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ABSTRACT

Efficient model design is critical for deployment on edge and embedded hard-
ware where compute, latency, and energy budgets dominate feasibility. To make
efficiency a property of the architecture under these budgets, Neural Architec-
ture Search (NAS) and post-hoc pruning methods are widely used to discover
task specific backbones that meet deployment constraints. However, conventional
channel or operation level pruning is ill suited to NAS cells since local saliency
proxies are unreliable under multi branch interactions and weight sharing, and
fine grained removals break cell wise dimensional coupling and trigger cascading
realignments. Thus, we propose NR-DARTS, Node Rewiring for Differentiable
Architectures with Adaptive SE Fusion, which deletes low importance interme-
diate nodes scored by learnable gates. Then, the proposed method rewires their
predecessors directly to each successor, and compensates at the successor input
via a learned linear aggregation followed by channel wise SE recalibration. By
preserving cell structure and feature dimensional consistency, our method avoids
misalignment issues common in fine grained pruning and achieves reliable per-
formance. On CIFAR-10 dataset, NR-DARTS reduces FLOPs by 27.3% from
338.94M to 246.41M while maintaining accuracy at 93.81% versus 94.07% for
the DARTS baseline and it outperforms channel and operation level pruning un-
der matched budgets. Ablation studies further show that adaptive SE fusion im-
proves accuracy at similar FLOPs compared to fixed summation and explain the
effectiveness of the compensation mechanism.

1 INTRODUCTION

Resource-constrained edge and embedded hardware impose strict compute, latency, and energy bud-
gets, elevating efficiency to a primary design objective (Sze et al., 2017). Accordingly, efficiency is
evaluated by reducing MACs/FLOPs as well as latency and energy, rather than by parameter count
alone. In such settings, task-specific backbones tailored to the target application and hardware bud-
get are preferable to task-agnostic designs (Tan et al., 2019). Under these constraints, efficiency-
aware architecture discovery is naturally framed as a search problem, for which Neural Architecture
Search (NAS) provides a principled mechanism to obtain candidate architectures under deployment
budgets (Elsken et al., 2019).

In practice, NAS often evaluates candidate architectures using proxy mechanisms such as weight
sharing and partial training. Among differentiable NAS methods, Differentiable Architecture Search
(DARTS) instantiates this setting by relaxing discrete operation choices to a continuous parameter-
ization and performing gradient-based bilevel optimization over shared supernet weights and archi-
tecture parameters (Liu et al., 2018a). This proxy-based evaluation introduces an estimation bias that
favors candidates adept at rapid proxy loss reduction rather than those with the best fully trained per-
formance (Zela et al., 2019; Ye et al., 2022). Therefore, a post-hoc pruning phase, such as structured
pruning, is essential to refine the discovered topology and improve its accuracy-efficiency trade-off.

Post-hoc pruning is widely used to compress trained networks and has also been applied to NAS-
discovered architectures, typically by removing channels or individual operations (Cheng et al.,
2017). However, this strategy faces two key challenges. First, pruning criteria based on local impor-
tance proxies, such as weight magnitude or gradient sensitivity, are unreliable in the multi-branch
structures typical of NAS (Chu et al., 2021). Second, fine-grained removal changes channel counts

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

and breaks the dimensional coupling within each searched cell, leading to cascading realignments
that weaken the architecture and reduce accuracy (Fang et al., 2023).

To address these limitations, we propose NR-DARTS, a post-hoc pruning framework that refines
NAS-discovered topologies while preserving their structural consistency. Our approach makes the
following key contributions:

• We introduce NR-DARTS, a node-level pruning framework that evaluates the holistic im-
portance of nodes using learnable gates, ensuring reliable pruning decisions.

• Our method preserves NAS cell dimensional consistency by pruning entire nodes, avoiding
misalignment issues common in fine-grained approaches.

• Our retraining framework, enhanced with an adaptive SE-fusion module to recover infor-
mation flow, achieves a 27.3% reduction in FLOPs on CIFAR-10 relative to the DARTS
baseline, with accuracy maintained within 0.26 percentage points

2 RELATED WORKS

Neural Architecture Search Neural Architecture Search (NAS) has been proposed as a system-
atic approach to automate network design, with reinforcement learning and evolutionary methods
achieving strong performance but suffering from excessive computational costs (Zoph & Le, 2016;
Real et al., 2017). Gradient-based methods such as DARTS have greatly reduced the search cost (Liu
et al., 2018a). However, these methods still rely on proxy evaluations with weight sharing and partial
training. This reliance introduces bias, favoring architectures that quickly reduce proxy loss rather
than those that achieve the best final performance (Ye et al., 2022). Various strategies have been
proposed to address this issue, including regularization, improved supernet training, and fairness
mechanisms (Xu et al., 2019; Chu et al., 2021; Dooley et al., 2023; Jeon et al., 2025). While these
methods improve supernet evaluation to some extent, they mainly focus on training-time fairness
and ranking correlation. As a result, challenges remain in achieving optimal accuracy–efficiency
trade-offs for practical deployment scenarios.

Neural Network Pruning Pruning has long been studied as a model compression technique,
initially focusing on unstructured weight pruning to reduce storage cost (Han et al., 2015). How-
ever, such approaches often yield limited real speedups on hardware. Structured pruning meth-
ods later emerged, removing channels, filters, or even entire layers to achieve practical efficiency
gains (Li et al., 2016; He et al., 2017). Despite their effectiveness, these methods were primar-
ily developed for manually designed networks such as ResNet and VGG, and applying them to
NAS-discovered architectures remains challenging. The modular and interdependent nature of NAS
cells makes fine-grained pruning difficult, as it may break structural consistency and degrade per-
formance. To overcome these limitations, recent efforts have attempted to integrate pruning into the
NAS pipeline (Ding et al., 2022; Jiang et al., 2023). While effective, these methods couple the search
process tightly with hardware-specific constraints. In contrast, our approach decouples performance-
oriented search from efficiency optimization. This decoupling enables a single high-performance
model to be flexibly adapted to diverse deployment budgets through post-hoc refinement.

3 PROPOSED METHOD

3.1 MOTIVATION

Conventional structured pruning methods face inherent difficulties when applied to complex NAS-
discovered architectures. This difficulty arises because such fine-grained methods pose fundamental
challenges regarding both the reliability of the pruning criteria and the structural consistency of the
resulting architecture .

In terms of reliability, conventional structured pruning typically scores component importance using
local proxies such as filter magnitude (Li et al., 2016). These metrics are limited because signal
strength or parameter size does not guarantee functional relevance (Liu et al., 2018b; Blalock et al.,
2020). A large-norm filter can be redundant, whereas a small-norm filter can be critical for accu-
racy (Molchanov et al., 2019). In NAS-discovered architectures, weight sharing and multi-branch
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Figure 1: A conceptual comparison of pruning granularities in cells discovered by NAS. (a) Conven-
tional structured pruning operates at a fine-grained level, targeting components within an operation.
(b) Node-level pruning operates at a coarser, structural level by removing an entire computational
node.

aggregation further distort per-branch estimates, as observed in FairNAS (Chu et al., 2021), mak-
ing local proxies especially unreliable. Consequently, pruning in multi-branch NAS cells becomes
challenging because such biases obscure the true contribution of each branch.

Furthermore, structural consistency is fragile under conventional structured pruning, because chang-
ing channel counts forces alignment across nodes and cells (He et al., 2017). As illustrated in Fig-
ure 1(a), removing a single channel first requires a local adjustment in the directly connected node
by removing the corresponding channel position to preserve input–output compatibility. Because
NAS cells are designed with a fixed channel width per node and all incoming edges to a node must
share the same channel dimension (Tan et al., 2019), such local adjustments do not remain isolated.
They propagate across the cell as a global adjustment, requiring the same channel removal across
operations to maintain structural consistency. This cascading change not only forces modifications
in nodes unrelated to the original decision but also can amplify feature-dimension misalignment
beyond the intended scope, weakening the structure discovered by NAS (Fang et al., 2023).

To address the structural and reliability issues discussed above, we raise the pruning granularity from
individual filters or operations to the node level (Figure 1(b)). This shift in granularity addresses both
challenges simultaneously. For reliability, we attach learnable gates to the outputs of nodes during a
dedicated evaluation phase, enabling a more stable assessment of the functional contribution of each
node beyond biased local proxies. For structural consistency, node-level pruning naturally preserves
the dimensional compatibility required within NAS cells.

Simply deleting a node, however, would disrupt information flow to its successors. Therefore, prun-
ing at the node level must be accompanied by rewiring, in which the predecessors of the deleted node
are directly connected to its successors. This step maintains connectivity while avoiding the cascad-
ing alignment issues observed in channel-level pruning. Building on this principle, we propose NR-
DARTS, a node-level pruning and rewiring framework that combines structure-aware consistency
with reliable importance estimation.

3.2 PROPOSED METHOD

Our proposed NR-DARTS is a post-hoc framework designed to achieve structural lightweighting
and robust retraining of architectures discovered by NAS. The framework consists of three distinct
stages to ensure both efficiency and performance, as illustrated in Figure 2.

The first stage of our framework is the Pruning Search, where the objective is to quantitatively
estimate the structural importance of each intermediate node within a discovered DARTS archi-
tecture(Liu et al., 2018a). To achieve this, we introduce a set of learnable gates, denoted by γk,
which are applied to the output of each node, as visually depicted in Figure 2(a). Applying the gates
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(a) Pruning Search

Add

(c) Retraining with Adaptive SE-Fusion

SoftMax Add

(b) After Pruning

Add

Pruned Pruned

SE

Figure 2: An overview of the NR-DARTS framework, illustrating the transformation of a node across
three stages. (a) Structural importance of each node is estimated using learnable gates γk during the
search process. (b) Operations within nodes with low importance scores are pruned. (c) The proposed
Adaptive SE-Fusion module recalibrates the altered information flow, and the pruned network is
retrained from scratch.

directly to node outputs, rather than estimating importance from local proxies, yields importance
scores that more accurately reflect the functional contribution of a node (Gao et al., 2018). The gates
are applied exclusively to the intermediate nodes within the normal cells. This selective application
strategy is motivated by the architectural characteristics of the network. Normal cells are repeated
far more frequently than reduction cells(Liu et al., 2018a). Their cumulative contribution dominates
the overall computational cost of the network. As a result, pruning the intermediate nodes in nor-
mal cells offers the greatest potential for model compression. In contrast, reduction cells perform
the critical function of spatial down-sampling. Altering their structure may compromise multi-scale
feature representation and destabilize gradient propagation (Mao et al., 2017). Preserving reduction
cells is therefore essential for maintaining the hierarchical integrity of the network.

This gating mechanism is mathematically formulated as:

xk = γk

 ∑
i∈P(k)

Oi→k(xi)

 , γk =

{
γ̃k, k ∈ Nnormal,

1, k ∈ Nreduction,
with γ̃k ∈ R. (1)

Defined in (1), the output of an intermediate node k is modulated by a node-level gate γk. Specifi-
cally, the outputs from its predecessor nodes xi (i ∈ P(k)) are first transformed by their correspond-
ing operators Oi→k and summed. This aggregated result is then scaled by the single gate γk, which
uniformly controls the contribution of node k. For nodes in normal cells (Nnormal), γk is initialized
to 1 and optimized as a learnable parameter together with the operator weights O, enabling the esti-
mation of node level structural importance. For nodes in reduction cells (N reduction), γk is fixed to
1, and their structure is preserved without modification. Thus, the optimized gate values in normal
cells directly quantify node importance and serve as pruning indicators in the subsequent stage.

After the Pruning Search, the second stage prunes the architecture based on the learned importance
scores, as shown in Figure 2(b). Nodes are ranked by their gate values γk in ascending order to
determine their relative structural importance, and a predefined ratio of the lowest-scoring nodes
is pruned. This pruning ratio is treated as a hyperparameter set according to the overall network
configuration. Each pruned node is simplified into a parameter-free summation block by removing
all internal operations (Oi→k), and the resulting lightweight architecture is retrained from scratch to
optimally adapt to the reduced structure.

In the final stage of our framework, the pruned nodes remain as simple summation blocks, which
can result in information loss due to the removed operations. Following the principle of feature map
approximation used in ThiNet (Luo et al., 2017), this loss can be alleviated by retraining the network
to restore the original feature representations. To achieve this, we introduce the Adaptive SE-Fusion
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module. This module adaptively weights the contributions of predecessor feature maps and performs
channel-wise recalibration, effectively compensating for the missing information.

This process can be mathematically formalized as:

xfusion =
∑

i∈P(k)

w′
ixi, w′

i =
exp(w̃i)∑
j exp(w̃j)

Sfusion = σ (W2 δ (W1 GAP(xfusion)))

x′
k = xfusion ⊙ Sfusion (2)

xfusion is the intermediate feature map created by the adaptive aggregation of predecessor node out-
puts. Empirically, we observe that softmax-normalized weights w′

i often result either in a dominant
single-branch contribution or in meaningful multi-branch interactions, a phenomenon that has also
been observed in prior work (Chu et al., 2021). To address this, our framework employs linear ap-
proximation to learn the relative importance of each input path, allowing it to flexibly capture both
sparse single-branch dominance and more complex multi-branch interactions. To further refine the
linearly fused features, we introduce a non-linear, channel-wise recalibration via a Squeeze-and-
Excitation (SE) block (Hu et al., 2018). The SE block produces a channel attention vector Sfusion,
derived from the global context of xfusion. The refined output x′

k is obtained by applying element-
wise multiplication between xfusion and Sfusion. This non-linear recalibration enables the model to
dynamically emphasize informative channels while suppressing less relevant ones, resulting in a
more context-aware representation.

Through the three stages, the proposed framework constructs a network that efficiently compresses
the architecture while preserving essential information.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETTINGS

All experiments were conducted on the CIFAR-10 dataset, comprising 50,000 training images. The
dataset was partitioned into 75% for model training and 25% for validation. To ensure reproducibil-
ity, we used random seeds 41, 42, and 43, and report results as the mean and standard deviation
across the three runs. Prior to training, images were normalized using per-channel means of 0.491,
0.482, and 0.446, and standard deviations of 0.247, 0.244, and 0.262. Data augmentation consisted
of random cropping to a resolution of 32×32 and random horizontal flipping.

Experiments were implemented in PyTorch 2.4.1 with CUDA 11.8, and executed on a workstation
equipped with an NVIDIA RTX 4060 GPU and an AMD Ryzen 5 7500F CPU. All hyperparameters
followed the official DARTS implementation (Table 4), while the fusion module parameters were
optimized independently.

To rigorously evaluate the effectiveness of the proposed model, we conducted a comparative study
against reference models derived from the same DARTS backbone, as summarized in Table 5. This
setup enables a fair comparison with conventional pruning methods, including magnitude based,
gradient based, and BN scale pruning, since all methods are applied to the same architecture. The
evaluation is based on MFLOPs to measure computational cost, Top-1 accuracy to assess classifica-
tion performance, and latency to reflect practical execution efficiency.

4.2 COMPARISON RESULTS

Table 1 reports the results of our comparative experiments. We evaluate whether the proposed
method achieves a better balance between accuracy, efficiency, and latency than conventional struc-
tured pruning. The analysis focuses on maintaining accuracy while reducing FLOPs, and on exam-
ining whether these changes consistently improve runtime. The table summarizes the performance
of all considered models. Specifically, the best result in each column is highlighted in bold, and the
second-best result is underlined.
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Table 1: Comparison of pruning methods on architectures discovered by DARTS

Category Model Top-1 Acc (%) ∆Top-1 (%) FLOPs (M) ∆FLOPs (%) Latency (ms)

Baseline Base DARTS 94.07± 0.08 — 338.94 — 5.59

Proposed method NR-DARTS 93.81 ± 0.05 -0.26 246.41 -27.3 4.92

Pruning methods

Gradient-based pruning 93.67± 0.03 -0.40 248.70 -26.6 5.45
L1 pruning 93.36± 0.09 -0.71 248.70 -26.6 5.23
L2 pruning 93.35± 0.05 -0.72 248.70 -26.6 5.25
LAMP pruning 93.35± 0.05 -0.72 248.70 -26.6 6.49
FPGM pruning 93.35± 0.05 -0.72 248.70 -26.6 5.24
Random pruning 93.23± 0.08 -0.84 248.70 -26.6 5.12
BN scale pruning 92.98± 0.20 -1.09 248.70 -26.6 5.19
Reduced DARTS 92.66± 0.71 -2.10 244.53 –27.8 3.62

The proposed NR-DARTS achieves a Top-1 accuracy of 93.81% while reducing the FLOPs of the
Base DARTS model by 27.3% and improving latency from 5.59 ms to 4.92 ms. These results indicate
that substantial computational savings can be obtained with only a marginal 0.26% drop in accuracy,
demonstrating the effectiveness of the proposed efficient pruning framework. In particular, NR-
DARTS shortens latency more effectively than conventional methods, providing a tangible benefit
in practical deployment where fast response time is critical.

245 246 247 248
FLOPs (M)
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cu

ra
cy

 (%
)

Proposed Method
Pruning Methods

Figure 3: FLOPs vs accuracy comparison be-
tween pruning methods and NR-DARTS.

In contrast, the Reduced DARTS achieves compara-
ble FLOPs reduction and improves latency to 3.62
ms, but its accuracy drops by 1.41%. This suggests
that naive depth reduction compromises the hier-
archical feature representations that are crucial for
high performance. This observation has been empir-
ically validated by early deep architectures such as
VGGNet (Simonyan & Zisserman, 2014). By con-
trast, our method adopts node-level pruning rather
than reducing depth. This strategy preserves suffi-
cient architectural depth while discarding only less
important nodes. As a result, NR-DARTS achieves
competitive latency reduction without severe ac-
curacy degradation, effectively balancing efficiency
and representational capacity.

Compared to conventional structural pruning methods adjusted for similar FLOPs, NR-DARTS con-
sistently achieves superior accuracy while also reducing inference latency. In particular, it improves
accuracy by up to 0.83 percentage points and reduces latency by 4–24% over conventional methods,
whose performance ranges from 92.98–93.67% accuracy and 5.12–6.49 ms latency.

Conventional structural pruning, previously discussed as a source of concern, suffers from structural
inconsistency and unreliable performance estimation. Experimental results suggest that these issues
may contribute to reduced accuracy and increased or variable latency. In contrast, NR-DARTS per-
forms pruning at the node level, which appears to alleviate structural inconsistency in practice. In
addition, it applies gates directly to node outputs, suggesting a more reliable importance evaluation.
A comprehensive comparison is further illustrated in the accompanying summary Figure 3.

4.3 IN-DEPTH ANALYSIS

In this section, we provide an in-depth analysis of the proposed framework through both quantita-
tive and qualitative evaluations. We first conduct ablation studies to examine the effects of pruning
strategies and fusion mechanisms. We then complement these results with qualitative analyses using
t-SNE visualizations. Additional qualitative analyses with HiResCAM are provided in the Appendix.
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4.3.1 ABLATION STUDY

We conduct ablation studies to disentangle the contributions of two key components in our frame-
work. The first analysis focuses on the pruning strategy adopted during the search stage, and the
second examines the role of the SE Fusion module in mitigating performance degradation after
pruning.

We first analyze the effect of different pruning strategies during the search stage. Our goal is to
understand how node selection impacts the accuracy, stability, and computational cost of the final
model (FLOPs). Specifically, we compare our proposed low-importance pruning, which removes
nodes with minimal contribution, with random pruning as a baseline and high-importance pruning as
a negative control. This setup allows us to systematically evaluate whether selectively pruning low-
importance nodes preserves model performance while reducing computational cost. After retraining,
overall accuracy remains high across all strategies, but differences are observed between them.

As summarized in Table 2 and shown in Figure 4, the Low strategy, which prunes low-importance
nodes, achieves the highest mean accuracy (93.81±0.05%) while maintaining relatively high FLOPs
(246.41 M). Random pruning results in lower accuracy (93.30 ± 0.19%) and intermediate FLOPs
(220.51 M), and pruning high-importance nodes yields the lowest accuracy (93.09 ± 0.13%) and
FLOPs (204.06 M). Notably, the Low strategy also exhibits the smallest standard deviation, indicat-
ing stable performance across runs.

This comparison clearly highlights the underlying accuracy–FLOPs trade-off. Pruning high-
importance nodes severely damages accuracy by eliminating critical components of the computa-
tional skeleton of the network. Random pruning, meanwhile, offers no predictable benefit, yielding
a suboptimal and unprincipled compromise between metrics. In contrast, the effectiveness of the
Low strategy lies in its methodical preservation of this core structure. By selectively targeting only
the least influential nodes, it ensures the integrity of the feature hierarchies of the network remains
intact. This approach therefore achieves substantial computational savings while minimizing perfor-
mance degradation, striking an optimal and reliable balance between accuracy and efficiency.

Table 2: Comparison of accuracy and FLOPs
across pruning strategies after retraining.

Strategy Accuracy (%) FLOPs (M)

Low 93.81± 0.05 246.41
Random 93.30± 0.19 220.51
High 93.09± 0.13 204.06

210 220 230 240
FLOPs (M)

93.0
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93.4

93.6

93.8

Ac
cu
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cy

 (%
)

Low
Random
High

Figure 4: Comparison of accuracy and FLOPs
trade-off across pruning strategies; low impor-
tance pruning achieves the best balance.

Next, we evaluate the contribution of the SE Fusion module by comparing it against alternative fu-
sion strategies. This analysis highlights how different fusion designs recover information lost during
pruning, allowing us to determine which approach best preserves accuracy under comparable com-
putational budgets. Table 3 presents their performance and FLOPs, while Figure 5 provides a visual
comparison.

With comparable FLOPs across strategies (240–247M), SE Fusion achieved the highest Top-1 ac-
curacy of 93.81%, with only a 0.26% drop compared to the base DARTS, while reducing FLOPs
by 27.3%. This result experimentally validates our design choice. The combination of linear fusion
and non-linear channel-wise SE calibration effectively compensates for pruning-induced distribution
shifts and mitigates accuracy degradation.
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Figure 5: Top-1 accuracy vs. FLOPs for
fusion strategies; SE Fusion best preserves
accuracy under comparable computational
budgets.

Learnable Fusion replaces channel-wise SE calibra-
tion with a single global scaling factor and achieved
93.46%. This suggests that the absence of non-
linear channel-level correction limits its ability to
capture fine-grained variations. Arithmetic schemes
such as Mean, Max, and Add yielded slightly lower
accuracies, ranging approximately from 93.34% to
93.42%. This suggests that naive feature aggregation
cannot fully correct pruning-induced scale shifts.
Multiplicative fusion further amplified these dis-
tortions. Accuracy dropped to 92.95%. Finally, the
Zero strategy confirmed that the network remains
functional without explicit fusion. However, it suf-
fered the largest degradation, with accuracy falling
to 92.44%.

Overall, these results demonstrate that SE Fusion provides the most effective balance between pre-
serving accuracy and maintaining computational efficiency. This highlights the importance of com-
bining linear aggregation with non-linear channel-wise calibration.

Table 3: Comparison of Top-1 accuracy and FLOPs for different fusion strategies in NR-DARTS
ablation.

Fusion Strategy Top-1 Acc (%) ∆Top-1 (%) FLOPs (M) ∆FLOPs (%)
Base DARTS 94.07± 0.08 — 338.94 —
SE Fusion 93.81± 0.05 –0.26 246.41 –27.3
Learnable Fusion 93.46± 0.15 –0.61 243.99 –28.0
Mean Fusion 93.42± 0.12 –0.65 243.47 –28.2
Max Fusion 93.36± 0.06 –0.71 240.86 –28.9
Add Fusion 93.34± 0.12 -0.73 242.44 –28.4
Mul Fusion 92.95± 0.39 –1.12 242.95 –28.3
Zero 92.44± 0.12 –1.63 242.44 –28.4

4.3.2 QUALITATIVE ANALYSIS OF LEARNED REPRESENTATIONS

We use t-SNE (t-Distributed Stochastic Neighbor Embedding) to examine feature distributions. All
analyses are conducted on the same four models: the original unpruned model (Base DARTS) as
the upper-bound reference, Gradient-based Pruning and BN Scale Pruning as baselines, and our
proposed NR-DARTS.

We analyze the feature distributions of the four models using t-SNE to understand the global struc-
ture of the learned representations. Specifically, the test-set feature vectors are embedded into two
dimensions with perplexity=40 and n iter=1000, which allows us to visually compare how pruning
affects the learned representations in each model.

As shown in Figure 6, the Base DARTS model exhibits clearly separated clusters for each class,
achieving the highest Silhouette Score of 0.518. NR-DARTS exhibits comparable intra-class cohe-
sion and inter-class separation with a Silhouette Score of 0.510. Conventional pruning methods, in
contrast, lead to a clear degradation in the feature space. Gradient-based pruning produces partially
overlapping clusters, resulting in a reduced Silhouette Score of 0.476. BN Scale pruning causes an
even more pronounced structural collapse, as clusters not only overlap but also lose internal cohe-
sion, sharply lowering the score to 0.407.

These results indicate that NR-DARTS, specifically designed for NAS-discovered architectures, ef-
fectively approximates the original discriminative feature representations. Through its incorporation
of SE fusion, the method compensates for lost or weakened features due to pruning. This mechanism
also mitigates linear and non-linear distortions, maintaining intra-class cohesion and inter-class sep-
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aration. In contrast, conventional structured pruning, which is not tailored for NAS architectures, can
disrupt the latent feature space and reduce cluster clarity. These findings highlight the importance of
pruning methods specialized for NAS-discovered architectures in preserving representational struc-
ture.

Base DARTS (Unpruned)
(Silhouette Score: 0.518)

NR-DARTS (Ours)
(Silhouette Score: 0.510)

Gradient-based Pruning
(Silhouette Score: 0.476)

BN Scale Pruning
(Silhouette Score: 0.407)

t-SNE Visualization of Feature Spaces

plane
car

bird
cat

deer
dog

frog
horse

ship
truck

Figure 6: t-SNE visualization of test-set feature embeddings showing cluster separation quality.
NR-DARTS (0.510) maintains comparable discriminative structure to Base DARTS (0.518), while
conventional pruning methods show reduced cluster cohesion (0.476, 0.407)

5 CONCLUSION

In this paper, we addressed the accuracy–efficiency trade-off of NAS-discovered architectures by
proposing a node-level pruning approach specialized for discovered structures. Unlike prior channel
and operation focused pruning methods, our approach elevated the pruning unit to the node level,
reducing structural inconsistencies while using gate-based importance estimation for reliable node
evaluation. On CIFAR-10, our proposed NR-DARTS achieved a 27.3% reduction in FLOPs with
only a 0.26% drop in accuracy, demonstrating both efficiency and performance preservation. These
results suggested that node-level pruning can serve as a complementary strategy to existing NAS
compression methods, while also indicating the potential to extend practical applicability. However,
our study is limited to small datasets and models, and relies on a separated search and training
pipeline. Future work will investigate larger NAS benchmarks, real-world edge deployment, and
integrated search-and-train frameworks for end-to-end optimization.
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REPRODUCIBILITY STATEMENT

Details of the experimental setup are in Section 4.1, the complete set of hyperparameters is pro-
vided in Appendix A, and an anonymized implementation is available at https://anonymous.
4open.science/r/NR-DARTS-D4B2.
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We used large language models (LLMs) solely to assist in polishing the manuscript. All scientific
content, results, and interpretations were written and verified by the authors.
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A APPENDIX

This appendix provides additional details about the experimental setup and comparison baselines
used in the main paper. We first summarize the hyperparameter configurations shared across all
experiments and then describe the models considered in our comparative study.

A.1 HYPERPARAMETER SETTINGS

Table 4 lists the hyperparameters used throughout search, training, and fine-tuning. Shared param-
eters include the optimizer configuration, learning rate schedule, and initialization details that were
consistent across all methods. Phase-specific parameters indicate the settings that differ across the
three phases: the search phase for optimizing node importance, the train phase for training pruned
architectures with SE fusion, and the fine-tuning phase, applied only to baseline models with pruning
methods, for retraining them to recover performance.
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Table 4: Hyperparameter settings

Parameter Value
Shared parameters

Layers 8
Batch size 64
Initial learning rate 0.025
Optimizer SGD
Momentum 0.9
Weight decay 3× 10−4

Drop path probability 0.3
Initial channels 16

Phase-specific parameters

Epochs (search / train / fine-tune) 120 / 100 / 10
Fusion configuration 10-epoch warm-up, LR=0.002, dropout=0.3
Total nodes pruned in network 15

Table 5: Overview of comparison models

Category Model Description

Baseline Base DARTS Standard 8-layer DARTS architecture

Proposed Method NR-DARTS (Ours) Our method with Node Pruning and SE-Fusion

Pruning Methods

Reduced DARTS 6-layer variant of DARTS for efficiency
L1 Pruning Pruning based on L1-Norm of filter weights
L2 Pruning Pruning based on L2-Norm of filter weights
LAMP Pruning Layer-wise magnitude-based pruning
FPGM Pruning Pruning based on the geometric median
BN Scale Pruning Pruning based on BatchNorm γ scaling
Gradient-based Pruning Pruning based on gradient sensitivity
Random Pruning Randomly removes filters as a baseline

A.2 COMPARISON MODELS

Table 5 provides an overview of all models evaluated in our experiments. The baseline is the stan-
dard 8-layer DARTS architecture. Our proposed method, NR-DARTS, augments DARTS with node-
level pruning, rewiring, and SE-based fusion. For comparison, we include a reduced-depth variant
(Reduced DARTS) as well as a range of structured pruning methods applied to the DARTS back-
bone, covering magnitude-based pruning (L1, L2, LAMP), geometric median pruning (FPGM),
BatchNorm-scale pruning, gradient-based pruning, and a random pruning baseline. All models are
trained under the shared hyperparameters described in Table 4, ensuring fairness in the evaluation
of accuracy, FLOPs, and runtime.

A.3 HIRESCAM ANALYSIS OF SPATIAL ATTENTION

We further analyze spatial attention patterns of the same four models by visualizing class activa-
tion maps with HiResCAM applied to the final convolutional layer. This evaluation highlights how
different pruning and fusion strategies influence the spatial focus of the models, revealing which
approaches best preserve critical regions and feature localization under comparable computational
budgets.
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Figure 7 shows four representative scenarios. In these cases, NR-DARTS exhibits sharper and more
focused attention, effectively suppressing background noise while retaining discriminative cues. In
the performance improvement cases (Images 1 and 2), the Base DARTS model misclassified the
inputs due to poorly localized attention. Its activation maps are diffuse and fail to concentrate on the
most discriminative features of the objects, such as the head of the bird or the wings of the plane.
In contrast, NR-DARTS exhibits sharp, well-localized attention that precisely highlights these key
features, leading to correct predictions with high confidence of 0.99. This demonstrates its ability to
recover and emphasize critical cues. For the precise attention distribution case (Image 3), all mod-
els correctly predicted the dog. NR-DARTS, however, focused more strongly on the facial features
and body contours of the dog, yielding the highest confidence of 1.00. This suggests that the model
not only preserves correctness but also enhances the localization of discriminative features. In the
knowledge preservation case (Image 4), both Base DARTS and NR-DARTS attended to the salient
regions of the ship. Both models achieved identical performance with a confidence of 1.00, con-
firming that key representational knowledge remains intact. Finally, in the failure case (Image 5),
all models misclassified the cat. However, NR-DARTS produced notably lower confidence of 0.36,
indicating better uncertainty calibration.

Together, these observations suggest that NR-DARTS can maintain both accuracy and spatial fidelity
while providing improved model reliability in the examined cases.

Image 1
(True: bird)

Image 2
(True: plane)

Image 3
(True: dog)

Image 4
(True: ship)

Image 5
(True: cat)

Pred: dog
Conf: 0.98

Base DARTS (Unpruned)

Pred: bird
Conf: 0.60

Pred: dog
Conf: 0.55

Pred: ship
Conf: 1.00

Pred: ship
Conf: 0.99

Pred: bird
Conf: 0.95

NR-DARTS (Ours)

Pred: plane
Conf: 0.94

Pred: dog
Conf: 0.98

Pred: ship
Conf: 1.00

Pred: ship
Conf: 0.57

Pred: dog
Conf: 0.54

Gradient-based Pruning

Pred: plane
Conf: 0.93

Pred: dog
Conf: 0.68

Pred: ship
Conf: 1.00

Pred: frog
Conf: 0.86

Pred: dog
Conf: 0.70

BN Scale Pruning

Pred: bird
Conf: 0.63

Pred: dog
Conf: 0.52

Pred: ship
Conf: 1.00

Pred: ship
Conf: 0.82

Figure 7: HiResCAM visualizations for five representative cases: NR-DARTS sharpens attention
on key features, correcting Base DARTS errors (1–2), refines correct predictions (3–4), and lowers
confidence on failures (5).
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