sandbox can perform tasks as usual, interacting with external
services like web-based benchmarks, foundation model APIs, and other endpoints.

The WABER network proxy intercepts all network interactions between the agent and external
services. This enables the logging of key performance metrics, such as latency and the number of
API calls. Additionally, it enables introducing disruptions through HTTP response modifications,
such as unexpected pop-ups, to evaluate the agent’s ability to handle unreliable conditions it may
encounter in the real world. We elaborate on these two key functionalities below.

2.1 EFFICIENCY LOGGING VIA NETWORK INTERCEPTION

WABER measures two types of efficiency metrics: network-level and application-level. Network-
level metrics include end-to-end task completion latency and the number of requests made to a
specific service, such as a remote LLM service. These metrics can be computed at the network layer
of the communication, without examining the content of the agent’s requests and responses. They
indicate whether an agent can complete a task within a reasonable timeframe and with an acceptable
number of remote API calls. The latter is particularly important when the cost of a remote service
is based on the number of API calls, or if the service throttles or blocks calls when a large number
of requests are made within a short period. To measure network-level metrics, the WABER proxy
intercepts each request and each response. Users can configure WABER with a script to log requests
and responses for specific remote addresses (e.g., to an LLM service); otherwise, WABER outputs
request counts for all remote addresses.

If the communication is encrypted (e.g., when the agent uses HTTPS), the proxy acts as a “man in the
middle” between the agent and remote servers. To decrypt encrypted traffic, we install the proxy’s
built-in Certificate Authority (CA) on the sandbox, allowing the proxy to decrypt and encrypt traffic
to and from any client running inside the sandbox.

Application-level metrics, on the other hand, in the context of efficiency measurement, require pars-
ing the content of requests and responses to extract specific details, such as the token counts of LLM
prompts and completions involved in task execution.

Note that the above mechanisms treat the agent as a black box running inside the sandbox. This
ensures that efficiency evaluations remains independent of the agent’s internal architecture, making
the WABER framework suitable for evaluating third-party or custom-built agents.

WABER can report aggregated efficiency metrics (e.g, total latency) for a sequence of executed
tasks. To achieve that, a user configures WABER with a signature of the first network request that
WABER can use to identify the beginning of each task.

2.2 RELIABILITY EVALUATION VIA UNRELIABILITY INJECTION

WABER evaluates an agent’s reliability by introducing controlled unreliable scenarios that mimic
real-world challenges and then measuring its success rate despite the unreliability.

To do this, WABER intercepts and modifies responses at the application level, altering the actual
content seen by the agent without changing the agent or the benchmark itself. The WABER proxy,
acting as a “man in the middle,” enables this capability by parsing and rewriting response payloads
in real time. WABER supports the following three types of unreliable scenarios that are common in
the real world:

• Client-side Popups: This simulates unexpected UI elements that require user interaction
such as dismissing the popup before processing the page. WABER introduces popups by
modifying the response HTML from benchmark websites.

3



Figure 2: Unreliable Scenarios: Pop-up (left), 500 server error (center), Network error with Timed
Delay (right)

• Network Errors: This involves introducing client-side connectivity issues, such as slow
loading and connection timeouts. WABER proxy introduces such issues by adding a delay
at the proxy.

• Transient Server-side Errors: These represent transient server-side failures that are usu-
ally handled by retrying the request. The failures include those that generate HTTP errors
such as 408 (Request Timeout), 429 (Too Many Requests), 502 (Bad Gateway), 503 (Ser-
vice Unavailable), and 504 (Gateway Timeout). These failures are implemented by the
proxy by replacing the original response (which usually has the HTTP status code 200)
with a new empty response containing an HTTP error code.

Figure 2 shows the client-side user experience under some unreliable scenarios.

Failure injection policies: Users can configure the frequency and mode of injected failures. The
space of policies is large, but for ease of use, WABER includes the following two built-in policies
for how often a failure mode is introduced: (1) only once, on the k’th loaded page (k = 1 means the
first loaded page), (2) randomly n times throughout a task (n = 1 means the failure is injected once
throughout the task). Users can select one of these policies for a given mode of failure or define their
own policies with a mix of different types of failures.

3 IMPLEMENTATION

We have implemented a prototype of WABER, consisting of the following two key components.

Network proxy: We leverage mitmproxy(Cortesi et al., 2010–) to transparently capture network
interactions and modify traffic in real-time. Mitmproxy is an open-source HTTP(S) proxy that
allows for decrypting encrypted traffic on the fly. By default, Mitmproxy listens on port 8080 to
intercept and process requests. We install Mitmproxy’s built-in Certificate Authority (CA) as a
trusted certificate within WABER sandbox. This ensures that Mitmproxy can intercept, decrypt,
and re-encrypt HTTP(S) traffic by acting as a ”man in the middle” between any client (e.g., the
agent) inside the sandbox and a server outside it.

To introduce controlled unreliable behavior into a benchmark, we leverage Mitmproxy’s addon
mechanism.2 The addon mechanism allows injecting custom logic to hook into and modify Mitim-
proxy’s behavior on how it forwards/blocks/manipulate traffic. We create a WABER addon that
implements the techniques described in Section 2.

WABER addon for Mitmproxy operates in conjunction with a config.json file, which allows
users to specify the types of unreliable conditions they wish to simulate.

Sandbox: Our prototype uses a Linux sandbox that can run any Linux-based agent. Note that some
agents run within their own sandboxes. For example, agents such as Agent Workflow Memory
(AWM) Wang et al. (2024c) and Stacked LLM Policy (SteP) Sodhi et al. (2024b), use Playwright
(Microsoft, 2020) to launch a Docker container as their execution environment. In such cases, we
need to ensure that all network traffic made within the container, is captured by mitmproxy. To
achieve this, we configure Playwright to use an explicit HTTP proxy by adding the following set-
ting: proxy={"server": "http://{your server hostname}:{port number}"}

2https://docs.mitmproxy.org/stable/addons-overview/

4

https://docs.mitmproxy.org/stable/addons-overview/


This routes all Playwright-driven network interactions, including remote service requests, through
Mitmproxy.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We used WABER to evaluate two existing agents, AWM (Wang et al., 2024c) and SteP (Sodhi et al.,
2024b), on an existing benchmark WebArena (Zhou et al., 2023). We used all these existing systems
without any modificaiton to them, highlighting a key benefit in adopting WABER for efficiency and
reliability evaluation. WebArena is a standalone, self-hostable benchmark that is widely used for
evaluating web agents. AWM and SteP are two of the top-performing web agents on the WebArena
leaderboard. We choose these two agents because of the diversity of their underlying techniques.
AWM constructs reusable task workflows by identifying and leveraging common action patterns
from past tasks to optimize future performance. In contrast, SteP approaches web tasks as a Markov
Decision Process, employing a dynamic stack of policies for flexible, adaptive decision-making.
AWM reasons about the current state of a website using both vision and a text-based LLM, analyzing
the page’s screenshot and HTML. SteP relies solely on a text-based LLM to process the page’s DOM
tree.

We configured the agent to use the GPT-4o model via Azure OpenAI. All experiments were
conducted on x86-64 Linux Virtual Machines. For prompt generation, we used the de-
fault templates provided in webarena/agents/legacy/dynamic prompting.py Wang
et al. (2024b) and src/browser env/prompts/step fewshot template.py Sodhi
et al. (2024a). We ran the AWM agent using the suggested pipeline.py file, which
combines the steps of running inference on a set of tasks, evaluates agent-generated tasks
and trajectory, and integrates the trajectory workflows to agent memory. We ran the SteP
agent using the command python scripts/evaluate/eval webarena.py --config
configs/webarena/eval openai agent.yml.

4.2 AGENT EFFICIENCY

WebArena consists of 812 tasks in six different domains such as Reddit, a Shopping website
(OneStopShop), an online store content management system (CMS), Gitlab, a Map, and English
Wikipedia. In our experiments, we could not configure WebArena to execute tasks that involve
Maps. Wikipedia primarily functions as a supplementary resource, often in conjunction with Maps
and GitLab. Given that Wikipedia and GitLab were used together in only five tasks, we opted to
focus our experiments on the remaining four environments: Reddit, Shopping, CMS, and GitLab.
Overall, we use 655 tasks for evaluating efficiency of the agents with WABER. Figure 3 shows two
efficiency metrics measured by WABER: average cost (in US cents) and latency (in sec) of a task.
WABER reports cost of a task by logging the number of input and output tokens to GPT-4o, and
translating that to the equivalent dollar value by using the pricing information in OpenAI website.3
Figure 3 also shows the average success rate of the two agents for the tasks we considered with the
GPT-4o model.

The efficiency results indicate that AWM is generally more expensive than SteP (Figure 3(a)), even
though it completes tasks faster (Figure 3(b)) and with a higher success rate (Figure 3(c)) than SteP.
AWM’s higher cost comes from its use of longer prompts (an average of 66945.44 prompt tokens
compared to SteP’s 34591.30). The longer prompts are due to the additional HTML that AWM
sends to the LLM. Despite sending long prompts to the LLM, AWM is on average 35.8% faster
than SteP in completing a task, mainly because it makes 52.96% fewer interactions with the LLM
(Figure 3(d)). These findings suggest that AWM achieves higher efficiency by leveraging longer
prompts and reducing the need for multiple interactions, whereas SteP, despite lower token usage
per request, requires more API calls to complete tasks.

5



(a) Cost (in US cents) per task (b) Time (in seconds) per task

(c) Task success rate (d) Number of LLM Calls per task

Figure 3: (a) Cost, (b) Latency, (c) Accuracy, and (d) Number of LLM calls per task. All 655
successfully and unsuccessfully completed tasks are considered.

Figure 4: Accuracy of agents under unreliable scenarios

6



(a) Cost (in US cents) per task (b) Time per task

Figure 5: (a) Cost and (b) Latency per task for Reliable Scenarios. All successfully and unsuccess-
fully completed tasks are considered.

4.3 AGENT RELIABILITY

We now report our results of using WABER to systematically test agent robustness by introduc-
ing real-world failures such as popups, server errors, and network disruptions. Testing for various
failures is time consuming; we therefore perform our experiments on a subset of WebArena tasks.
Specifically, we use the first 30 tasks of the Reddit and Shopping domains in WebArena. Figure 4
and Figure 5 show the success rates, cost, and latency of the agent for these tasks under various un-
reliable scenarios. Overall, both the agents struggle to successfully complete tasks under unreliable
scenarios, even when they extensively use LLMs (shown by the increase in LLM cost and latency).
Comparatively, AWM’s vision-based approach provides better resilience than SteP’s DOM-based
approach.

Handling Client-side Popups: Popups introduce significant challenges for both agents, but AWM
demonstrates a greater ability to recover. In Reddit, AWM’s success rate drops from 60% in a
reliable setting to 20% when popups appear, while SteP’s success rate falls from 12% to 0%. After
further analysis, we were able to deduce that if page HTML is not passed in as part of the observation
at every step, neither agent is able to overcome the pop-up. The HTML provides information that
there is an overlay added. Even though the DOM structure shows a clickable (x) and is added as
a new button, and even though a screenshot clearly shows (to a human) that a pop-up is displayed,
the agent cannot infer without explicitly being provided the page HTML that it must click the (x) to
proceed with the original task. This underscores an important dilemma in agent design: while people
want to design agents which are affordable and efficient (low in prompt tokens per LLM request),
we also want to design agents which are reliable in the real world. Additionally, this highlights
the importance of agents adopting adaptive strategies, as hard-coded policies struggle in dynamic
environments Kapoor et al. (2024). Although AWM was able to dismiss the pop-up using the page
HTML, its accuracy still drops significantly. This shows that strong performance in the containerized
WebArena benchmark, a controlled environment, does not necessarily translate to success in the real
world, where unreliable scenarios may arise. Agents also incur additional latency and LLM cost in
handling popups. For example, in Reddit tasks, AWM experiences a 34.3% increase in average
latency and a 2.58× increase in cost.

Response to Server Errors: Both agents demonstrate limitations when confronted with transient
server failures, though their handling strategies diverge significantly. When encountering server
errors, AWM often informs the user of the disruption and ceases task execution. SteP, in contrast,
occasionally exhibits more proactive behavior, such as employing the ‘go back’action or refreshing
the page by revisiting the same URL. This behavior mirrors human-like attempts to recover from
errors but lacks consistency across different environments. For instance, while SteP demonstrates
this adaptive approach in Shopping scenarios, it fails to replicate similar recovery strategies on
Reddit.

3https://openai.com/api/pricing/

7

https://openai.com/api/pricing/


Success rates underscore these behavioral discrepancies. AWM’s accuracy drops to 0% in Red-
dit and 10% in Shopping, whereas SteP completely fails in Reddit (0%) but shows resilience in
Shopping with an accuracy of 27%. These findings suggest that while SteP’s policy allows for occa-
sional recovery, it lacks the robustness required for consistent performance across varied platforms.
Conversely, AWM’s straightforward error-reporting strategy contributes to its stable but suboptimal
performance.

Response to Network Errors: Network errors similarly impact agent’s success rates. AWM tends
to wait during network errors, informing the user of the issue. While this improves human-agent
interaction, AWM doesn’t consistently reload the page, which a human would typically do to resolve
connectivity issues. However, it is also common for network connections to recover without manual
intervention, explaining AWM’s passive approach. In Reddit, AWM’s accuracy falls from 60% to
0%, and SteP’s falls from 12% to 7%. In Shopping, AWM reaches 7%, and SteP outperforms it with
a success rate of 17%. These results indicate that while agents attempt to recover, they do not do so
effectively. AWM tends to wait for errors to resolve on their own, while SteP inconsistently attempts
page refreshes.

4.4 WABER ACCURACY AND OVERHEAD

Accuracy: We would like to emphasize that introducing WABER does not lead to any noticeable
decline in agent accuracy. To demonstrate this, we conducted experiments over 30 Reddit and
30 Shopping tasks, totaling 60 tasks, tested with both SteP and AWM agents, and tested in both
scenarios, where WABER was introduced vs. where it was never used. The results show that
introducing WABER does not result in a significant difference in accuracy. In some cases, accuracy
is slightly higher with the proxy in place. Specifically, when using WABER, the measured accuracy
decreases by 1.67% (-1 task successes) for SteP but increases by 5% for AWM (+3 tasks successes).
This minor variation highlights that WABER does not interfere with an agent’s performance, while
still providing transparent network-level measurements.

Overhead: We evaluated WABER’s overhead using the same experimental setup as our accuracy
measurement. We would like to note that latency can be measured in two ways with WABER: client
latency, recorded as the time the agent begins to set up the environment to start the task until the task
ends and the environment is ultimately closed, and network latency, which is specifically measured
by WABER. Network latency is calculated as the time difference between the first LLM request for
a task and the last LLM response for the task. It is important to note that network latency ignores
the time a client spends before sending the first LLM request and after receiving the last response,
and therefore differs from the latency a client experiences in completing a task. This difference
in start time is evident in our calculations. Because task completion is I/O-intensive and network
communication constitutes a significant portion of the total completion time, WABER’s reported
network latency remains representative of real-world client-side latencies.

To evaluate the overhead of WABER itself, we focused on client latency, as network latency can
only be calculated when WABER is introduced. Our experiments show that while the difference in
average client latency per task using WABER is relatively small (a 13.7% increase on average for
SteP and a 10.5% increase for AWM), it is still a significant increase. This may suggest that, in a
real-world environment where experiments are conducted on hundreds of tasks, this difference could
scale and become more apparent. In future work, we hope to address this issue and provide a more
comprehensive evaluation of accuracy and overhead across more tasks, benchmarks, and agents.

5 CONCLUSION

We have introduced WABER, a network proxy-based solution for evaluation the reliability and effi-
ciency metrics of existing web agents on existing benchmarks. WABER can highlight the weakness
and strength of an agent in handling real-world, unreliable scenarios. A key feature of WABER is
that it does not require any modifications to existing agents and benchmarks, significantly lower-
ing the efforts required to evaluate efficiency and reliability of web agents. Our evaluation of two
existing agents on the WebArena benchmark using WABER demonstrates the need for developing
more robust and efficient web agents. We hope that WABER will serve as a valuable tool for the

8



research community, enabling the development of web agents that are better suited for real-world
applications.

REFERENCES

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows
agent arena: Evaluating multi-modal os agents at scale. arXiv preprint arXiv:2409.08264, 2024.
URL https://doi.org/10.48550/arXiv.2409.08264.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F. Karlsson, Jie Fu,
and Yemin Shi. Autoagents: A framework for automatic agent generation. arXiv preprint
arXiv:2309.17288, 2023. URL https://doi.org/10.48550/arXiv.2309.17288.
Presented at IJCAI 2024.

Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contributors. mitmproxy: A free and
open source interactive HTTPS proxy, 2010–. URL https://mitmproxy.org/. [Version
11.1].

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. arXiv preprint arXiv:2306.06070,
2023. URL https://doi.org/10.48550/arXiv.2306.06070. NeurIPS 2023 Spot-
light.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapados, and
Alexandre Lacoste. Workarena: How capable are web agents at solving common knowledge
work tasks? arXiv preprint arXiv:2403.07718, 2024. URL https://doi.org/10.48550/
arXiv.2403.07718.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Erkang Zhu,
Friederike Niedtner, Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, Peter Chang,
Ricky Loynd, Robert West, Victor Dibia, Ahmed Awadallah, Ece Kamar, Rafah Hosn, and
Saleema Amershi. Magentic-one: A generalist multi-agent system for solving complex tasks.
arXiv preprint arXiv:2411.04468, 2024. URL https://doi.org/10.48550/arXiv.
2411.04468.

Nitesh Goyal, Minsuk Chang, and Michael Terry. Designing for human-agent alignment: Under-
standing what humans want from their agents. arXiv preprint arXiv:2404.04289, 2024. URL
https://doi.org/10.48550/arXiv.2404.04289.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal mod-
els. arXiv preprint arXiv:2401.13919, 2024. URL https://doi.org/10.48550/arXiv.
2401.13919. Accepted to ACL 2024.

Sayash Kapoor, Benedikt Stroebl, Zachary S. Siegel, Nitya Nadgir, and Arvind Narayanan. Ai
agents that matter. arXiv preprint arXiv:2407.01502, 2024. URL https://doi.org/10.
48550/arXiv.2407.01502.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024. URL
https://doi.org/10.48550/arXiv.2401.13649. Accepted to ACL 2024.

Ido Levy, Ben Wiesel, Sami Marreed, Alon Oved, Avi Yaeli, and Segev Shlomov. St-
webagentbench: A benchmark for evaluating safety and trustworthiness in web agents. arXiv
preprint arXiv:2410.06703, 2024. URL https://doi.org/10.48550/arXiv.2410.
06703.

Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with
multi-turn dialogue. arXiv preprint arXiv:2402.05930, 2024. URL https://doi.org/10.
48550/arXiv.2402.05930.

9

https://doi.org/10.48550/arXiv.2409.08264
https://doi.org/10.48550/arXiv.2309.17288
https://mitmproxy.org/
https://doi.org/10.48550/arXiv.2306.06070
https://doi.org/10.48550/arXiv.2403.07718
https://doi.org/10.48550/arXiv.2403.07718
https://doi.org/10.48550/arXiv.2411.04468
https://doi.org/10.48550/arXiv.2411.04468
https://doi.org/10.48550/arXiv.2404.04289
https://doi.org/10.48550/arXiv.2401.13919
https://doi.org/10.48550/arXiv.2401.13919
https://doi.org/10.48550/arXiv.2407.01502
https://doi.org/10.48550/arXiv.2407.01502
https://doi.org/10.48550/arXiv.2401.13649
https://doi.org/10.48550/arXiv.2410.06703
https://doi.org/10.48550/arXiv.2410.06703
https://doi.org/10.48550/arXiv.2402.05930
https://doi.org/10.48550/arXiv.2402.05930


Microsoft. Playwright. https://playwright.dev, 2020. Accessed: 2024-02-02.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv
preprint arXiv:2408.07199, 2024. URL https://doi.org/10.48550/arXiv.2408.
07199.

Segev Shlomov, Ben Wiesel, Aviad Sela, Ido Levy, Liane Galanti, and Roy Abitbol. From grounding
to planning: Benchmarking bottlenecks in web agents. arXiv preprint arXiv:2409.01927, 2024a.

Segev Shlomov, Avi Yaeli, Sami Marreed, Sivan Schwartz, Netanel Eder, Offer Akrabi, and Sergey
Zeltyn. Ida: Breaking barriers in no-code ui automation through large language models and
human-centric design. arXiv preprint arXiv:2407.15673, 2024b. URL https://doi.org/
10.48550/arXiv.2407.15673.

Paloma Sodhi, S.R.K. Branavan, Yoav Artzi, and Ryan McDonald. Step: Stacked llm policies for
web actions. https://github.com/asappresearch/webagents-step, 2024a.

Paloma Sodhi, S.R.K. Branavan, Yoav Artzi, and Ryan McDonald. Step: Stacked llm policies
for web actions. arXiv preprint arXiv:2310.03720, 2024b. URL https://doi.org/10.
48550/arXiv.2310.03720.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhi-Yuan Chen, Ji-
akai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Ji-Rong Wen. A sur-
vey on large language model based autonomous agents. Frontiers of Computer Science, 0(0):
1–42, 2024a. doi: 10.1007/s11704-024-40231-1. URL https://doi.org/10.1007/
s11704-024-40231-1.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory.
https://github.com/zorazrw/agent-workflow-memory.git, 2024b.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory.
arXiv preprint arXiv:2409.07429, 2024c.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation. arXiv
preprint arXiv:2308.08155, 2023. URL https://doi.org/10.48550/arXiv.2308.
08155.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In Proceedings of the International
Conference on Learning Representations (ICLR) Workshops, 2023.

Tongxin Yuan, Zhiwei He, Lingzhong Dong, Yiming Wang, Ruijie Zhao, Tian Xia, Lizhen Xu,
Binglin Zhou, Fangqi Li, Zhuosheng Zhang, Rui Wang, and Gongshen Liu. R-judge: Bench-
marking safety risk awareness for llm agents. arXiv preprint arXiv:2401.10019, 2024. URL
https://doi.org/10.48550/arXiv.2401.10019. EMNLP Findings 2024.

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu, and Volker Tresp. Webpilot: A versatile and
autonomous multi-agent system for web task execution with strategic exploration. arXiv preprint
arXiv:2408.15978, 2024. URL https://doi.org/10.48550/arXiv.2408.15978.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents. arXiv preprint arXiv:2307.13854, 2023. URL
https://doi.org/10.48550/arXiv.2307.13854.

10

https://playwright.dev
https://doi.org/10.48550/arXiv.2408.07199
https://doi.org/10.48550/arXiv.2408.07199
https://doi.org/10.48550/arXiv.2407.15673
https://doi.org/10.48550/arXiv.2407.15673
https://github.com/asappresearch/webagents-step
https://doi.org/10.48550/arXiv.2310.03720
https://doi.org/10.48550/arXiv.2310.03720
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.48550/arXiv.2308.08155
https://doi.org/10.48550/arXiv.2308.08155
https://doi.org/10.48550/arXiv.2401.10019
https://doi.org/10.48550/arXiv.2408.15978
https://doi.org/10.48550/arXiv.2307.13854


6 APPENDIX

We note that SteP’s default prompt instructions are configured to “draft” posts rather than fully
“submit” them, which likely resulted in lower accuracy when evaluated using WebArena’s output
comparison methods. Since WebArena expects completed actions that match the final output, SteP’s
partial task completion may have negatively impacted its performance metrics. We intentionally did
not modify this behavior to maintain the integrity of the agent’s original design. Additionally, we
note that since AWM agent relies on memory of past experiments in order to learn common workflow
patterns overtime, the subset of thirty tasks may not be sufficient for its optimal performance. Again,
we would like to urge the reader keep in mind that the goal of the paper is not to assess the accuracy
of the agents but encourage agent developers to use the WABER framework to report the efficiency
and reliability of their agents and experiment with their own unreliable scenarios when evaluating
their agents’ performance on real-world tasks.

11


	Introduction
	WABER Design
	Efficiency Logging via Network Interception
	Reliability Evaluation via Unreliability Injection

	Implementation
	Experiments
	Experimental Setup
	Agent Efficiency
	Agent Reliability
	WABER Accuracy and Overhead

	Conclusion
	Appendix

