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Abstract

Dynamic topic modeling is a well established tool
for capturing the temporal dynamics of the topics
of a corpus. In this work, we develop a scalable
dynamic topic model by utilizing the correlation
among the words in the vocabulary. By correlat-
ing previously independent temporal processes for
words, our new model allows us to reliably esti-
mate the topic representations containing less fre-
quent words. We develop an amortised variational
inference method with self-normalised importance
sampling approximation to the word distribution
that dramatically reduces the computational com-
plexity and the number of variational parameters
in order to handle large vocabularies. With exten-
sive experiments on text datasets, we show that
our method significantly outperforms the previous
works by modeling word correlations, and it is able
to handle real world data with a large vocabulary
which could not be processed by previous continu-
ous dynamic topic models.

1 INTRODUCTION

Topic modeling has been widely used to extract the main top-
ics from a large collection of content such as text documents,
images and other types of data that can be represented as
bag-of-words [Balikas et al., 2016, Kho et al., 2017]. In
topic modeling, a topic is represented as a probability distri-
bution over the words in the vocabulary, and the words in a
document are assumed to be independently drawn from a
mixture of topics [Blei et al., 2003]. This approach allows
us to efficiently infer topic compositions of documents in
a large corpus without modeling sentence and paragraph
structures.

Topic modeling has been extended to analyse the evolu-
tion of topics in a corpus over time [Bhadury et al., 2016,

Jähnichen et al., 2018, Tomasi et al., 2020]. The prior dis-
tribution of topic composition and the representations of
individual topics are augmented into temporal processes
such as Gaussian processes (GPs). With these methods, one
can understand the rise and fall of a topic at an aggregated
level. For example, when applied to the machine learning
research literature, we can easily observe the changes of
the popularity of different research topics over time. Such
dynamic topic modeling requires a large amount of data
because we need lots of documents at each time point to
reliably estimate the topic representations and topic com-
positions. It is particularly challenging for modeling less
frequent words because each word needs to be observed
multiple times for each relevant topic at every time point,
which is less likely for rare words. It is also computationally
very challenging for the current dynamic topic models to
handle a large vocabulary due to the increased computa-
tional and memory requirement. On the other hand, those
less frequent words are often very specific, and hence may
be strong cues to inform the topic of a document.

To leverage the information from less frequent words, we
propose to incorporate word correlation in dynamic topic
modeling. By doing so, a topic model can obtain sufficient
signals about less frequent words by observing the exis-
tence of similar words. We incorporate word correlation
by augmenting the generative model of topic representa-
tions. Previously, a topic representation is assumed to be
drawn from a temporal process represented by a set of GPs,
one for each word. The word correlation is introduced by
correlating these previously independent GPs, resulting in
a multi-output Gaussian process [MOGP; Álvarez et al.,
2010]. Ideally, MOGP can explicitly capture word correla-
tion in the form of a covariance matrix of all the words. This
is infeasible due to both the high computational complexity
and the large amount of data required for a reliable estimate.
Instead of an explicit covariance matrix, we represent the
correlation of words by embedding them into a latent space
and generate the covariance matrix through a covariance
function. With a Bayesian treatment to word representa-
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tions (vectors) in the latent space, we can obtain a reliable
estimate of the correlation with a small amount of data.

We develop an efficient stochastic variational inference
method for the topic model. By extending the sparse GP
[Titsias, 2009] to our MOGP formulation, the derived varia-
tional lower bound has the same computational complexity
as in previous works with word independence and has signif-
icantly less number of variational parameters. Furthermore,
compared to [Tomasi et al., 2020], we improve the amor-
tised inference formulation by adopting a meta-encoder for
the variational posterior of topic mixing proportions. The
meta-encoder takes as inputs not only a document represen-
tation but also a summary of all the topic representations at
a given time point. This allows the meta-encoder to easily
handle the changes to topic representations. As the word
distributions are modelled in as unnormalised log probabil-
ity, the log-likelihood is calculated by drawing a sample of
all the words in the vocabulary, which is computationally
expensive for large vocabularies. For efficient inference, we
derive an asymptotically unbiased estimator for the gradient
of the lower bound that samples a subset of words from
the vocabulary. This greatly increases the scalability of the
inference method on large vocabularies. In summary, the
main contributions of this paper are:

• We develop a word-correlated dynamic topic model,
where the word correlation is jointly inferred together
with the topic model from the data.

• We derive an efficient amortised variational inference
method, which has the same computational complexity
as the word independent model and less number of
variational parameters.

• We derive an asymptotically unbiased estimator for
the gradient of the lower bound, in which the com-
putational complexity is constant with respect to the
vocabulary size.

• On synthetic and real world datasets, we show that our
method significantly outperforms the previous dynamic
topic models in term of both quality and scalability.

Outline. The rest of this paper is organised as follows.
Section 2 discusses related work. Section 3 presents our
novel contribution, a word-correlated dynamic topic model.
Section 4 describes an efficient variational inference proce-
dure, using sparse Gaussian processes. Section 5 includes
our experiments. Section 6 concludes with a discussion of
the contributions of this work.

2 RELATED WORK

Topic Models. Topic models were proposed as a way to
infer a mixture of topics from a collection of documents
[Blei et al., 2003]. The correlated topic model [CTM; Blei
and Lafferty, 2006a] allows topics to be correlated using

a logistic normal distribution. Dynamic topic models have
been proposed to enable consistent topics over a series of
documents indexed by a temporal index [Blei and Lafferty,
2006b, Wang et al., 2008b, Dieng et al., 2019]. Recent
models have been extending the idea by using the inher-
ent structure between documents through continuous pro-
cesses [Bhadury et al., 2016, Jähnichen et al., 2018, Tomasi
et al., 2020]. However, the assumption of word indepen-
dence given the topic does not allow information sharing
across words, which limits in practice the applicability of
topic models on corpus with large vocabulary and short
documents.

Word & Topic Embedding. The idea of word or topic
embedding has been explored in the topic modeling liter-
ature. In particular they have been used to learn coherent
topics through word similarities [Xie et al., 2015] or rep-
resent a topic as Gaussian distributions in the embedded
space [Xun et al., 2017]. Recently, topic modeling has been
formulated as factor analysis, where words are embedded
into a latent space [Yi et al., 2020]. Compared to our ap-
proach, none of these methods consider temporal dynamics
and word embeddings are either learned outside the topic
model such as using Word2Vec or lead to dramatic changes
to the topic model formulation. Other recent work shows
how a dynamic LDA and word embeddings can be effec-
tively combined [Dieng et al., 2019]. Similar to our frame-
work, the word embeddings are learned within the model
and separated from the topic representations. However only
discrete time stamps are considered, which do not allow
to generalise the model to new time points, and topics are
independent from each other. Another attempt to consider
temporal dynamics have been proposed through Gaussian
process latent variable models (GPLVMs), to infer a latent
correlation between topics in discrete time stamps [Song
et al., 2008]. Additional approaches consider embedding
words through GPLVMs, and regard the resulting latent
representation as topics. Topic correlation is then encoded
through embedding similarity [Agovic and Banerjee, 2010,
Hennig et al., 2012]. However, such topic models still use
word embeddings to drive topic correlation. As we consider
the correlation between the topics as an additional parame-
ter, we can independently use (and learn from scratch) word
embeddings to reliably model short texts.

Multi-output Gaussian Process. MOGPs [Álvarez et al.,
2010, Williams et al., 2007, Stegle et al., 2011] extend GPs
by explicitly modeling the correlation among multiple out-
put dimensions. The correlation is encoded as a covariance
matrix among output dimensions, which is also known as a
coregionalization matrix. The resulting model is still a GP
but with a much larger covariance matrix (a Kronecker prod-
uct between the coregionalization matrix and the covariance
matrix based on inputs), which poses a significant challenge
on computation. Dai et al. [2017] addressed this problem
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Figure 1: The graphical model for MIST.

by proposing an efficient variational inference method, in
which the coregionalization matrix is represented as a latent
space embedding similar to Gaussian process latent variable
model [GPLVM; Lawrence, 2004]. Our approach extends
the latent space embedding formulation of MOGP into topic
modeling, which allows us to correlate the temporal pro-
cesses of individual words in a topic representation.

Adaptive Softmax. The main issue in topic models is that
the normalisation constant of the topic distribution depends
on all of the vocabulary. The same issue can be found in
language modeling or classification problems, where the
number of classes to predict may be high, and computing
probabilities for negative classes is too expensive [Bengio
and Senécal, 2008, Blanc and Rendle, 2018]. Solutions to
this problem have been proposed by approximating the soft-
max transformation [Zoph et al., 2016, Panos et al., 2021,
Jean et al., 2014, Bamler and Mandt, 2020]. In particular,
a self-normalised importance sampling procedure has been
shown to effectively increase the training performance [Ben-
gio and Senécal, 2008, Jean et al., 2014]. While not directly
applicable in topic models, we show how it is possible to
implement a similar procedure when estimating the topic
distribution for dynamic topic models, allowing to effec-
tively overcome vocabulary restrictions.

3 DYNAMIC TOPIC MODELING WITH
WORD CORRELATION

We propose a dynamic topic model with word correlation,
which we refer to as MIST (Multi-output with Importance
Sampling Topic model). MIST is a probabilistic generative
model that assumes that each document d, associated with
a specific time point xd, is generated by sampling a set of
words according to K topics. Each document has an unnor-
malised topic mixing proportion ηd sampled from a prior
distribution, ηd ∼ N (µxd

,Σxd
), where µxd

is the mean
of the distribution of topics mixing proportions associated
to the time point xd, and Σxd

is the covariance matrix of
topics at xd. When Σxd

is diagonal, the mixing propor-
tion for each topic are independent to each other. Then,
each word wn in this document is assigned with a topic
zn, which is sampled from the distribution σ(ηd), where
σ(x)i = exp(xi)/

∑
j exp(xj) is the softmax function. Fi-

nally, the word wn is sampled by picking a word from the
vocabulary following the unnormalised word distribution of
the assigned topic zn at the time xd, β(xd)

zn .

Figure 1 shows an overview of the graphical model of
MIST. The generative process of a Nd-word document d
is summarised as follows. First, draw a mixture of topics
ηd ∼ N (µxd

,Σxd
). Then, for each word n = 1, . . . , Nd:

1. Draw a topic assignment zn|ηd from a categorical dis-
tribution with parameter σ(ηd);

2. Draw a word wn|zn,β from a categorical distribution
with parameter σ(β(xd)

zn ).

The individual documents are assumed to be i.i.d. given
the document-topic proportion and topic-word distribution.
Under this generative process, the marginal likelihood for a
given corpus W that contains D documents becomes:

p(W |µ,Σ,β) =
D∏

d=1

∫ Nd∏
n=1

(
K∑

zn=1

p(wdn|zn,β(xd)
zn )p(zn|ηd)

)
p(ηd|µxd

,Σxd
)dηd.

(1)

To model the temporal dynamics of topic mixing propor-
tions ηd, we consider temporal processes as the prior distri-
butions for µ and Σ. In particular, we consider zero-mean
Gaussian process to model the topic probability (µxd

)
D
d=1,

i.e., p(µ) = GP(0, κµ). Similarly, we model covariance
matrices (Σxd

)
D
d=1 as generalised Wishart process (GWP),

indicated as Σxd
∼ GWP(V, ν, κθ) [Wilson and Ghahra-

mani, 2011, Heaukulani and van der Wilk, 2019, Tomasi
et al., 2020].

Word Correlation. In dynamic topic models [Jähnichen
et al., 2018] the topic representations β are allowed to
change over time. This is done by defining a GP prior over
time independently for each word in each topic, so that there
will be KP independent GPs, where P is the number of
words in the vocabulary. This does not allow information
sharing among similar words and results into a large num-
ber of variational parameters for inference. In this paper,
we introduce correlation among words by defining a cor-
related temporal process for all words. First, we define a
latent representation hi ∈ RQ for each word in the vocabu-
lary. The latent representations are given an uninformative
prior hi ∼ N (0, I). Then, a MOGP is defined for the topic
representations over time for each topic:

p((βk):|H,x) = N ((βk):|0,KH ⊗Kx), (2)

where (·): denotes a matrix vectorisation, ⊗ denotes the
Kronecker product, βk is a T × P matrix representing the
unnormalised word probabilities over time for the topic
k (T is the number of unique time points in the corpus).
The covariance matrix Kx is computed using the kernel
function κx over all the time points x and the covariance
matrix KH is computed using the kernel function κH over
all the word representations H = (h1, . . . ,hP ). With this



formulation, all the words at all the time points are jointly
modeled with a single GP, in which the word correlation
is encoded in the TP × TP covariance matrix. The prior
distributions among different topics are assumed to be in-
dependent: p(β|x, H) =

∏K
k=1 p(βk|x, H). Note that the

word correlations are encoded through the latent representa-
tions of words, which are static over time and shared across
all the topics. Although the number of those latent vectors
is relatively large, they can be reliably estimated by condi-
tioning on the whole corpus.

The topic assignment variables {zn}Nd
n=1 for individual

words of each document are latent and discrete, which are
difficult to infer with variational inference. We marginalise
out these discrete variables and obtain a closed form likeli-
hood distribution,

p(Wd|ηd,β) =

Nd∏
n=1

Cat(σ(β(xd)σ(ηd))), (3)

where β(xd) denotes the representations of all the topics at
the time xd. With this formulation, a document can be repre-
sented in the form of word-count, allowing for a simplified
formulation of our variational inference procedure.

4 VARIATIONAL INFERENCE

The MOGP formulation provides an elegant framework to
correlate both the temporal dimension and the words in the
vocabulary for the topic representations under a single GP.
It also brings a significant challenge for inference, because
the computational complexity for calculating the probability
density function (PDF) of Equation (2) alone is O(P 3T 3).
To overcome this challenge, we develop an efficient varia-
tional inference method based on the stochastic variational
sparse GP formulation [SVGP; Hoffman et al., 2013], reduc-
ing the computational complexity to be linear with respect
to P and T .

4.1 VARIATIONAL INFERENCE FOR WORD
CORRELATION

The word correlation is encoded by the latent representations
of individual words H . We parameterise the variational pos-
terior of H as q(H) = N (mH , SH) and derive a variational
lower bound,

log p(W |x) ≥ Eq(H)[log p(W |x, H)]−KL(q(H)||p(H)),
(4)

where KL(·||·) denotes the Kullback-Leibler divergence.
The KL term in (4) can be computed in closed form be-
cause both q(H) and p(H) are normal distributions, but
p(W |x, H) is intractable.

To derive a lower bound for the marginalised likelihood
p(W |x, H), we first derive a variational lower bound for

log p(βk|x, H) by taking the SVGP formulation. To take
advantage of the Kronecker product structure in the covari-
ance matrix, i.e., KH ⊗Kx, we define the inducing vari-
ables to be on a grid in the joint space of the word embed-
ding and the temporal dimension. Let Uβk

be a Mx ×MH

matrix, which follows the distribution p(Uβk
|Zx, ZH) =

N ((Uβk
):|0,Kuu),where Kuu = KH

uu⊗Kx
uu. The rows of

Uβk
corresponds to a set of inducing inputs in the temporal

dimension, denoted as Zx, and the columns of Uβk
corre-

sponds to a set of inducing inputs in the word embedding
space, denoted as ZH . Then, KH

uu is computed on the set
of inducing inputs ZH with κH , while Kx

uu is computed on
the set Zx with κx.

After defining the inducing variable Uβk
, we reformulate

p(βk|x, H) as

p(βk|x, H) =

∫
p(β|Uβ ,x, H, Zx, ZH)p(Uβ |Zx, ZH)dUβ .

(5)

The conditional distribution of βk is

p(βk|Uβ , Zx, ZH ,x, H) = (6)

N (βk|KfuK
−1
uuUβ ,Kff −KfuK

−1
uuKuf ), (7)

where Kfu = KH
fu ⊗Kx

fu and Kff = KH
ff ⊗Kx

ff . KH
ff

is the covariance matrix computed on H with κH , and Kx
ff

is computed on x with κx.

With the augmented GP formulation, we can derive a
variational lower bound following [Hoffman et al., 2013].
However, a naive parameterisation of the variational pos-
terior q(Uβk

) using a multivariate normal distribution has
a MxMH ×MxMH covariance matrix, which is too large
for matrix inversion. Instead, we define q(Uβk

) with a Kro-
necker product covariance matrix similar to p(Uβk

),

q(Uβk
) = N ((Uβk

):|M:,Σ
H ⊗ Σx). (8)

where M is the mean of the variational posterior, ΣH is a
P × P covariance matrix and Σx is a T × T covariance
matrix. With this formulation, the covariance matrix can
be inverted efficiently by only inverting the two smaller
covariance matrices, (ΣH ⊗ Σx)−1 = (ΣH)−1 ⊗ (Σx)−1.
This parameterisation also dramatically reduces the number
of variational parameters in the covariance matrix from
M2

xM
2
H to M2

x +M2
H .

With the variational posterior q(Uβk
), we derive the varia-

tional lower bound for any downstream variable that con-
sumes βk,

log p(·|H) ≥ Eq(βk|H)[log p(·|βk)]− KL(q(Uβk
)||p(Uβk

)),
(9)

where q(βk|H) =
∫
p(βk|Uβk

, H)q(Uβk
)dUβk

. As the ex-
pectation Eq(βk|H)[p(·|βk)] has no close form solution for



our model, we approximate it with Monte Carlo Integration
by drawing samples from q(βk|H).

The multivariate normal distribution with a Kronecker
product covariance matrix like p(Uβk

) and q(Uβk
) is also

called matrix normal distribution [Gupta and Nagar, 1999].
In matrix normal distribution notation, q(Uβk

) becomes
MN (M,ΣH ,Σx). Sampling from the distribution and the
KL divergence can be computed efficiently (details in Sup-
plementary Material).

Sampling from q(βk|H). To compute the expectation in
(9), we need to draw samples from q(βk|H). As q(βk|H) is
a multivariate normal distribution with a full covariance ma-
trix, drawing a correlated sample of βk is computationally
very expensive, O(P 3T 3). Usually, we can avoid drawing
a fully correlated sample if βk in the downstream log PDF,
log p(·|βk), can be decomposed into a sum of individual en-
tries, e.g., p(·|βk) is a normal distribution. However, due to
the softmax function that is applied to βk in (1), such decom-
position is not applicable to our model. To efficiently sample
from q(βk|H), we apply another sparse GP approximation,
the FITC approximation [Naish-Guzman and Holden, 2008],
to the conditional distribution of βk. The resulting formula-
tion is

pFITC(βk|U,Zx, ZH ,x, H) =

N (βk|KfuK
−1
uu (U

⊤):, diag
(
Kff −KfuK

−1
uuKuf

)
),
(10)

where diag (·) returns a diagonal matrix while keeping the
diagonal entries. Since Kfu, Kff and Kuu have a Kro-
necker structure, we can rewrite mean and covariance to
compute them efficiently. Sampling from (10) is efficient be-
cause individual entries of βk can be sampled independently.
This reduces the computational complexity of sampling βk

from O(P 3T 3) to O(PTM2
xM

2
H).

4.2 VARIATIONAL INFERENCE FOR MIXTURE
OF TOPICS

With a variational posterior q(ηd) for each document, we
can derive a variational lower bound of the log probability
over the documents as:

log p(W |µ,Σ,β) ≥
D∑

d=1

(
Eq(β|H)q(ηd)

[
log p(Wd|ηd,β

(xd))
]

− KL (q(ηd)||p(ηd|µxd
,Σxd

))
)

= LW . (11)

Since the lower bound is a summation over individual docu-
ments, this formulation allows for a stochastic approxima-
tion by sub-sampling the documents.

Importance Sampling. Computing the expectation
Eq(β|H)q(ηd)

[
log p(Wd|ηd,β

(xd))
]

is still problematic
when the number of words in the vocabulary increase, as
we need to sample each word to compute the normalisation
constant the softmax function as in Equation (3). First, let
ξd = β(xd)σ(ηd), and ξd,n = (ξd)n. We can rewrite (3)
as p(Wd|ηd,β) =

∏Nd

n=1 Cat(σ(ξd)) = L̃W . Then, we can
explicitly write its derivative as (details in Supplementary
Material):

∇L̃W =

Eq(β|H)q(ηd)

Nd∑
n=1

[
∇ξd,n −

P∑
i=1

exp(ξd)i∑P
j=1 exp(ξd)j

∇ξd,i

]
.

(12)

In the sum inside the parenthesis, it is clear we need to
sample from all of the vocabulary (that has size P ). This
is inefficient and may even be unfeasible for a large vocab-
ulary. The key idea to solve this problem, and efficiently
scale our topic model to an arbitrary large set of words in
the vocabulary, is to approximate the normalisation constant
with a fixed number of words, using a self-normalising im-
portance sampling [Bengio and Senécal, 2008]. Let consider
the words appearing in the batch of documents under analy-
sis as positive (e.g., as in a positive class in a classification
problem). We then borrow from the “extreme” classification
literature the idea to use importance sampling to approxi-
mate the normalisation constant, which consists in consider
a random sample of M classes (in our case, words from the
vocabulary) and using those to approximate the normalisa-
tion constant [Bamler and Mandt, 2020].

Consider a sample vector s ∈ {1, ..., P}M+Nd , which rep-
resents a sample of words in the vocabulary and stores
the index of the Nd positive (words appearing in doc-
ument d) and the index of the M sampled words. Let
ξ′d,i := ξd,i − ln(Qdi/P ) if yi = 0 (i.e., word i does not
appear in document d), ξ′d,i := ξd,i − ln(Qdi) otherwise,
with Qdi proposal distribution. We shift the true logits by
the expected number of occurrences of a word i, ensuring
that the sampled softmax is asymptotically unbiased. In our
experiment we choose Q to be a uniform distribution over
the subset of words considered, so Qdi = 1/(Nd + M)
[Jean et al., 2014]. Then:

∇L̃W ≈ Eq(β|H)q(ηd)

Nd∑
n=1

[
∇ξd,n

−
M+Nd∑
i=1

exp(ξ′i)∑M+Nd

j=1 exp(ξ′j)
∇ξd,i

]
. (13)

In this way, we further reduce the complexity of com-
puting expectation from O(PTM2

xM
2
H) to O((M +

Nd)TM
2
xM

2
H).



Documents meta-encoder. We parameterise the varia-
tional posteriors q(ηd) for individual documents as:

q(ηd) = N (ϕm([Wd Mβ,xd
]), ϕS([Wd Mβ,xd

])), (14)

where ϕm and ϕS are parametric functions generating the
mean and variance of q(ηd), respectively, Mβ,xd

is the mean
of the GP prediction at the inducing point location ZH , and
[A B] denotes the concatenation of the matrices A and B.
Instead of implicitly learning the topic information into ϕm

and ϕS as in [Tomasi et al., 2020], we explicitly pass in a
summary of all the topic representation at the time point xd.
We define Mβ,xd

as the mean of the GP prediction at induc-
ing point location ZH , to keep the complexity constant with
respect to the number of words in the vocabulary. We treat
such prediction as the summary of all the topic representa-
tions at input xd because the inducing variable in sparse GP
can be viewed as a summary of all the data [Titsias, 2009].
By having the topic representations as inputs, the encoder
does not need to “memorise" the information about topics
but rather link a document to relevant topic representations.
Therefore we refer to ϕm and ϕS as the meta-encoder.

Lower bound. Note that the lower bound LW is in-
tractable. We compute an unbiased estimate of LW via
Monte Carlo sampling. As q(ηd) are normal distributions,
we obtain a low-variance estimate of the gradients via the
reparameterisation strategy [Kingma and Welling, 2014].

The document-topic proportion for each document d fol-
lows a prior distribution p(ηd|µxd

,Σxd
), where the Gaus-

sian process p(µ) = GP(0, κµ) provides the mean and the
Wishart process p(Σ) = GWP(V, ν, κθ) provides the co-
variance matrix at xd. To enable efficient inference for both
GP and GWP, we take a SVGP approach to construct the
variational lower bound of our model [Tomasi et al., 2020].
We can derive the complete variational lower bound L of
MIST combining the lower bounds (11), (4), (9) and the
lower bounds for GPs and GWP (details in Supplementary
Material).

5 EXPERIMENTS

We compared MIST with several static and dynamic topic
models: (i) LDA with an mean-field variational infer-
ence [Hoffman et al., 2010, Pedregosa et al., 2011]; (ii) CTM
with variational inference [Blei and Lafferty, 2006a];1;
(iii) dynamic embedded topic model [DETM; Dieng et al.,
2019], and (iv) dynamic correlated topic model [DCTM;
Tomasi et al., 2020]. We do not compare with other previ-
ously proposed dynamic models that only cater for indepen-
dent topics, e.g., DTM [Blei and Lafferty, 2006b], FastDTM
[Bhadury et al., 2016] (do not handle continuous dynamics),

1We additionally infer the variational posteriors for the topic
representations β, of which the point estimates are inferred in [Blei
and Lafferty, 2006a].

Figure 2: Average time to compute 5 epochs in a dataset
with increasing number of words.

and gDTM [Jähnichen et al., 2018] (only considers dynam-
ics for β), as both DETM and DCTM have been shown to
generalise and improve on such models.

Performance Analysis. We first empirically evaluated the
benefit of MIST using synthetic datasets. We show the per-
formance of MIST against the DCTM model [Tomasi et al.,
2020] in Figure 2 on a dataset with increasing words (from
100 to 10M), while keeping a fixed number of samples at
different time points. Our proposed model consistently out-
performs DCTM across all the vocabulary sizes. In particu-
lar, the computational benefit of MIST is more evident after
reaching 100K (and 1M) words. On the dataset with 10M
words we showed how DCTM could not be used anymore,
as it was computationally intractable. Instead, we notice
how MIST is able to scale to 10M words, with an average
computational time that is lower than the time required by
DCTM with 1M words. Similarly, MIST with 1M words
took less than DCTM with 100K words.

Quantitive Analysis. We here showcase the benefit of
incorporating word correlation in topic modelling by com-
paring MIST with state-of-the-art topic models on public
datasets. The common parameters across the models have
been kept the same for a fair comparison (e.g., the number
of topics). Here, we fix the number of topics to be small
(30 topics for all datasets apart for SotU using 20) so we
are able to compare to the baselines. In addition, our experi-
ments do not show relevant differences across models when
varying the number of topics (analysis in the Supplementary
Material). In all datasets, there is a timestamp associated
with each document. Static topic models (LDA and CTM)
are optimised without considering the timestamps, while
DCTM and MIST incorporate the continuous timestamps
into the inference. For DETM, which considers discrete
times, we discretised the timestamps into 30 bins to make
the inference computationally feasible on our machine.

We split each dataset considering 75% of the samples as



Table 1: Average per-word perplexity (the lower the better)
on public datasets.

Dataset #words LDA CTM DETM DCTM MIST

Blogs 3000 1538.74 1525.01 1305.34 1013.71 949.76
SotU 4583 3090.52 1937.19 3069.54 2205.01 1675.32

NeurIPS 4799 1321.51 1241.72 941.91 1012.51 888.59
DoJ 9591 1459.10 931.23 936.00 928.08 613.37

Abstracts 13126 3206.09 2918.36 2566.50 - 1857.67
News 22459 5351.83 3553.73 1957.25 - 1703.77

Twitter 83582 7101.83 8576.97 2721.05 - 2595.14

training and 25% as test. Documents associated with the
same time stamps were assigned to the same split. For each
dynamic topic model we used a Matérn 3/2 kernel for β, to
allow topics to quickly incorporate new words. This is im-
portant to incorporate neologisms, particularly for datasets
such as NeurIPS conference papers and Elsevier (Abstracts)
corpus, where the names of novel models become quoted in
citations (for example, "LDA" starting to appear in publica-
tions together as "topic modeling" after its introduction in
2003). For the other parameters µ and f we use a squared
exponential kernel, as we expect a smooth temporal evolu-
tion of both topic probabilities and their correlation. Full
details on data, model parameters and experimental settings
can be found in the Supplementary Material.

We report the average per-word perplexity computed on
the held-out test set of the datasets for all the models in
Table 1. The per-word perplexity is a measure of best fit to
compare models, computed as the exponential average neg-
ative predictive log-likelihood for each word [Wang et al.,
2008a]:

perplpw(t) = exp

− 1

|Dt|
∑

d∈D+

log p(Wd|ηd,β
(xd))

Nd

 ,

where log p(Wd) is estimated as in Equation (11). MIST
consistently outperforms all the baselines on all the datasets.
The benefit in using our models is more evident for the
datasets that have a larger time span (SotU) or a shorter doc-
ument size (Blogs, News, Twitter). There is also a significant
performance gap between static and dynamic topic models,
which demonstrates the advantages of incorporating tempo-
ral information into topic modeling. Comparing MIST to
DCTM, the perplexity decreases on average by 10%, which
shows that incorporating word correlation into topic model-
ing can significantly improve the quality of modeling. When
using large scale datasets (more than 10K words) we were
not able to run DCTM as the size of the vocabulary was
intractable. However, we were able to use our model MIST,
and obtain better perplexity than static topic models and
the discrete time topic model DETM (for which we had to
discretise the time stamps of the documents into 30 bins).

We note that dynamic topic models allows to keep the num-
ber of topics low with respect to static topic models, because

Figure 3: Correlation matrix for top-10 frequent words in
four topics inferred by MIST for NeurIPS dataset.

topics will be linked through time. Hence, if static models
need a lot of topics to be able to cluster words in different
time stamps, dynamic models allow to adapt the words re-
lated to the same topics to achieve the same (or best) results
on a small number of topics. Furthermore, our proposed
model, through the use of the Kronecker decomposition, is
able to keep the number of parameters low in terms of words
representation. Instead of independently learn the represen-
tation of words, we learn a representation of a similar group
of words, which allows us to scale the model and train in
the presence of few words in documents.

Qualitative Analysis on NeurIPS dataset. To provide in-
sights about the word correlation in MIST, we visualise the
inferred word correlation. We choose four interred popular
topics across all years on the NeurIPS dataset and collect
the top-10 frequent words for each topic (Supplementary
Material). Then, we compute the covariance matrix among
these frequent words (duplicate words are removed) by ap-
plying the learnt kernel function κH to the mean of the
variational posterior of the word representations mH . The
covariance matrix is converted into a correlation matrix for
better interpretability. We visualise the resulting correla-
tion matrix using a heatmap (Figure 3). The color map is
shown in the left top corner of the plot. A lighter color in-
dicates a stronger correlation and a darker color indicates a
weaker correlation. Due to the choice of the kernel function
(squared exponential) no anti-correlation is captured in the
correlation matrix. We also applied a simple hierarchical
clustering to the correlation matrix. With only the word re-
lation, the words associated with the same topic are roughly
grouped together (topics are here unknown to the clustering
algorithm). For example, network, weight, neural and layer,



Figure 4: Word counts in dataset and estimated word proba-
bility in dynamic topic models for few low frequency words.

which identify the topic neural network, have a very similar
embedding. The word pairs that are often used together in
some research area show interesting strong correlations such
as input-output, imag-pixel, time-state. This indicates that
the word correlation has contributed to the identification of
these topics.

We analyse the performance of MIST in terms of modeling
infrequent keywords compared to previous methods (see
Figure 4). We plot the per-year word counts of three key-
words (“Wishart”, “Kalman” and “Hebbian”) in the Neurips
datasets in the top row. All three words on averages appear
less than 100 times a year, which are infrequent, but they
are all clear indicators of ML and neuroscience sub-fields.
We then compare the word probabilities of each word in the
topic with the strongest connection to the word inferred by
MIST, DCTM and DETM. We plot the posterior of µ in the
topic inferred by MIST where the word is most prominent,
and the posterior of β for each one of the dynamic topic

models we tested (we omit static topic models as the result
would be a flat line of the word probability as it is indepen-
dent of time). MIST is shown to be the most accurate in
modelling these words, by capturing the general dynamics
of the word in the dataset but without overfitting it.

For example, consider the word “Wishart” corresponding to
the Wishart distribution (and process). The word counts are
very low (less than 50 counts in total each year). However,
the word is very much indicative of Bayesian inference
topic, as the Wishart distribution is the conjugate prior of the
inverse covariance-matrix of a multivariate-normal. Indeed,
it has a high correlation with the much more common word
"posterior" (ρ = 0.688 using the learnt κH from MIST).
MIST is able to accurately model the increasing dynamics
of such word over time (middle row). Conversely, DCTM
and DETM that considers words independently do not have
enough data to accurately model its dynamics.

6 CONCLUSION

We developed an efficient approach to model word correla-
tion in dynamic topic modeling. Our approach incorporates
word dynamics through the use of multi-output Gaussian
processes. We improved the amortised inference by propos-
ing a meta-encoder, which allows MIST to be more sensitive
to the changes of topic representations. Finally, we enable
scalable inference for large vocabularies by deriving an
asymptotically unbiased estimator of the gradient that al-
lows us to dramatically subsample the number of words in
computation. As shown in our experiments, incorporating
word correlation into dynamic topic modeling significantly
improves the modeling quality and allows topic models to
leverage information from related words.
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