
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FROM COMMANDS TO PROMPTS:
LLM-BASED SEMANTIC FILE SYSTEM

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated significant potential in the
development of intelligent LLM-based agents. However, when users use these
agent applications to perform file operations, their interaction with the file system
still remains the traditional paradigm: reliant on manual navigation through precise
commands. This paradigm poses a bottleneck to the usability of these systems as
users are required to navigate complex folder hierarchies and remember cryptic file
names. To address this limitation, we propose an LLM-based Semantic File System
(LSFS) for prompt-driven file management. Unlike conventional approaches,
LSFS incorporates LLMs to enable users or agents to interact with files through
natural language prompts, facilitating semantic file management. At the macro-
level, we develop a comprehensive API set to achieve semantic file management
functionalities, such as semantic file retrieval, file update summarization, and
semantic file rollback). At the micro-level, we store files by constructing semantic
indexes for them, design and implement syscalls of different semantic operations,
e.g., CRUD (create, read, update, delete), group by, join. Our experiments show that
LSFS can achieve at least 15% retrieval accuracy improvement with 2.1× higher
retrieval speed in the semantic file retrieval task compared with the traditional
file system. In the traditional keyword-based file retrieval task (i.e., retrieving
by string-matching), LSFS also performs stably well, i.e., over 89% F1-score
with improved usability, especially when the keyword conditions become more
complex. Additionally, LSFS supports more advanced file management operations,
i.e., semantic file rollback and file sharing and achieves 100% success rates in
these tasks, further suggesting the capability of LSFS. The code is available at
https://anonymous.4open.science/r/LSFS-8CCF/.

1 INTRODUCTION

In recent years, researchers have put great efforts in integrating AI to provide better services for
serving applications. For example, machine learning algorithms have been studied to optimize system
resource allocation and and improve system efficiency (Blair et al., 1987; Schneider et al., 2020; Gong
et al., 2024). The emergence of large language models (LLMs) has further catalyzed the integration
of AI into serving applications. The great reasoning and planning ability of LLMs facilitates the
development of LLM-based agents, including single-agent applications (Yang et al., 2024; Zhang
& Zhang, 2023; Gur et al., 2023; Deng et al., 2024) and collaborative multi-agent applications (Wu
et al., 2024a; Ge et al., 2024; Shen et al., 2024; Hong et al., 2023).

In these LLM-based agents, file management operations primarily rely on the traditional way and
traditional file systems primarily rely on file attributes to build metadata. These attributes, typically
obtained by scanning the file, include file size, creation and modification timestamps. The actual
file content is stored as binary data, with traditional file systems leveraging index structures such as
B+ trees to efficiently locate this data. While these designs continue to evolve and improve, they
generally overlook the semantic content information within files, making it difficult for traditional
file systems to support tasks that require deeper semantic understanding. It is unable to leverage
the high-level semantic meaning in the natural language context. ❶ For instance, if two files have
similar content which cannot be distinguished by simple string matching, traditional file systems lack
the ability to organize or retrieve these files based on content similarity. ❷ User interactions with
traditional file systems require complex operating system commands or manual navigation through

1

https://anonymous.4open.science/r/LSFS-8CCF/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the user interface, forcing users to precisely recall file names or locations. For systems with numerous
files, this retrieval process can be inefficient and time-consuming, reducing overall system usability.
Nowadays, based on the strong language understanding capability of LLMs, we can make better
use of the file content and semantic information for file management by introducing LLMs into the
system. However, existing works on using LLMs to facilitate file management are mostly conducted
on the application level, which targets at designing specific agent for file retrieval and manipulation
(Liu et al., 2024; Talebirad & Nadiri, 2023). The community still lacks a more general LSFS to serve
as a common foundation that can be used by various agents on the application-level. To solve the
above problems, we propose LLM-based Semantic File System (LSFS) to more effectively integrate
LLM and traditional file system for semantic file management.

For problem ❶, our LSFS introduces a semantic-based index structure that leverages a vector database
for file storage. By extracting semantic features from the file content and generating corresponding
embedding vectors, LSFS incorporates semantic information into its file operations. Additionally, we
have designed numerous reusable syscall interfaces for LSFS, modeled after traditional file system
functions. At the same time, we design several APIs that can realize complex file functions based on
the syscalls. These syscalls and APIs not only can realize the basic functions of the file system but
also can provide the operations that the traditional file systems do not include.

Please find all paper

from AAA University and

summary them

Condition: AAA University

Scope: No

Key: AAA University

target_folder: None

file_nam
e: A

A
,BB,....

sub_folder: F1, F2,..

file_name: AA,BB,....

sub_folder: F1, F2,..

LSFS Parser

LLM

Tradition FS
create syscall

(atomic)
embedding vector

Retrieve-Summary

API

get_file syscall

(atomic)

vector database

······

keyword_retrieve

syscall(composite)

Summary

Figure 1: A fine-grained example of the pipeline of
changing file of traditional system and our LSFS.

To address problem ❷, we integrate LLM into
the API for complex functions and introduce
a template system prompt. This allows us to
utilize LLM to extract keywords from the natu-
ral language of user input and map them effec-
tively as API calls or syscalls, streamlining the
interaction between users and the system. The
comparison of commands executed by users in
traditional file systems and LSFS is shown in
Figure 1. In Figure 1(a), When a user wishes
to modify the content of files, they must input a
specific command in the terminal, requiring them to remember the correct operator and the exact
paths for both the target and source files, placing heavy burdens on users. However, LSFS can
effectively solve this problem. Users only need to manage files by typing a natural language prompt
as a command. For example, as shown in Figure 1(b), the user just needs to input a simple natural lan-
guage description, our LSFS is able to understand prompts and perform the corresponding operation,
which greatly simplifies the operation complexity. Furthermore, to reduce the hallucination problem
of generating inaccurate instructions of LLM, especially those irreversible operations, we design
systematic safety insurance mechanisms in LSFS, such as safety checks for irreversible operations
and user verification before instruction execution.

Overall, our research contributes as follows:
• We introduce an LLM-based Semantic File System (LSFS) to manage files in a semantic way.

By altering the file storage structure and method, LSFS incorporates the semantic context of files,
optimizing the fundamental functions of traditional file systems. Additionally, we develop a variety
of reusable syscalls and APIs within LSFS, allowing for extended functionality and enabling future
developments based on this system.

• Our system designs a LSFS parser, which can parse natural language prompts into executable
APIs supported by LSFS, enabling the execution of relevant file management tasks. This allows
users to control and manage files using simple natural language prompts, acting as a bridge that
translates user/agent instructions into system actions.

• To avoid unintended operations in LSFS, especially those irreversible operations, we design
systematic safety insurance mechanisms, such as safety checks for irreversible operations and user
verification before instruction execution, ensuring the safety and accuracy of LSFS.

• Through our experiments, we validate the completeness of functions of LSFS, while also evaluating
the performance of LSFS in various file management tasks. Our experiments show that LSFS
performs better in semantic file management tasks, e.g., achieve at least 15% retrieval accuracy
improvement with 2.1× higher retrieval speed in the semantic file retrieval. Besides, LSFS also
maintains good functionality in traditional file management tasks, i.e., keyword-based file retrieval
and file sharing, with usability improvement.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 SEMANTIC FILE SYSTEM

Currently, file storage and retrieval primarily rely on an index structure maintained by the system,
where file metadata points to the location of file on the disk (Dai et al., 2022). While optimizing the
index structure can enhance retrieval efficiency, the current storage model is still largely dependent
on the keywords extracted from the content of file. Gifford et al. (Gifford et al., 1991) were the first
to propose a semantic file system, which introduced a layer that generates directories by extracting
attributes from files, enabling users to query file attributes through navigation. (Eck & Schaefer,
2011) proposed a semantic file system to manage the data. Many subsequent works have integrated
semantics into metadata (Hua et al., 2011; Mahalingam et al., 2003; Hua et al., 2009; Hardy &
Schwartz, 1993; Mohan et al., 2006). (Hua et al., 2013) utilized semantics to reduce the relevance of
queries using the semantic similarity between files based on the semantic naming system. Leung et
al. (Leung et al., 2009) used semantic information combined with the file system design of graphs
to provide scalable search and navigation. On the other hand, Bloehdorn et al. (Bloehdorn et al.,
2006) proposed to manage files through semantic tags. Schandl et al. (Schandl & Haslhofer, 2009)
developed an approach for managing desktop data using a semantic vocabulary. In contrast, our
semantic file system is based on the strong language understanding ability of LLMs. Besides, it
integrates comprehensive semantic information across all aspects of the file system–from storage
and file operations to practical applications. This holistic approach enhances the ability of system to
understand and manage files, significantly improving functionality beyond what traditional systems
and earlier semantic file systems offer.

2.2 SEMANTIC PARSER

Researchers have also devoted efforts to developing semantic parsers (Kamath & Das, 2018; Mooney,
2007; Wong & Mooney, 2006; Clarke et al., 2010; Yih et al., 2014) capable of transforming natural
language into a machine-interpretable format. Iyer et al. (Iyer et al., 2017) subsequently focused on
parsing database commands, while Berant et al. (Berant et al., 2013) proposed a question-answer
pair learning approach to enhance parsing efficiency. In further work, the same authors explored a
paraphrasing technique (Berant & Liang, 2014) to improve semantic parsing performance. Poon et
al. (Poon & Domingos, 2009) introduced a Markov logic-based approach, and Wang et al. (Wang
et al., 2015) addressed the challenge of building parsers from scratch in new domains. Ge et al. (Ge
& Mooney, 2005) proposed a parse tree-based method for more accurate semantic analysis. Notably,
Lin et al. (Lin et al., 2018) were the first to integrate a semantic parser into an operating system,
leveraging a dataset of bash commands and expert-written natural language to establish a mapping
between the two. However, this approach faced limitations in handling complex semantics and unseen
natural language. In contrast, our LSFS is built upon constructing semantic indexes for files in the
format of embedding vectors, improving its generation ability to understand and process diverse
natural language inputs.

2.3 OS-RELATED LLM-BASED AGENTS

Many works (Yang et al., 2024; Qian et al., 2023; Wu et al., 2024b; Bonatti et al., 2024; Wang
et al., 2024b;a; Yang et al., 2023) introduce LLM-based agents to solve OS-related tasks. To help
users solve more practical OS-related tasks with natural language interaction, different agents are
proposed for both PCs (Wu et al., 2024b; Bonatti et al., 2024) and mobile devices (Wang et al.,
2024b;a; Yang et al., 2023). Wu et al. (Wu et al., 2024b) developed LLM-based agents for co-piloting
users’ interaction with computers, such as drawing charts and creating web pages. MetaGPT (Hong
et al., 2023) employs a sophisticated large language model in a multi-agent conversational setting to
automate software development, assigning specific roles to various GPTs for seamless collaboration.
Beyond the application-level research on LLM-based agents, researchers also explored integrating
LLMs into the system-level (Mei et al., 2024; Bonatti et al., 2024), which target at low-level and
general management services (e.g., scheduling and resource allocation) for agent applications running
on the top. While researches of agent systems primarily focus on build of LLM applications that can
leverage file resources, our represents a fundamental innovation in the infrastructure that manages
file resources based on semantics to support LLM-based agent systems.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Retrieve-summary API Link API

Rollback APIChange-summary API

semantic_retrieveatomic syscall

composite syscall

Structure of Syscall

instance API

create_or_get_file

file_join

create integrated_retrieve

 group_semantic

add_

keyword_retrieve

del_

lock_file

unlock_file

overwrite

(a) (b)

LLM-Based Semantic File System

Traditional File System

natural language

file embedding vector
build index

Supervisor

API API API······

······

······

API

monitor

feedback

vector database

TFS Syscall

SysCall

LLMLSFS Parser

LLM-based Agent

Figure 2: (a) provides a overview of the LSFS architecture, and (b) shows the internal APIs and
syscalls in LSFS.

3 ARCHITECTURE OF LSFS

Design considerations. Before delving into the architecture of our LSFS, we outline several key
considerations that guided its design. Isolation and modularization: A layered architecture can
better separate concerns and assign distinct responsibilities to each layer. This isolation can reduce
the complexity of individual components and enable each layer to evolve independently without
introducing unintended dependencies. A modular approach to build components in this system also
enables individual components to be easily modified or scaled. In this way, it supports flexibility,
enabling replacement, optimization, or extension of individual modules without requiring significant
changes to the overall system. Performance and Efficiency: To ensure the performance of the system,
streamlined data flow mechanisms are necessary. Each stage of the pipeline is carefully designed
to handle data transformations efficiently. Besides, to improve efficiency, each component of the
system should consider the lightweight choice and operations between different components should
be decoupled to ensure parallelism. processing. Fault Tolerance and Reliability: Fault-tolerant
mechanisms are necessary to ensure uninterrupted operation, for example, the rollback mechanism to
reverse mistaken operations or recover from unexpected errors, improving overall reliability.

Overview of the architecture. Under the above considerations, we present the design of our LSFS.
Figure 2(a) outlines the overall architecture of our LSFS. LSFS operates as an additional layer on
top of traditional file systems, working as a bridge between agents/users and traditional file systems.
We leverage the layered architecture with segregated LSFS APIs and LSFS syscalls so that APIs
can focus on aligning with natural prompts while LSFS syscalls focus on aligning with low-level
operations over files and databases. To build semantic index for files in the LSFS, we leverage an
a lightweight embedding model, i.e., all-MiniLM-L6-v2 (Reimers & Gurevych, 2019), commonly
used in vector databases, thereby supporting more advanced file operations which requires semantic
understanding of file content. LSFS includes a supervisor that monitors changes in the traditional
file system and synchronizes them with LSFS in real time. This synchronization, combined with
the rollback mechanism, ensures fault tolerance and maintains consistency between LSFS and the
underlying file system. Figure 2(b) presents an overview of the syscall structure in LSFS, which we
elaborate in Section 4.1.

4 IMPLEMENTATION OF LSFS

In this section, we introduce our implementation of the LSFS. We present the key functions im-
plemented in our LSFS and compare the counterparts with traditional file systems, which can be
seen from the Table 1. We introduce the implementation of LSFS from the bottom to the top in
the LSFS architecture shown in the Figure 2. In the following parts, we start by introducing the
basic syscalls implemented in LSFS and introduce the supervisor which interacts between LSFS
syscalls and traditional file systems. Then we present the APIs that built upon the syscalls to achieve
more complex functionalities. After that, we introduce the LSFS parser on top to show how natural
language prompts have been decoded into executable LSFS APIs. At last, we use different concrete
prompts to show how different modules in the LSFS are executed to achieve functionalities.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Comparison of some key functions between our LSFS and traditional file system (TFS).

Function Implementation in TFS Implementation in LSFS
create new directory mkdir() create()

create file touch() create_or_get_file()
open file open() create_or_get_file()
read file read() create_or_get_file()

get file state and metadata stat() create_or_get_file()
delete directory rmdir() del_()

delete file unlink() / remove() del_()
write data write() add_()

overwrite data write() overwrite()
update the access time utime() update_access_time()
automatic comparison — compare_change()

generate link symlink() / link() / readlink() generate_link()
lock or unlock file flock() lock_file() / unlock_file()

rollback snapshot + rollback rollback()
file group — group_keywords() / group_semantic()
merge file cat file_join()

keyword retrieve grep keyword_retrieve()
semantic retrieve — semantic_retrieve()
hybrid retrieval — integrated_retrieve()

4.1 BASIC SYSCALL OF LSFS

In this section, we introduce the syscalls implemented for LSFS. These syscalls are primarily
categorized into two types: atomic syscalls and composite syscalls. Atomic syscalls involve operations
covering the most basic operations, e.g., create, retrieve and write of files. Composite syscalls are
combinations of two or more atomic syscalls to execute composite functions, e.g., join and group by.

Atomic Syscall of LSFS. These syscalls involve the atomic operations that cannot be divided further
into sub operations, i.e., creation, retrieval, write, and deletion of files.

• create or get file() This syscall integrates various functions of traditional file systems,
including creating, reading, and opening files, and performs specific operations based on the pro-
vided parameters. The return value of this syscall can be used to retrieve file metadata, modification
timestamps, the file’s memory path, and other essential information.

• add () This syscall is used to write new content to the end of a specified file within the LSFS.
• overwrite() This syscall is used to overwrite the contents of the original file with the new file

and generate new metadata for this file as required by the user.
• del () This syscall is designed to delete specified files and offers two methods of deletion. First,

it allows deletion by specifying the file name or file path. Second, it supports keyword-based
deletion, identifying and removing files that contain a given keyword. Additionally, if all files
within a directory are deleted, the syscall automatically remove the directory itself.

• keywords retrieve() This syscall is used to implement a keyword search function that
retrieves files containing a keyword in a specified directory. It supports single condition matching
and multi-condition matching, and returns the filename and file contents.

• semantic retrieve() This syscall is used to implement the semantic matching function to
retrieve the top-n highest semantic similarity files in directory and retrieval conditions according to
the similarity score. It returns the filename and file contents.

Composite Syscall of LSFS. These syscalls involve composite operations that are built by combining
two or more atomic syscalls to perform operations.

• create() This syscall is used to create files in bulk in LSFS by importing the path of the folder
in memory and importing all the files in the folder under the corresponding directory.

• lock file() / unlock file() The two syscalls are used to lock/unlock a file by changing
the file state to read-only via lock file and changing the file permission to read-write via unlock file.

• group semantic() The syscall can select the content in the specified directory and retrieve the
files that have high similarity with the query, create a new directory, and place the selected files in
the directory to facilitate the operation of the files that have the same subject.

• group keywords() This syscall can select the files that contain the retrieved keywords in the
specified directory, create a new directory, and place the selected files in the directory to facilitate
the operation of the files that contain the same keywords.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

• integrated retrieve() This syscall combines two retrieval methods to retrieve the files
that contain a particular keyword and that are similar in content to the retrieval query. The order of
retrieval is keyword search first, and then semantic search.

• file join() This syscall can be used to concatenate two files into a single file, either by creating
a new file to concatenate or by concatenating the original file directly.

4.2 SUPERVISOR

The supervisor is implemented to track the changes in the files in the disk and sync the changes to
the LSFS. The supervisor periodically scans the files within its specified directory. When it detects
any change or deletion of the file content, it automatically synchronizes this information with the
LSFS by invoking the appropriate syscall. This ensures that the state of the file in the LSFS reflects
the current state of the file in memory. LSFS also leverages the process lock mechanism to ensure
that multiple processes can access the file correctly without synchronization problem. The supervisor
also supports the change log, for example, when a file is modified, the supervisor invokes the LLM to
generate a detailed modification log, compares the contents of the file before and after modification.

4.3 API OF LSFS

In this module, we introduce the APIs that are implemented on top of the syscalls mentioned in
Section 4.1 to support higher-level semantic file management functions. Specifically, we provide the
following APIs that cover the basic semantic file management requirements, i.e., semantic CRUD
(create, read, update, and delete) of files. The details of APIs are presented in Appendix B.

• Retrieve-Summary API. This API implements the retrieval operations in LSFS, including
keyword search and semantic search, and feeds back the retrieved content to the user through LLM.

• Change-Summary API. This API implements the modification of the file content of the object
file in LSFS, and compares the contents of the file before and after modification through LLM and
gives a summary.

• Rollback API. This API allows you to rollback a given file and provides several ways to do
so, which includes rollback by date or rollback by version number.

• Link API. This API generates a shareable link for a given file. Users can set an expiration date
for the link, after which the link will be invalid.

We also design and implement the LSFS parser to parse natural language prompts into API calls that
can be executed in the LSFS, which will be introduced in Section 4.4.

4.4 LSFS PARSER

To parse natural language prompts into executable API calls, we implement a LSFS parser
based on the LLMs and designs well-structured json-format schemas for each API inside the
parser. Previous works explore the parser to parse natural language into well-structured data
(Kamath & Das, 2018; Mooney, 2007; Wong & Mooney, 2006). Recently, related studies
tend to explore LLMs for this translation (Mior, 2024; Chen et al., 2024; Wu et al., 2024b)

LLM

LSFS Parser
API Schema

System Prompt

Natural Language Prompt

Please change content in

'/Users/.../quantum.txt'

to target_file in physics

Please change content in

 '/Users/.../quantum.txt' to

target_file in physics

System Prompt

Natural Language Prompt

Please rollback file named quantum

to the version in 2024-01-03

Please rollback file named quantum

to the version in 2024-01-03

/Users/.../quantum.txt, target_file, physics

quantum, 2024-01-03

LLM

LSFS Parser
API Schema

Figure 3: The example of using LLMs to extract the key
information from natural language prompt.

Inpired by these works, we design the
LSFS parser that parse natural language
into well-structured json data. Without
specific mention, our parser is based on
GPT-4o-mini by default, evaluations of
using other LLMs will be reports in Sec-
tion 5.1. By leveraging this parser, natu-
ral language prompts can be parsed into
executable API calls (i.e., API function
names and API function arguments), en-
abling seamless execution of the API
command. This can help deal with natu-
ral language prompts with multiple and complex situations, benefiting interactions between natural

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

LLM-Based Semantic

File System

natural prompt command

TFS Syscallexecution flow LSFS Syscall Process interaction

Keywords: AAA,LLMPlease summary all paper from

AAA University about LLM

OK I will delete it and summa-

rize the rest. The answer is

（process in (b))

（process in (d))
（process in (c))

OK I will retrieve it for you.

The eligible files are as follows：

Users/.../.../xxx.pdf abs: from BBB...

Users/.../.../yyy.pdf abs: from AAA...

Please check and confirm them

LSFS Parser

LLM Kernel Keywords：LLM，

 AAA University

 operation：summary

：

Delete Users/.../.../xxx.pdf
Users/.../.../xxx.pdf abs: from dlut...

Users/.../.../yyy.pdf abs: from RU...

Virtual Database

Retrievel

Collection

File in lsfs

······

Do operation

The summary of A is ...

The summary of B is ...

 ······

：

（a）process of summarizing interacting (b) process for extracting keywords (c) process for retrieving (d) process for finishing operation

（a）process of updating interacting (b) process of updating and monitoring file (c) process of rollback

Please use file A update the
content of file B

Please rollback file A to five
versions ago/to the version in
2023-6-20

OK, I will rollback file to that
version.

OK, I will update the content
for you

Compared the last version the
changes in the content of new
version contains

OK, I will update the content
for you （process in (b))

（process in (c))

Rollback prompt commandnatural prompt command

LSFS Parser LSFS Parser

File Name

Rolling back versions

LLM Kernel

FileA in Disk

FileB in Disk

Update FileB

Update

LSFS

 LSFS
LSFS

File in LSFS

Update

new words

Version Recorder

Version Recorder

Target version file
Rollback

Rollback

Monitor Module
Monitoring

Monitor Module

File System in Computer Disk

change comparison：

：

Figure 4: Details of different API callings inside the LSFS. In this figure, (a)-(d) show interactive
examples of how LSFS solves file management tasks step by step.

language prompts and LSFS. As illustrated in the accompanying Figure 3, when input alongside the
command of user, the LSFS parser is able to extract the key parameters, including function names
and arguments in a comma-separated format.

4.5 THE INTERACTION BETWEEN MODULES

In Figure 4, we present the examples to demonstrate how components of LSFS interact with each
other to achieve different functionalities. The upper section of Figure 4 depicts the workflow of the
retrieve-summary API, while the lower section outlines the workflows of the change-summary API
and rollback API. In the upper part of Figure 4, the LSFS parser decodes prompts into API calls
with API name and API arguments. Then LSFS executes the API to check vector database to get
results. We used llamaindex to index the database and subsequently retrieved the contents of the
vector database by llamaindex. This API also provides user-interaction interface for the users to verify
results. After the verification, the content will be summarized by leveraging LLM. In the lower part
of Figure 4, when a modification request is submitted, the LSFS parser decodes the file information
(name and location) that is to be modified. The LSFS then modifies the semantic changes in both
the vector database and the files stored in the disk. Meanwhile, the supervisor of the LSFS is kept
running to ensure consistency between the semantic index of files in the LSFS and the files stored
in the disk. Upon updated, the summarization API compares the file contents before and after the
change to generate a detailed change log. Additionally, the API stores the pre-modification content in
the version recorder. If a rollback is requested, the API retrieves the specific version from the version
recorder and synchronizes it in both the LSFS and files in the disk.

5 EVALUATION

In this section, we propose the following research questions regarding the performance of LSFS and
conduct experiments to answer these research questions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

• RQ1: What is the success rate of the LSFS parser to parse natural language prompts into executable
API calls?

• RQ2: How does LSFS perform in semantic file management tasks, e.g., semantic file retrieval and
semantic file rollback?

• RQ3: Can LSFS still maintain good performance in non-semantic file management tasks, such as
keyword-based file retrieval and file sharing?

5.1 RQ1: EFFECTIVENESS OF LSFS PARSER

For RQ1, we assess the accuracy of the LSFS parser in translating user natural language prompt into
executable LSFS API calls. We evaluate the accuracy of LSFS parser with 30 different samples for
each API on different LLM backbones, i.e., Gemmi-1.5-Flash, GPT-4o-mini, Qwen-2, and Gemma-2.
The results, illustrated in Figure 5, reveal that the LSFS parser performs exceptionally well on parsing
prompts related to change-summary API and link API (for which the semantic information in the
user prompt is relatively simple), achieving higher accuracy across all LLMs (i.e., over 90%), where
GPT-4o-mini and Qwen-2 all reach 100% accuracy. For more complex prompts, such as those
intended for the rollback API and retrieve-summary API (for which the semantic information in
the user prompt is complex), accuracy remains above 85% for most models, except for Gemma-2.

Retrieve-
Summary API

Ac
cu

ra
cy

 o
f
Tr

an
sl
at

io
n

Change-
Summary API

Link

API

Rollback

API

Average
Accuracy

Gemini-1.5-
flash

GPT-4o-
mini

Qwen-2:

7b

Gemma-2:

2b

100%

90%

80%

70%

60%

50%

Figure 5: The accuracy of LSFS parser in translating
natural language prompt to executable API calls.

The average parsing accuracy reaches 90%.
These results show that the LSFS parser
can effectively parse natural language in-
formation into executable API calls, show-
casing its reliability in diverse scenarios.
For safety consideration, in all cases, the
parsed API calls are provided to users for
confirmation and approval before execu-
tion, avoiding irreversible file operations
like deleting files or directories.

5.2 RQ2: ANALYSIS OF LSFS IN
SEMANTIC FILE MANAGEMENT TASKS

To answer RQ2, we evaluate the performance LSFS on semantic file management tasks (i.e., semantic
file retrieval and semantic file rollback).

Table 2: Comparison of the accuracy and execution time between using LSFS and the baseline which
incorporates LLM into traditional file system without using LSFS.

LLMs backbone # files Accuracy of target file retrieval Retrieval time
w/o LSFS w/ LSFS w/o LSFS w/ LSFS

Gemini-1.5-flash
10 75.0% 95.0%(20.0%↑) 97.40(s) 14.39(s)(85.2%↓)
20 77.3% 91.3%(14.0%↑) 213.69(s) 16.69(s)(92.2%↓)
40 70.91% 93.4%(22.5%↑) 312.39(s) 23.86(s)(92.4%↓)

GPT-4o-mini
10 80% 95.0%(15.0%↑) 61.14(s) 30.64(s)(49.9%↓)
20 69.1% 91.3%(22.2%↑) 129.92(s) 40.39(s)(68.9%↓)
40 69.2% 93.4%(24.2%↑) 239.49(s) 57.1(s)(76.2%↓)

Performance Analysis in Semantic File Retrieval. In our experiments, we compare the perfor-
mance of using LSFS and without using LSFS under the same LLM backbone. The details of the
prompts we use for the comparison are in the Appendix D. Specifically, we use Gemini-1.5-flash and
GPT-4o-mini as the LLM backbone, respectively, for the comparison. We don’t use Gemma-2 and
Qwen-2 because the unstable performance of them, this instability makes it challenging to assess
the model’s reliability and to derive meaningful conclusions from the system’s performance. As
shown in Table 2, using LSFS to implement the retrieval function significantly enhances both the
accuracy and the efficiency compared to only leveraging LLM for retrieval without using LSFS.
As file number increases, the retrieval accuracy tends to drop significantly when using LLM for
retrieval without LSFS. This is because more files can lead to longer context for the LLM, which
degrades the performance of LLM of identifying information in the long context. By contrast, using

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

LSFS can still achieve good retrieval accuracy and have much better retrieval efficiency when file
number increases, because lsfs replaces the reasoning process of LLM by using keyword matching
and semantic similarity matching, it saves a lot of time and avoids the errors of LLM when facing
complex input text. The concrete example of API with LSFS and API without LSFS are in Appendix
F.

Scalability Analysis in Semantic File Rollback.

Number of version rolled back

R
ol

lb
ac

k
ti

m
e(

s)

40353025

25

30

35

40

45

50

55

20151050

Qwen-2:7b
GPT-4
Gemini

Figure 6: The relationship between the number
of versions of a rolled back file and the rollback
time.

LSFS supports semantic file rollback, which enables
the restoration of a file to a particular version spec-
ified by the time requested by the user or number
of versions, recorded by the Version Recorder. We
vary the the number of rollback versions and calcu-
late their corresponding rollback time, to evaluate
the stability and efficiency of the version rollback
process, The results, shown in Figure 6, illustrate
the consistency in the time consumed during version
rollbacks. We use Gemmi-1.5-Flash, GPT-4o-mini,
Qwen2 as the LLM backbones for the experiments.
In our experiment, we rollback file with versions
the range from 5 to 40, using increments of 5. Each
rollback is simultaneously updated in both the LSFS
and file stored in the disk. As shown in the Figure 6,
across all three LLM backbones, the rollback time
does not increase exponentially with the number of versions rolled back. Instead, it tends to plateau
with a stable rollback time < 1 min even if file number increases, suggesting the scalability of
semantic file rollback supported by LSFS.

5.3 RQ3: ANALYSIS OF LSFS IN NON-SEMANTIC FILE MANAGEMENT TASKS

For RQ3, we evaluate on non-semantic file management tasks to measure whether LSFS can still
maintain good performance as traditional file systems in these tasks.

Performance Analysis in Keyword-based File Retrieval. In this section, we compare LSFS and
traditional file system in keyword-based file retrieval task. The task is to use keywords existing in the
filename or file content to retrieve files. We build a hierarchical file folder with file numbers as 10,
20, and 40, respectively, for this task. We use two types of retrieval prompts, i.e., single-condition
and multi-condition, to evaluate LSFS and traditional file systems to retrieve relevant files containing
specific keywords. The details of how we construct prompts for this task can be seen at Appendix
D. We consider the following methods as the retrieval baselines in the traditional file system. It is
important to note that the original grep command can only deal with plain text files, such as .txt
and .md files, and cannot support binary files, such as .pdf and .doc files. Therefore, we make two
enhanced versions, named as TFS-grep and TFS-grep* to make the comparison. The experimental
setup is presented in Appendix E. We use precision, recall and F1-score to measure the retrieval

Table 3: Comparison between LSFS and methods in the traditional file system (TFS) in retrieving
files by keywords that match names and content of files.

Metric # files TFS search window TFS-grep TFS-grep* LSFS

Precision
10 0.708 0.389 1.000 0.950
20 0.724 0.396 1.000 0.870
40 0.691 0.403 1.000 0.863

Recall
10 1.000 0.416 1.000 0.833
20 1.000 0.292 1.000 0.933
40 1.000 0.306 1.000 0.960

F1-score
10 0.829 0.402 1.000 0.891
20 0.840 0.337 1.000 0.900
40 0.817 0.348 1.000 0.909

performance. From the results presented in Table 3, we can find that LSFS outperforms TFS search
window and TFS-grep, only second to the TFS-grep*. We find that the built-in retrieval tool in the
TFS (e.g., the system search window) can not generate stable retrieval results, although it has a higher

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

recall. Due to the fuzzy search feature in the built-in search window, it can easily retrieve inaccurate
results for which the retrieved file content can only match part of the keywords. For example, if we
search for an article written by John Smith, any other article with a name of John can be returned
as a search result, thus the results may often include many irrelevant results, which complicates the
process for users to filter through them. The TFS-grep* command, although achieving perfect results,
still has several limitations. First, the commands can be too difficult to construct, especially when
the file retrieval queries have multiple conditions. For instance, when a user requests to retrieve all
files containing the keywords A and B, the command would be as follows: find /path -type f -exec
grep -l ”keyword1” \; -exec grep -l ”keyword2” \;. Second, since the grep command itself does not
support retrieval of binary files, it is necessary to manually adjust the format of each file, which is
time-consuming and greatly reduces the efficiency of the retrieval process for users. Our LSFS can
retrieve all types of text files, from plain text to binary files, while maintaining high precision and
recall. The LSFS read operation is capable of processing both plain text and binary text, converting
them into the vector database of system. This enables seamless retrieval operations across various
types of files. Furthermore, LSFS allows users to describe their retrieval tasks in natural language,
eliminating the need to write complex commands.

Performance Analysis in File Sharing. For the file sharing task, we evaluate whether a system can
output a shareable link with an expiration time according to the prompts. Specifically, we compare
LSFS with four different baselines which details are in Appendix E.

Table 4: Comparison between LSFS and other LLM-leveraged methods in File Sharing.

Method Success rate of generating sharable links (#20)
Code Generation Rate Link Generation Rate Link Validness Rate Final Success Rate

Gemini-1.5-flash 65% 45% 45% 10%
GPT-4o-mini 60% 35% 30% 5%

AutoGPT 50% 45% 15% 5%
Code Interpreter 100% 75% 65% 0%

LSFS 100% 100% 100% 100%

In the experiments, four key metrics are used to evaluate the effectiveness of whether the system
can successfully fulfill the file sharing task: whether the LLM generates code, the correctness of the
generated code, the effectiveness of the generated links, and whether the links are actually shareable.
We evaluate with 20 file sharing task prompts for all the methods. The results show that although all
methods even vanilla LLMs can successfully generate code, they do not consistently generate valid
links. In many cases, these links are local rather than shareable links, and only a small fraction of the
links for files are shareable. In contrast, our LSFS system achieves 100% link generation success
rate, showing strong task fulfillment ability on the file sharing task.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we present an LLM-based semantic file system (LSFS), which offers advancement over
traditional file systems by enabling files to be stored and managed based on their semantic information.
This enhancement improves the ability of system to comprehend and utilize the semantics embedded
in file contents. Additionally, we introduce a series of reusable semantic syscalls and a framework for
mapping natural language into LSFS parameters. These innovations provide a foundation for future
research and development in the area of semantic file management systems. Looking ahead, various
future directions can be further explored. 1) Multi-modal and multi-extension file management:
Currently, LSFS primarily supports operations on text files. Semantic operations for understanding
and managing non-text files, such as XLSX, JPG, MP3, and MP4 can be further optimized. 2)
Security and privacy enhancements: Data encryption techniques can be explored to secure data
interactions and transmissions between LSFS and LLMs, ensuring that file privacy remains protected
at all stages of processing and communication. 3) Optimized retrieval strategies: Retrieval methods
can be further optimized by integrating more advanced and precise algorithms, enhancing the
overall accuracy and effectiveness of retrieval performance of LSFS. 4) More instantiated APIs
and syscalls: While this paper focuses on the design of the most essential and commonly used
syscalls within LSFS, more functional APIs and syscalls can be explored to fulfill user’s envolving
requirements. We believe explorations on these directions can help to expand the functionalities of
LSFS for a more intelligent and user-friendly operating system.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1415–1425, 2014.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pp. 1533–1544, 2013.

Gordon S. Blair, John A. Mariani, John R. Nicol, and Doug Shepherd. A knowledge-based operating
system. The Computer Journal, 30(3):193–200, 1987.

Stephan Bloehdorn, Olaf Görlitz, Simon Schenk, Max Völkel, et al. Tagfs-tag semantics for
hierarchical file systems. In Proceedings of the 6th International Conference on Knowledge
Management (I-KNOW 06), Graz, Austria, volume 8, pp. 6–8, 2006.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Justin
Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, et al. Windows agent arena: Evaluating
multi-modal os agents at scale. arXiv preprint arXiv:2409.08264, 2024.

Weize Chen, Chenfei Yuan, Jiarui Yuan, Yusheng Su, Chen Qian, Cheng Yang, Ruobing Xie, Zhiyuan
Liu, and Maosong Sun. Beyond natural language: Llms leveraging alternative formats for enhanced
reasoning and communication. arXiv preprint arXiv:2402.18439, 2024.

James Clarke, Dan Goldwasser, Ming-Wei Chang, and Dan Roth. Driving semantic parsing from the
world’s response. In Proceedings of the fourteenth conference on computational natural language
learning, pp. 18–27, 2010.

Hao Dai, Yang Wang, Kenneth B Kent, Lingfang Zeng, and Chengzhong Xu. The state of the art
of metadata managements in large-scale distributed file systems—scalability, performance and
availability. IEEE Transactions on Parallel and Distributed Systems, 33(12):3850–3869, 2022.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36, 2024.

Oliver Eck and Dirk Schaefer. A semantic file system for integrated product data management.
Advanced Engineering Informatics, 25(2):177–184, 2011.

Ruifang Ge and Raymond Mooney. A statistical semantic parser that integrates syntax and semantics.
In Proceedings of the Ninth Conference on Computational Natural Language Learning (CoNLL-
2005), pp. 9–16, 2005.

Yingqiang Ge, Wenyue Hua, Kai Mei, Juntao Tan, Shuyuan Xu, Zelong Li, Yongfeng Zhang, et al.
Openagi: When llm meets domain experts. Advances in Neural Information Processing Systems,
36, 2024.

David K Gifford, Pierre Jouvelot, Mark A Sheldon, and James W O’Toole Jr. Semantic file systems.
ACM SIGOPS operating systems review, 25(5):16–25, 1991.

Yulu Gong, Jiaxin Huang, Bo Liu, Jingyu Xu, Binbin Wu, and Yifan Zhang. Dynamic resource
allocation for virtual machine migration optimization using machine learning. arXiv preprint
arXiv:2403.13619, 2024.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and program
synthesis. arXiv preprint arXiv:2307.12856, 2023.

Darren R Hardy and Michael F Schwartz. Essence: A resource discovery system based on semantic
file indexing. In USENIX Winter, pp. 361–374. Citeseer, 1993.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yu Hua, Hong Jiang, Yifeng Zhu, Dan Feng, and Lei Tian. Smartstore: A new metadata organiza-
tion paradigm with semantic-awareness for next-generation file systems. In Proceedings of the
conference on high performance computing networking, storage and analysis, pp. 1–12, 2009.

Yu Hua, Hong Jiang, Yifeng Zhu, Dan Feng, and Lei Tian. Semantic-aware metadata organization
paradigm in next-generation file systems. IEEE Transactions on Parallel and Distributed Systems,
23(2):337–344, 2011.

Yu Hua, Hong Jiang, Yifeng Zhu, Dan Feng, and Lei Xu. Sane: Semantic-aware namespacein
ultra-large-scale file systems. IEEE Transactions on Parallel and Distributed Systems, 25(5):
1328–1338, 2013.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke Zettlemoyer.
Learning a neural semantic parser from user feedback. arXiv preprint arXiv:1704.08760, 2017.

Aishwarya Kamath and Rajarshi Das. A survey on semantic parsing. arXiv preprint arXiv:1812.00978,
2018.

Andrew Leung, Aleatha Parker-Wood, and Ethan L Miller. Copernicus: A scalable, high-performance
semantic file system. University of California, Santa Cruz, UCSC-SSRC-09, 6, 2009.

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D Ernst. Nl2bash: A corpus
and semantic parser for natural language interface to the linux operating system. arXiv preprint
arXiv:1802.08979, 2018.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Liangwei Yang, Zuxin Liu, Juntao Tan, Prafulla K Choubey,
Tian Lan, Jason Wu, Huan Wang, et al. Agentlite: A lightweight library for building and advancing
task-oriented llm agent system. arXiv preprint arXiv:2402.15538, 2024.

Mallik Mahalingam, Chunqiang Tang, and Zhichen Xu. Towards a semantic, deep archival file
system. In The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems, 2003.
FTDCS 2003. Proceedings., pp. 115–121. IEEE, 2003.

Kai Mei, Zelong Li, Shuyuan Xu, Ruosong Ye, Yingqiang Ge, and Yongfeng Zhang. Aios: Llm
agent operating system. arXiv e-prints, pp. arXiv–2403, 2024.

Michael J Mior. Large language models for json schema discovery. arXiv preprint arXiv:2407.03286,
2024.

Prashanth Mohan, Venkateswaran S Raghuraman, and Arul Siromoney. Semantic file retrieval in
file systems using virtual directories. In the Poster Session of the 13th Annual IEEE International
Conference on High Performance Computing (HiPC), Bangalore, India. Citeseer, 2006.

Raymond J Mooney. Learning for semantic parsing. In International Conference on Intelligent Text
Processing and Computational Linguistics, pp. 311–324. Springer, 2007.

Hoifung Poon and Pedro Domingos. Unsupervised semantic parsing. In Proceedings of the 2009
conference on empirical methods in natural language processing, pp. 1–10, 2009.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong
Sun. Communicative agents for software development. arXiv preprint arXiv:2307.07924, 2023.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2019. URL https://arxiv.org/abs/1908.
10084.

Bernhard Schandl and Bernhard Haslhofer. The sile model—a semantic file system infrastructure for
the desktop. In European Semantic Web Conference, pp. 51–65. Springer, 2009.

Stefan Schneider, Narayanan Puthenpurayil Satheeschandran, Manuel Peuster, and Holger Karl.
Machine learning for dynamic resource allocation in network function virtualization. In 2020 6th
IEEE conference on network softwarization (NetSoft), pp. 122–130. IEEE, 2020.

12

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36, 2024.

Yashar Talebirad and Amirhossein Nadiri. Multi-agent collaboration: Harnessing the power of
intelligent llm agents. arXiv e-prints, pp. arXiv–2306, 2023.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang,
and Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effective navigation via
multi-agent collaboration. arXiv preprint arXiv:2406.01014, 2024a.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. arXiv
preprint arXiv:2401.16158, 2024b.

Yushi Wang, Jonathan Berant, and Percy Liang. Building a semantic parser overnight. In Proceed-
ings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp.
1332–1342, 2015.

Yuk Wah Wong and Raymond Mooney. Learning for semantic parsing with statistical machine
translation. In Proceedings of the Human Language Technology Conference of the NAACL, Main
Conference, pp. 439–446, 2006.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent
conversation. In ICLR 2024 Workshop on Large Language Model (LLM) Agents, 2024a.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024b.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
arXiv preprint arXiv:2405.15793, 2024.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. Appagent:
Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023.

Wen-tau Yih, Xiaodong He, and Christopher Meek. Semantic parsing for single-relation question
answering. In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 643–648, 2014.

Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action agents.
arXiv preprint arXiv:2309.11436, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

Roadmap: Section A introduces the detailed implementations of LSFS sycalls. Section B introduces
the detailed implementations of LSFS APIs. Section C shows concrete prompt examples to execute
different APIs. Section D shows the details of semantic file retrieval and keyword-based file retrieval.
Section F shows the results of a case study of comparing methods using LSFS and without using
LSFS in semantic file retrieval task. Section G presents analysis of file sharing tasks with pseudo-code
examples of the file sharing process.

A THE IMPLEMENTATION DETAILS OF SYSCALL

create or get file() This syscall integrates multiple traditional file system functions such as
creating files, reading files, and opening files, enabling different operations based on the parameters
provided. The function accepts four parameters: the LSFS path, the target directory name, the target
filename, and the import file. The first two parameters are positional, while the latter two are default
parameters. When all four parameters are provided, if the target file does not exist within LSFS, the
system will create an imported file using the specified target directory name, target filename, and
the import file. The import file can be supplied as a string or a file path, and our system supports
various text file formats, including PDF, DOCX, TXT and so on. If the target filename is not passed,
the syscall returns a list of files within the target directory. If the content of the import file is not
provided, the syscall will return the target file, allowing access to its content, metadata, embedding
vector, and other associated information.

add () This syscall facilitates appending content to a file by accepting four positional parameters:
the LSFS path, the target directory name, the target filename, and the content of the import file. The
import file content can be provided either as a string or a text file in various formats. When all four
parameters are supplied, the syscall appends the specified content to the designated file within the
system.

overwrite() This syscall implements the overwriting of the file contents. The passed Parameters
are also LSFS path, target directory name, target filename, import file, all of which are Positional
Parameters. When passed in, LSFS will overwrite everything in the source file with the contents of
the imported file.

del () This syscall performs the deletion of files and directories by accepting four parameters: the
LSFS path, the target directory name, the target filename, and the key text. The first two parameters are
positional, while the last two are default parameters. If neither of the last two parameters is provided,
the syscall raises an error, indicating that at least one must be passed. When the target filename is
provided, LSFS deletes the specified file. If the key text is provided instead, the system searches for
files containing the key text within the target directory and deletes them if found. Additionally, once
all files within a directory are deleted, LSFS will automatically remove the directory.

keywords retrieve() This syscall implements keyword search functionality of LSFS, retriev-
ing all files within a specified directory that contain a given keyword. The arguments passed include
the LSFS path, directory name, keyword, and matching condition. The LSFS path and keyword are
Positional Parameters, while the directory name and condition are Default Parameters. If a directory
name is provided, the syscall retrieves files within that directory that match the keyword; otherwise,
it searches across the entire system. To match multiple keywords, the matching condition must be
passed, specifying the relationship between keywords, such as and or or. The search results return a
list of file names and a list of file contents.

semantic retrieve() This syscall implements the semantic similarity search function within
the LSFS, allowing retrieval of files that semantically match a given query within a specified directory.
The parameters for this function include the LSFS path, the target directory, the search keyword, and
the number of results to return. The LSFS path and search keyword are Positional Parameters, while
the target directory and number of results are Default Parameters. Similar to keyword-based retrieval,
the search directory will be determined based on whether a target directory is provided. The number
of results to return dictates how many of the top-scoring matches are retrieved. Our semantic retrieval
leverages the LlamaIndex framework. During file creation, a LlamaIndex vector store is generated
alongside the index, enabling more intelligent and efficient data retrieval. This setup ensures that

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

semantic queries can return highly relevant results with improved accuracy. The search results return
a list of file names and a list of file contents.

create() This syscall function facilitates batch directory creation and bulk file reading. It accepts
the LSFS path, directory name, and the import file path as Positional Parameters. This function can
read multiple files at once and store them in the specified target directory. If the filenames are not
explicitly provided, they will default to the original filenames from the filesystem.

lock file() / unlock file() These syscalls handle the locking and unlocking of files
within the LSFS, allowing files to be placed in read-only mode to prevent modification. Both
syscalls accept the LSFS pathname, directory name, and filename as parameters. Upon execution, the
lock file() syscall updates the file’s metadata to reflect a read-only state, effectively restricting
any modifications. Conversely, the unlock file() syscall modifies the metadata to restore read
and write permissions, enabling the file to be edited again. These operations provide granular control
over file access and modification rights.

group keywords() This syscall groups all files containing a common keyword and creates a
new directory for them. The parameters passed are the LSFS name, the keyword, the name of the
new directory, the target directory, and the search criteria. Among these, the LSFS name, keyword,
and new directory name are Positional Parameters, while the target directory and search criteria are
Default Parameters. The syscall first performs a search using the keyword through an atomic syscall
to identify all matching files. It then uses these files to create the specified new directory, facilitating
easier file management and organization.

group semantic() This syscall facilitates the organization of files by grouping all those contain-
ing a common keyword into a new directory. It takes the following parameters: the LSFS path, the
keyword, the new directory name, the target directory, and the search criteria. Here, the LSFS path,
keyword, and new directory name are Positional Parameters, while the target directory and search
criteria are Default Parameters. The syscall first performs a keyword search through an atomic syscall
to identify all files that match the keyword. It then creates a new directory with the specified name
and moves the identified files into this directory. This functionality streamlines file management and
enhances organizational efficiency.

integrated retrieve() This syscall is designed for composite searches, combining both
semantic and keyword search functionalities. The parameters are distributed as follows: the LSFS
path, keyword, new directory name, and search criteria are Positional Parameters, while the target
directory and additional search conditions are Default Parameters. The syscall first invokes the
keyword grouping function to retrieve all files associated with the compound keyword and organizes
them into a new directory. It then performs a semantic search within this directory, ultimately
returning the filenames and contents of the files that match the search criteria. This integrated
approach allows for more comprehensive and flexible search capabilities.

file join() This syscall facilitates the connection of two files, with the parameters including the
LSFS path, the directory name and filename of both files, and the connection conditions. The Default
Parameters are the destination directory for file 2 and the connection condition, while the LSFS path,
directory names, and filenames are Positional Parameters. If the destination directory for file 2 does
not exist, the two files will be placed in the same directory. If the destination directory exists, the
files will be placed in their respective directories. If the join condition is set to new, the syscall will
preserve the original files, concatenate their text contents, and create a new file in the destination
directory of file 1. The new name of file will be a combination of the two target filenames. If the join
condition is not new, the contents of file 2 will be appended directly to the contents of file 1, and file 2
will then be deleted.

B THE IMPLEMENTATION DETAILS OF LSFS API

Retrieve-Summary API. This API retrieves files based on user-specified conditions and provides
concise summaries. Unlike traditional systems, it offers both keyword and semantic search, along with
LLM-powered content summarization. The API supports three retrieval methods: keyword, semantic,
and integrated, which are built on top of the keywords retrieve(), semantic retrieve().
and integrated retrieve() syscalls. In this API, an interaction interface is also provided

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

for users to refine the results by excluding irrelevant files, which are then passed to LLMs for
summarization.

Change-Summary API. This API is used to modify the contents of a file and compare them before
and after to summarize the changes. At the same time, the Supervisor module is introduced to monitor
the file changes in the traditional file system. Unlike traditional file systems that require tedious
operating system commands, this API allows users to locate target files using natural language and
automatically generate a summary of file changes through LLMs integration. The API is implemented
by leveraging the supervisor and the overwrite() and del () syscalls. In the change-summary
API, when the target file is updated with the content of the source file, it will generate a summary
of the modifications. Meanwhile, the filename is used as the key in the version recorder, while the
metadata and contents of the file are stored as the corresponding values for the version control use.

Rollback API. This API is designed to achieve version restoration by utilizing the version recorder
from the change-summary API, making version rollbacks more manageable. In this API, the
overwrite() and create or get file() syscalls are employed. Traditional file systems
like ZFS, BtrFS, and NTFS offer rollback capabilities, but they primarily rely on snapshots, where
the system captures the state of files at a specific point in time and restores them to that version. Our
rollback API in the LSFS introduces two rollback methods for greater flexibility and ease of use.
The first is time-based rollback, where the LLMs parses the rollback time from the input of user and
reverts the file to the corresponding version. The second is version-based rollback, allowing users to
specify in the prompt how many versions backward they wish to revert. This dual approach makes it
easier for users to rollback to the target version of files.

Link API. This API is designed to enable the creation of shareable file links. In traditional
file systems, links can only be generated for local access, limiting collaboration. However, with
the link API of LSFS, shareable links can be generated for broader accessibility. Specifically, the
API leverages cloud database, e.g., Google Drive, to upload files and generate the shareable link.
Additionally, validity period can be passed as an argument for this API, once the period expires, the
link API automatically revokes the link and terminates access for secure and time-bound file sharing.

C THE INSTRUCTION EXAMPLES OF EXECUTING API

This section introduces some instruction examples of executing LSFS APIs, which can be seen at
Table 5.

Table 5: Some examples of instruction of API in Section 4.3. For every API, we provide different
instructions in different task condition. The instruction of retrieve-summary API is in Appendix D.

API Type Instruction

Change-Summary
API

LSFS Input:
w/ directory: Change the content of /xxxx/xxxx.txt to old-file under llm-directory.

w/o directory: Modify /xxxx/xxxx.txt to contain change-file.

LLM Input: At current step, you need to summary differences between the two contents, the
content before the update is [old file], the content after the update is [new file]

Rollback API
LSFS Input:
By date: Revert the file named syntax to its version from 2023-6-15.

By version number: Rollback the cnn file to the state it was in 3 versions ago.

Link API
LSFS Input:
w/ period of validity: Provide a link for llm-base that will be active for 3 months.

w/o period of validity: Generate a link for system-architecture.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D TASK DETAILS OF KEYWORD-BASED AND SEMANTIC RETRIEVAL.

In this section, Table 6 and Table 7 presents instruction with or without LSFS using LLM in semantic-
based retrieval, and keyword-based retrieval (single-condition and multi-condition), respectively.

Table 6: The example of instruction of semantic-based retrieval with single-condition and multi-
condition in LSFS and in LLM without LSFS.

Task Task Example Method Instruction

Semantic-based
Retrieval

Locate the 3
papers showing
the highest
correlation with
reinforcement
learning in
LLM-training.

LLM w/o
LSFS

Fixed prompt: In the next step, you need
to accept and remember the paper, but do
not generate any outputs. Until you are
told to output something.

Each input: The paper is [content].

After every five entries: Now you can
to output the answer. You need to find
[retrieve number] papers which most
relate to [retrieve condition] from previous
record and summary them respectively.

Final input: Now you can to output the
answer. You need to choose from memory
cache to find the [retrieve number] papers
that is most relevant to [retrieve condition]

LSFS

LSFS input: Locate the 3 papers showing
the highest correlation with reinforcement
learning in LLM-training.

LLM input: You need to summary the
content. The content is [file content]

E BASELINES IN KEYWORD-BASED FILE RETRIEVAL AND FILE SHARING

The baselines to compare with LSFS in keyword-based file retrieval are as below:

• TFS search window: We use the default search window in the file of computer folder to retrieve
files (i.e., Spotlight in MacOS) which supports retrieving by keywords in the file content.

• TFS-grep: We use Python program to convert the binary file to a plain text file and then perform
grep operation on the converted plain text file.

• TFS-grep*: After converting binary files into plain text, issues such as missing spaces, incorrect
line breaks, and formatting errors may arise. In the TFS-grep* process, we correct the format of the
converted files and then run the grep operation on the properly formatted versions.

The baselines to compare with LSFS in file sharing are as below:

• Gemini-1.5-flash: We use Gemini-1.5-flash as the LLM backbone to write the code that generates
the link for the target file, and then use the Python compiler to check the validity of the code.

• GPT-4o-mini: We employ GPT-4o-mini as the LLM backbone to generate code for creating links
of the target file, followed by using the Python compiler to verify the validity of code.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: The example of instruction of keyword-based retrieval with single-condition and multi-
condition in LSFS and in LLM without LSFS.

Task Task Example Method Instruction

Keyword-
based

Retrieval(Single-
Condition)

Find papers in
the computer-
vision category
authored by
Emily Zhang.

LLM w/o
LSFS

At current step, you need to judge if the
input paper satisfy [retrieve condition]. If
yes, you should summarize the paper, if no
you do not need to output anything. The
paper is [file content].

LSFS

LSFS input: Find papers in the computer-
vision category authored by Emily Zhang.

LLM input: You need to summary the
content. The content is [file content]

Keyword-
based

Retrieval(Multi-
Condition)

Find papers
from either
Cambridge
University
or Columbia
University.

LLM w/o
LSFS

At current step, you need to judge if the
input paper satisfy [retrieve condition]. If
yes, you should summarize the paper, if no
you do not need to output anything. The
paper is [file content]

LSFS

LSFS input: Find papers from either
Cambridge University or Columbia
University.

LLM input: You need to summary the
content. The content is [file content].

• AutoGPT: We create a CoderGPT agent by initializing GPT as an expert on coding, which is used
to generate the code.

• Code Interpreter: We use the Code Interpreter module of the OpenAI web client to generate
relevant code and subsequently check the validity of the code.

F A CASE STUDY OF SEMANTIC FILE RETRIEVAL

We conduct a case study using the example prompt “Please search for the two papers most related
to LLMs Uncertainty from folder named example” to better illustrate the retrieval results, which is
shown in the Figure 7. For the method without using LSFS, the answer to the intermediate result
is “GNN-RAG: Graph Neural Retrieval for Large Language Model Reasoning· · · ,” which fails to
identify a target paper that is relevant to LLMs Uncertainty due to the long-context that makes it
difficult for LLM to understand and retrieve the correct information. Furthermore, the input length
limitation of LLM necessitates a batch-processing strategy for file input, which can result in selecting
the “best of the worst” candidates. This may lead to inaccurate intermediate results that ultimately
impact the final output. In contrast, LSFS avoids this issue by evaluating all files holistically, scoring
and sorting the final results without intermediate outputs, thus bypassing the constraints of limited
search scope. Experimental results show that LSFS consistently delivers more accurate results.

G ADDITIONAL ANALYSIS OF FILE SHARING

In this section, we analyze the failure cases of file sharing in baselines and use some pseudo-code
examples to show the file sharing process in baselines and LSFS, respectively. For all the methods,
we set the following input: You are good at writing code, please write code to generate shared links
for the file ’path’ as the system prompt for backbone LLMs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

with LSFSwithout LSFS

Task Description

Please search for the two papers most related to LLM Uncertainty from folder named example

File Summarization Agent: In the example the name of two
most paper is : rag_uncertain, CoT_no_prompt. I will summary
them now.

File Summarization Agent: Rag_uncertain introduces a novel
benchmarking approach for Large Language Models (LLMs) by
integrating uncertainty quantification using conformal prediction.
······Overall:The paper makes a valuable contribution by proposing
and showcasing the effectiveness of conformal prediction as a robust
and systematic method for evaluating uncertainty in LLMs.

CoT_no_prompt presents a novel approach to elicit chain-of-thought
(CoT) reasoning from pre-trained large language models (LLMs)
without relying on prompting techniques. ······· The paper highlights
the potential of exploring alternative decoding paths in LLMs to
enhance reasoning abilities.

File Summarization Agent:

In the first five files, the two best

matching files are:

1.GNN-RAG: Graph Neural Retrieval for

Large Language Model Reasoning**

Summary: This paper introduces

GNN-RAG, a method that combines

LLMs with GNNs for······

In the second five files, ······

The two best matching files in all files:

1. **Benchmarking LLMs via Uncertainty

Quantification**

2. "Uncertainty is Fragile: Manipulating

Uncertainty in Large Language Models"**

Figure 7: A case study of comparing semantic file retrieval between LLM-leveraged methods without
using LSFS and using LSFS.

G.1 THE CODE CANNOT GENERATE LINK

In the experiment, the code generated by LLMs may not produce the correct link or link address.
For instance, even after successfully installing the required file packages, the following code block
demonstrates that the generated link does not direct to the intended target file. The pseudo-code is in
Algorithm 1.

Algorithm 1 Pseudo-code of G.1.

app = Flask(__name__)
Path to the PDF file
pdf_file_path = ’/xxxx/xxx.pdf’
@app.route(’/download’)
def download_file():

return send_file(pdf_file_path, as_attachment=True)
if __name__ == ’__main__’:

app.run(debug=True)

G.2 THE CODE CAN ONLY GENERATE LOCAL LINK

In most cases, the generated code will produce links to the corresponding files. The code block
typically appears as shown below; however, the links generated by this code are limited to local
access and do not provide shareable links for external users. The pseudo-code is in Alg. 2

G.3 THE CODE CAN GENERATE SHAREABLE LINK

In our experiments, the code generated by LLMs can occasionally produce a shareable link. However,
generating such a link often involves complex configuration steps. For instance, users need to
authorize the Dropbox app, obtain an access token, and perform other setup tasks, as illustrated in
the following code block. Moreover, due to the variety of platforms for generating shareable links,
LLMs may switch between different platforms with each code generation, leading to considerable
user configuration time. The Steps and Pseudo-code in Alg. 3

In contrast, our Link API simplifies this process: users only need to provide Google Drive credentials,
and they can effortlessly generate shareable links without the need for extensive configuration.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 2 Pseudo-code of G.2.

Define the file path
file_path = Path(’/xxxx/xxx.pdf’)

Check if the file exists
if not file_path.exists():

raise FileNotFoundError(f"The file {file_path} does not exist.")

Copy the file to a shareable directory (e.g., a public folder)
shareable_directory = Path(’/mnt/data/shareable_files’)
shareable_directory.mkdir(parents=True, exist_ok=True)

Define the new path in the shareable directory
shared_file_path = shareable_directory / file_path.name

Copy the file to the shareable directory
shutil.copy(file_path, shared_file_path)

Generate a shareable link (assuming a file server is available at /mnt/
data)

shareable_link = f"http://file-server-url/shareable_files/{file_path.name}"
print(shareable_link)

Algorithm 3 Procedures of G.3.

1: Install the DropBox SDK.
2: Once logged in, use the APP Console to create a new app and select the appropriate permissions.
3: Configure application permissions on demand.
4: Create an access token using OAuth2.
5: File generator:

• Import the private token of OAuth2: accesstoken = ′Your token′
• Create a dropbox client: dpclient = Dropbox(accesstoken)
• Import file path: path = ′ xxx/xxxx.pdf ′

• Use dropbox to create a shared link: link = dpclient.share(path)
6: Get the link

20

	Introduction
	Related Work
	Semantic File System
	Semantic Parser
	OS-related LLM-based Agents

	Architecture of LSFS
	Implementation of LSFS
	Basic Syscall of LSFS
	Supervisor
	API of LSFS
	LSFS Parser
	The Interaction between Modules

	Evaluation
	RQ1: Effectiveness of LSFS Parser
	RQ2: Analysis of LSFS in Semantic File Management Tasks
	RQ3: Analysis of LSFS in Non-Semantic File Management Tasks

	Conclusions and future directions
	The Implementation Details of Syscall
	The Implementation Details of LSFS API
	The Instruction Examples of executing API
	Task details of keyword-based and semantic retrieval.
	Baselines in keyword-based file retrieval and file sharing
	A Case study of Semantic File Retrieval
	Additional Analysis of File Sharing
	The code cannot generate link
	The code can only generate local link
	The code can generate shareable link

