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Reproducibility Summary1

The following paper is a reproducibility report for "Path Planning using Neural A* Search" [1] published in ICML2

2021 as part of the ML Reproducibility Challenge 2021. The source code 1 for our reimplementation and additional3

experiments performed is available for running.4

Scope of Reproducibility5

The original paper proposes the Neural A* planner, and claims it achieves an optimal balance between the reduction of6

node expansions and path accuracy. We verify this claim by reimplementing the model in a different framework and7

reproduce the data published in the original paper. We have also provided a code-flow diagram to aid comprehension of8

the code structure. As extensions to the original paper, we explore the effects of (1) generalizing the model by training9

it on a shuffled dataset, (2) introducing dropout (3) implementing empirically chosen hyperparameters as trainable10

parameters in the model, (4) altering the network model to Generative Adversarial Networks (GANs) to introduce11

stochasticity, (5) modifying the encoder from Unet to Unet++ (6) incorporating cost maps obtained from the Neural A*12

module in other variations of A* search.13

Methodology14

We reimplemented the publicly available source code provided by the authors in Pytorch Lightning to encourage15

reproducibilty of the code and flexibility over different hardware setups. We reproduced the results published by16

the authors and also conducted additional experiments. The training code was run on Kaggle with GPU (Tesla17

P100-PCIE-16GB) and CPU (13GB RAM + 2-core of Intel Xeon).18

Results19

The claims of the original paper were successfully reproduced and validated within 3.2% of the reported values. Results20

for additional experiments mentioned above have also been included in the report.21

What was easy22

The code provided in the original repository was well structured and documented making it easy to understand and23

reimplement. The authors also provide the source code for dataset generation which made the task of reproducing the24

results fairly simple .25

What was difficult26

Experimentation on some datasets took a considerable amount of time, limiting our experiments to the MP Dataset.27

Results of runtime calculation could not be reproduced as they are affected by various factors, including dissimilarity in28

datasets, hardware environment and A* search implementation.29

Communication with original authors30

The authors were contacted via email regarding the computational requirements of training and errors faced, to which31

prompt and helpful replies were received.32

1https://anonymous.4open.science/r/NeuralAstar-ported-6EB0/README.md
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1 Introduction33

As described in the original paper, A* search is a path planning algorithm that is frequently used in vehicle navigation,34

and robot arm manipulation to solve the lowest cost path problems. The paper then goes on to introduce Neural35

A*, a unique data-driven path planning system. The Neural A* planner uses a differentiable A* module with a fully36

convolutional encoder. The encoder produces a costmap, which is used by the search algorithm. The network learns to37

recognize visual cues from input maps which are effective in producing ground truth paths.38

In this work, we reimplement the Neural A* planner (originally in Pytorch) in Pytorch Lightning [2] to make it easier to39

reproduce the research in the future. This allowed us to train the code flexibly over different platforms and automate the40

optimization process. We utilized the functionalities of PyTorch Lightning for efficient checkpointing and logging on41

Wandb. We check the reproducibility of the claims published in the original paper and perform multiple ablations. We42

then go on to explore the performance of different variations of A* coupled with the Neural A* costmap.43

One of the limitations of the original work was the lack of diversity in generated paths, even though there are often44

multiple optimal paths. Hence in an attempt to extend the planner to account for stochastic sampling of paths we45

experimented with GAN [3]. We also added an implementation with Unet++ encoder [4].46

2 Scope of Reproducibility47

The original paper attempts to compare the performance of the proposed Neural A* planner with other data-driven and48

imitation based planners. In this work, we check the reproducibility of the following claims.49

• Comparison with other planners: Neural A* successfully finds near-optimal paths while significantly50

reducing the number of nodes explored compared to other planners. The differentiable A* reformulation of the51

Neural A* planner is key in achieving optimal performance.52

• Start and goal maps: The provision of start and goal maps to the Neural A* encoder enables the extraction53

of visual cues properly conditioned to start and goal locations, leading to significant improvement in path54

optimality and reduction of nodes explored.55

• VGG-16 backbone: Using VGG-16 backbone [5] leads to better performance than ResNet-18 [6].56

• Path length optimality: Neural A* produces nearly optimal path lengths over several datasets.57

• Planning on raw images: Neural A* facilitates path planning on raw images without semantic pixel-wise58

labelling of the environment. The model outperforms several other planners in predicting pedestrian trajectories59

from raw surveillance data.60

We validate the above claims by reproducing all results from the main article and appendix (excluding SDD dataset)61

except for runtime calculations (further explained under Section 6.2). In addition, we had performed several experiments62

to study the efficiency of the planner when coupled with different network models, mixed and shuffled datasets and63

variations of the simple A* search algorithm. We also performed hyperparameter tuning and implemented empirically64

chosen constants to instead be trainable parameters learnt through backpropagation. Section 5 contains more details.65

3 Methodology66

The Neural A* and Neural BF planners were reimplemented by us, taking inspiration from the official codebase 2
67

3.1 Model descriptions68

The simple A* search operates by maintaining an open list of nodes. The search then alternates between searching the69

open list for the node most likely to lead to a low cost path and expanding the list by appending the neighbours of the70

selected node until the goal is reached. The search uses a combination of the total best path cost and a heuristic function71

for node selection. The A* search algorithm has been explained in great detail in the original paper. An encoder in72

the Neural A* model converts a problem instance to a guidance map which assigns a guidance cost to each node. The73

2https://github.com/omron-sinicx/neural-astar
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Differentiable A* module then performs an A* search using the guidance cost along with the heuristic as part of the74

total cost. As inspired by previous chapters of MLRC [7] the codeflow for the model has been provided (Fig. 1).75

Figure 1: Codeflow of Neural A*

Description of the planner76

The Neural A* planner consists of 2 modules:77

1. Encoder : UNet [8], a fully convolutional encoder network, is employed. Visual cues such as the contours of78

dead ends and by-passes are learned by the encoder. The encoder input is a concatenation of the environmental79

map with the start and goal maps (binary maps indicating the locations of start and goal nodes). The encoder80

then generates a guidance map, which is a scalar valued map representation of the problem instance. During81

A* search, the guidance map is used as part of the heuristic.82

2. Differentiable A* module : The differentiable A* module is a differentiable reformulation of the classic A*83

search method. This was accomplished by using a discretized activation technique inspired by [9] with simple84

matrix operations. The module performs an A* search in the forward pass and then backpropagates the losses85

to other trainable modules after each epoch. This module’s goal is to teach the encoder how to make guidance86

maps that reduce the difference between search histories and ground-truth paths.87

3.2 Loss function88

Let us consider the closed list C, which is a binary matrix containing all the searched nodes V . The optimal path P89

is a binary matrix containing the nodes which belong to the ground-truth path. The mean L1 loss between C and the90

optimal path map P is calculated as follows [1]:91

L =
||C − P̄||1
|V |

The loss defined as above penalizes both paths that stray from the optimal path (calculated by running a simple A*92

search, referred to as Vanilla A*) and the exploration of nodes not part of the optimal path. This loss motivates Neural93

A* to choose paths that are similar to the ground-truth path while also reducing node explorations.94

3.3 Datasets95

The MP, TiledMP and CSM datasets are used and preprocessed identical to the original implementation. We were96

unable to setup the pipeline for reimplementing results for SDD dataset due to resource constraints which is further97
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discussed in section 6.2. The source code3 for generating the datasets was made publicly available by the authors. In98

addition, we created a mixed dataset, mixing maps from various subsets of the MP dataset to check the generalizability99

of the model. This is described further in section 5.1.100

3.4 Hyperparameters101

The hyperparameters and their respective ranges are same as mentioned in the original paper. The hyperparameters102

were set after conducting random search using Wandb [10]. The best hyperparameters are g_ratio = 0.2 and rest of103

the hyperparameters same as the paper. As can be observed from the values, the changes in hyperparameters are in104

accordance with weighted A*, decreasing the weight of the heuristic, the number of explorations and path optimality105

increase. On the other hand increasing the weight of the heuristic leads to a decrease in both number of explorations106

and path optimality. Encoder input can be of the type m+ (includes start maps, goal maps and map designs), or m107

(includes just the map designs). It can be seen that Exp and Opt (Section 3.5) have an inverse relationship, and hence it108

is important to find hyperparameters that maintain the equilibrium between them. Note that the original paper does not109

report results for Resnet backbone with Encoder input of type m.110

Table 1: Results with the Best Hyperparameters

Input Type Version Opt Exp Hmean Suc
m Best 64.95 (60.22, 69.87) 42.80(39.52, 46.07) 45.44(42.03, 48.90) 100.0

Original 67.0 (65.1, 68.8) 36.8(35.6, 38.1) 41.5(40.2, 42.7) 100.0
m+ Best 78.97(75.23, 82.97) 44.49 (41.28, 47.68) 52.42 (49.14, 55.77) 100.0

Original 87.7 (86.6, 88.9) 40.1(38.9, 41.3) 52.0(50.7, 53.1) 100.0

Table 2: Resnet Backbone with best hyperparameters

Input Type Version Opt Exp Hmean Suc

m Best 64.10 (59.34, 69.07) 42.40 (39.14, 45.76) 44.60 (41.15, 48.12) 100.0 (100.0, 100.0)
Original — — — —

m+ Best 75.57 (71.88, 79.83) 43.71 (40.57, 46.85) 50.80 (47.77, 53.93) 100.0 (100.0, 100.0)
Original 79.8(78.1, 81.5) 41.4(40.2, 42.7) 49.2(47.9, 50.5) 100.0 (100.0, 100.0)

3.5 Experimental setup and code111

The models were trained using the RMSProp optimizer with a batch size of 100 with a learning rate 0.001. The models112

were trained for 100 epochs on the MP Dataset and 400 epochs for the CSM and TiledMP datasets [11; 12; 13]. The113

following metrics are as defined in the original paper and evaluated for each trained model on their test set performance.114

• Path optimality ratio (Opt): measures the percentage of shortest path predictions for each map.115

• Reduction ratio of node explorations (Exp): measures the number of search steps reduced by a model as116

compared to vanilla A* search. Let E∗ be the number of nodes explored by vanilla A* and E be the number of117

nodes explored by a particular model. Then Exp is defined as max(100( E∗−E
E∗ , 0)).118

• Harmonic mean of Opt and Exp (Hmean): Indicates the trade-off between Opt and Exp achieved.119

A higher Hmean value is desired and indicates that a model achieves satisfying optimality and search efficiency. The120

central planners implemented in this work are Neural A* and Neural BF (i.e. Neural Best First which is simply the121

Neural A* planner with hyperparameter g_ratio set to 0). Various other planners were used as baselines for judging the122

performance of Neural A* including SAIL [14], BBA* [15; 1], Weighted A* [16], Best First Search, VIN [17], GPPN123

[18] and MMP [19]. The values of these metrics for baseline planners were obtained from running the official source124

code and were identical to those published in the original paper.125

3https://github.com/omron-sinicx/planning-datasets
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3.6 Computational requirements126

The training code was run on Kaggle with GPU (Tesla P100-PCIE-16GB) and CPU (13gb RAM + 2-core of Intel127

Xeon). The average training times were 1.25, 72 and 58 hours for the MP, Tiled MP and CSM datasets respectively.128

4 Results129

Detailed description of the experiments and results supporting the claims made in Section 2 is given below130

4.1 Results reproducing original paper131

We compare the Bootstrap means and 95% confidence intervals of path optimality ratio, reduction ratio of node132

explorations and the harmonic mean of these values from the ported code (R) and original paper (O).133

Table 3: Ablation Results

Dataset Planner Version Opt Exp Hmean Suc
MP Neural A* R 86.15 (85.00, 87.37) 39.96 (38.74, 41.18) 51.50 (50.23, 52.80) 100.0

O 87.7 (86.6, 88.9) 40.1 (38.9, 41.3) 52.0 (50.7, 53.3) 100.0
Neural BF R 74.29 (72.70, 75.90) 44.97 (43.66, 46.27) 50.93 (49.64, 52.23) 100.0

O 75.5 (73.8, 77.1) 45.9 (44.6, 47.2) 52.0 (50.7, 53.4) 100.0
Tiled MP Neural A* R 74.84 (71.20, 78.69) 48.86 (45.25, 52.44) 55.66 (52.56, 58.73) 100.0

O 63.0 (60.7, 65.2) 55.8 (54.1, 57.5) 54.2 (52.6, 55.8) 100.0
Neural BF R 44.17 (40.95, 48.34) 61.3 (57.74, 64.92) 44.61 (39.37, 49.00) 100.0

O 43.7 (41.4, 46.1) 61.5 (59.7, 63.3) 44.4 (42.5, 46.2) 100.0
CSM Neural A* R 77.82 (74.07, 81.75) 34.99 (31.06, 38.86) 42.64 (38.79, 46.51) 100.0

O 73.5 (71.5, 75.5) 37.6 (35.5, 39.7) 43.6 (41.7, 45.5) 100.0
Neural BF R 82.70(81.29, 84.15) 39.16 (37.92, 40.38) 49.27 (47.98, 50.55) 100.0

O 79.8 (78.1, 81.5) 41.4(40.2, 42.7) 49.2(47.9, 50.5) 100.0

4.1.1 Path length optimality134

Path length optimality is another metric used to judge the performance of the planner. Path length optimality P is135

defined as the percent ratio of optimal path length and predicted path length.136

Table 4: Path length optimality comparison

Dataset Planner Reimplementation Original Paper
MPD Neural A* 99.23 (98.99, 99.51) 99.1 (99.0, 99.2)

Neural BF 98.04 (97.65, 98.45) 97.5 (97.3, 97.8)
TiledMP Neural A* 99.12 (98.89, 99.39) 98.4 (98.3, 98.6)

Neural BF 96.85 (96.25, 97.47) 95.0 (94.7, 95.4)
CSM Neural A* 99.31 (99.09, 99.55) 98.9 (98.8, 99.0)

Neural BF 97.62 (97.14, 98.13) 97.4 (97.1, 97.6)

4.1.2 Ablation Results from the Original Paper137

Comparision of results of reproducing ablations from original paper.138

1. The encoder was not provided start and goal node locations139

2. Resnet-18 backbone was used instead of VGG-16140

Table 5: Ablation results comparison

Ablation Version Opt Exp Hmean Suc
Ablation 1 R 70.07 (68.14, 72.01) 39.56(38.27, 40.83) 45.89(44.54, 47.27) 100.0

O 67.0 (65.1, 68.8) 36.8(35.6, 38.1) 41.5(40.2, 42.7) 100.0
Ablation 2 R 82.70(81.29, 84.15) 39.16 (37.92, 40.38) 49.27 (47.98, 50.55) 100.0

O 79.8 (78.1, 81.5) 41.4(40.2, 42.7) 49.2(47.9, 50.5) 100.0
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5 Additional Experiments141

For additional experiments we suggest the use of "number of explorations" as an additional metric. Since Exp is a142

relative metric that compares expansions by a particular model with Vanilla A*, the degraded performance of Vanilla A*143

can sometimes cause misleading results. On the other hand, "number of explorations" is an intuitive and independent144

metric making it easier to compare models. The author also suggested the use of number of explorations as a proxy145

metric that is likely to be used for neural planners. We use NA* Exps as number of explorations by Neural A* and VA*146

Exps as number of explorations by Vanilla A*.147

5.1 Shuffling Dataset148

In the original implementation, the authors train the Neural A* model on subsets of the MP dataset as individual149

environments. This leads to the model working efficiently on few maps, but generalisation performance of the model150

suffers. In this experiment we choose some maps from each of the MP subsets and create a mixed set. We then train the151

model on this dataset and compare it’s results with those on individual environments. From Table 6 we observe that the152

model achieved better performance on a generalized test set as compared to individually trained models.153

Table 6: Mixed set comparision

Sub-dataset NA* Exps VA* Exps Opt Exp Hmean
alternating gaps 58.51 102.89 62.24 (56.06, 68.85) 36.21 (32.48, 39.83) 38.14 (33.96, 42.34)
bugtrap forest 76.23 98.73 73.14 (68.51, 78.13) 24.93 (21.52, 28.20) 32.38 (28.82, 35.99)

forest 66.56 91.15 73.80 (69.62, 78.22) 27.18 (24.13, 30.09) 35.69 (32.22, 39.11)
gaps and forest 61.77 89.80 71.48 (66.95, 76.16) 30.35 (26.84, 33.92) 39.20 (35.42, 42.92)

mazes 79.79 104.95 71.83 (67.19, 76.68) 27.10 (23.28, 30.72) 34.84 (30.92, 38.82)
multiple bugtraps 75.04 99.11 77.39 (73.20, 81.89) 25.70 (22.10, 29.17) 33.44 (29.61, 37.30)

shifting gaps 61.04 99.55 70.56 (65.17, 76.27) 32.56 (28.52, 36.78) 38.70 (33.96, 43.39)
single bugtrap 101.8 94.02 71.91 (66.95, 77.04) 18.11 (14.60, 21.27) 23.13 (19.44, 26.82)

Average for MP dataset 72.59 97.52 71.44 (69.65, 73.30) 27.29 (26.00, 28.60) 33.98 (32.53, 35.40)
Mixed set 57.74 94.06 84.32 (80.50, 88.39) 35.51 (32.05, 38.85) 45.97 (42.25, 49.71)

5.2 Dropout154

Experimented by adding dropout to UNet taking inspiration from [20] where it is claimed that the dropout introduces155

stochasticity at the planning step. We believe that further performance improvements can be made by implementing a156

replanning step as explained in section 7.157

Table 7: Dropout Results for g_ratio = 0.5

Input Type Version NA* Exps VA* Exps Opt Exp Hmean Suc
m R 66.63 103.01 72.58 (68.25, 77.17) 31.43(28.14, 34.65) 38.80(35.34, 42.23) 100.0

O 68.18 103.01 67.00 (65.10, 68.80) 36.80(35.60, 38.10) 41.50(40.20, 42.70) 100.0
m+ R 59.08 103.01 84.71(81.61, 88.05) 37.89(34.83, 40.92) 49.03(45.89, 52.21) 100.0

O 56.27 103.01 87.70 (86.60, 88.90) 40.10(38.90, 41.30) 52.00(50.70, 53.10) 100.0

5.3 Suggested Experiments by the Authors158

The authors have mentioned in the paper that if there are several paths to the goal location, the planner fails to identify159

actual pedestrian trajectories. They also suggested that adopting a generative framework [21] that permits numerous160

paths to be stochastically sampled could be a suitable extension to address this issue [22]. While communicating with161

the authors, we were suggested to experiment by changing the encoder to a generative model based architecture like162

GAN. The authors also suggested that learning the value of temperature via backpropagation is an interesting direction163

to explore.164

5.3.1 Temperature Function165

The temperature function τ used in the differentiable A* module is empirically chosen by the authors. In this experiment166

we implement τ as a trainable parameter of the Neural A* model whose value gets updated by backpropagation. It167
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was observed that on initialization of τ to the square root of map size, the value remains almost constant over the168

training process. The sweeps have only been conducted on one sub dataset of the MP dataset (bugtrap_forest_32) due169

to computational restraints.170

Table 8: Hyperparameter Sweep on Temperature Function with g_ratio = 0.2

Temperature NA* Exps VA* Exps Opt Exp Hmean Suc
√

32(Original) 46.02 69.63 78.32 ( 75.02, 81.84) 38.95(36.37, 41.32) 50.15(47.71, 52.63) 100.0
2
√

32 46.48 84.22 78.20 ( 74.30, 82.31) 36.50(33.50, 39.39) 46.64 (43.73, 49.52) 100.0
3
√

32 52.96 75.84 73.13(68.95, 77.60) 41.98(39.53, 44.43) 50.64 (47.92, 53.34) 100.0
4
√

32 45.00 81.34 75.41(71.61, 79.44) 41.34(38.71, 43.86) 50.94 (48.31, 53.61) 100.0
√

32/2 57.51 88.85 79.50 (75.74, 83.53) 31.87 (29.48,34.18) 43.20(40.60, 45.80) 100.0
√

32/3 50.05 76.61 85.33 (82.21, 88.86) 32.46 (30.22, 34.67) 45.10(42.46, 47.76) 100.0

5.3.2 GANs171

General Adversarial Networks are a class of generative models that involves two sub-models, a Generator which172

generates new examples from the domain and a Discriminator which classifies the generated output as real or generated.173

Generative models have been used for path planning before [23]. For our experiments we use the vanilla GANs from174

Pytorch Lighting-Bolts [24] We believe that in cases with multiple possible routes the inherent stochasticity of the175

generator would help in producing guidance maps that tempt the planner to try different possibilities and make it more176

robust. From the results mentioned in Table 9 and 10 we can infer that our GANs experiment combined with best177

hyperparameters (g_ratio = 0.5) outperforms the original paper for maps with input type as m. Further, for the same178

hyperparameters, it can be seen that GANs with input type as m performs better than that with m+, contrary to the179

original paper.180

5.4 UNet++[4]181

As advised by the author, we experimented with UNet++ architecture while undertaking an architectural search and182

assessing its scope for further performance improvements. UNet++ is similar to UNet, with an ensemble of variable183

depth UNets which partially share an encoder and co-learn simultaneously using deep supervision. However, we find184

that UNet performs better than UNet++, showing that powerful segmentation models might not always be better at185

learning guidance maps for Neural A*.186

Table 9: Encoder Architecture Experimentation on MP Dataset with ’m’ type encoder input

Encoder Type NA* Exps VA* Exps Opt Exp Hmean Suc
UNet 68.18 103.01 67.00 (65.10, 68.80) 36.80(35.60, 38.10) 41.50(40.20, 42.70) 100.0

UNet++ 64.99 102.75 76.41(72.27, 80.79) 31.79(28.52, 35.00) 39.68(36.38, 43.02) 100.0
GAN 68.40 103.25 66.44(61.53, 71.54) 38.27 (34.81, 41.68) 42.12(38.6, 45.65) 100.0

Table 10: Encoder Architecture Experimentation on MP Dataset with ’m+’ type encoder input

Encoder Type NA* Exps VA* Exps Opt Exp Hmean Suc
UNet 56.27 103.01 87.70 (86.60, 88.90) 40.10(38.90, 41.30) 52.00(50.70, 53.10) 100.0

UNet++ 57.13 102.75 87.46(84.67, 90.48) 36.41(33.30, 39.49) 48.17(44.97, 51.46) 100.0
GAN 67.74 103.25 65.54(60.60, 70.68) 38.44(34.97, 41.86) 41.74(38.20, 45.31) 100.0

5.5 Variations of A*187

In this experiment we test the performance of various versions of A* search coupled with and without the costmaps188

generated by the Neural A* module. We can infer from the obtained results that the costmaps generated by the Neural189

A* planner can be used with other variations of the A* search. However, a particular model works best with variations190

of A* using the weight of heuristic similar to the model. As a result, we decided against incorporating the costmaps191

generated using dynamic weighted A* because the model’s weight varies while the search is ongoing.192
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Table 11: Variations of A* search on mazes (MP Dataset)

A* Variation Opt Exp Hmean
Vanilla A*[25] 57.99 (54.06, 62.01) 21.48 (18.86, 23.95) 24.71 (21.02, 28.29)
Weighted A* 44.45 (39.56, 49.36) 17.80 (13.38, 22.04) 18.15 (14.92, 21.18)

Beam search[26] 58.74 (55.04, 62.43) 20.38 (17.85, 22.78) 26.07 (22.69, 29.40)

6 Discussion193

Our results reproduce the findings of [1] and strengthen the claims made in section 2. From section 4.1 we conclude194

that the Neural A* planner significantly reduces the number of nodes explored while still maintaining sufficiently large195

path optimality. The results obtained from the reimplementation were within 3.2% of the official implementation. From196

section 4.1.2 we also validate that provision of start and goal position to the encoder plays a crucial role in guidance map197

generation. We also conclude that ResNet-18 architecture leads to a drop in performance. For additional experiments198

(Section 5), we have worked on the suggestions of the authors. The generalizability of the model was displayed by199

the use of generic datasets and coupling the planner with different A* implementations. We add UNet++ and GANs200

implementations and experiment with dropout.201

6.1 What was easy202

Porting the code to Lightning was easy as the original source code is very structured and well commented. Ablations203

reported in the paper are well organized, and results are clearly reported making them easier to replicate. Writing the204

code for additional experiments was also not difficult as the original code is written well, allowing for fast execution.205

6.2 What was difficult206

Runtime calculations posed many difficulties due to differences in training datasets, hardware and A* implementation.207

The paper had several parameters that could be tuned hence it was difficult to ascertain their relative importance.208

Experimentation was not possible on SDD Dataset which composed of raw images due to training time constraints.209

Similarly, the TiledMP and CSM datasets also took considerable time to train, and hence we only reproduced the210

experiments from the original paper on these sets. All other experiments were conducted on the MP dataset.211

6.3 Communication with original authors212

The conversation was based on the difficulties mentioned above along with advice on how to approach the future213

improvements mentioned in the paper. The authors’ replies were very prompt and thorough, enabling us to better214

reproduce their work. We also implemented several of their suggestions, as explained in Section 5.3.215

7 Future Work216

For future reproduction of this paper we suggest the use of "number of explorations" as an additional metric. Exp and217

Hmean values alone can often be misleading and difficult to analyze. On the other hand, the number of explorations is218

an intuitive metric and makes it easier to compare models. The author also suggested the use of number of explorations219

as a proxy metric that is likely to be used for neural planners. We list down few experiments which were planned but220

couldn’t be completed. We believe that future works can be built on these two extensions:221

• Stochastic Path Sampling in Neural A* : For this, we believe that implementing a replanning step coupled222

with dropout as suggested in [20] will be an interesting addition to the planner. Similar to GANs, Variational223

Auto Encoders can also be used. This would force the planner to propose multiple paths for the same start and224

goal positions, thus overcoming its current limitation.225

• Extension of Neural A* to high dimensions: For high dimensional spaces we think that using an architecture226

like 3D UNet [27] or adding a feature extractor similar to [28] can be a plausible solution.227
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