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ABSTRACT

Cross-entropy (CE) loss is the de-facto standard for training deep neural networks
(DNNs) to perform classification. Here, we propose an alternative loss, high error
margin (HEM), that is more effective than CE across a range of image-based tasks:
unknown class rejection, adversarial robustness, learning with imbalanced data,
continual learning, and semantic segmentation (a pixel-wise classification task).
HEM loss is evaluated extensively using a wide range of DNN architectures and
benchmark datasets. Despite all the experimental settings, such as the training
hyper-parameters, being chosen for CE loss, HEM is inferior to CE only in terms
of clean and corrupt image classification with balanced training data, and this dif-
ference is small. We also compare HEM to specialised losses that have previously
been proposed to improve performance for specific vision tasks. LogitNorm, a
loss achieving state-of-the-art performance on unknown class rejection, produces
similar performance to HEM for this task, but is much poorer for continual learning
and semantic segmentation. Logit-adjusted loss, designed for imbalanced data, has
superior results to HEM for that task, but performs worse on unknown class rejec-
tion and semantic segmentation. DICE, a popular loss for semantic segmentation,
is inferior to HEM loss on all tasks, including semantic segmentation. Thus, HEM
often out-performs specialised losses, and in contrast to them, is a general-purpose
replacement for CE loss.

1 INTRODUCTION

Deep neural networks (DNN5s) are generally trained using variants of stochastic gradient descent.
These optimisers require the loss function to have a gradient. This means that it is not possible to
maximise the classification accuracy directly as this function is piece-wise constant, and therefore,
does not define a usable gradient. As a result, it is necessary to use a surrogate loss function that has
a gradient, but still encourages few classification errors. The design of the loss function is important
as different losses will lead to different training speeds and cause convergence to different parameters.
While many possible surrogate loss functions have been proposed (Wang et al., 2022; Terven et al.,
2025), cross-entropy (CE) loss is by far the most common choice for classification tasks.

In some specific domains better performance can be obtained by using other losses. For example,
alternative losses and regularisation terms have been proposed to improve robustness to adversarial
attack (Cui et al., 2024; Mao et al., 2019; Tack et al., 2022; Zhang et al., 2019; Kannan et al., 2018;
Kanai et al., 2023; Awasthi et al., 2023; Yu & Xu, 2023; Panum et al., 2021; Pang et al., 2020). In the
domain of open-set recognition, where the aim is to better detect and reject images from “unknown”
classes, alternative losses (such as contrastive losses) have been employed together with architectural
modifications to improve performance beyond that achieved by CE (Zhu et al., 2023; Ming et al.,
2023). Alternatively, LogitNorm loss (Wei et al., 2022), can be employed to improve unknown class
rejection without the need for modifications to the network architecture or training procedure. To
deal with situations where the training data contains drastically different numbers of samples for
different classes (‘“class imbalance”), state-of-the-art approaches use a logit-adjusted loss which
weights minority classes more heavily (Menon et al., 2021; Ren et al., 2020; Cui et al., 2019). For
semantic segmentation, where the aim is to assign a class label to each image pixel, the two largest
groups of losses centre around CE and its variants, and DICE and its variants (Ma et al., 2021; Azad
et al., 2023). DICE loss (Milletari et al., 2016) is designed to be particularly effective when there
is class imbalance, a common situation in segmentation tasks. While these specialised losses can
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Figure 1: Summary results for all the different tasks considered, comparing the average performance
of cross-entropy (CE) loss to each of the alternative losses that have been evaluated: LogitNorm (LN),
Logit-adjusted (LA), DICE, multi-class margin (MM), high error margin with shared margin (HEM-),
and high error margin with adjusted margins (HEM). Results are averaged using the arithmetic mean
over all other factors that were varied in the experiments. Specifically, for all experiments on “Training
with Standard data” (the first four segments of the figure), each bar is an average of 71 experiments (5
data-sets x 3 network architectures x 5 repeats, except for one combination of data-set and architecture
where only one trial was performed). For all experiments on “Training with Imbalance Data” (the fifth
to eighth segments) each bar is an average of 75 experiments (5 data-sets x 3 network architectures x
5 repeats). For the experiments on continual learning (the ninth segment), each bar is an average of 80
experiments (4 data-sets x 4 continual learning techniques x 5 repeats). For experiments on semantic
segmentation (the tenth segment), each bar is an average of 76 experiments (3 data-sets x 4 network
architectures x 5 repeats + 1 data-set x 4 network architectures x 4 repeats). For all the evaluation
metrics used, higher values indicate better performance. The relative performance is calculated by
subtracting the performance produced by CE loss from the corresponding metric for each of the other
losses. Hence, positive values indicate average performance better than that of CE loss. Note that the
results for LA are equal to those of CE, and the results for HEM are equal to those of HEM- when
the training data is balanced: i.e., when using standard training data (results in segments 1 to 4 of the
figure) and when performing continual learning (segment 9).

outperform CE on the specific tasks for which they were developed, they tend to perform poorly
outside of their specialised domain, as is confirmed by our results which are summarised in Fig. 1.

The fact that specialised losses out-perform CE on certain tasks motivates the search for a better
classification loss function, that performs well on a range of tasks. For simpler statistical models,
margin based losses (Crammer & Singer, 2002) are known to be general-purpose and show better
generalisation behaviour than CE loss. We hypothesised that similar advantages could be achieved
for DNNs by using a margin based loss. Particularly, we expected a margin-based loss to train
networks that were less susceptible to making over-confident predictions, and hence, that would be
better able to distinguish known from unknown classes. Furthermore, a margin-based loss should
be less prone to over-write previously learnt weights, which could reduce catastrophic forgetting in
continuous learning and over-writing weights necessary to classify minority classes when training
with imbalanced data. Hence, a margin-based loss is a promising candidate for a general-purpose
classification loss function. However, the existing multi-class margin-based loss (MM) results in
performance that is frequently much worse than that achieved with CE loss (Fig. 1).
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Table 1: Example outputs (logits), y, from the last layer of an imaginary neural network being trained
to perform a 4-way classification task, and the corresponding losses associated with each of these
predictions when the first output represents the correct class. Hyper-parameters for each loss were set
to 7 = 1 for cross-entropy (CE) loss, 7 = 0.04 for LogitNorm (LN) loss, and p = 0.5 for multi-class
margin (MM) and high error margin (HEM).

y CE LN MM HEM
[1.0 —-1.0 —-1.0 —-1.0] 0.34 0.00 0.00 0.00
[0.6 0.1 0.1 0.1] 1.04 0.00 0.00 0.00

06 03 00 —0.1]  1.02 000 0.1 045
06 05 00 —0.7  1.00 009 0.16 0.63
06 07 00 —35 098 110 0.19 0.77
0.0 1.0 0.0 0.0] 174 2500 0.66 0.88

Here, we propose high error margin (HEM) loss, a new margin-based loss function that can be used
as a general-purpose replacement for CE loss. To motivate our new loss we first describe issues
with CE loss (Section 2.1) and MM loss (Section 2.2). Section 3 describes HEM loss which fixes
the shortcomings of the existing losses that we have identified in our analysis in Section 2. Finally,
we present extensive evaluations performed using nineteen different neural network architectures
(ranging in size from LeNet to Vit-B/16) trained on many different data-sets (ranging in size from
MNIST to ImageNetlk). We find that HEM is competitive with or out-performs CE loss across a
range of classification tasks (Section 4). Full details of CE and all the other existing loss functions
that we consider are given in Appendix A.

2  ANALYSIS AND MOTIVATION

2.1 IsSUES WITH CE Loss

Even when a classifier produces the correct classification with high confidence, the CE loss is far
from zero (Table 1, row 1). Consequently the gradients will be non-zero and each presentation of a
correctly classified training sample will cause the weights to be modified so that the outputs become
ever more extreme (highly positive for the logit representing the correct class and highly negative
for the logits representing the incorrect classes). CE loss therefore encourages a DNN to map every
training exemplar to an output where confidence in the predicted classification is extremely high. It
is to be expected that such a DNN will produce high confidence for all samples, including ones not
seen during training. It is unsurprising, therefore, that CE-trained DNNs have issues using prediction
confidence to distinguish known from unknown classes.

CE loss continuing to update the weights even when the correct classification has been learnt
successfully, will cause weights to be over-written. This behaviour may underlie some of the issues
when CE loss is used for continual learning and learning with imbalanced training data. For good
performance in these tasks it is necessary to maintain weights that represent classes learnt earlier
or that have few training samples. Even after the classifier has achieved perfect performance, CE
loss will update the weights further causing some forgetting of the previously learnt classes or the
minority classes. This is consistent with the observation that models learn fewer features relevant to
the minority classes than the majority classes (Dablain et al., 2024).

Another issue with CE loss is that it can be lowered by reducing the logit for an already clearly
rejected class without increasing the difference to the closest competitor class. As a result, CE loss can
behave quite counter-intuitively: decreasing even though the prediction is becoming poorer (Table 1,
second to third rows). Most concerningly, CE loss can even be lower for incorrect classification
(Table 1, penultimate row), than for correct classification.

LogitNorm (LN), multi-class margin (MM) and the proposed high error margin (HEM) losses, do
not suffer from these issues. These losses produce a loss of zero for samples where the output of the
neuron representing the true class is sufficiently larger than the outputs of other neurons (Table 1 top
rows) and non-zero losses only for predictions that are worse at distinguishing the true class from the
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alternatives (Table 1 bottom rows). In the case of MM and HEM, this is due to these losses using a
margin. In the case of LN loss this is due to it behaving like a margin loss (Appendix A.2.1).

2.2 ISSUES WITH MM Loss

The analysis in Section 2.1 suggests that a margin-based loss should have advantages over CE loss. A
margin loss, including our proposed High Error Margin (HEM) loss, defines an error, e;, associated
with each logit, y;, as follows:

) max(0,y; —yi + ) ifi#l
6%{ 0 if i = M

where u; is the margin (a non-negative hyper-parameter) for logit ¢, and [ is the index corresponding
to the correct class (i.e., the ground-truth class label). The error is zero when the output from the
neuron representing the correct class exceeds the outputs of the other logit by at least the margin.

MM loss, the existing margin-based loss (see Appendix A.5 for full details), produces classifiers
that have significantly lower accuracy on the standard test data compared to equivalent CE-trained
classifiers (as shown in Fig. 1). We put this down to the method used to combine the errors. In
MM loss this is achieved by averaging (or summing) the errors (across logits and samples in the
batch). We believe this method of combining the error causes the gradient magnitude to change too
much over the course of training. The loss is much higher at the start of training than near its end,
because most errors become zero. This effect either prevents the suppression of the last non-zero
errors towards the end of training or leads to instability at the start. The severity of this problem is
increased for tasks with more classes.

3 HiGH ERROR MARGIN LOSS

We propose to solve the training issues of MM loss (Section 2.2) by combining the errors (Eq. (1)) in
a more adaptive way to reduce the change in gradient magnitude during training. For each sample, all
error values below the mean are set to zero, and the mean of above-zero values is calculated:

oy = St (e > £ 3 e5] x e)

i Lles > 5 3 ey]
where n is the number of classes, and 1[-] is the indicator function, which equals 1 if the argument is
true and O otherwise. We call this loss the high error margin (HEM) loss, as it takes the average only
of high errors. Losses for different samples in the batch are also combined by finding the mean of
above-zero values. Note that the computation of the mean error, used by the indicator function in
Eq. (2), is detached from the computational graph so that it does not affect the gradients.

(@)

At the start of learning, when a large number of logits produce errors (especially when n is large),
the mean error for each sample will be significant and, by only considering those losses above the
mean, HEM concentrates on reducing the largest errors. Later in learning, there will be many zero
errors and as a result, the mean error will be small (likely smaller than the few non-zero errors that
remain). Hence, at this stage in training thresholding the errors by the mean will have little effect.
However, by taking the mean of only the above-zero values, the loss will remain large even when
there are few non-zero errors in each sample, and/or few incorrectly classified samples in a batch. As
aresult, HEM loss concentrates on the logits that produce the highest errors throughout learning. The
effectiveness of the proposed method of combining errors, compared to that used in MM loss, was
confirmed in an ablation study presented in Section 4.5.

We present results for two variants of the proposed loss:

High Error Margin with adjusted margins (HEM) which uses per-logit margins as defined in
Eq. (1). Each margin was set to be inversely proportional to the number of training samples
associated with that class. Specifically, u; = v/ M/(ns;), and s; is the number of samples
in class ¢. The separate, class specific, margins help deal with class imbalance.

High Error Margin with shared margin (HEM-) which (like MM loss) sets all margins to the
same value (i.e., p; = p Vi). The shared margin was made equal to /M / Z?:l s;. HEM-
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is an ablated version of the proposed loss that we use to provide a fairer comparison with
CE and MM losses which do not employ mechanisms to deal with class imbalance.

Both versions employ a single hyper-parameter, /. Based on preliminary experiments (see Ap-
pendix D.1) M was set to a value of 2000 for all other experiments described in this paper. Note that
when the training data contains the same number of samples per class, all the margins used by HEM
are equal, and HEM is identical to HEM-.

4 RESULTS

4.1 LEARNING WITH STANDARD DATA-SETS

We compared the performance of networks trained with our proposed loss, HEM, to the performance
of identical networks trained with the alternative losses described in Appendix A. We have sought
to produce a fair and representative evaluation of the different losses by using many different tasks,
data-sets, and network architectures. Performance was tested using a number of different metrics
to assess accuracy, generalisation, and robustness. For all metrics larger values correspond to better
performance. Full details of the tasks, data-sets, evaluation metrics, DNN architectures and training
set-ups are provided in Appendix B.

The tasks were chosen to include essential and important applications in computer vision (image
classification and semantic segmentation), and tasks where we expected our margin loss to perform
well, due to it not learning to make predictions with very high confidence (unknown class rejection)
and stopping weight updates once adequate performance is achieved (continual learning and learning
with imbalanced data).

For each experimental condition (combination of data-set, network architecture, and loss function) a
network was trained and evaluated multiple times (typically five), each time with a different random
weight initialisation and random presentation order of training samples. In the main text, summary
results are presented by showing the average performance relative to CE loss. Detailed results
showing absolute performance together with error-bars are reported in Appendix C.

Each experiment was performed using a single NVIDIA Tesla V100 GPU with 16GB of memory,
except for experiments with ImageNetlk which were executed in parallel on four such GPUs.
Performance differences can be interpreted independently of computational cost because the time
taken to compute any of the losses is negligible compared to the overall execution time.

Performance on standard image classification tasks was assessed using five benchmark data-sets:
MNIST, CIFAR10, CIFAR100, TinyImageNet and ImageNetlk. For each training data-set ex-
periments were performed using three different neural network architectures (see Table 3 in Ap-
pendix B.1.3). Performance was evaluated in terms of the following criteria: accuracy on standard
test data, accuracy on common corruptions test data, ability to identify and reject samples from
unknown classes, and the proportion of adversarial samples correctly classified or rejected (details in
Appendix B.1).

4.1.1 PERFORMANCE ON STANDARD TEST DATA AND COMMON CORRUPTIONS DATA

Networks trained using CE loss and HEM loss (here, because the training data is balanced, HEM- =
HEM) have comparable performance on classifying the standard test data and the common corruptions
data (Figs. 1 and 2, 1°? and 2" segments), although CE loss has a small advantage. On average this
advantage for clean accuracy is 1.19% across the fifteen conditions (five data-sets with three network
architectures per data-set). This difference is small compared to the changes in clean accuracy that
can be produced by small changes to the training setup (He et al., 2019; Wightman et al., 2021;
Pang et al., 2021). Of the specialized losses, LN loss achieves similar accuracy on clean and corrupt
test data as HEM, while DICE and MM losses perform much worse (Fig. 1, 15* and 2"¢ segments).
Detailed results are given in Appendix C.1.1.

4.1.2 PERFORMANCE ON UNKNOWN CLASS REJECTION

Classification accuracy measured on the standard test set, which contains samples from a similar
input distribution to the training data, has been the main pre-occupation of most research in the
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Figure 2: Summary results for all the different tasks considered, showing the relative performance
of high error margin (HEM) loss compared to Cross-Entropy (CE) loss. Relative performance is
calculated as described in Fig. 1. Hence, points above the horizontal line indicate HEM performance
better than that of CE. Please note the separate y-axis scales used in each segment of this figure.
In contrast to Fig. 1, here separate results are shown for each training data-set. When there are
multiple results for the same data-set, these were obtained using different DNN architectures, or
in the case of continual learning different techniques for preventing catastrophic forgetting. Each
marker shows the difference in the mean performance achieved across multiple trials. The ‘x” and ‘+’
markers indicate experiments where there was or was not a significant statistical difference in the
performance produced by the two losses, as evaluated using the two-sample t-test (with p<0.05). The
blue/red markers indicate conditions where CE/HEM loss had the significantly better performance.
For information about the variability of performance across trials please see the more detailed results
in Appendix C.

history of machine learning so far. On such data, as confirmed by the preceding results, CE loss
performs the best and for this reason has become the standard loss function for training classifiers.
However, more recently, there has been growing concern that accuracy on the standard test data is
insufficient to ensure that classifiers are safe, reliable, and trustworthy in more realistic scenarios
(Spratling, 2025; Bowers et al., 2023; Amodei et al., 2016; Heaven, 2019; Serre, 2019; Yuille & Liu,
2021; Marcus, 2020; Nguyen et al., 2015; Roy et al., 2022; Sa-Couto & Wichert, 2021; Geirhos et al.,
2020; 2018; Ilyas et al., 2019; Papernot et al., 2016; Akhtar & Mian, 2018). In particular, it is well
known that CE-trained DNNSs are susceptible to making over-confident predictions. For example,
when shown samples that do not belong to any of classes in the training data a DNN may predict with
high confidence that these samples belong to one of the known categories (Hendrycks & Gimpel,
2017; Amodei et al., 2016; Kumano et al., 2022; Nguyen et al., 2015). Such over-confidence for
unknown classes may cause errors in real-world scenarios where such samples might be commonly
encountered and in situations where dishonest actors deliberately attempt to fool the classifier into
making erroneous predictions.

To evaluate how susceptible a network is to this kind of overconfidence error, we can test whether
we can detect and reject out-of-distribution samples based on the confidence of the network (see
Appendix B.1.2 for details). This evaluation method is called open-set recognition (Vaze et al.,
2022; Yang et al., 2022), out-of-distribution (OOD) detection/rejection (Hendrycks & Gimpel, 2017;
Mohseni et al., 2020; Bitterwolf et al., 2022; Zhang & Ranganath, 2023; Hendrycks et al., 2022b),
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or unknown class rejection (Spratling, 2025). For the results reported here, Maximum Softmax
Probability (MSP; Hendrycks & Gimpel, 2017) was used as the confidence score, but similar results
were obtained using Maximum Logit Score (MLS; Vaze et al., 2022; Hendrycks et al., 2022a) (see
Fig. 4(c) in Appendix C.1.2).

For unknown class rejection, HEM provides significantly better performance on average than all other
tested losses (Fig. 1, 3"¢ segment). In all but one of the fifteen conditions we tested (five data-sets
with three network architectures per data-set) HEM outperforms CE (Fig. 2, 3" segment). DICE
loss and MM loss perform very badly (Fig. 1, 3" segment). HEM loss even beats LN loss despite
LN being a specialised loss that produces state-of-the-art performance on unknown class rejection.
Detailed results are given in Appendix C.1.2, and an analysis of the prediction confidence scores
produced by different losses is given in Appendix D.2.

4.1.3 PERFORMANCE ON AUTOATTACK REJECTION

Another robustness problem faced by DNNGs is their susceptibility to adverserial attacks: being fooled
into making the wrong prediction by small perturbations that do not change the class of the perturbed
sample to a human observer (Szegedy et al., 2014; Goodfellow et al., 2015; Kurakin et al., 2017;
Eykholt et al., 2018; Biggio & Roli, 2018). Here we test susceptibility to this problem using the DAR
score (Spratling, 2025), which is the proportion of adverserially perturbed samples that are rejected as
out-of-distribution or are not rejected but still classified correctly. The rejection/acceptance threshold
is set so that 95% of correctly classified clean examples are accepted. Adverserial samples were
generated using AutoAttack (AA; Croce & Hein, 2020) (details in Appendix B.1.2).

HEM-trained networks have a large advantage over identical CE-trained architectures in terms of
correctly dealing with adversarial attacks (Fig. 1, 4'" segment). In this case, HEM outperforms CE in
all fifteen conditions (Fig. 2, 4*" segment). Compared to CE, HEM loss has a much larger advantage
in terms of its ability to enable accurate unknown class rejection, and also to detect adversarial attacks,
than the small disadvantage it has in terms of clean and corrupt accuracy. HEM also outperforms, by
a large margin, the other tested losses on adverserial robustness (Fig. 1,4"" segment). Detailed results
are given in Appendix C.1.2.

4.2 LEARNING WITH IMBALANCED DATA-SETS

The ability to learn when the training data contains a very different number of samples for different
classes (i.e., with long-tailed data) was tested using the CIFAR10, CIFAR100 and ImageNet training
data. This training data was modified to produce long-tailed data, using standard methods used in
previous literature, by removing different numbers of samples from each class. Performance was
evaluated on multiple network architectures using all the performance criteria used in the Section 4.1
to evaluate networks trained with balanced data-sets. Full details of the experimental methods are
provided in Appendix B.2.

A comparison of the performance of networks trained on imbalanced data using CE and HEM losses
reveals a similar pattern of results as where obtained with standard training data. Specifically, similar
performance for the two losses on standard and corrupt test data (Figs. 1 and 2, 5** and 6" segments),
better performance with HEM loss on unknown class rejection and adversarial attacks (Figs. 1 and 2,
7t" and 8" segments).

Comparing HEM and LA loss (a version of CE designed to improve performance on imbalanced
data) shows that LA has an advantage in terms of clean and corrupt accuracy, but that networks
trained with HEM are better at identifying, and rejecting, unknown and adversarial samples. The
high performance of LA loss on the clean data raises the prospect that there may be more optimal
settings for the margins in HEM.

HEM (and HEM-) perform as well as, or better than LN on all of the four evaluation metrics. DICE
loss performs significantly worse than HEM on all evaluation criteria. However, the performance
of DICE loss on adversarial attacks can, surprisingly, be improved beyond all other losses by using
the MLS score as the rejection criterion (see Fig. 6(e) in Appendix C.2). A full set of more detailed
results are provided in Appendix C.2.
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4.3 CONTINUAL LEARNING

The performance of HEM loss when applied to continual learning was assessed using standard
benchmark tasks: PermutedMNIST, SplitMNIST, SplitCIFAR10, and SplitCIFAR100. Due to
catastrophic forgetting (French, 2003), the over-writing of previously learned weights when training
on a new task, all loss functions perform very poorly at continual learning unless a strategy is
used to reduce forgetting. Many such strategies have been proposed. Here five were used: Replay
(Robins, 1993; Chaudhry et al., 2019), Synaptic Intelligence (SI; Zenke et al., 2017), Elastic Weight
Consolidation (EWC; Kirkpatrick et al., 2017), Less-Forgetful Learning (LFL; Jung et al., 2016), and
Learning without Forgetting (LwF; Li & Hoiem, 2016). Each loss function was used in combination
with each of these continual learning strategies, and performance was evaluated at the end of a
sequence of five training episodes using unseen test data for all the five sub-tasks that were learnt
during training. Full details of the experimental methods are provided in Appendix B.3

HEM performed considerably better on average at continual learning than CE loss (Fig. 1, 9t"
segment), consistent with our expectations (Section 2.1). In 11 of the 16 conditions tested, better
performance was obtained using HEM loss rather than CE loss (Fig. 2, 9*" segment). Furthermore,
if only the best performing combination of loss and strategy of reducing catastrophic forgetting is
considered for each loss, then in three of the four tasks HEM loss produces better performance than
CE loss (Figs. 7(a) to 7(d) in Appendix C.3). This is remarkable as the training recipes used were
designed to produce the best performance for each method of reducing catastrophic forgetting when
paired with CE loss.

HEM has even greater advantages over the other applicable losses that were tested: LN, DICE and
MM. LN and DICE losses perform very poorly on continual learning. This suggests that, unlike
HEM and CE losses, they do not generalise to tasks outside of the specialised domain for which they
were developed. As there is no class imbalance in the training data used here, LA is equivalent to CE,
and HEM is equivalent to HEM-. Detailed results are given in Appendix C.3.

4.4 SEMANTIC SEGMENTATION

Performance on semantic segmentation was assessed using four standard data-sets: CamVid (Brostow
et al., 2009), Cityscapes (Cordts et al., 2016), SBD (Hariharan et al., 2011), and ADE20k (Zhou et al.,
2017). For each data-set multiple experiments were performed using the FPN architecture (Kirillov
et al., 2019) with four different backbones. Full details can be found in Appendix B.4.

HEM- performs better than HEM (Fig. 1, 10?" segment), suggesting that our heuristic for setting
the margins does not generalise from image classification to semantic segmentation. However, even
with sub-optimal margins, HEM shows considerably better average performance than CE, and all the
other existing losses considered. For some backbone architectures CE loss produced superior image
segmentation performance to HEM loss on the CamVid data-set (Fig. 2, 10*" segment and Fig. 8(a)
in Appendix C.4). However, for the three larger data-sets, HEM loss out-performed CE loss with all
four backbone architectures (Fig. 2, 10*" segment and Figs. 8(b) to 8(d) in Appendix C.4).

LN and LA losses perform very poorly (Fig. 1, 10'" segment) showing that these specialised losses
do not work well outside of the specific domain for which they were created. DICE, a specialised
loss developed specifically for segmentation tasks, has performance similar to that of CE, but worse
than HEM (the proposed loss that uses class specific margins to help deal with imbalanced data) and
HEM- (the ablated version of the proposed loss with a single, shared, margin). The advantage of
HEM is even clearer if for each data-set only the results for the backbone architecture that gives the
best results for each loss is considered (Fig. 8(e) in Appendix C.4).

4.5 ABLATION STUDY

HEM, differs from MM loss in terms of 1) using class-specific margins, and 2) how the errors are
combined (Section 3). The effects of the first modification can be seen from the results for HEM-
that have already been presented. The effects of the second modification were tested using ResNet18
networks trained on CIFAR10 and CIFAR100. The training set-up was as described in Appendix B.1.

The first change to how the errors are combined is to include only above-zero error values when
calculating the mean error. This modification alone produces an improvement in classification
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Table 2: Ablation study on the effects of the proposed changes to MM loss on classification accuracy.
Results are for ResNet18 networks trained on CIFAR10 and CIFAR100 using a margin of p =0.2.
Results are averaged over five trials and the standard deviation is given after the + symbol. The best
result in each column is highlighted in bold. The changes made to standard MM loss are denoted as
“maz” for taking the mean of above-zero errors, and “thres” for setting errors below the mean to zero.

Clean Accuracy (%)
Loss CIFARI10 CIFAR100
MM 93.79 £ 0.11 70.13 +£0.19
+maz 93.81 £0.23 74.94 +0.35
+thres 93.78 +0.22 73.13 +0.26

+maz+thres = HEM  93.84 +0.19  74.95 4 0.46

accuracy (Table 2). As expected, this improvement is greatest for the data-set with the most class
labels, as there will be more zero-valued errors across the larger number of logits that this modification
enables the loss to ignore.

The second change to how the errors are combined was to set errors less than the mean to zero. On
its own this modification is less effective than the first. This is to be expected, as this modification
causes even more zeros to be included in the average, causing the loss to become low and learning
to cease prematurely. However, when this modification is combined with the first it provides a
small additional boost to performance by encouraging the loss to concentrate on the largest errors,
particularly at the start of training when there are many errors. The advantage of HEM over MM in
terms of clean accuracy is fairly small for the conditions shown in Table 2. However, as shown in
Fig. 1, on average, over many data-sets and network architectures, the advantages of HEM over MM
are highly significant.

5 CONCLUSION

The proposed high error margin (HEM) loss has been shown to performs well across a very wide
range of tasks, data-set sizes, and network architectures. It trains classifiers that outperform, or
are as good as, those trained with CE loss in all the tasks we have considered except clean and
corrupt image classification with balanced training data. Specifically, over the ten different types of
evaluation we have performed, corresponding the ten segments of Fig. 2, HEM is superior in eight
situations while CE is the best only in two. It is common for there to be a trade-off between clean
accuracy and increased robustness (Spratling, 2025), with HEM the sacrifice in clean accuracy is
relatively small compared to the large increases in performance on other metrics. Furthermore, the
reduction in clean accuracy is likely to be negligible, as optimising the training hyper-parameters
can yielded much bigger improvements in clean accuracy than the difference we observe (He et al.,
2019; Wightman et al., 2021; Pang et al., 2021). A simple experiment where only the initial learning
rate was modified based on intuition gained from observing the learning dynamics substantiates this
claim (see Appendix D.3). In all our experiments, our newly proposed loss was at a disadvantage
because all training and evaluation choices were optimized for CE loss. This applies to the training
hyper-parameters, training schedules, the network architectures, the OOD rejection methods, and the
continual learning techniques: all of which have been painstakingly refined over many years to work
well with CE loss. Despite these disadvantages HEM almost always performs better than CE loss.

Some specialised losses performed better than CE loss for the tasks they were designed for, but
all failed on other tasks. In contrast, HEM loss performed well on all tasks. Comparing all the
tested losses across the ten different types of evaluation we have performed, corresponding the ten
segments of Fig. 1, HEM is the best performing in five situations while CE is the best only in two.
LogitNorm (LN) loss (Wei et al., 2022), performs almost as well as HEM loss at out-of-distribution
rejection, but HEM out-performs LN by a considerable margin on continual learning and semantic
segmentation. With imbalanced training data, logit-adjusted (LA) loss (Menon et al., 2021) yields
better performance on standard test data than HEM loss, but HEM is superior at rejecting out-of-
distribution samples. Furthermore, HEM out-performs LA at semantic segmentation, our only other
task with class imbalance. For semantic segmentation the commonly used specialised loss, DICE
(Milletari et al., 2016), performed no better than CE loss in the experimental set-ups we used. HEM
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loss performed semantic segmentation more accurately than DICE, and out-performed DICE by
a considerable margin on all other tasks. Following current standard practice we have separately
assessed performance against different benchmarks. However, it is not hard to imagine real-world
scenarios where multiple advantages of our loss might combine to yield even greater advantages over
CE and the specialised losses. For example, a task where it is necessary to learn continuously with
long-tailed data and the resulting classifier needs to be robust to unknown classes.

HEM loss is zero for any training sample where the activation of the target logit is sufficiently above
the value of the other logits. This means that during the later stages of learning many training samples
cause no changes to the network weights, and it is possible for autograd to prune the computational
graph. As a result training with HEM is faster than training with CE. For example, it reduces training
time by approximately 10% for a ResNet18 trained for 200 epochs on TinyImageNet. In dense
prediction tasks there will be fewer opportunities to prune the computational graph, however, we still
observe a small reduction in training time when using HEM. For example, training the ResNet34
backbone on Cityscapes was approximately 4% quicker using HEM compared to CE. Future research
might explore if, rather than saving time, such zero-loss training samples could be augmented to
improve generalisation and/or robustness. More generally, it would be particularly interesting to
combine HEM with techniques for improving adversarial robustness, or to see if regularisation terms
could be added to HEM loss to improve the representations that are learnt. Additionally, further work
might explore alternative heuristics for setting the margins or ways of learning margins for different
tasks. Subsequent research might also test HEM in other domains, such as language, as there is no
reason why HEM loss should not also work for non-visual classification tasks.

6 REPRODUCIBILITY STATEMENT

The experimental set-ups are described in detail in Appendix B. The proposed loss is described fully
in Section 3. HEM is trivial to implement and incorporate with an existing code-base. However, to
ensure the reproducibility of our results, open-source code implemented in PyTorch (Paszke et al.,
2019) which performs all the experiments described in this article will be made publicly available
upon publication of this work.

REFERENCES

N. Akhtar and A. Mian. Threat of adversarial attacks on deep learning in computer vision: A survey.
IEEE Access, 6:14410-30, 2018. doi:10.1109/ACCESS.2018.2807385.

D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané. Concrete problems in
Al safety, 2016. arXiv:1606.06565.

P. Awasthi, A. Mao, M. Mohri, and Y. Zhong. Theoretically grounded loss functions and algorithms
for adversarial robustness. In F. Ruiz, J. Dy, and J.-W. van de Meent (eds.), Proceedings of
the International Conference on Artificial Intelligence and Statistics (AISTATS), volume 206 of
Proceedings of Machine Learning Research, pp. 10077-94, 2023. URL https://proceedi
ngs.mlr.press/v206/awasthi23c.html.

R. Azad, M. Heidary, K. Yilmaz, M. Hiittemann, S. Karimijafarbigloo, Y. Wu, A. Schmeink, and
D. Merhof. Loss functions in the era of semantic segmentation: A survey and outlook, 2023.
arXiv:2312.05391.

V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convolutional encoder-decoder archi-

tecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(12):2481-2495, 2017. doi:10.1109/TPAMI.2016.2644615.

B. Biggio and F. Roli. Wild patterns: Ten years after the rise of adversarial machine learning. Pattern
Recognition, 84:317-31, 2018. doi:10.1016/j.patcog.2018.07.023.

J. Bitterwolf, A. Meinke, M. Augustin, and M. Hein. Breaking down out-of-distribution detection:
Many methods based on OOD training data estimate a combination of the same core quantities. In
Proceedings of the International Conference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pp. 2041-74, 2022. arXiv:2206.09880.

10


https://doi.org/10.1109/ACCESS.2018.2807385
http://arxiv.org/abs/1606.06565
https://proceedings.mlr.press/v206/awasthi23c.html
https://proceedings.mlr.press/v206/awasthi23c.html
http://arxiv.org/abs/2312.05391
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1016/j.patcog.2018.07.023
http://arxiv.org/abs/2206.09880

Under review as a conference paper at ICLR 2026

J. S. Bowers, G. Malhotra, M. Dujmovi¢, M. L. Montero, C. Tsvetkov, V. Biscione, G. Puebla,
F. Adolfi, J. E. Hummel, R. F. Heaton, B. D. Evans, J. Mitchell, and R. Blything. Deep problems
with neural network models of human vision. Behavioral and Brain Sciences, 46:¢385, 2023.
doi:10.1017/50140525X22002813.

P. Branco, L. Torgo, and R. Ribeiro. A survey of predictive modelling under imbalanced distributions,
2015. arXiv:1505.01658.

G. J. Brostow, J. Fauqueur, and R. Cipolla. Semantic object classes in video: A high-definition ground
truth database. Pattern Recognition Letters, 30(2):88-97, 2009. doi:10.1016/j.patrec.2008.04.005.

K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma. Learning imbalanced datasets with label-
distribution-aware margin loss. In Proceedings of the Conference on Advances in Neural Infor-
mation Processing Systems, pp. 1567-78, Red Hook, NY, USA, 2019. Curran Associates Inc.
arXiv:1906.07413.

A. Carta, L. Pellegrini, A. Cossu, H. Hemati, and V. Lomonaco. Avalanche: A pytorch library
for deep continual learning. Journal of Machine Learning Research, 24(363):1-6, 2023. URL
http://jmlr.org/papers/v24/23-0130.html.

A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania, P. H. S. Torr, and M. Ranzato.
On tiny episodic memories in continual learning, 2019. arXiv:1902.10486.

Y. Chen, Y. Lin, R. Xu, and P. A. Vela. WDiscOOD: Out-of-distribution detection via whitened linear
discriminant analysis. In Proceedings of the International Conference on Computer Vision, 2023.
arXiv:2303.07543.

Z. Cheng, F. Zhu, X.-Y. Zhang, and C.-L. Liu. Average of pruning: Improving performance and
stability of out-of-distribution detection, 2023. arXiv:2303.01201.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the
wild. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2014.

T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto, and D. Ha. Deep learning
for classical japanese literature. In Proceedings of the Conference on Advances in Neural Infor-
mation Processing Systems, Workshop on Machine Learning for Creativity and Design, 2018.
arXiv:1812.01718.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth,
and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016.
arXiv:1604.01685.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector
machines. Journal of Machine Learning Research, 2:265-92, 2002.

F. Croce and M. Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks. In Proceedings of the International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pp. 2206-16, 2020. arXiv:2003.01690.

J. Cui, Z. Tian, Z. Zhong, X. Qi, B. Yu, and H. Zhang. Decoupled kullback-leibler divergence
loss. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang
(eds.), Proceedings of the Conference on Advances in Neural Information Processing Systems, pp.
74461-86. Curran Associates, Inc., 2024. URL https://openreview.net/forum?id=
bnzZedw9CM. arXiv:2305.13948.

Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie. Class-balanced loss based on effective number
of samples. In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 9260-9, 2019. doi:10.1109/CVPR.2019.00949. arXiv:1901.05555.

D. Dablain, K. N. Jacobson, C. Bellinger, M. Roberts, and N. V. Chawla. Understanding CNN fragility
when learning with imbalanced data. Machine Learning, 113:4785-810, 2024. doi:10.1007/s10994-
023-06326-9.

11


https://doi.org/10.1017/S0140525X22002813
http://arxiv.org/abs/1505.01658
https://doi.org/10.1016/j.patrec.2008.04.005
http://arxiv.org/abs/1906.07413
http://jmlr.org/papers/v24/23-0130.html
http://arxiv.org/abs/1902.10486
http://arxiv.org/abs/2303.07543
http://arxiv.org/abs/2303.01201
http://arxiv.org/abs/1812.01718
http://arxiv.org/abs/1604.01685
http://arxiv.org/abs/2003.01690
https://openreview.net/forum?id=bnZZedw9CM
https://openreview.net/forum?id=bnZZedw9CM
http://arxiv.org/abs/2305.13948
https://doi.org/10.1109/CVPR.2019.00949
http://arxiv.org/abs/1901.05555
https://doi.org/10.1007/s10994-023-06326-9
https://doi.org/10.1007/s10994-023-06326-9

Under review as a conference paper at ICLR 2026

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In Proceedings of the International Conference on
Learning Representations, 2020. arXiv:2010.11929.

K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, and D. Song.
Robust physical-world attacks on deep learning models. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2018. arXiv:1707.08945.

R. M. French. Catastrophic forgetting in connectionist networks. In L. Nadel (ed.), Encyclopedia of
Cognitive Science, volume 1, pp. 431-5. Nature Publishing Group, London, UK, 2003.

R. Geirhos, C. R. M. Temme, J. Rauber, H. H. Schiitt, M. Bethge, and F. A. Wichmann. Generalisation
in humans and deep neural networks. In Proceedings of the Conference on Advances in Neural
Information Processing Systems, 2018. arXiv:1808.08750.

R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel, M. Bethge, and F. A. Wichmann.
Shortcut learning in deep neural networks. Nature Machine Intelligence, 2(11):665-73, 2020.
doi:10.1038/s42256-020-00257-z. arXiv:2004.07780.

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In
Proceedings of the International Conference on Learning Representations, 2015. arXiv:1412.6572.

B. Hariharan, P. Arbeldez, L. Bourdev, S. Maji, and J. Malik. Semantic contours from inverse
detectors. In Proceedings of the International Conference on Computer Vision, 2011.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 770-8,
2016a. arXiv:1512.03385.

K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In Proceedings of
the European Conference on Computer Vision, pp. 630-45, Cham, 2016b. Springer International
Publishing. arXiv:1603.05027.

T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li. Bag of tricks for image classification with
convolutional neural networks. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 558-567, 2019. doi:10.1109/CVPR.2019.00065.
arXiv:1812.01187.

D. Heaven. Why deep-learning Als are so easy to fool. Nature, 574:163-6, 2019.

D. Hendrycks and T. G. Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. In Proceedings of the International Conference on Learning Representations,
2019. arXiv:1903.12261.

D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and out-of-distribution examples
in neural networks. In Proceedings of the International Conference on Learning Representations,
2017. URL https://openreview.net/forum?id=Hkg4TI9x1. arXiv:1610.02136.

D. Hendrycks, M. Mazeika, and T. Dietterich. Deep anomaly detection with outlier exposure. In Pro-
ceedings of the International Conference on Learning Representations, 2019. arXiv:1812.04606.

D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song. Natural adversarial examples.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2021. arXiv:1907.07174.

D. Hendrycks, S. Basart, M. Mazeika, A. Zou, J. Kwon, M. Mostajabi, J. Steinhardt, , and D. Song.
Scaling out-of-distribution detection for real-world settings. In K. Chaudhuri, S. Jegelka, L. Song,
C. Szepesvari, G. Niu, and S. Sabato (eds.), Proceedings of the International Conference on
Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 8759-73,
2022a. URL https://proceedings.mlr.press/v162/hendrycks22a.html.
arXiv:1911.11132.

12


http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/1707.08945
http://arxiv.org/abs/1808.08750
https://doi.org/10.1038/s42256-020-00257-z
http://arxiv.org/abs/2004.07780
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1603.05027
https://doi.org/10.1109/CVPR.2019.00065
http://arxiv.org/abs/1812.01187
http://arxiv.org/abs/1903.12261
https://openreview.net/forum?id=Hkg4TI9xl
http://arxiv.org/abs/1610.02136
http://arxiv.org/abs/1812.04606
http://arxiv.org/abs/1907.07174
https://proceedings.mlr.press/v162/hendrycks22a.html
http://arxiv.org/abs/1911.11132

Under review as a conference paper at ICLR 2026

D. Hendrycks, A. Zou, M. Mazeika, L. Tang, B. Li, D. Song, and J. Steinhardt. Pixmix: Dreamlike
pictures comprehensively improve safety measures. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2022b. arXiv:2112.05135.

A. Howard, M. Sandler, G. Chu, L. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan,
Q. V. Le, and H. Adam. Searching for mobilenetV3. In Proceedings of the International Conference
on Computer Vision, pp. 1314-24, 2019. doi:10.1109/ICCV.2019.00140. arXiv:1905.02244.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications,
2017. arXiv:1704.04861.

G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 2261-9, 2017. doi:10.1109/CVPR.2017.243. arXiv:1608.06993.

A. llyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry. Adversarial examples are not
bugs, they are features. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Proceedings of the Conference on Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. arXiv:1905.02175.

S. Irandoust, T. Durand, Y. Rakhmangulova, W. Zi, and H. Hajimirsadeghi. Training a vision
transformer from scratch in less than 24 hours with 1 GPU. In Proceedings of the Conference
on Advances in Neural Information Processing Systems, Has it Trained Yet? Workshop, 2022.
arXiv:2211.05187.

H. Jung, J. Ju, M. Jung, and J. Kim. Less-forgetting learning in deep neural networks, 2016.
arXiv:1607.00122.

S. Kanai, S. Yamaguchi, M. Yamada, H. Takahashi, K. Ohno, and Y. Ida. One-vs-the-rest loss to
focus on important samples in adversarial training. In Proceedings of the International Confer-

ence on Machine Learning, volume 202 of Proceedings of Machine Learning Research, 2023.
arXiv:2207.10283.

H. Kannan, A. Kurakin, and I. Goodfellow. Adversarial logit pairing, 2018. arXiv:1803.06373.
H. Kim. Torchattacks: a pytorch repository for adversarial attacks, 2021. arXiv:2010.01950.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the
International Conference on Learning Representations, 2015. arXiv:1412.6980.

K. Kirchheim, M. Filax, and F. Ortmeier. Pytorch-OOD: A library for out-of-distribution detection
based on pytorch. In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, Workshops, pp. 4351-60, 2022. doi:10.1109/CVPRW56347.2022.00481.

A. Kirillov, R. Girshick, K. He, and P. Dollar. Panoptic feature pyramid networks. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.
6392-401, 2019. doi:10.1109/CVPR.2019.00656. arXiv:1901.02446.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan,
T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell.
Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of
Sciences USA, 114(13):3521-6, 2017. doi:10.1073/pnas.1611835114.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of
Toronto, 2009.

S. Kumano, H. Kera, and T. Yamasaki. Are DNNs fooled by extremely unrecognizable images?,
2022. arXiv:2012.03843.

A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial examples in the physical world. In Proceedings
of the International Conference on Learning Representations, 2017. arXiv:1607.02533.

13


http://arxiv.org/abs/2112.05135
https://doi.org/10.1109/ICCV.2019.00140
http://arxiv.org/abs/1905.02244
http://arxiv.org/abs/1704.04861
https://doi.org/10.1109/CVPR.2017.243
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1905.02175
http://arxiv.org/abs/2211.05187
http://arxiv.org/abs/1607.00122
http://arxiv.org/abs/2207.10283
http://arxiv.org/abs/1803.06373
http://arxiv.org/abs/2010.01950
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/CVPRW56347.2022.00481
https://doi.org/10.1109/CVPR.2019.00656
http://arxiv.org/abs/1901.02446
https://doi.org/10.1073/pnas.1611835114
http://arxiv.org/abs/2012.03843
http://arxiv.org/abs/1607.02533

Under review as a conference paper at ICLR 2026

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through proba-
bilistic program induction. Science, 350(6266):1332-8, 2015. doi:10.1126/science.aab3050.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-324, 1998. doi:10.1109/5.726791.

J. Lee, M. Prabhushankar, and G. AlRegib. Gradient-based adversarial and out-of-distribution
detection. In Proceedings of the International Conference on Machine Learning, Workshop on
New Frontiers in Adversarial Machine Learning, 2022. arXiv:2206.08255.

Z.Li and D. Hoiem. Learning without forgetting. In Proceedings of the European Conference on
Computer Vision, pp. 614-29, 2016. arXiv:1606.09282.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Doll4r. Focal loss for dense object detection.
In Proceedings of the International Conference on Computer Vision, pp. 2980-8, 2017. URL
http://openaccess.thecvf.com/content_iccv_2017/html/Lin_Focal_L
oss_for_ ICCV_2017_paper.html.

W. Liu, X. Wang, J. Owens, and Y. Li. Energy-based out-of-distribution detection. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Proceedings of the Conference on
Advances in Neural Information Processing Systems, volume 33, pp. 21464-75. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/202
0/£11e/£5496252609c43eb8a3d147ab9%09c006-Paper.pdf.

X. Liu, Y. Lochman, and C. Zach. GEN: Pushing the limits of softmax-based out-of-distribution
detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 2394655, June 2023. doi:10.1109/CVPR52729.2023.02293.

Z.Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer: Hierarchical
vision transformer using shifted windows. In Proceedings of the International Conference on
Computer Vision, pp. 10012-22, 2021. arXiv:2103.14030.

Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang, L. Dong, F. Wei, and
B. Guo. Swin transformer V2: Scaling up capacity and resolution. In Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, pp. 11999—-12009,
2022a. doi:10.1109/CVPR52688.2022.01170.

Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. A convnet for the 2020s.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2022b. arXiv:2201.03545.

Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu. Large-scale long-tailed recognition in an
open world. In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 2537-46, 2019.

V. Lomonaco, L. Pellegrini, A. Cossu, A. Carta, G. Graffieti, T. L. Hayes, M. D. Lange, M. Masana,
J. Pomponi, G. van de Ven, M. Mundt, Q. She, K. Cooper, J. Forest, E. Belouadah, S. Calderara,
G. L. Parisi, F. Cuzzolin, A. Tolias, S. Scardapane, L. Antiga, S. Amhad, A. Popescu, C. Kanan,
J. van de Weijer, T. Tuytelaars, D. Bacciu, and D. Maltoni. Avalanche: an end-to-end library
for continual learning. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2nd Continual Learning in Computer Vision Workshop, 2021.
arXiv:2104.00405.

J. Ma, J. Chen, M. Ng, R. Huang, Y. Li, C. Li, X. Yang, and A. L. Martel. Loss odyssey in medical
image segmentation. Medical Image Analysis, 71:102035, 2021. doi:10.1016/j.media.2021.102035.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models resistant
to adversarial attacks. In Proceedings of the International Conference on Learning Representations,
2018. arXiv:1706.06083.

C. Mao, Z. Zhong, J. Yang, C. Vondrick, and B. Ray. Metric learning for adversarial robustness.
In Proceedings of the Conference on Advances in Neural Information Processing Systems, 2019.
arXiv:1909.00900.

14


https://doi.org/10.1126/science.aab3050
https://doi.org/10.1109/5.726791
http://arxiv.org/abs/2206.08255
http://arxiv.org/abs/1606.09282
http://openaccess.thecvf.com/content_iccv_2017/html/Lin_Focal_Loss_for_ICCV_2017_paper.html
http://openaccess.thecvf.com/content_iccv_2017/html/Lin_Focal_Loss_for_ICCV_2017_paper.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/f5496252609c43eb8a3d147ab9b9c006-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f5496252609c43eb8a3d147ab9b9c006-Paper.pdf
https://doi.org/10.1109/CVPR52729.2023.02293
http://arxiv.org/abs/2103.14030
https://doi.org/10.1109/CVPR52688.2022.01170
http://arxiv.org/abs/2201.03545
http://arxiv.org/abs/2104.00405
https://doi.org/10.1016/j.media.2021.102035
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1909.00900

Under review as a conference paper at ICLR 2026

G. Marcus. The next decade in AIl: Four steps towards robust artificial intelligence, 2020.
arXiv:2002.06177.

A. K. Menon, S. Jayasumana, A. S. Rawat, H. Jain, A. Veit, and S. Kumar. Long-tail learning via
logit adjustment. In Proceedings of the International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=37nvvgkCo5. arXiv:2007.07314.

F. Milletari, N. Navab, and S.-A. Ahmadi. V-net: Fully convolutional neural networks for volumetric
medical image segmentation. In 2016 Fourth International Conference on 3D Vision (3DV), pp.
565-71, 2016. doi:10.1109/3DV.2016.79.

Y. Ming, Y. Sun, O. Dia, and Y. Li. How to exploit hyperspherical embeddings for out-of-distribution
detection? In Proceedings of the International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=aEFaEQ0W5pAd.

S. Mohseni, M. Pitale, J. Yadawa, and Z. Wang. Self-supervised learning for generalizable out-of-
distribution detection. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp- 5216-23, 2020. doi:10.1609/aaai.v34i04.5966.

N. Mu and J. Gilmer. MNIST-C: A robustness benchmark for computer vision, 2019.
arXiv:1906.02337.

J. Mukhoti, V. Kulharia, A. Sanyal, S. Golodetz, P. Torr, and P. Dokania. Calibrating deep neural
networks using focal loss. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin
(eds.), Proceedings of the Conference on Advances in Neural Information Processing Systems,
volume 33, pp. 15288-99. Curran Associates, Inc., 2020. URL https://proceedings.ne
urips.cc/paper_files/paper/2020/file/aeb7b30ef1d024a76£f21al1d40e3
0c302-Paper.pdf.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images
with unsupervised feature learning. In Proceedings of the Conference on Advances in Neural
Information Processing Systems, Workshop on Deep Learning and Unsupervised Feature Learning,
2011.

A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence
predictions for unrecognizable images. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2015. arXiv:1412.1897.

T. Pang, K. Xu, Y. Dong, C. Du, N. Chen, and J. Zhu. Rethinking softmax cross-entropy loss for ad-
versarial robustness. In Proceedings of the International Conference on Learning Representations,
2020. arXiv:1905.10626.

T. Pang, X. Yang, Y. Dong, H. Su, and J. Zhu. Bag of tricks for adversarial training. In Proceedings
of the International Conference on Learning Representations, 2021. arXiv:2010.00467.

T. K. Panum, Z. Wang, P. Kan, E. Fernandes, and S. Jha. Exploring adversarial robustness of deep
metric learning, 2021. arXiv:2102.07265.

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The limitations of deep
learning in adversarial settings. In IEEE European Symposium on Security and Privacy, 2016.
arXiv:1511.07528.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Proceedings of the Conference on Advances in Neural Information Processing
Systems, volume 32, 2019. arXiv:1912.01703.

J.Ren, C. Yu, S. Sheng, X. Ma, H. Zhao, S. Yi, and H. Li. Balanced meta-softmax for long-tailed
visual recognition. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin (eds.),
Proceedings of the Conference on Advances in Neural Information Processing Systems, volume 33,
pp. 4175-4186. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc
/paper_files/paper/2020/file/2ba6lcc3a8f44143elf2£f13b2b729%ab3-P
aper.pdf. arXiv:2007.10740.

15


http://arxiv.org/abs/2002.06177
https://openreview.net/forum?id=37nvvqkCo5
http://arxiv.org/abs/2007.07314
https://doi.org/10.1109/3DV.2016.79
https://openreview.net/forum?id=aEFaE0W5pAd
https://doi.org/10.1609/aaai.v34i04.5966
http://arxiv.org/abs/1906.02337
https://proceedings.neurips.cc/paper_files/paper/2020/file/aeb7b30ef1d024a76f21a1d40e30c302-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/aeb7b30ef1d024a76f21a1d40e30c302-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/aeb7b30ef1d024a76f21a1d40e30c302-Paper.pdf
http://arxiv.org/abs/1412.1897
http://arxiv.org/abs/1905.10626
http://arxiv.org/abs/2010.00467
http://arxiv.org/abs/2102.07265
http://arxiv.org/abs/1511.07528
http://arxiv.org/abs/1912.01703
https://proceedings.neurips.cc/paper_files/paper/2020/file/2ba61cc3a8f44143e1f2f13b2b729ab3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/2ba61cc3a8f44143e1f2f13b2b729ab3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/2ba61cc3a8f44143e1f2f13b2b729ab3-Paper.pdf
http://arxiv.org/abs/2007.10740

Under review as a conference paper at ICLR 2026

L. Rice, E. Wong, and J. Z. Kolter. Overfitting in adversarially robust deep learning. In H. D.
IIT and A. Singh (eds.), Proceedings of the International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pp. 8093—-104, 2020. URL https:
//proceedings.mlr.press/v119/rice20a.html. arXiv:2002.11569.

A. Robins. Catastrophic forgetting in neural networks: the role of rehearsal mechanisms. In
Proceedings of the First New Zealand International Two-Stream Conference on Artificial Neural
Networks and Expert Systems, pp. 65-8. IEEE, 1993.

A. Roy, A. Cobb, N. D. Bastian, B. Jalaian, and S. Jha. Runtime monitoring of deep neural networks
using top-down context models inspired by predictive processing and dual process theory. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision, 115(3):211-52, 2015. doi:10.1007/s11263-015-0816-y.

L. Sa-Couto and A. Wichert. Simple Convolutional-Based Models: Are They Learning the Task or
the Data? Neural Computation, 33(12):3334-50, 2021. doi:10.1162/neco_a_01446.

T. Serre. Deep learning: The good, the bad, and the ugly. Annual Review of Vision Science, 5(1):
399-426, 2019. doi:10.1146/annurev-vision-091718-014951.

M. W. Spratling. A comprehensive assessment benchmark for rigorously evaluating deep learning
image classifiers. Neural Networks, 192(107801), 2025. arXiv:2308.04137.

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, 1. J. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. In Proceedings of the International Conference on Learning
Representations, 2014. arXiv:1312.6199.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 1-9, 2015. arXiv:1409.4842.

C. Szegedy, V. Vanhoucke, S. loffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for
computer vision. In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pp. 2818-26, 2016. arXiv:1512.00567.

K. Szyc, T. Walkowiak, and H. Maciejewski. Why out-of-distribution detection experiments are
not reliable - subtle experimental details muddle the OOD detector rankings. In R. J. Evans
and L. Shpitser (eds.), Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial
Intelligence, volume 216 of Proceedings of Machine Learning Research, pp. 2078-88, 2023. URL
https://proceedings.mlr.press/v216/szyc23a.html.

J. Tack, S. Yu, J. Jeong, M. Kim, S. J. Hwang, and J. Shin. Consistency regularization for ad-
versarial robustness. In Proceedings of the AAAI Conference on Artificial Intelligence, 2022.
arXiv:2103.04623.

F. Tajwar, A. Kumar, S. M. Xie, and P. Liang. No true state-of-the-art? OOD detection methods are
inconsistent across datasets. In Proceedings of the International Conference on Machine Learning,
Workshop on Uncertainty and Robustness in Deep Learning, 2021. arXiv:2109.05554.

J. Tan, C. Wang, B. Li, Q. Li, W. Ouyang, C. Yin, and J. Yan. Equalization loss for long-tailed object
recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 11662-71, 2020. arXiv:2003.05176.

M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In K. Chaudhuri and R. Salakhutdinov (eds.), Proceedings of the International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 6105-14, 2019.
URL https://proceedings.mlr.press/v97/tanl9%a.html. arXiv:1905.11946.

J. Terven, D.-M. Cordova-Esparza, J.-A. Romero-Gonzéilez, A. Ramirez-Pedraza, and E. A. Chavez-
Urbiola. A comprehensive survey of loss functions and metrics in deep learning. Artificial
Intelligence Review, 58(195), 2025. doi:10.1007/s10462-025-11198-7.

16


https://proceedings.mlr.press/v119/rice20a.html
https://proceedings.mlr.press/v119/rice20a.html
http://arxiv.org/abs/2002.11569
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1162/neco_a_01446
https://doi.org/10.1146/annurev-vision-091718-014951
http://arxiv.org/abs/2308.04137
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1512.00567
https://proceedings.mlr.press/v216/szyc23a.html
http://arxiv.org/abs/2103.04623
http://arxiv.org/abs/2109.05554
http://arxiv.org/abs/2003.05176
https://proceedings.mlr.press/v97/tan19a.html
http://arxiv.org/abs/1905.11946
https://doi.org/10.1007/s10462-025-11198-7

Under review as a conference paper at ICLR 2026

G. Van Horn, O. M. Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard, H. Adam, P. Perona, and S. Belongie.
The inaturalist species classification and detection dataset. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2018. arXiv:1707.06642.

S. Vaze, K. Han, A. Vedaldi, and A. Zisserman. Open-set recognition: a good closed-set classifier is
all you need? In Proceedings of the International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=5hLP5JY952d. arXiv:2110.06207.

T. Vojir, J. Sochman, R. Aljundi, and J. Matas. Calibrated out-of-distribution detection with a generic
representation. In Proceedings of the International Conference on Computer Vision, Workshop on
Uncertainty Quantification for Computer Vision, 2023. arXiv:2303.13148.

Q. Wang, Y. Ma, K. Zhao, and Y. Tian. A comprehensive survey of loss functions in machine learning.
Annals of Data Science, 9:187-212, 2022. doi:10.1007/s40745-020-00253-5.

X. Wang, L. Lian, Z. Miao, Z. Liu, and S. Yu. Long-tailed recognition by routing diverse distribution-
aware experts. In Proceedings of the International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=D9I13drBz4UC.

H. Wei, R. Xie, H. Cheng, L. Feng, B. An, and Y. Li. Mitigating neural network overconfidence with
logit normalization. In Proceedings of the International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pp. 23631-44, 2022. arXiv:2205.09310.

R. Wightman, H. Touvron, and H. Jégou. ResNet strikes back: An improved training procedure in
timm. In Proceedings of the Conference on Advances in Neural Information Processing Systems,
Workshop on ImageNet: Past, Present, and Future, 2021. URL https://openreview.net
/forum?1d=NG6MJInV16M5. arXiv:2110.00476.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms, 2017. arXiv:1708.07747.

S. Xie, R. Girshick, P. Dolldr, Z. Tu, and K. He. Aggregated residual transformations for deep neural
networks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2017. arXiv:1611.05431.

R. Xu-Darme, J. Girard-Satabin, D. Hond, G. Incorvaia, and Z. Chihani. Interpretable out-of-
distribution detection using pattern identification, 2023. URL https://hal-cea.archive
s—ouvertes.fr/cea-03951966.

J. Yang, P. Wang, D. Zou, Z. Zhou, K. Ding, W. Peng, H. Wang, G. Chen, B. Li, Y. Sun, X. Du,
K. Zhou, W. Zhang, D. Hendrycks, Y. Li, and Z. Liu. OpenOOD: Benchmarking generalized
out-of-distribution detection. In Proceedings of the Conference on Advances in Neural Information
Processing Systems, 2022. arXiv:2210.07242.

T. Yang, Y. Huang, Y. Xie, J. Liu, and S. Wang. MixOOD: Improving out-of-distribution detection
with enhanced data mixup. ACM Transactions on Multimedia Computing, Communications, and
Applications, 2023. doi:10.1145/3578935.

Y. Yu and C.-Z. Xu. Efficient loss function by minimizing the detrimental effect of floating-point errors
on gradient-based attacks. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 4056—66, 2023. doi:10.1109/CVPR52729.2023.00395.

A. L. Yuille and C. Liu. Deep nets: What have they ever done for vision? International Journal of
Computer Vision, 129:781-802, 2021. doi:10.1007/s11263-020-01405-z.

S. Zagoruyko and N. Komodakis. Wide residual networks. In E. R. H. Richard C. Wilson and W. A. P.
Smith (eds.), Proceedings of the British Machine Vision Conference, pp. 87.1-87.12. BMVA Press,
2016. doi:10.5244/C.30.87. arXiv:1605.07146.

F. Zenke, B. Poole, and S. Ganguli. Continual learning through synaptic intelligence. In Proceedings

of the International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 3987-95, 2017. arXiv:1703.04200.

17


http://arxiv.org/abs/1707.06642
https://openreview.net/forum?id=5hLP5JY9S2d
http://arxiv.org/abs/2110.06207
http://arxiv.org/abs/2303.13148
https://doi.org/10.1007/s40745-020-00253-5
https://openreview.net/forum?id=D9I3drBz4UC
http://arxiv.org/abs/2205.09310
https://openreview.net/forum?id=NG6MJnVl6M5
https://openreview.net/forum?id=NG6MJnVl6M5
http://arxiv.org/abs/2110.00476
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1611.05431
https://hal-cea.archives-ouvertes.fr/cea-03951966
https://hal-cea.archives-ouvertes.fr/cea-03951966
http://arxiv.org/abs/2210.07242
https://doi.org/10.1145/3578935
https://doi.org/10.1109/CVPR52729.2023.00395
https://doi.org/10.1007/s11263-020-01405-z
https://doi.org/10.5244/C.30.87
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1703.04200

Under review as a conference paper at ICLR 2026

H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan. Theoretically principled trade-off
between robustness and accuracy. In Proceedings of the International Conference on Machine
Learning, 2019. arXiv:1901.08573.

L. H. Zhang and R. Ranganath. Robustness to spurious correlations improves semantic out-of-
distribution detection. In Proceedings of the AAAI Conference on Artificial Intelligence, 2023.
arXiv:2302.04132.

L. Zhao, Y. Teng, and L. Wang. Logit normalization for long-tail object detection. International
Journal of Computer Vision, 132:2114-34, 2024. doi:10.1007/s11263-023-01971-y.

B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. Scene parsing through ade20k
dataset. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2017.

Q. Zhu, G. Zheng, and Y. Yan. Effective out-of-distribution detection in classifier based on PEDCC-
loss. Neural Processing Letters, 55:1937-49, 2023. doi:10.1007/s11063-022-10970-y.

Y. Zhu, Y. Chen, X. Li, R. Zhang, H. Xue, X. Tian, R. Jiang, B. Zheng, and Y. Chen. Rethinking
out-of-distribution detection from a human-centric perspective. International Journal of Computer
Vision, 132:4633-50, 2024. doi:10.1007/s11263-024-02099-3. arXiv:2211.16778.

18


http://arxiv.org/abs/1901.08573
http://arxiv.org/abs/2302.04132
https://doi.org/10.1007/s11263-023-01971-y
https://doi.org/10.1007/s11063-022-10970-y
https://doi.org/10.1007/s11263-024-02099-3
http://arxiv.org/abs/2211.16778

Under review as a conference paper at ICLR 2026

A EXISTING LOSS FUNCTIONS

For each input image x, a classifier, g, produces a vector of outputs, each element of which is
associated with a class label, i.e.,: y = g(x), where y € R™, and n is the number of classes. For a
neural network these outputs are the activations of the neurons in the last layer before applying an
activation function. These values are commonly known as the “logits” following a literal interpretation
of the cross-entropy loss. The class label, ¢, predicted by such a classifier is that associated with the
output with the highest value, i.e., ¢ = argmax(y).

In addition to predicting the class of the input sample, the classifier can also provide an estimate
of its confidence in the classification it has made. Two standard methods of confidence scoring are
Maximum Logit Score (MLS; Vaze et al., 2022; Hendrycks et al., 2022a), and Maximum Softmax
Probability (MSP; Hendrycks & Gimpel, 2017). MLS is the maximum response of the network
before any activation function is applied, i.e., max(y). MSP is the maximum value of the network
output after the application of the softmax activation function, i.e., max(z) where z is defined as:

L oew(F) 3)
J n i
> im1 exp(F)
T 1s a non-negative hyper-parameter that is typically set to a value of one. The softmax function
normalises the output values so that they sum to one and can be interpreted as a probability distribution.
Smaller values of 7 cause the softmax function to produce a more peaked probability distribution.

The output of the network is also used to define a differentiable loss function that is used to update
the parameters so that predictions become more accurate. Those existing loss functions most relevant
to this work are described in the following subsections.

A.1 CROSS-ENTROPY LOSS

Cross-Entropy (CE) loss is defined as:
ECE = — log Zl (4)

where [ is the index corresponding to the correct class (i.e., the ground-truth class label), and z is
the output of the softmax activation function applied to the logits (Eq. (3)). As described earlier, the
softmax function has a hyper-parameter, 7, which means that CE could be applied using different
values of this parameter. However, for almost all applications of CE, 7 is set to a value of one. Hence,
a value of 7 = 1 was used in all experiments with CE loss described in this paper.

A.2 LOGITNORM LoOSs

LogitNorm (LN) loss is a variation of CE loss that has been shown to produce state-of-the-art results
on unknown class rejection when used in conjunction with the Maximum Softmax Probability (MSP)
confidence scoring method (Wei et al., 2022). LN loss makes two modifications to CE loss: (1)
it normalises the logits by their /o-norm before application of the softmax function, (2) it uses a
low value of 7 that causes the softmax function to produce a more peaked probability distribution.
Preliminary experiments (Appendix D.1) showed that a hyper-parameter of 7 = 0.04 was most
effective at unknown class rejection, and hence, that value was used in all experiments with LN loss
described in this paper.

A.2.1 LOGITNORM LOSS AS A MARGIN-LIKE LOSS

The LogitNorm loss yields values close to zero when the output of the correct neuron is sufficiently
larger than the other neurons’ outputs (Table 1). This behaviour is due to the use of a reduced value of
7. When 7 is sufficiently small the softmax function produces a highly peaked probability distribution
exp( VTL )
Spg exp(Zh)
to the correct class is sufficiently dominant. Hence, LN loss behaves like a margin loss, as learning
stops for samples that are sufficiently well classified. We believe this margin-like behaviour, which
prevents increasing confidence, explains the effectiveness of LN loss at distinguishing known from
unknown classes.

and — 1. This causes LN loss to be zero when the response of the node corresponding
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In contrast, Wei et al. (2022) claim that the effectiveness of LN loss is due to the normalisation of the
logits. They believe that normalisation forces learning to generate logit vectors for different classes
that are distinct from each other in terms of the angle between them, rather than their magnitude. While
we do not believe that normalisation is the primary factor in avoiding over-confidence, normalisation
provides other advantages. The normalisation of the logits is responsible for the loss monotonically
increasing as the predictions become worse (this is true even when 7 = 1). Large negative logits
produced by neurons that do not represent the true class (activities that would reduce CE loss) cause
a reduction in the normalised logit value associated with the true class, and hence, increase the LN
loss. The normalisation of the logits performed by LN also seems to be important to prevent training
becoming unstable: we found that LN loss was capable of successfully training networks with small
7 values, while the same small 7 values would cause CE loss to fail. The cause of this instability is
possibly that a low value of 7 can result in the loss being very large when the prediction is very wrong
(see last row of Table 1), a situation that is common early in training when the network’s outputs are
random.

A.3 LOGIT-ADJUSTED LOSS

Logit-adjusted (LA) loss is a variation of CE loss that is designed to produce improved performance
when training with imbalanced data (Menon et al., 2021). Before the application of the softmax
function, the logits are modified by a term that is proportional to the relative number of training
samples in each class. Hence,

Lia=—logz )

where:
,__exp(y; +log(p;))
=N ) ) (6)
> i1 exp(y; + log(pi))
The term p; is the proportion of training samples in class j, i.e. p; = s;/> ., s; where s; is the
number of samples in class j. A number of similar losses have been proposed which use alternative
methods to adjust the logits (Tan et al., 2020; Ren et al., 2020; Cao et al., 2019). However, LA loss
has been found to produce better results than these alternatives and other methods of dealing with
class imbalance (Menon et al., 2021; Zhao et al., 2024). Note, that for balanced data-sets, p; has the
same value for each class and LA loss is identical to CE loss.

A.4 DICE Loss

DICE loss (Milletari et al., 2016) is an alternative to CE that is frequently used for image segmentation
tasks (Azad et al., 2023; Ma et al., 2021). It uses a measure of the overlap between the one-hot
encoded target outputs, t, and the softmax predictions, z, such that:

>i(ti ¥ zi)
>i(ti + zi)
In multi-class applications, DICE loss is calculated separately for each class (the sums in Eq. (7)

are taken over the samples in the batch), and the overall DICE loss is the mean of the separate class
losses.

(N

Lprcp=1-2

A.5 MULTI-CLASS MARGIN LOSS

Multi-class Margin (MM) loss, also known as the classification hinge loss (Crammer & Singer, 2002),
defines an error, e;, associated with each logit, y;, as follows:

) max(0,y; —y +p) ifiF#l
el—{ 0 ifi=1 ®)

where p is the margin, a non-negative hyper-parameter. MM loss combines the error for different
logits (and across all samples in a batch) by taking the mean, so that:

1 n
L =~ ; e )
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Preliminary experiments (Appendix D.1) showed that the value of the margin had little influence
on classification accuracy, but had a stronger influence on unknown class rejection performance. A
value of ;1 = 1 was used in all subsequent experiments as this was most effective at unknown class
rejection and is the default value typically used for this loss.

B EXPERIMENTAL METHODS

B.1 LEARNING WITH STANDARD DATA-SETS

B.1.1 TRAINING DATA

Performance was assessed for DNNs trained on standard image classification data-sets: MNIST
(LeCun et al., 1998), CIFAR10 (Krizhevsky, 2009), CIFAR100 (Krizhevsky, 2009), TinyImageNet
(TIN) and ImageNet1k (IN Russakovsky et al., 2015)(IN). These data-set vary in terms of the size of
the images (from 28-by-28 pixels with 1 colour channel to 224-by-224 pixels with 3 colour channels),
the number of categories (10 to 1000), and the number of training samples (from 50k to 1.28M). For
all datasets, standard data augmentations were applied to the training images: horizontal flipping and
random cropping for both CIFAR data-sets and TinyImageNet, horizontal flipping, resizing to 256
pixels, and a centre crop for ImageNetlk. For all data-sets the standard split between training and
testing exemplars was employed. Pixel values in both the training and testing samples were scaled to
the range [0,1].

B.1.2 PERFORMANCE METRICS

Performance was evaluated against a number of different criteria.

Performance on standard test data Firstly, the percentage of samples correctly classified from
the standard test set provided with each training data-set was calculated (the “clean” accuracy).

Performance on common corruptions data Secondly, the ability of trained networks to generalise
to input distribution shifts was assessed by determining classification accuracy with the common
corruptions data-sets: MNIST-C, CIFAR10-C, CIFAR100-C, TinyImageNet-C and ImageNet-C
(Hendrycks & Dietterich, 2019; Mu & Gilmer, 2019). MNIST-C contains 15 different corruptions
including different types of noise, blurring, geometric transformations, and superimposed patterns.
The others contain 18 different corruptions including different types of noise, blurring, synthetic
weather conditions, and digital corruptions. As is typical in the literature, performance was evaluated
by averaging performance over all the corruptions at all degrees of intensity.

Performance on unknown class rejection A third performance metric was used to assess the
ability of a network to distinguish known from unknown classes. This was evaluated using the Area
Under the Receiver Operating Characteristic curve (AUROC) as this is a common choice in the
literature (Kirchheim et al., 2022; Chen et al., 2023; Cheng et al., 2023; Xu-Darme et al., 2023;
Yang et al., 2022; 2023; Lee et al., 2022). AUROC is calculated separately for each unknown class
data-set, evaluating how distinct the confidence scores produced by samples from the standard test-set
are from the confidence scores produced in response to samples from the unknown class data-set.
The standard, baseline, method for determining confidence uses the maximum value of the network
output after the application of the softmax activation function (i.e., max(z)). As a result it is called
Maximum Softmax Probability (MSP; Hendrycks & Gimpel, 2017). MSP was used by default in our
assessment, but some evaluations were repeated using an alternative: Maximum Logit Score (MLS;
Vaze et al., 2022; Hendrycks et al., 2022a). MLS defines the confidence that a sample is of a known
class as the maximum response of the network output before any activation function is applied (i.e.,

max(y)).

AUROC was calculated using seven data-sets containing unknown classes, and the average AUROC
across all seven data-sets was reported. The seven data-set used to evaluate networks trained with
MNIST were the test-sets of Omniglot (Lake et al., 2015), FashionMNIST (Xiao et al., 2017), KM-
NIST (Clanuwat et al., 2018) and four data-sets containing synthetic images: (1) images containing
random blobs, as used in (Hendrycks et al., 2019); (2) images in which each pixel intensity value
was independently and randomly selected from a uniform distribution; (3) the images of the standard
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(clean) test set after a random permutation of all pixels; (4) the images of the clean test set after
randomising the phase, in the Fourier domain, of each image. Each of these four synthetic data-sets
contained 10000 samples. The CIFAR10 trained networks were tested using unknown classes from
the test-sets of the Textures (Cimpoi et al., 2014), SVHN (Netzer et al., 2011), and CIFAR100
data-sets, plus, four synthetic image data-sets generated as described before. For CIFAR100 trained
networks the same seven OOD data-sets were used as for CIFAR10, except CIFAR10 was used
in place of CIFAR100. Networks trained on TinylmageNet and ImageNetlk were evaluated us-
ing Textures (Cimpoi et al., 2014), the iNaturalist 2021 validation set (Van Horn et al., 2018), the
ImageNet-O data-set (Hendrycks et al., 2021), and the four synthetic image data-sets generated as
described previously.

Performance on AutoAttack rejection Finally, performance was also evaluated using adversarial
attacks generated using AutoAttack (AA; Croce & Hein, 2020), a state-of-the-art ensemble attack
method that employs both gradient-based (white-box) and gradient-free (black-box) attacks. AA was
implemented using the torchattacks PyTorch library (Kim, 2021). Two sets of adversarial samples
where created. Each set was created by perturbing 10000 samples from the standard (clean) test-set,
but with a different method of constraining the magnitude of the perturbation. Specifically, AA was
used to apply both [, and /3-norm constrained attacks. The perturbation budget (¢) used for each
attack was the standard value used in the previous literature for each data-set. Specifically, € was
set to % and 0.5 for [, and l5-norm attacks, respectively, against networks trained on CIFAR10,
CIFAR100, TinyImageNet, and ImageNetlk, and € was set to 0.3 for [,-norm and to 2 for l2-norm
attacks on MNIST trained networks.

Networks were not trained to be able to correctly classify adversarial examples, and hence, robust
accuracy was low for all the evaluated losses. However, networks can still be robust if they are
capable of identifying, and rejecting samples that have been adversarially perturbed. Adversarial
robustness was evaluated using detection accuracy rate (DAR; Spratling, 2025). DAR determines
the proportion of samples that are processed correctly. Where for adversarial samples, “processed
correctly” means that the sample is accepted and the predicted class label is correct, or it is rejected
and the predicted class label is wrong (Zhu et al., 2024). As for unknown class rejection, a sample is
accepted or rejected based on the confidence of the prediction made by the network under evaluation.
Confidence was measured using either Maximum Softmax Probability (MSP) or Maximum Logit
Score (MLS), and the threshold used to reject samples was set such that 95% of correctly classified
samples from the standard test set were accepted (Zhu et al., 2024).

B.1.3 NEURAL NETWORK ARCHITECTURES

A large variety of DNNs architectures were used as summarised in Table 3. A small version of
LeNet (LeCun et al., 1998) with 16 channels in the two convolutional layers, and 50 neurons in
the penultimate, fully-connected, layer. A simple, fully-convolutional neural network (ConvNet)
consisting of 5 convolutional layers, each containing 32 3-by-3 masks and using the ReLU activation
function. This architecture performed down-sampling using average pooling and it did not use
batch (or any other form of) normalisation. It is a simple, sequential, hierarchy without any parallel
pathways or skip connections. A simple fully-connected network (MLP) consisting of three hidden
layers each containing 200 neurons and employing the ReL.U activation function. ResNets (He et al.,
2016a), specifically, ResNet18, ResNet32, and ResNet50. WideResNets (Zagoruyko & Komodakis,
2016), specifically, WRN22-10 and WRN28-10. PreActResNetl18 (PARN18; He et al., 2016b).
MobileNet version 3 (Howard et al., 2019; 2017), specifically the small model (MobileNetS) and
the large model (MobileNetL). The inception architecture version 3 (Szegedy et al., 2016; 2015).
The Swin Transformer (version 2) (Liu et al., 2021; 2022a) tiny (SwinT). The vision transformer
(Dosovitskiy et al., 2020) base model with 16x16 input patch size (ViT-B/16).

Our implementations of ResNets, WRNs, and PARN were based on the code provided with (Pang
etal., 2021),! except for the implementation of ResNet32 which was adapted from code by Yerlan
Idelbayev,” and ResNet50 which came from the PyTorch Hub.? The implementations of MobileNetv3,
inception3, and the Transformers were also from the PyTorch Hub. The inception3 was modified to

'nttps://github.com/P2333/Bag-of-Tricks-for-AT
https://github.com/akamaster/pytorch_resnet_cifarl0/
Shttps://pytorch.org/vision/stable/models.html
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Table 3: A summary of the neural network architectures used to assess performance on image classifi-
cation when learning with standard data-sets. For each model the number of trainable parameters
is indicated in brackets. For each data-set the architectures are arranged from left-to-right in order
of increasing size. Note that ResNet50 and ResNet18 are large networks designed for use with
ImageNetlk (but using a different stem when applied to smaller images), while ResNet32 is a smaller
network designed for use with CIFAR10, and hence, has fewer parameters than ResNet18 despite its
greater depth.

Data-set Model 1 Model 2 Model 3
MNIST LeNet (20,194) ConvNet (30,954) MLP (239,410)
CIFARI10 ResNet32 (464,154) MobileNetS (1,528,106) WRN22-10 (27,977,146)

CIFAR100 MobileNetL (4,330,132) ResNetl18 (11,220,132)  PARNI18 (11,218,340)
TinyImageNet ResNetl8 (11,173,962) inception (23,995,504) WRN28-10 (38,241,656)
ImageNetlk ResNet50 (25,557,032) SwinT (28,351,570) ViT-B/16 (86,567,656)

allow it to work with TinyImageNet as follows. Before the inception layers the original architecture,
designed for use with the larger images in ImageNetlk, contains three standard convolution layers,
a max pooling layer, two further standard convolution layers, and another max pooling layer. Both
maxpooling and the two convolution layers between them were removed. Furthermore, the size of the
filters in the second convolutional layer in the auxiliary head were changed from 5-by-5 to 4-by-4.

B.1.4 TRAINING SETTINGS

To ensure a fair comparison between loss functions, while avoiding the need to search for optimal
training hyper-parameters for each combination of loss function, network architecture and data-
set, the same training hyper-parameters were used for all the experiments performed using the
same combination of data-set and network architecture. In general, five repeats were made of each
experiment, except those experiments performed with ImageNet1k where either three repeats (when
using the two smaller models listed in Table 3) or one experiment (using the largest model listed in
Table 3) were performed.

MNIST For all experiments with MNIST, training was performed for 20 epochs using the Adam
optimiser (Kingma & Ba, 2015) with a batch size of 128 and a fixed learning rate of 103, This
set-up was found in preliminary experiments to be adequate for obtaining high test-set accuracy when
training ConvNet with CE loss.

CIFAR10 and CIFAR100 For training with both CIFAR data-sets, the SGD optimiser was used
for 110 epochs with a momentum of 0.9, a batch size of 128, weight decay of 5e-4, an initial learning
rate of 0.1 and a step-wise learning schedule reducing the learning rate by a factor of 10 at epochs
100 and 105. This set-up was taken from (Pang et al., 2021) where it was found to be optimal for the
adversarial-training of networks using CE loss. As we are not using adversarial training, this set-up is
probably sub-optimal for all the loss functions we compare. If it does favour one loss function, that is
likely to be CE. Using this training setup with MobileNets resulted in poor results: CIFAR100 clean
accuracy of less than 50% with all loss functions, and chance accuracy on one trial with LN loss. A
search for a better initial learning rate (with all other learning hyper-parameters as described before),
performed using CE loss and CIFAR100, found that a value of 0.02 produced the best performance.
This lower initial learning rate was therefore used for all experiments with MobileNet.

TinyImageNet For training networks on TinyImageNet more epochs are required to reach reason-
able performance. Hence, compared to the settings for CIFAR, the number of epochs was increased
to 200. Furthermore, the training schedule was changed to decay (by a factor of 10) the learning rate
at 50, 100, and 150 epochs. Except for an additional learning rate decay at 50 epochs, the resulting
set-up is identical to that used in (Rice et al., 2020), for adversarially-training networks with CE loss.

ImageNetlk With the ImageNetlk data-set the ResNet50 architecture was trained using SGD for

100 epochs with a momentum of 0.9, a batch size of 512, weight decay of 1e-4, and an initial learning
rate of 0.1 that decayed by a factor of 10 at epochs 25, 50, and 75. This recipe uses a larger batch
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size, 10 more epochs, and one more learning rate decay, but is otherwise the same as baseline training
method typically used for training ResNet50 on ImageNet1k.* For training the Swin Transformer
on ImageNetlk the set-up was based on that proposed in Irandoust et al. (2022). Namely, using
the AdamW optimiser with a fixed learning rate of 10~3 preceded by an exponential learning-rate
warm-up period of five epochs.> Training was performed for 100 epochs with a batch size of 256.
This same set-up, but with a 10 epoch warm-up period, was used to train the ViT-B/16 architecture.

B.2 LEARNING WITH IMBALANCED DATA-SETS
B.2.1 TRAINING DATA

Learning with imbalanced training data was assessed using long-tailed versions of CIFAR10, CI-
FAR100 and ImageNet (Cao et al., 2019; Liu et al., 2019; Wang et al., 2021). These are standard
benchmark tasks in this domain, where the training data is generated from the original, balanced,
data-sets by removing samples unequally from each class. Specifically, each long-tailed data-set is
created by taking only the first s; x f7 samples for the class with index j (j € {0,...,n —1}). f
is a factor that determines the degree of imbalance. From CIFARI10 two long-tailed data-sets were
created using f = 0.6 and f = 0.7744, and from CIFAR10 two long-tailed data-sets were created
using f = 0.955 and f = 0.9771. The first value of f for each data-set generates a long-tailed set
in which the ratio of the number of samples in the classes with the largest and smallest numbers is
100. The second values of f produce an imbalance ratio of 10. For ImageNetLT the standard image
sub-sets were used® which define an imbalance ratio of 256.

B.2.2 PERFORMANCE METRICS

Performance was assessed using standard, balanced, test-data sets. The same range of evaluation
metrics were used as were used to assess the performance of networks trained on standard training
data-sets (as described in Appendix B.1.2).

B.2.3 NEURAL NETWORK ARCHITECTURES

Each of the four long-tailed CIFAR data-sets were used to train three architectures: ResNet32,
ResNet18, and WideResNet20-10. ImageNetLT was used to train ResNet18, SwinT, and ConvNeXt-
tiny (Liu et al., 2022b).

B.2.4 TRAINING SETTINGS

Five repeats were performed of each experiment (combination of loss, network architecture, and
training data-set). For the CIFAR data-sets, the training set-up was based on that used in previous
work with the same training data (Cao et al., 2019; Cui et al., 2019). Specifically, networks were
trained for 200 epochs using SGD with a momentum of 0.9, a batch size of 128, weight decay of
2e-4, and an initial learning rate of 0.1, that was reduced by a factor of 100 at the end of epochs 160
and 180. For ImageNetLT the training set-up was that same as that used for ImageNet as described in
Appendix B.1.4.

B.3 CONTINUAL LEARNING

B.3.1 TRAINING DATA

Performance on continual learning was assessed with the aid of the Avalanche library (Lomonaco
et al., 2021; Carta et al., 2023) using four standard benchmark tasks: PermutedMNIST, SplitMNIST,
SplitCIFAR10, and SplitCIFAR100. In each case models were trained on a sequence of five sub-sets
of data (training “episodes”). Each trial used a different, randomly selected, sequence of training data

*nttps://pytorch.org/blog/how-to-train-state-of-the-art-models-using-t
orchvision—-latest-primitives/

SThe warm-up period was extended to 10 epochs when using CE loss, as training with the original set-up
resulted in a training collapse and final training set accuracy at chance level.

*https://drive.google.com/drive/u/1l/folders/1j7Nkfe6ZhzKFXePHdsseeeGI8T
7Xulyf
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sub-sets, and this same sequence of sub-tasks was used with each loss to ensure a fair comparison.
Each loss function was tested in combination with five strategies for reducing catastrophic forgetting:
Replay (Robins, 1993; Chaudhry et al., 2019), Synaptic Intelligence (SI; Zenke et al., 2017), Elastic
Weight Consolidation (EWC; Kirkpatrick et al., 2017), Less-Forgetful Learning (LFL; Jung et al.,
2016), and Learning without Forgetting (LwF; Li & Hoiem, 2016). The tasks and continual learning
strategies were chosen as code for implementing them was available in the Continual Learning
Baselines repository.’

B.3.2 PERFORMANCE METRICS

Performance was evaluated at the end of training by measuring classification accuracy with an unseen
test set containing equal numbers of samples from each sub-task.

B.3.3 NEURAL NETWORK ARCHITECTURES

For each combination of task and continual learning strategy we used the same neural network
architecture as used in the Continual Learning Baselines repository. For the MNIST tasks the
networks were MLPs, while for the CIFAR tasks the architecture was a ResNet18.

B.3.4 TRAINING SETTINGS

Five repeats were performed of each experiment (combination of loss, continual learning strategy,
and task). For each combination of task and continual learning strategy we used the same training
set-up as used in the Continual Learning Baselines repository. Where this repository only provided a
training recipe for MNIST (or CIFAR10/100), we altered it for use with the other data-sets only by
changing the number of epochs (so that the number was 10 times larger for the CIFAR data-sets than
for MNIST).

B.4 SEMANTIC SEGMENTATION

B.4.1 TRAINING DATA

Performance on semantic segmentation was assessed with the aid of the Pytorch Segmentation Models
Library8 using four data-sets: CamVid (Brostow et al., 2009), Cityscapes (Cordts et al., 2016), and
SBD (Hariharan et al., 2011), and ADE20k (Zhou et al., 2017).

B.4.2 PERFORMANCE METRICS

In each case, performance was evaluated using the mean percentage intersection-over-union (IoU)
metric.

B.4.3 NEURAL NETWORK ARCHITECTURES

All experiments were performed with the FPN architecture (Kirillov et al., 2019) using four different
networks as the encoder-backbone: ResNet34 (He et al., 2016a), EfficientNet-b4 (Tan & Le, 2019),
DenseNet201 (Huang et al., 2017), and ResNeXt50 (Xie et al., 2017).

B.4.4 TRAINING SETTINGS

Five repeats were made of each experiment (combination of loss, backbone, and training data-set),
except those experiments performed with ADE20k where four repeats were performed.

The training set-up was based on that used previously for training on the CamVid data-set (Badri-
narayanan et al., 2017). Specifically, SGD with momentum of 0.9 was used with a fixed learning
rate of 0.1 and a batch size of 12. As not all data-sets contain separate test and validation data a
fixed number of training epochs was used, rather than selecting the best checkpoint as was done by
Badrinarayanan et al. (2017). 100 epochs was used for CamVid, 50 epochs were used for Cityscapes

"https://github.com/ContinualAI/continual-learning-baselines
$https://github.com/qubvel/segmentation_models.pytorch
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Figure 3: Results when learning with standard data-sets and testing with clean and corrupt images.
(a) and (b) directly compare the performance produced by HEM and cross-entropy (CE) losses when
used to train networks with MNIST, CIFAR10, CIFAR100, TinyImageNet (TIN), and ImageNetlk
(IN) using three different network architectures for each data-set. For each data-set the size of the
marker used corresponds to the size of the network. Results above the diagonal are conditions where
better performance was obtained when training with HEM rather than CE loss. Performance metrics
are averaged over multiple trials performed for each condition (data-set and architecture) and the
error bars show the standard deviation recorded across the trials in each condition (in the majority of
cases these error bars are too small to be visible). (a) Compares the performance of the two losses in
terms of the accuracy of classifying the standard test-data. (b) Compares the performance of the two
losses in terms of the accuracy of classifying the common-corruptions test-data. (c) Shows results
averaged over all the data-sets and network architecture (and multiple trials in each condition) for all
relevant losses: cross-entropy (CE), LogitNorm (LN), DICE, multi-class margin (MM) and HEM.
Error bars show the mean standard deviation recorded across the trials in each condition. The inset
shows the results for CE, LN, and HEM losses plotted on a separate scale to allow the differences
between these losses to be visible.

and SBD, and 20 epochs for ADE20k. For the larger data-sets (Cityscapes, SBD, and ADE20k) the
batch size was reduced to four in order to fit within GPU memory.

For the SBD data-set, CE loss failed to learn when using a learning rate of 0.1. A hyper-parameter
search was therefore carried out using CE loss to test alternative learning rates (0.05, 0.02, 0.005,
0.001). A learning rate of 0.05 was found to work best with CE loss, so this learning rate was used in
all experiments with all losses and the SBD data-set. A learning rate of 0.05 was also used for all
experiments with the ADE20k where it was found that the performance of CE loss was unaffected
across a range (0.1, 0.05, 0.02, 0.01) of different learning.

C DETAILED EXPERIMENTAL RESULTS

C.1 LEARNING WITH STANDARD DATA-SETS
C.1.1 PERFORMANCE ON STANDARD TEST DATA AND COMMON CORRUPTIONS DATA

Detailed results showing the absolute, rather than relative, performance of CE and HEM trained
networks for each individual condition together with error-bars can be seen in Fig. 3(a) for the
standard test data, and in Fig. 3(b) the common corruptions data. This is the data summarised in the
1%¢ and 2"¢ segments of Fig. 2. A comparison of the performance of all tested losses is provided in
Fig. 3(c). The same results appear in the 15 and 2" segments of Fig. 1. The numerical data can be
found in the columns headed “Clean” and “Corrupt” in Table 4.
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Figure 4: Results when learning with standard data-sets and testing on unknown and adversarial
images. This figure has an identical format to Fig. 3 except (a) compares the performance of CE and
HEM losses in terms of the ability to distinguish samples from known and unknown classes, and
(b) compares the performance of CE and HEM losses in terms of the ability to deal correctly with
adversarially perturbed samples. In both (a) and (b) Maximum Softmax Probability (MSP) is used
as the confidence score. (c) Shows results averaged over all the data-sets and network architecture
(and multiple trials in each condition) for all relevant losses. Closed markers indicate that Maximum
Softmax Probability (MSP) was used as the confidence score, while open markers plot results when
using Maximum Logit Score (MLS).

C.1.2 PERFORMANCE ON UNKNOWN CLASS REJECTION AND AUTOATTACK REJECTION

Detailed results showing the absolute, rather than relative, performance of CE and HEM trained
networks for each individual condition together with error-bars can be seen in Fig. 4(a) for unknown
class rejection, and in Fig. 4(b) for AutoAttack rejection. This is the data summarised in the 3"¢ and
4" segments of Fig. 2. A comparison of the performance of all tested losses is provided in Fig. 4(c).
The same results appear in the 3" and 4*" segments of Fig. 1. The numerical data can be found in
the columns headed “O0OD” and “AA” in Table 4.

C.2 LEARNING WITH IMBALANCED DATA-SETS
C.2.1 PERFORMANCE ON STANDARD TEST DATA AND COMMON CORRUPTIONS DATA

A detailed comparison of the performance of CE and HEM- (the ablated version of HEM that uses a
single margin, and hence, like CE has no additional mechanism for dealing with class imbalance)
is provided in Figs. 5(a) and 5(b) for the standard test data, and the common corruptions data,
respectively. The corresponding detailed comparisons of HEM and LA losses is provided in Figs. 5(c)
and 5(d). The 5" and 6" segments Fig. 2 show the performance of HEM relative to CE for the
standard test data, and the common corruptions data, respectively.

A comparison of results for all tested losses, averaged over the four conditions (and 5 trials per
condition) can be seen in Fig. 5(e). The same results appear in the 5" and 6! segments of Fig. 1.
The numerical data can be found in the columns headed “Clean” and “Corrupt” in Table 5.

C.2.2 PERFORMANCE ON UNKNOWN CLASS REJECTION AND AUTOATTACK REJECTION

A detailed comparison of the performance of CE and HEM- is provided in Figs. 6(a) and 6(b) for
unknown class rejection and adversarial sample rejection, respectively. The corresponding detailed
comparisons of HEM and LA losses is provided in Figs. 6(c) and 6(d). The 7*" and 8" segments
Fig. 2 show the performance of HEM relative to CE for unknown class rejection and adversarial
sample rejection, respectively.
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Figure 5: Results when learning with imbalanced data-sets and testing on clean and corrupt images.
(a) and (b) directly compare the performance produced by HEM- and cross-entropy (CE) losses
when used to train networks with long-tailed (LT) CIFAR10, CIFAR100, and ImageNet data-sets.
Three different network architectures where used with each data-set, and the size of the marker used
corresponds to the size of the network (sizes increase from left to right in Table 5). (c) and (d) show
the same comparisons for HEM and LA losses. (e¢) Shows results averaged over all the data-sets and
network architectures (and five trials in each condition) for all relevant losses: cross-entropy (CE),
LogitNorm (LN), logit-adjusted (LA), DICE, multi-class margin (MM), HEM-, and HEM losses.
The format of this figure is otherwise the same as, and described in the caption of, Fig. 3.
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Figure 6: Results when learning with imbalanced data-sets and testing on unknown and adversarial
images. This figure has an identical format to Fig. 5 except (a) and (c) compares performance of
pairs of losses in terms of the ability to distinguish samples from known and unknown classes, and
(b) and (d) compares the performance of pairs of losses in terms of the ability to deal correctly with
adversarially perturbed samples. In (a) to (d) Maximum Softmax Probability (MSP) is used as the
confidence score. (e¢) Shows results averaged over all the data-sets and network architecture (and
five trials in each condition) for all relevant losses. Closed markers indicate that Maximum Softmax
Probability (MSP) was used as the confidence score, while open markers plot results when using
Maximum Logit Score (MLS). The format of this figure is otherwise the same as, and described in

the caption of, Fig. 4.
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Figure 7: Results for continual learning. (a) to (d) directly compare the performance produced by
HEM and cross-entropy (CE) losses when applied to the PermutedMNIST, SplitMNIST, SplitCI-
FAR10 and SplitCIFAR100 tasks. Results above the diagonal are conditions where better performance
was obtained when training with HEM rather than CE loss. Performance is measured as accuracy
on the test data for all tasks after training on a sequence of five tasks. Error bars show the standard
deviation recorded over five trials. Experiments were performed using a number of techniques to
reduce the effects of catastrophic forgetting: Replay, Synaptic Intelligence (SI), Elastic Weight
Consolidation (EWC), Less-Forgetful Learning (LFL), and Learning without Forgetting (LwF). LFL
was used for PermutedMIST and LwF for the other tasks. (e) Shows results averaged over the four
tasks and the four methods of reducing catastrophic forgetting applied to each task (and five trials
in each condition) for all relevant losses: cross-entropy (CE), LogitNorm (LN), DICE, multi-class
margin (MM), and HEM. Error bars show the mean standard deviation recorded across five trials in
each condition. The light grey bars show results averaged over task and trials when for each loss only
the best performing method of reducing catastrophic forgetting is chosen.

A comparison of results for all tested losses, averaged over the four conditions (and 5 trials per
condition) can be seen in Fig. 6(e). The same results appear in the 7¢" and 8¢ segments of Fig. 1.
In addition, Fig. 6(e) also shows performance when MLS is used as the rejection criterion. The
numerical data can be found in the columns headed “OOD” and “AA” in Table 5.

C.3 CONTINUAL LEARNING

Detailed results comparing the performance of CE and HEM trained networks for each individual
condition together with error-bars can be seen in Figs. 7(a) to 7(d) for each of the four continual
learning tasks. This is the data summarised in the 9*" segment of Fig. 2. A comparison of the
performance of all tested losses averaged over tasks and conditions (and 5 trials per condition) are
shown in Fig. 7(e). The same results appear in the 9" segments of Fig. 1, but in terms of relative
rather than absolute performance. The numerical data can be found in Table 6.
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Table 6: A comparison of the performance produced by different losses when applied to continual
learning. Bold text indicates the best performance for each combination of training data-set and
method of reducing catastrophic interference.

Task Accuracy Accuracy Accuracy Accuracy
Loss (%) (%) (%) (%)
PermutedMNIST __ Reply___ SI EWC___ __LFL__
CE 89.23 £0.34 90.95 £ 1.25 84.74 £0.33 89.17£0.13
LN 92.86 £0.19 83.64 +1.61 87.35+£0.45 94.92 4 0.23
DICE 37.61 +2.01 89.92 +1.01 9.74 +1.44 33.24 + 3.78
MM 82.92+0.19 92.954+0.20 75.03+0.99 84.69 £ 0.44
HEM- 93.30 £ 0.15 67.17+2.44 88.45+0.48 94.28 +0.33
SplitMNIST — Reply___ __Sr _ EWC__ _ LwF___
CE 97.56 £ 0.87 98.68 £ 0.66 93.27 £ 3.38 98.05 £ 0.37
LN 63.86 £+ 3.77 87.74 £10.52  53.65 + 6.02 61.70 £4.13
DICE 50.17 £ 0.67 50.17 £ 0.90 50.53 £0.93 50.89 £ 1.09
MM 96.44 +1.10 98.76 = 0.68  80.31 +3.73 97.04 £0.39
HEM- 98.59 +0.50 96.36 £1.11 98.10 £0.43 99.42 +0.14
SplitCIFAR10 __ Reply__ S _ _EwWC__ _ IwF_
CE 83.68 +1.71 58.81 +£10.06  73.92 £5.97 88.27043.444
LN 69.66 £ 5.89 66.87 =8.93  62.96 +5.12 69.59 £4.90
DICE 50.00 £ 0.00 50.00 £ 0.00 50.00 £ 0.00 50.00 £ 0.00
MM 81.32+3.34 66.83 +9.00 74.31 + 3.83 86.66 + 3.28
HEM- 91.65 +1.19 64.83+10.50 79.63 +4.44 89.01 + 3.99
SplitCIFAR100 __ Reply___ SI EWC__ _ LwF___
CE 42.90 +2.36  45.57 £1.95 2044 +1.74 59.70 & 1.09
LN 7.36 £0.73 32.42 +1.82 5.17+0.28 6.27 +1.07
DICE 5.00 £ 0.00 5.00 £ 0.00 5.00 £ 0.00 5.00 £ 0.00
MM 30.124+2.09 56.39 +1.11 1817+ 1.32 32.84 +1.89
HEM- 42.48 + 2.68 54.55+3.52 28.04 &+ 2.62 4943 +1.61
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Figure 8: Results for semantic segmentation. (a), (b), (c) and (d) directly compare the performance
produced by HEM and cross-entropy (CE) losses when applied to the CamVid, Cityscapes, SBD
and ADE20k benchmarks. Results above the diagonal are conditions where better performance was
obtained when training with HEM rather than CE loss. Performance is measured as mean percentage
Intersection-over-Union (IoU). Results are averaged over five trials (four with ADE20k) performed
for each encoder-backbone architecture (ResNet34, EfficientNet-b4, DenseNet201, and ResNeXt50).
Error bars show the standard deviation recorded over these trials for each condition. (¢) Shows results
averaged over the four data-sets and four encoder-backbone architectures (and multiple trials in each
condition) for all relevant losses: cross-entropy (CE), LogitNorm (LN), Logit-adjusted (LA), DICE,
multi-class margin (MM), HEM-, and HEM. Error bars show the mean standard deviation recorded
across trials in each condition. The light grey bars show results averaged over data-set and trials when
for each loss only the backbone architecture that produces the best results is chosen.
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Table 7: A comparison of the performance produced by different losses when applied to semantic
segmentation. Bold text indicates the best performance for each combination of training data-set and
and network architecture.

Task TIoU IoU ToU IoU

Loss (%) (%) (%) (%)
CamVid _(ResNet34__  EfficientNet-b4. _DenseNet201_ _ResNeXt50_
CE 65.79 + 1.56  64.21 +10.52 65.92 + 0.52 62.20 & 3.07
LN 25.91 +2.94 27.67 + 3.37 23.37 +2.42 20.43 + 3.20
LA 39.61 +2.30 43.80 +1.30 40.72+1.74 38.82 +1.86
Focal 65.78 = 2.19 62.70 £10.08  63.80 £ 1.55 57.63 £9.20
DICE 57.79 + 1.12 58.02 + 0.82 58.17 +0.80 56.74 +1.74
MM 61.05 + 3.03 61.51 +9.78 61.59 +1.28 53.07 £ 12.81
HEM- 58.97 + 2.05 61.26 +1.64 60.97 £1.73 58.56 £ 2.89
HEM 61.77+£4.60 64.62 + 3.55 55.89 +7.71 61.88 +4.11
Cityscapes _(ResNet34__  EfficientNet-b4. _DenseNet201_- _ResNeXt50_
CE 66.49 4+ 1.01 63.20 £11.43 66.98 +0.55 67.23 +1.11
LN 52.84 + 1.55 46.19 + 7.86 51.17 £ 1.41 49.38 + 3.11
LA 54.63 +0.95 52.28 +0.80 55.84 + 8.04 52.00 £ 0.27
Focal 68.27 £ 0.76 58.03 £ 14.14 68.16 0.35 67.63 +0.78
DICE 70.44 +0.10 70.31 £ 1.81 70.97 +£0.17 67.44 +6.27
MM 66.97 +13.21 60.81 £15.71 71.48+1.82 65.83 + 12.56
HEM- 80.02 & 0.22 82.26 +0.61 81.28 £0.76 80.98 £+ 0.19
HEM 74.25 +2.42 68.01 +6.20 71.98 +3.13 74.21 +1.52
SBD _(ResNet34__  EfficientNet-b4. _DenseNet201_ _ResNeXt50_
CE 49.44 +1.41 49.64 + 1.09 48.14 + 1.76 39.51 £ 8.99
LN 19.83 £ 0.65 20.22 +2.37 20.35+1.54 17.41 £1.05
LA 24.18 +0.87 27.11 +2.16 27.29+1.71 24.08 £ 1.58
Focal 39.08 £ 8.50 48.63 4 2.06 47.88 4+ 2.67 44.38 +7.35
DICE 49.00 + 0.00 49.00 £ 0.00 49.00 £ 0.00 49.00 £ 0.00
MM 33.74+£1.78 32.07 £ 1.60 36.02 +4.51 29.30 &+ 5.02
HEM- 51.80 +5.03 29.59 +£22.64 31.304+20.84 37.96 + 23.60
HEM 55.46 == 1.14 55.91 +£1.65 55.73 +0.96 53.77+1.73
ADE20k  __(ResNet34__ EfficientNet-b4. _DenseNet201_ _ResNeXt50_
CE 12.76 £0.73 12.25 +£0.47 12.34 £0.12 11.83 £0.93
LN 17.06 £0.19 16.70 £ 0.36 16.81 £ 0.58 16.00 £ 0.62
LA 6.16 £ 0.34 6.54 +0.13 6.48 +0.14 6.23 +£0.23
Focal 12.12£0.99 12.58 £ 0.08 12.50 £ 1.03 11.48 £0.45
DICE 6.60 £ 0.57 6.14 £0.24 6.93 +£0.25 4.63 £0.33
MM 8.64 £0.13 9.35+£0.74 8.52 £0.51 4.744+2.13
HEM- 41.54 +£0.91 42.37 +1.61 42.99 +0.67 41.98 £+ 0.87
HEM 22.824+0.78 22.224+0.74 22.58 +0.56 21.77 £ 1.09
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Figure 9: The effects of the loss hyper-parameter on LogitNorm (LN) and Multi-class Margin (MM)
losses. Results for LN are shown in (a) and (b). Results for MM are shown in (c¢) and (d). Performance
metrics are averaged over five trials performed with each parameter value, and the error bars show the
standard deviation recorded across these five trials. Experiments were performed using the ResNet18
architecture trained using the standard training data for CIFAR10. Performance was evaluated using
accuracy on the standard (clean) test data-set (a) and (c), and using AUROC to evaluate the accuracy
with which known and unknown classes can be distinguished when Maximum Softmax Probability is
used as the confidence score (b) and (d).

C.4 SEMANTIC SEGMENTATION

Detailed results comparing the performance of CE and HEM trained networks for each backbone
architecture together with error-bars can be seen in Figs. 8(a) to 8(d) for each of the four semantic
segmentation benchmarks. This is the data summarised in the 10*" segment of Fig. 2. A comparison
of the performance of all tested losses averaged over datasets and architectures (and multiple trials
per condition) are shown in Fig. 8(e). The same results appear in the 10*" segments of Fig. 1, but in
terms of relative rather than absolute performance. The numerical data can be found in Table 7. This
table also includes results for Focal loss, a popular loss for segmentation tasks. Focal loss (Lin et al.,
2017; Mukhoti et al., 2020) is a variant of CE loss that reduces the push towards infinite confidence.
It defines a scaling factor that modifies the CE loss so that samples that are well classified (i.e.,
have low CE loss) have even lower Focal loss. This hyper-parameter was set to a value of 2 in our
experiments, which is the commonly used default value. Overall Focal loss performed similarly to CE
loss (sometimes better, sometimes worse), and hence, much worse than HEM. The condition in which
Focal loss out-performs CE loss by the largest margin was for the SBD data-set using the ResNeXt50
backbone. Here, CE achieves an IoU of 39.5% while Focal loss achieves 44.4%. However, this is
still far behind HEM which achieves 53.8%.

D SUPPLEMENTARY EXPERIMENTS

D.1 LosS HYPER-PARAMETER SELECTION

One of the great advantages of CE loss is that it does not introduce additional hyper-parameters that
need to be tuned for different network architectures and tasks. Ideally, an alternative loss should also
work without the need for hyper-parameter tuning. Preliminary experiments were performed to select
an appropriate value for the hyper-parameter of each loss function that introduces such a parameter.
These experiments were carried out using ResNet18 networks trained on CIFAR10: a combination of
network architecture and data-set that was not used in the main experiments. The training set-up was
as described in Appendix B.1 for training other ResNets, WRNs and PARN on CIFAR data. Results
for these preliminary experiments are shown in Fig. 9 for LN and MM losses, and Fig. 10 for HEM
loss.

Because the CIFARI10 training data is balanced, HEM is equivalent to HEM-, and we only consider a
single, shared, margin p. For HEM, we expected that the results would be insensitive to the choice of
1 as learning would scale the magnitude of the logits to match the chosen margin. Consistent with
this expectation, the accuracy in classifying the CIFAR10 test set was fairly constant for networks
trained using margin values ranging over more than two orders of magnitude (Fig. 10(a)). The choice
of margin does, however, effect the ability to differentiate known and unknown classes using the
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Figure 10: The effects of the HEM loss margin. Performance metrics are averaged over five trials
performed with each margin value, and the error bars show the standard deviation recorded across
these five trials. Experiments were performed using the ResNet18 architecture. Results in (a) and
(b) are for networks trained using the full CIFAR10 training dataset. Results in (c) and (d) are for
networks trained using a reduced CIFARI10 training dataset containing 50 samples per class. (a) and
(c) show the effect of the margin on the accuracy of classifying the CIFAR10 test-set. (b) and (d)
show the effects of the margin on the ability to identify, and reject, samples from unknown classes.
Performance is averaged over seven out-of-distribution data-sets and the rejection criteria is based on
either Maximum Softmax Probability (MSP) or Maximum Logit Score (MLS).

Maximum Softmax Probability (MSP) confidence score, as shown in Fig. 10(b). A large margin
will cause the network to learn to produce high magnitude logits. The softmax function applied to
larger magnitude logits will produce a more peaked distribution. As a result, the confidence in the
prediction being made when measured using MSP, for both known and unknown classes, will be
higher and it will become more difficult to distinguish known from unknown classes. However, even
with a large margin, it is possible perform unknown class rejection if Maximum Logit Score (MLS)
is used as the measure of prediction confidence (Fig. 10(b)).

If the the margin is reduced so that it approaches zero (or becomes negative) performance should
degrade, as the classifier will not have learnt to produce higher logits for the correct class. For
example, ResNet18 networks trained on CIFAR10 with HEM loss and ;& = 0 have mean standard
test-set accuracy of 90.7% (cf., with the results in Fig. 10(a)). We expected that the point at which
the performance would degrade would depend on the number of training exemplars. When there are
few training exemplars a larger margin is likely to be required in order allow accurate generalisation,
whereas, when there are many training exemplars the decision boundary can be positioned more
accurately and a smaller margin is sufficient to separate samples from different classes. To demonstrate
this the previous experiments were repeated using a version of the CIFAR10 training data-set that
contained only 50 samples per class (rather than the 5000 samples per class in the full CIFAR10
training set). As can be seen from Fig. 10(c), a larger margin is required to reach the upper limit
of accuracy in this case. Based on these results it was decided to set the margin to be equal to

M/ " si, where s; is the number of samples in class ¢ and M was fixed at 2000. This equates
to o = 0.2 for the full CIFARI1O training set, and p = 2 for the 50 samples per class version.

D.2 ANALYSIS OF PREDICTION CONFIDENCE

As expected given the analysis in Section 2.1, CE loss tends to produce very high confidence for most
samples (Fig. 11(a)). In contrast, the margin-based losses produce a much wider range of prediction
confidence values for the known data (Figs. 11(b) and 11(c)). This was expected as none of these
losses can be optimised by increasing the magnitude of the logits vector, and hence, the MSP. This
confirms that the advantages in unknown class rejection we observe for HEM is indeed due to less
severe overconfidence. MM loss fails to improve unknown class rejection performance beyond that
of CE loss, and typically results in lower accuracy on the standard test data, particularly for data-sets
with a large number of classes. As discussed in Section 2.2, an explanation for these empirical
observations is that the MM loss tends to become close to zero prior to all samples being correctly
classified (especially when n is large), and hence, MM loss effectively terminates weight updates
prematurely.
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Figure 11: Prediction confidence after learning with standard data-sets. Results are for WRN22-10
networks trained on CIFAR10. Each graph shows histograms of the number of samples classified
with different levels of prediction confidence (MSP). Separate histograms are shown for the response
generated to unseen samples from known classes (the CIFAR10 test set) and unknown classes (the
CIFAR100 test set). The former is measured against the right-hand vertical axis and the latter against
the left-hand vertical axis.

15 100 0.3 100
L 80 o5 80
—1loss

AUROC 60 60
0.5 ——Acc 0.2

40 40
0 0.15

0 50 100 0 50 100
Epochs Epochs
(a) CE Loss (b) HEM Loss

Figure 12: Learning dynamics for WRN22-10 networks trained on CIFAR10 with (a) cross-entropy
(CE) loss, (b) high error margin (HEM) loss. Each graph shows the change during training of the
loss, the mean percentage AUROC averaged over seven data-sets containing unknown classes (see
Appendix B.1.2), and the percentage clean accuracy on the standard test-set. The loss is measured
against the left-hand vertical axis and the others two metrics against the right-hand axis. The solid
lines show the mean values over five trials, and the shaded regions indicate the minimum and
maximum values recorded in any of the five trials.

D.3 ANALYSIS OF LEARNING

To check that our loss leads to equally effective learning as CE loss we investigated the changes in
various metrics over the course of training (see Fig. 12). A major difference between CE and HEM
loss is that the latter does not monotonically reduce over the whole course of training. This is to
be expected, as only errors greater than the average contribute to the loss. Hence, it is possible that
parameter updates during learning cause errors to move from just above the average to below the
average. This will increase the mean of the remaining errors. Hence, it is important to prevent the
calculation of the average from being used in the calculation of the gradients.

It can be seen that HEM benefits most from the drop in learning rate near the end of training and
that there are large fluctuations in the loss, and the other recorded metrics, before the learning rate
drop at 100 epochs. Both these observations suggest that HEM might benefit from a lower initial
learning rate. This was confirmed experimentally by reducing the initial learning rate from 0.1 to
0.05. This increased performance for WRN22-10 networks trained on CIFAR10 with HEM loss on
all the metrics used in this paper: the mean clean accuracy increased from 94.73% to 95.32%, the
mean accuracy on common corruption increased from 75.08% to 75.41%, the mean AUROC for
unknown class rejection increased from 96.16% to 96.56%, and mean DAR for adversarial attacks
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Table 8: The effects of random oversampling, a complementary approach for dealing with training
data imbalance, on the performance of CE and HEM- losses. Results are for the CIFAR10LT-100

data-set and the WRN?22-10 architecture.

Loss Clean Corrupt OOD AA Complementary ~ Clean Corrupt OOD AA
Acc. (%) Acc. (%) AUROC (%)  DAR (%) Method Acc. (%) Acc. (%) AUROC (%) DAR (%)

CE 74.73£0.87 55.77+1.26 77.45+£3.72 6.51%0.22 oversampling 73.67 & 0.86 55.26 £ 0.55 80.86 £ 1.84 6.87 +0.20
HEM- 75.21 + 1.33 57.64 4 0.43 89.54 £+ 0.79 6.67 £ 0.48 oversampling 71.89 4 1.35 55.83 +1.57 89.03 £2.22 8.21 £ 0.59

Table 9: The effects of adversarial training, a complementary approach for improving adversarial
robustness, on the performance of CE and HEM- losses. Results are for the CIFAR10 data-set and
the WRN22-10 architecture. Adversarial training was performed using 10 steps of Projected Gradient
Descent (PGD) and the maximum allowed perturbation was constrained by the /,-norm to be less
8
than 5z=.
Loss Clean Corrupt OOD AA Complementary Clean Corrupt OOD AA
Acc. (%) Acc. (%) AUROC (%) DAR (%) Method Acc. (%) Acc. (%) AUROC (%) DAR (%)

CE 95.43+0.18 76.10 £ 0.67 93.31 +£1.01 3.21+0.20 PGD}? 88.04 +£0.21 79.73 £ 0.16 77.92+2.35 68.72 +£0.42
HEM- 94.73 +0.06 75.08 +0.86 96.16 + 0.48 5.91 0.38 PGD}E 86.42 +0.88 78.40+0.78 78.10 £ 2.00 70.00 + 0.90

increased from 5.91% to 6.34%. Further improvements in performance might be expected by more
carefully tuning the learning hyper-parameters for each task.

E LOSSES COMBINED WITH COMPLEMENTARY APPROACHES

The article introduces a new loss. We have, therefore, focused on evaluating this new loss in
comparison with alternative loss functions. For some of the criteria that we have used in our
assessments there exist methods for improving performance that can be used in conjunction with any
loss, including HEM. Comprehensively testing a loss with all of these complementary techniques
would be a very large under-taking, and hence, we leave that for future work. Here, we report only a
few preliminary experiments combining HEM with some well-known complementary approaches.
These methods, like all the others we have used, such as those for reducing catastrophic forgetting,
have been developed to work well with CE loss. As well as evaluating existing methods with HEM,
future work might also develop new techniques specifically designed to work well with HEM.

E.1 COMPLEMENTARY METHODS FOR DEALING WITH IMBALANCED TRAINING DATA

Random oversampling is a standard, baseline, method for training with imbalanced data (Branco
et al., 2015). This method changes the relative frequency with which training samples are selected,
so that samples from all classes appear equally often in the training batches. The result of using
this method with CE and HEM- losses is shown in Table 8. It can be seem that oversampling is
ineffective, resulting in poorer clean accuracy with both losses. This is likely due to the well-known
issue of overfitting to the oversampled samples (Branco et al., 2015). For the other metrics and this
particular combination of data-set and network architecture, HEM- outperforms CE both with and
without oversampling.

E.2 COMPLEMENTARY METHODS FOR ADVERSARIAL ROBUSTNESS

Adversarial training (AT) is a standard, and highly effective, defence against adversarial attack. It
is a data-augmentation technique where training images are modified by adversarial perturbations.
Augmenting the training images using multiple steps of Projected Gradient Descent (PGD; Madry
et al., 2018) has become a standard method of AT against which all other methods of adversarial
defence are benchmarked. The effects of using this form of adversarial training with CE and HEM-
losses are shown in Table 9. It can be seem that AT has similar effects for both losses: trading-off
clean accuracy and OOD rejection performance for increased adversarial robustness and a slight
increase for corrupt accuracy.
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Table 10: Results for alternative methods of unknown class rejection when used with CE and HEM-
losses.
Loss Data-set Architecture OOD AUROC (%)
MSP MLS Energy GEN

CE CIFAR10 ResNet32 91.924+1.16 94.27+£0.83 94.28 £0.90 94.42 +0.78
HEM- CIFARIO ResNet32  95.20 4 0.71 95.15+£0.71 93.97+£0.84 94.06 &+ 0.82
CE TIN ResNet18 73.52+252 74.03+1.81 74.06+1.69 73.32£1.72
HEM- TIN ResNet18 79.49 +£3.15 79.53 & 3.14 77.63 +3.05 77.68 & 3.04

E.3 ALTERNATIVE METHODS FOR UNKNOWN CLASS REJECTION

Many methods have been proposed for detecting samples that come from unknown classes (Yang
et al., 2022; Zhu et al., 2024; Tajwar et al., 2021; Szyc et al., 2023; Vojir et al., 2023). Here we test
four representitive post-hoc rejection methods: ones that can be used without re-training the classifier
or modifying its architecture. MSP and MLS, results for which have already been presented in earlier
sections, and two additional methods, Energy score (Liu et al., 2020) and Generalized Entropy score
(GEN; Liu et al., 2023). Energy score defines prediction confidence as the negative logarithm of
the denominator of the softmax function applied the network output layer. GEN defines confidence
as being inversely proportional to the entropy of the class probability distribution produced by the
classifier. As shown in Table 10, we found that all these methods produced very similar results.
Furthermore, none of these methods enhanced the OOD rejection ability of CE-trained networks to
be better than that of HEM-trained networks.
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