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ABSTRACT

Despite the large progress in supervised learning with Neural Networks, there are
significant challenges in obtaining high-quality, large-scale and accurately labeled
datasets. In this context, in this paper we address the problem of classification
in the presence of label noise and more specifically, both close-set and open-set
label noise, that is when the true label of a sample may, or may not belong to the
set of the given labels. In the heart of our method is a sample selection mecha-
nism that relies on the consistency between the annotated label of a sample and
the distribution of the labels in its neighborhood in the feature space; a relabeling
mechanism that relies on the confidence of the classifier across subsequent itera-
tions; and a training strategy that trains the encoder both with a self-consistency
loss and the classifier-encoder with the cross-entropy loss on the selected sam-
ples alone. Without bells and whistles, such as co-training so as to reduce the
self-confirmation bias, and with robustness with respect to settings of its few
hyper-parameters, our method significantly surpasses previous methods on both
CIFAR10/CIFAR100 with artificial noise and real-world noisy datasets such as
WebVision and ANIMAL-10N.

1 INTRODUCTION

It is now commonly accepted that supervised learning with deep neural networks can provide ex-
cellent solutions for a wide range of problems, so long as there is sufficient availability of labeled
training data and computational resources. However, these results have been mostly obtained using
well-curated datasets in which the classes are balanced and the labels are of high quality. In the real-
world, it is often costly to obtain high quality labels especially for large-scale datasets. A common
approach is to use semi-automatic methods to obtain the labels (e.g. “webly-labeled” images where
the images and labels are obtained by web-crawling). While such methods can greatly reduce the
time and cost of manual labeling, they also lead to low quality noisy labels.

To deal with noisy labels, earlier approaches tried to improve the robustness of the model using
robust loss functions (Ghosh et al., 2017; Zhang & Sabuncu, 2018; Wang et al., 2019) or robust
regularizations (Srivastava et al., 2014; Zhang et al., 2017; Pereyra et al., 2017). Goldberger & Ben-
Reuven (2016) tried to model the noise transition matrix between classes while Han et al. (2019);
Patrini et al. (2017); Hendrycks et al. (2018) proposed to correct the losses of noisy samples. More
recently, sample selection methods became perhaps the dominant paradigm for learning with noisy
labels. Most of the recent sample selection methods do so, by relying on the predictions of the
model classifier, for example on the per-sample loss (Arazo et al., 2019; Li et al., 2020a) or model
prediction (Song et al., 2019; Malach & Shalev-Shwartz, 2017). By separating clean samples and
noisy samples and subsequently performing supervised training on the clean set, or semi-supervised
training on both, sample selection methods achieved the state-of-the-art results in synthetic and real-
world noisy datasets.

However, there are three main issues with current sample selection methods. Firstly, the sample
selection will be inevitably biased if the models (classifier and feature extractor) are trained with
noisy labels – this is immediately apparent in the case that the sample selection is based on the loss
of the classifier itself (Arazo et al., 2019; Li et al., 2020a; Yu et al., 2019; Han et al., 2018). Second,
in supervised classification problems, noisy samples usually come from two main categories: closed-
set noise where the true labels belong to one of the given classes (Set B in Fig. 1) and open-set noise
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where the true labels do not belong to the set of labels of the classification problem (Set C in Fig. 1).
Most of the works in the literature, including works that estimate the probabilities of label-exchange
between pairs of classes (Goldberger & Ben-Reuven, 2016; Patrini et al., 2017), that do relabeling
based on the model’s predictions (Song et al., 2019; Han et al., 2019) or works that adopt semi-
supervised approaches (Li et al., 2020a; Ortego et al., 2021) deal with the former and not directly
address the latter. However, this is a considerable source of noise in real world scenarios, e.g.,
when training from web-crawled data, where there is less control over the collection of the dataset.
Crucially, those works (implicitly or explicitly) relabel all samples and do training based on the new
labels of all samples. Those are bound to be wrong for all samples in set C, but also are bound to be
wrong for several samples of A and B that are (implicitly or explicitly) relabeled in the early stages
of training. For the latter reason, those works do not work well even under heavy close-set noise.
Finally, current approaches usually require extensive hyperparameters tuning, often even on a per-
dataset basis – this is unrealistic in scenarios where there is little knowledge about the types of noise.
This is partly due to the complexity of the applied semi-supervised learning method, and partly
because of the complicated methods that are employed, such as model pretraining (Zheltonozhskii
et al., 2021) and model cotraining (Han et al., 2018; Yu et al., 2019; Li et al., 2020a), so as to deal
with self-confirmation bias.

Figure 1: Different ’tigers’ in an animal
dataset.

In this paper, we address the problem of training under
different types of noise with a simple method–namely
Supervised, Self-Supervised learning (S3), with two
major components that are clearly separated: a selec-
tion/relabelling mechanism that selects/relabels samples
so as to construct a clean and a noisy set (Section 3.3),
and a training framework that aims at learning a strong
feature extractor f and a classification head g [Fig. 2]
from both noisy and clean samples (Section 3.4). In the
training stage we use off-the-shelf learners and a) train
the feature extractor and the classification head using a
classical Supervised cross-entropy loss applied only on
the clean samples – this avoids treating samples identi-
fied as noisy as if they belonged to one of the given classes as most methods (Arazo et al., 2019; Li
et al., 2020a; Ortego et al., 2021; Wu et al., 2021) implictly or explicitly do; and b) train the feature
extractor using a Self-Supervised loss, namely the consistency loss between the representations of
augmented version of the sample (as in (Chen & He, 2021)) applied on all samples – this avoids
false-negatives that are inherent in contrastive-learning with instance discrimination and different to
works that apply the consistency on the label predictions that are unreliable at the first iterations or
in the presence of open-set noise. The noisy sample selection mechanism relies on a measure of
confidence what we define using the ground truth label of the sample in question and an estimate of
distribution of the labels of its neighbours – in order to deal with noisy samples, we adopt a scheme
in which the distribution is calculated based both on the ground truth labels and on consistently
(over subsequent iterations) confident estimates of the labels. Our method is embedded into a stan-
dard MixUp and data augmentation framework, and without bells and whistles, such as co-training
of multiple models, it achieves state-of-the-art results in both synthetic and realistic noise patterns
in CIFAR10, CIFAR100, ANIMAL-10N, Clothing1M and WebVision datasets.

2 RELATED WORK

Leaning with noisy data by sample selection Some works focused on sample selection to filter
out noisy samples. Jiang et al. (2018) introduced a pretrained mentor network to guide the selection
of a student network. Song et al. (2019) evaluates the per-sample losses and identify as clean the top
r% of the samples – the precise ratio r% depends is either predefined, or is an estimate of the noise
level in the specific dataset. Arazo et al. (2019) proposed to model per-sample losses with a Beta
Mixture Model (BMM) and split the dataset according to which of the components of the mixture
each sample belongs. In a very similar approach, Li et al. (2020a) extended upon Arazo et al. (2019)
by introducing semi-supervised learning to fully utilize the dataset. Related to our work, Bahri et al.
(2020); Ortego et al. (2021); Wang et al. (2018) also utilized the feature space for sample selection.
Bahri et al. (2020) applied KNN for sample selection for closed-set noisy dataset while Ortego et al.
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Figure 2: S3 consists of two iterative stages: sample selection&relabelling and supervised self-
supervised training.

(2021) further proposed to relabel samples based on the KNN voting. Wang et al. (2018) proposed
to reweight samples based on its probability of being outliers in open-set noisy dataset.

Self-supervised learning Self-supervised methods attempt to learn good representation without
human annotations. In the recent years, the dominant method is contrastive learning with instance
discrimination task. MoCo (He et al., 2020) is an important baseline for current contrastive learning
methods, which reuses the memory bank since samples in a single mini-batch may lead to insuffi-
cient negative pairs, and proposes a momentum encoder to update the memory bank in real-time to
avoid outdated data representation. SimCLR (Chen et al., 2020) is another important baseline which
found that setting mini-batch size to be large enough can eliminate the need for memory bank. More
recently, SimSiam (Chen & He, 2021) and BYOL (Grill et al., 2020) proposed a non-contrastive
learning framework which enforce the perturbation consitency between different views, and avoid
mode collapse by applying stop-gradient and an extra predictor between two representation vectors.

3 METHOD

3.1 PROBLEM FORMULATION

Let us denote with X = {xi}Ni=1,xi ∈ Rd, a training set with the corresponding one-hot vector
labels Y = {yi}Ni=1,yi ∈ {0, 1}K , where K is the number of classes and N is the number of
samples. For convenience, let us also denote the index where the one-hot vector yi is one as the
label li ∈ {0, ...,K}. Finally, let us denote the true labels with Y ′ = {y′i}Ni=1. Clearly, for an
open-set noisy label it is the case that y′i 6= yi,y

′
i /∈ {0, 1}K , while for closed-set noisy samples

y′i 6= yi,y′i ∈ {0, 1}K .

3.2 OVERVIEW OF PROPOSED METHOD

Aiming to deal with potential concurrence of both open-set and close-set noise, we view the clas-
sification network as an encoder f that extracts a feature representation and a classification head
g that deals with the classification problem in question. The proposed method, named Supervised
Self-Supervised(S3) learning, attempts to decouple their training so as to deal with possible noise in
the labels, by adopting a two stage, iterative scheme, as outlined in Fig. 2.

In the first stage, we utilize a novel sample selection and a novel relabeling mechanism (top block in
Fig. 2) that prepares the set based on which the classifier g should be trained in Stage 2. The selec-
tion mechanism is based on the assumption of smoothness of labels in the feature space, and more
specifically, on a consistency measure that we defined based on the annotated label of the sample
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in question and the distribution of the labels in its neighborhood in the feature space. Relabeling is
performed on samples for which the classifier gives confident predictions consistently across subse-
quent iterations. Clearly, the mechanism relies on the quality of the features extracted by the encoder
f and should reject samples whose true labels are not in the class set (open-set noise). This stage
is explained in Section 3.3. In the second stage (bottom block in Fig. 2), training is performed with
two objectives/losses. First, a cross entropy loss on the output of the classifier g, (i.e., on g(f(.))) on
the samples selected in Stage 1, that updates both the encoder f and the classifier head g. Second,
a self-supervision loss that enforces consistency between the representations of different augmenta-
tions of the same sample, and which utilizes all samples, that is both noisy and clean – this updates
the encoder f and helps learning a strong feature space on which the selection mechanism of Stage 1
can rely. By contrast to other methods that, either by using a noise transition matrix or in their semi-
supervised scheme, implicitly relabel all samples (e.g. DivideMix (Li et al., 2020a), MOIT (Ortego
et al., 2021)) and use the new labels to learn, in our method the labels in the noisy set are not used
at all. This stage is explained in Section 3.4.

3.3 SAMPLE SELECTION & RELABELLING

The sample selection and relabeling mechanism are designed so as to construct a clean subset that
has as many correctly labelled samples as possible.

Clean sample selection by balanced neighboring voting Let us denote the similarity between
the representations fi and fj of any two samples xi and xj by sij , i, j = 1, ..., N . In our imple-

mentation we used the cosine similarity, that is, sij , fT
i fj

‖fi‖2‖fj‖2 . Let us also denote by Ni the
index set of the k nearest neighbors of sample xi in X based on the calculated similarity. Then, for
each sample xi, we calculate the balanced label distribution pi ∈ RK in its neighborhood in the
feature space, as the normalized sum of its neighbors’ labels. Note, that we used at each epoch t, we
use the labels ytn (Eq. 2) that a relabeling mechanism provides. More specifically,

pi = π
−1p′i, (1)

where p′i = 1
k

∑
n∈Ni

yt
n and π =

∑N
i=1 yi. With a slight abuse of notation, we denote by π−1

the vector whose entries are the inverses of the entries of the vector π of the class probabilities
in the whole dataset – in this way we compensate for global class imbalances. Once the balanced
distribution pi of the labels in the neighborhood of xi is estimated, we define a consistency measure
ci as

ci =
pi(li)

maxl pi(l)
, (2)

that is the ratio of the value of the distribution pi at the label li divided by the value of its highest
peak maxl pi(l). Roughly speaking, a high consistency measure ci at a sample i means that its
neighbors agree with the given annotation li – this indicates that li is likely to be correct. By setting
a threshold θs to ci, a clean subset (Xc,Yc) can be extracted from the noisy dataset.

Noisy sample relabelling by classifier thresholding The balanced distribution pi of the labels of
the neighbors of a sample i constructed by Eq. 1 is to some degree affected by the noisy labels of its
neighbors. One option is to use the computed normalized nearest neighbor distribution pi to relabel
the noisy samples – for example, relabel the sample xi as argmax pi (Ortego et al., 2021). However,
this process will introduce self-confirmation bias as we relabel and select samples by relying in both
cases on the feature space.

In this paper, we propose to decouple sample selection and sample relabeling. More specifically,
given that the classifier is trained in subsequent iterations with relatively clean samples (selected by
the mechanism described above), we propose to used its predictions to identify samples for which
it has high confidence in its prediction, and relabel them if the confident prediction does not agree
with the annotated label. More specifically, let us denote by zti , g(f(xi)) the prediction at epoch
t for sample xi. By keeping track of the most recent L predictions, we calculate

qi =
1

L

t∑
t′=t−L

zt
′

i , (3)
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where qi is the average prediction for the sample xi. We then modify all the labels li, i = 1, ..., N
by thresholding qi at t-th epoch as:

lti = I(max
l
qi(l) > θr) ∗ argmax

l
qi(l) + (1− I(max

l
qi(l) > θr)) ∗ li (4)

Please note, that similarly to Section 3.1, we denote the one-hot label corresponding to lti as yt
i –

this will be used in Eq. 1. By setting a high θr, a highly confident sample xi will be relabeled –
this can in turn further enhance the quality of sample selection. Note, that we avoid mis-relabelling
open-set noise samples as those tend not to have highly confident average predictions.

3.4 SUPERVISED SELF-SUPERVISED TRAINING

For training, we have both a supervised learning loss on the clean subset (cross entropy) and a self-
supervised learning loss (consistency). The latter makes no assumption at all (implicit or explicit)
about the labels and therefore can be applied on all samples.

Supervised mixup training of the encoder-classifier using the clean subset With two random
samples x1,y1 and x2,y2 in the clean subset (Xc,Yc), a mixed new sample xm,ym will be gen-
erated by Mixup method (Zhang et al., 2017) as:

λ ∼ Beta(α, α), λ′ = max(λ, 1− λ),xm = λ′x1 + (1− λ′)x2,ym = λ′y1 + (1− λ′)y2 (5)

We then apply the normal cross-entropy loss for the new virtual mixed sample:

Lce = −
K∑
c=1

yc
mlogz

c
m (6)

where zm = Softmax(g(f(xm))). Instead of direct training with samples from the clean subset,
we expect that virtual samples generated by Mixup are further away from the dataset samples thus
can alleviate the noise memorization effect (Zhang et al., 2017). This loss is back-propagated so as
to update both the encoder f and the classification head g.

Self-supervised consistency training of the encoder using all samples To fully utilize all the
samples, we applied a self-consistency loss motivated by recent non-contrastive self-supervised
learning methods (Chen & He, 2021; Grill et al., 2020). With a projector head p and prediction
head q, we minimize the negative cosine similarity between two different augmented views from the
same sample xi. Denoting the two output vectors as qi , q(p(f(xi1))) and pi , p(f(xi2)):

Lsc = −
qTi pi

‖qi‖2‖pi‖2
, (7)

where xi1,xi2 denotes two different augmented views. Lsc bears similarity to the commonly used
consistency regularization in semi-supervised learning methods, however, the consistency is en-
forced between the projected features rather than the predictions. This allows us to utilize open-set
noise also for training whose true labels are not in the label set. Also, we applied gradient stopping
and an extra predictor so as to avoid mode collapse. This loss is back-propagated so as to update the
encoder f and contributes to learning a strong feature space from both clean and noisy samples. We
also investigated on the use of the L2 loss as distance metric – details can be found in Appendix D.

Data augmentations Strong augmentations, such as Cubuk et al. (2020; 2019), have shown to
be effective in both supervised and semi-supervised learning (Berthelot et al., 2019; Sohn et al.,
2020) and recently, Nishi et al. (2021) validated the benefits of strong augmentations within the
DivideMix (Li et al., 2020a) framework. In this work, we define and use three types of augmenta-
tions: the original image itself (augmentation type ’none’) is used for testing, random cropping and
horizontal flipping (augmentation type ’weak’), and the augmentation policy proposed in Cubuk
et al. (2019) (augmentation type ’strong’). In the model training phase, by default, we apply ’strong’
augmentation for xi1, ’weak’ augmentation for xi2 in Lsc, and ’strong’ augmentation for x1,x2 in
Lce. In the sample selection and relabelling phase, we apply ’weak’ augmentation so as to introduce
more variance and alleviate the accumulation of error – this is in contrast to most works that do not
apply augmentations at similar stages.
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Balanced sampler In order to address possible class imbalances in the noise-agnostic dataset,
we balanced the local distribution of class labels, with the inverse of the global class probabilities
vector π during sample selection (Eq. 1). Similarly, the extracted clean subset (Xc,Yc) might also
potentially suffer from class imbalances. To deal with this, we also use a balanced sampler for
training with Lce by oversampling the minority class.

The overall training objective is to minimize a weighted sum of Lce and Lsc.
L = Lce + wLsc (8)

while for all experiments, we fix w = 1.

4 EXPERIMENTS

4.1 OVERVIEW

In this section, we conduct extensive experiments on two standard benchmarks with artificial label
noise, CIFAR-10 and CIFAR-100, and two real-world datasets, WebVision and ANIMAL-10N (see
Appendix A for details). In Section 4.2.1, we conduct extensive ablation experiments to show the ro-
bustness of our method w.r.t its hyperparameters with different noise types, noise ratios and dataset.
In Section 4.2.2, we conduct extensive ablation studies to validate the benefits of different modules
in our method. In Section 4.2.2, we compared S3 with related works in each single stage. In Section
4.3 and 4.4, we compared with the state-of-the-art in synthetic noisy datasets and real-world noisy
datasets. Implementation details can be found in Appendix B.

4.2 ABLATIONS STUDY

In this section, we conduct extensive ablation experiments to show the robustness w.r.t. the few
hyperparameters with different noise types, noise ratios and dataset. In addition, to clearly show
the contributions of different components and choices in S3 we perform experiments where we
replace our training or sample selection/relabeling components with those from other methods in
the literature.

4.2.1 ANALYSING SAMPLE SELECTION AND RELABELLING

We aim at building a framework which is robust in noise-agnostic dataset scenario and with minimal
number of hyperparameters. In this section, we conduct extensive ablation experiments to show the
robustness of the few hyperparameters with different noise types, noise ratios and dataset.

Figure 3: Classification accuracy with different θr, L, k and θs of synthetic CIFAR10 datasets. (a)
θr = [0.7, 0.8, 0.9, 1], L = [1, 10]; (b) k = [1, 10, 50, 100, 150, 200, 250, 300]; (c) θs = [0, 0.8, 1.0].

θr and L in sample relabelling The choice of θr and L controls the sample relabelling quality
and proportion. Roughly speaking, the lower the θr and L, the more samples will be relabeled in
the training process, which also means that possibly more errors will be introduced. In Fig. 3(a)
we reported performance with different combinations of θr and L on the synthetic CIFAR10 noisy
dataset. Genrally, our method achieved superior performance than the state-of-the-art with different
θr and L. For example in CIFAR10 dataset with 90% sym noise, the lowest accuracy is 87.79% –
this surpasses the state-of-the-art by ∼7%.
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Robustness w.r.t k and θs in sample selection The number k controls the neighborhood size in
the sample selection phase. In Fig. 3(b), we report results with different k for the CIFAR10 dataset
with 40% asym noise. Except for too small k which is more sensitive to the noisy samples, the
performance is stable and consistently higher than the state-of-the-art. θs controls the number of
selected samples, with θs = 0 corresponding to no sample selection (i.e., all samples considered
as clean subset). In Fig. 3(c), we report results with θs = [0, 0.8, 1.0]. Removing sample selection
leads to severe degradation especially in high noise ratio (90% symmetric noise), while a relatively
high θs giving consistently high performance. We fixed θs = 1 for experiments.

Peformance of sample selection and relabelling At each iteration t, after relabelling and before
sample selection, S3 creates a labeled set in which one can find correctly labelled samples (let’s
denote this subset byAt), wrongly labeled samples that could be labeled with one of the given labels
(subset Bt) and the out of set noise (subset Ct). Note, the correspondence with the sets A,B and C
in the original labeled set depicted in Fig.1. After the sample selection, some will be selected and
some not. Ideally, the relabelling mechanism will relabel all samples correctly (i.e., At = A + B)
and, at every iteration, the selection mechanism will select only the correctly labeled samples (i.e.,
those in At). In order to show the performance of the selection mechanism, we report in Fig. 4(a)
the F-score for the selection. In order to show the performance of the relabeling mechanism, we
show in Fig. 4(b) the ratio of the correctly labeled samples (i.e., At/(A+B+C). It is clear that the
relabelling mechanism succeeds in increasing the size of correctly labeled samples (At) even in the
case of heavy or out-of-set noise. It is also clear that in all cases the sample selection mechanism
achieves high scores, even in the challenging cases of heavy noise.

Figure 4: (a) F-score of the sample selection mechanism; (b) Ratio of samples with correct labels
after sample relabelling.

4.2.2 TRAINING MODULES ABLATIONS

Effects of self-consistency and Mixup In Table 1 we report the effect of self-consistency regular-
ization and Mixup in S3 training stage. Removing Mixup decreases the performance, especially in
high noise ratio and removing self-consistency also lead to degradation. Both help prevent memo-
rization of wrong selections and to explore all samples so as to improve the model robustness.

Dataset 50% sym 90% sym 40% asym

S3 96.25 94.92 95.97
w/o Mixup 94.13 83.11 93.99
w/o Self-consistency 95.80 93.31 95.54

Table 1: Classification accuracy w/o Mixup
and Self-consistency.

Method Clothing1M 40% asym CIFAR10

S3 74.91 95.97
w/o balancing 74.12 95.39

Table 2: Effect of balancing strategies.

Effect of balancing strategies To alleviate possible dataset class imbalance, we propose two bal-
ancing strategies in sample selection and model training phase, respectively. In Table 2 we in-
vestigate its effect with different controlled noise in CIFAR10 and also a well-known real-world
imbalanced noisy dataset Clothing1M.
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4.2.3 ABLATIONS BY REPLACING COMPONENTS

To demonstrate the contributions of our choices, we substitute components of our method, with
components of two state of the art methods, i.e., MOIT and DivideMix, and more specifically, their
sample selection and training stages. The results are summarised in Table 3. It is clear that the
semi-supervised training scheme that MOIT adopts, in which all samples are (implicitly) relabelled,
and the DivideMix sample selection that is based on the classifier’s prediction, perform significantly
worse than ours, especially in the case of high noise ratios.

Sample selection Training 50% sym 90%sym 40% asym 60% all(50% open-set)

S3 S3 96.30 95.20 96.0 94.81
S3 MOIT 95.27 69.52 94.75 94.33
DivideMix S3 95.61 46.52 95.04 94.64
DivideMix MOIT 95.75 10 91.67 80.41

Table 3: Comparion with other works

4.3 SYNTHETIC NOISY DATASETS EVALUATION

In this section, we compared our method to most recent state-of-the-art methods: DivideMix (Li
et al., 2020a), LossModelling (Arazo et al., 2019), Coteaching+ (Yu et al., 2019), Mixup (Zhang
et al., 2017), F-correction (Patrini et al., 2017), SELFIE (Song et al., 2019), PLC (Zhang et al.,
2021), PENCIL (Yi & Wu, 2019), ELR (Liu et al., 2020a), NCT (Chen et al., 2021), MOIT+ (Ortego
et al., 2021), NGC (Wu et al., 2021), RRL (Li et al., 2020b), FaMUS (Xu et al., 2021), GJS (Ghosh
& Lan, 2021), PDLC (Liu et al., 2020b). We show, that the proposed method achieves consistent
improvements in all datasets and at all noise types and ratios.

Dataset CIFAR10 CIFAR100

Noise type Symmetric Assymetric Symmetric

Noise ratio 20% 50% 80% 90% 40% 20% 50% 80% 90%

Cross-Entropy 86.8 79.4 62.9 42.7 85.0 62.0 46.7 19.9 10.1
Co-teaching+ 89.5 85.7 67.4 47.9 - 65.6 51.8 27.9 13.7
F-correction 86.8 79.8 63.3 42.9 87.2 61.5 46.6 19.9 10.2
Mixup 95.6 87.1 71.6 52.2 - 67.8 57.3 30.8 14.6
PENCIL 92.4 89.1 77.5 58.9 88.5 69.4 57.5 31.1 15.3
LossModelling 94.0 92.0 86.8 69.1 87.4 73.9 66.1 48.2 24.3
DivideMix 96.1 94.6 93.2 76.0 93.4 77.3 74.6 60.2 31.5
ELR 95.8 94.8 93.3 78.7 93.0 77.6 73.6 60.8 33.4
AugDesc 96.3 95.4 93.8 91.9 94.6 79.5 77.2 66.4 41.2
C2D 96.4 95.3 94.4 93.6 93.5 78.7 76.4 67.8 58.7
RRL 95.8 94.3 92.4 75.0 91.9 79.1 74.8 57.7 29.3
NGC 95.9 94.5 91.6 80.5 90.6 79.3 75.9 62.7 29.8

Ours(S3) 96.6 96.3 95.7 94.9 96.0 79.7 77.2 70.4 56.8

Table 4: Evaluation of S3 with fixed hyperparameters on CIFAR-10 and CIFAR-100 with closed-set
noise. Results of other models are copied from (Li et al., 2020a; Wu et al., 2021).

Evaluation with controlled closed-set noise In this section we compare S3 to the most competi-
tive recent works. Table 4 shows results on CIFAR10 and CIFAR100 – we note for S3 this is without
the use of co-training such as in C2D (Zheltonozhskii et al., 2021) and without per-dataset finetuning
of the hyperparameters as is done in several other methods. Here we report the best results of other
methods and the results of S3 with fixed hyperparameters. It is clear that our methods outperforms
them, not only in the case of symmetric noise, but also that it works very well also at the more
realistic asymmetric synthetic noise.

Evaluation with combined open-set noise and closed-set noise Table 5 shows the performance
of our method in a more complex combined noise scenario. The closed-set noise are generated
as symmetric noise while the open-set noise are random samples from CIFAR100. Noise ratio
denotes the total noise ratio while the open ratio denotes the proportion of open-set noise. Previous
methods that are specially designed for open-set noise degrade rapidly when the open-set noise ratio
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Method Noise ratio 0.3 0.6

Open ratio 0.5 1 0.5 1

ILON Best 87.4 90.4 80.5 83.4

Last 80.0 87.4 55.2 78.0

RoG Best 89.8 91.4 84.1 88.2

Last 85.9 89.8 66.3 82.1

DivideMix Best 91.5 89.3 91.8 89.0

Last 90.9 88.7 91.5 88.7

EDM Best 94.5 92.9 93.4 90.6

Last 94.0 91.9 92.8 89.4

Ours(S3) Best 96.34 96.05 94.97 94.01
Last 96.13 95.95 94.81 93.54

Table 5: Evaluation on CIFAR10 with com-
bined noise. Results of other methods are
copied from EDM (Sachdeva et al., 2021).

Method WebVision ILSVRC2012

Top1 Top5 Top1 Top5

InceptionResNetV2

DivideMix 77.32 91.64 75.20 90.84
ELR 76.26 91.26 68.71 87.84
ELR+ 77.78 91.68 70.29 89.76
NGC 79.16 91.84 74.44 91.04
FaMUS 79.40 92.80 77.00 92.76
RRL 76.3 91.5 73.3 91.2

ResNet50 GJS 77.99 90.62 74.33 90.33

ResNet18

DivideMix 76.08 / / /
ELR 73.00 / / /
MOIT+ 78.76 / / /
Ours(S3) 80.12 92.80 74.84 91.26

Table 6: Testing accuracy on Webvision. Results of
other methods are copied from MOIT (Ortego et al.,
2021) and NGC (Wu et al., 2021).

is decreased from 1 to 0.5 (Lee et al., 2019; Wang et al., 2018). The performance of method without
considering open-set noise like DivideMix (Li et al., 2020a) will decrease when the open-set noise
ratio is increased. EDM (Sachdeva et al., 2021) modified the method of DivideMix to deal with
combined noise, however report results that are considerably lower than ours.

4.4 REAL-WORLD NOISY DATASETS EVALUATION

Finally, in Table 6, Table 7 and Table 8 we show results on the WebVision, Clothing1M and
ANIMAL-10N datasets, respectively. To summarize, our method achieves better or comparable
performance in relation to the current state-of-the-art in both large-scale web-crawled dataset and
small-scale human annotated noisy dataset.

CE F-correction ELR C2D FaMUS RRL DivideMix* ELR+* AugDesc* Ours(S3)

69.21 69.84 72.87 74.30 74.40 74.84 74.76 74.81 75.11 74.91

Table 7: Testing accuracy on Clothing1M. Results of other methods are from RRL(Li et al., 2020b)
and AugDesc (Nishi et al., 2021). Please note methods with * utilized model cotraining or ensem-
bling.

Cross-Entropy SELFIE PLC NCT Ours(S3)

79.4 ± 0.1 81.8 ± 0.1 83.4 ± 0.4 84.1 ± 0.1 88.5 ± 0.1

Table 8: Testing accuracy on ANIMAl-10N. Results of other methods are from NCT (Chen et al.,
2021).

5 CONCLUSIONS

In this paper we propose a method for learning with noisy labels, that relies on a sample selection
mechanism, a relabeling mechanism and a training strategy with multi-objective losses that enable
us to learn robust features from both noisy and clean samples, and a classifier from only clean or
robustly relabeled ones. The proposed method is a simple framework, does not utilize complicated
mechanisms such as co-training to deal with self-confirmation bias, and is shown with extensive
experiments and ablation studies to be robust to the values of its few hyper-parameters, and to
consistently and by large surpass the state-of-the art in both open-set and close-set noise.
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A DATASET DETAILS

CIFAR10 and CIFAR100 both consist of 50K images. Following the standard practice, for CIFAR-
10 and CIFAR-100, we experimented with two types of artificial noise: symmetric noise by randomly
replacing labels of all samples using a uniform distribution; and asymmetric noise by randomly
exchanging labels of visually similar categories, such as Horse↔ Deer and Dog↔ Cat.

WebVision (Li et al., 2017) is a large-scale dataset of 1000 classes of images crawled from the
Web. Following previous work (Jiang et al., 2018; Li et al., 2020a; Ortego et al., 2021), we compare
baseline methods on the top 50 classes from Google images Subset of WebVision. The noise ratio
that is estimated to be around 20%. ANIMAL-10N (Song et al., 2019) is a smaller and recently
proposed real-world dataset consists of 10 classes of animals, that are manually labeled with an error
rate that is estimated to be approximately 8%. ANIMAL-10N has similar size characteristics to the
CIFAR datasets, with 50000 train images and 10000 test images.

B EXPERIMENT DETAILS

We used a PresActResNet-18 (He et al., 2016) as the backbone for all CIFAR10/100 experiments
following previous works. Unlike previous methods that use specific warmup settings for CI-
FAR10/CIFAR100, we train the model from scratch with a linear raising θs from 0 to 1 in 20 epochs.
θr is fixed as 0.8 and the prediction track length L is set to 10 for all CIFAR experiments except in
the corresponding ablation part. We train all modules with the same SGD optimizer for 300 epochs
with a momentum of 0.9 and a weight decay of 5e-4. The initial learning rate is 0.02 and is con-
trolled by a cosine annealing scheduler by Pytorch. The batchsize is fixed as 128. We set α = 4 for
all noise settings in Mixup training.

For WebVision, we used a standard ResNet18 following MOIT (Ortego et al., 2021) due to the
hardware limitation. We train the network with SGD optimizer for 150 epochs with momentum
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of 0.9 and a weight decay of 1e-4. The initial learning rate is 0.02 and is controlled by a cosine
annealing scheduler. The batchsize is fixed as 64. For Clothing1M, we used ResNet50 following
DivideMix (Li et al., 2020a) with ImageNet pretrained weights. We train the network with SGD
optimizer for 80 epochs with momentum of 0.9 and weight decay of 1e-3. The initial learning rate is
0.02 and and is reduced to 0.002 after 40 epochs. For ANIMAL-10N, we used VGG-19 (Simonyan
& Zisserman, 2014) with batch-normalization following (Song et al., 2019). We train the network
with SGD optimizer for 100 epochs with momentum of 0.9 and weight decay of 5e-4. The initial
learning rate is 0.02 and and is also controlled by a cosine annealing scheduler. The batchsize is
fixed as 128. For all datasets, we train the model from scratch with θs = 1, while θr is fixed as 0.9
and the prediction track length L is set to 1. We set α = 1 for Mixup. We report averages of at least
two runs on a single Nvidia RTX 3090 GPU card.

C EFFECT OF AUGMENTATIONS

In Table 9, we show the effect of different types of augmentations at the different stages of our
method. Our results are consistent with the findings of AugDesc (Nishi et al., 2021) that one should
use weaker augmentations for sample selection and relabeling, and strong augmentations for train-
ing. We can also see that the higher the noise ratio, the more prominent the differences are with
different augmentation strategies.

Dataset 50% sym CIFAR10 90% sym CIFAR10

SSR N W S N W S

SST W S W S W S W S W S W S

ACC (%) 96.18 96.45 96.41 96.48 96.14 96.22 93.46 95.13 93.70 94.92 90.92 93.85

AugDesc (Nishi et al., 2021) 95.6 91.9

Table 9: Classification accuracy for different augmentations. N denote ’none’ augmentation,
W denote ’weak’ augmentation, S denote ’strong’ augmentation; SSR denote sample selec-
tion&relabelling, SST denote supervised self-supervised training.

D DIFFERENT DISTANCE METRICS IN SELF-CONSISTENCY

In S3, we applied negative cosine similarity as distance metric for self-consistency head. Here we
also experimented with L2 distance. The results are shown in Table 10, where it can be seen that
there are small differences, but that the cosine similarity is in general better.

Training 50% sym 90%sym 40% asym 60% all(50% open-set)

S3(negative cosine similarity) 96.30 95.20 96.0 94.81
S3(L2 distance) 96.04 94.7 96.13 94.26

Table 10: S3 with different distance metric for self-consistency loss
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