

000 001 002 003 004 005 006 007 008 009 010 A MARGIN-BASED REPLACEMENT FOR CROSS-ENTROPY LOSS

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Cross-entropy (CE) loss is the de-facto standard for training deep neural networks
 012 (DNNs) to perform classification. Here, we propose an alternative loss, high error
 013 margin (HEM), that is more effective than CE across a range of image-based tasks:
 014 unknown class rejection, adversarial robustness, learning with imbalanced data,
 015 continual learning, and semantic segmentation (a pixel-wise classification task).
 016 HEM loss is evaluated extensively using a wide range of DNN architectures and
 017 benchmark datasets. Despite all the experimental settings, such as the training
 018 hyper-parameters, being chosen for CE loss, HEM is inferior to CE only in terms
 019 of clean and corrupt image classification with balanced training data, and this dif-
 020 ference is small. We also compare HEM to specialised losses that have previously
 021 been proposed to improve performance for specific vision tasks. LogitNorm, a
 022 loss achieving state-of-the-art performance on unknown class rejection, produces
 023 similar performance to HEM for this task, but is much poorer for continual learning
 024 and semantic segmentation. Logit-adjusted loss, designed for imbalanced data, has
 025 superior results to HEM for that task, but performs worse on unknown class rejec-
 026 tion and semantic segmentation. DICE, a popular loss for semantic segmentation,
 027 is inferior to HEM loss on all tasks, including semantic segmentation. Thus, HEM
 028 often out-performs specialised losses, and in contrast to them, is a general-purpose
 029 replacement for CE loss.

030 1 INTRODUCTION

031 Deep neural networks (DNNs) are generally trained using variants of stochastic gradient descent.
 032 These optimisers require the loss function to have a gradient. This means that it is not possible to
 033 maximise the classification accuracy directly as this function is piece-wise constant, and therefore,
 034 does not define a usable gradient. As a result, it is necessary to use a *surrogate* loss function that has
 035 a gradient, but still encourages few classification errors. The design of the loss function is important
 036 as different losses will lead to different training speeds and cause convergence to different parameters.
 037 While many possible surrogate loss functions have been proposed (Wang et al., 2022; Terven et al.,
 038 2025), cross-entropy (CE) loss is by far the most common choice for classification tasks.
 039

040 In some specific domains better performance can be obtained by using other losses. For example,
 041 alternative losses and regularisation terms have been proposed to improve robustness to adversarial
 042 attack (Cui et al., 2024; Mao et al., 2019; Tack et al., 2022; Zhang et al., 2019; Kannan et al., 2018;
 043 Kanai et al., 2023; Awasthi et al., 2023; Yu & Xu, 2023; Panum et al., 2021; Pang et al., 2020). In the
 044 domain of open-set recognition, where the aim is to better detect and reject images from “unknown”
 045 classes, alternative losses (such as contrastive losses) have been employed together with architectural
 046 modifications to improve performance beyond that achieved by CE (Zhu et al., 2023; Ming et al.,
 047 2023). Alternatively, LogitNorm loss (Wei et al., 2022), can be employed to improve unknown class
 048 rejection without the need for modifications to the network architecture or training procedure. To
 049 deal with situations where the training data contains drastically different numbers of samples for
 050 different classes (“class imbalance”), state-of-the-art approaches use a logit-adjusted loss which
 051 weights minority classes more heavily (Menon et al., 2021; Ren et al., 2020; Cui et al., 2019). For
 052 semantic segmentation, where the aim is to assign a class label to each image pixel, the two largest
 053 groups of losses centre around CE and its variants, and DICE and its variants (Ma et al., 2021; Azad
 et al., 2023). DICE loss (Milletari et al., 2016) is designed to be particularly effective when there
 is class imbalance, a common situation in segmentation tasks. While these specialised losses can

Figure 1: Summary results for all the different tasks considered, comparing the average performance of cross-entropy (CE) loss to each of the alternative losses that have been evaluated: LogitNorm (LN), Logit-adjusted (LA), DICE, multi-class margin (MM), high error margin with shared margin (HEM-), and high error margin with adjusted margins (HEM). Results are averaged using the arithmetic mean over all other factors that were varied in the experiments. Specifically, for all experiments on “Training with Standard data” (the first four segments of the figure), each bar is an average of 71 experiments (5 data-sets x 3 network architectures x 5 repeats, except for one combination of data-set and architecture where only one trial was performed). For all experiments on “Training with Imbalance Data” (the fifth to eighth segments) each bar is an average of 75 experiments (5 data-sets x 3 network architectures x 5 repeats). For the experiments on continual learning (the ninth segment), each bar is an average of 80 experiments (4 data-sets x 4 continual learning techniques x 5 repeats). For experiments on semantic segmentation (the tenth segment), each bar is an average of 76 experiments (3 data-sets x 4 network architectures x 5 repeats + 1 data-set x 4 network architectures x 4 repeats). For all the evaluation metrics used, higher values indicate better performance. The relative performance is calculated by subtracting the performance produced by CE loss from the corresponding metric for each of the other losses. Hence, positive values indicate average performance better than that of CE loss. Note that the results for LA are equal to those of CE, and the results for HEM are equal to those of HEM- when the training data is balanced: *i.e.*, when using standard training data (results in segments 1 to 4 of the figure) and when performing continual learning (segment 9).

outperform CE on the specific tasks for which they were developed, they tend to perform poorly outside of their specialised domain, as is confirmed by our results which are summarised in Fig. 1.

The fact that specialised losses out-perform CE on certain tasks motivates the search for a better classification loss function, that performs well on a range of tasks. For simpler statistical models, margin based losses (Crammer & Singer, 2002) are known to be general-purpose and show better generalisation behaviour than CE loss. We hypothesised that similar advantages could be achieved for DNNs by using a margin based loss. Particularly, we expected a margin-based loss to train networks that were less susceptible to making over-confident predictions, and hence, that would be better able to distinguish known from unknown classes. Furthermore, a margin-based loss should be less prone to over-write previously learnt weights, which could reduce catastrophic forgetting in continual learning and over-writing weights necessary to classify minority classes when training with imbalanced data. Hence, a margin-based loss is a promising candidate for a general-purpose classification loss function. However, the existing multi-class margin-based loss (MM) results in performance that is frequently much worse than that achieved with CE loss (Fig. 1).

108

109
110
111
112
113
Table 1: Example outputs (logits), \mathbf{y} , from the last layer of an imaginary neural network being trained
to perform a 4-way classification task, and the corresponding losses associated with each of these
predictions when the first output represents the correct class. Hyper-parameters for each loss were set
to $\tau = 1$ for cross-entropy (CE) loss, $\tau = 0.04$ for LogitNorm (LN) loss, and $\mu = 0.5$ for multi-class
margin (MM) and high error margin (HEM).

	\mathbf{y}	CE	LN	MM	HEM
114	[1.0 -1.0 -1.0 -1.0]	0.34	0.00	0.00	0.00
115	[0.6 0.1 0.1 0.1]	1.04	0.00	0.00	0.00
116	[0.6 0.3 0.0 -0.1]	1.02	0.00	0.11	0.45
117	[0.6 0.5 0.0 -0.7]	1.00	0.09	0.16	0.63
118	[0.6 0.7 0.0 -3.5]	0.98	1.10	0.19	0.77
119	[0.0 1.0 0.0 0.0]	1.74	25.00	0.66	0.88

120

121

122

123
124
125
126
127
128
129
130
Here, we propose high error margin (HEM) loss, a new margin-based loss function that can be used
as a general-purpose replacement for CE loss. To motivate our new loss we first describe issues
with CE loss (Section 2.1) and MM loss (Section 2.2). Section 3 describes HEM loss which fixes
the shortcomings of the existing losses that we have identified in our analysis in Section 2. Finally,
we present extensive evaluations performed using nineteen different neural network architectures
(ranging in size from LeNet to Vit-B/16) trained on many different data-sets (ranging in size from
MNIST to ImageNet1k). We find that HEM is competitive with or out-performs CE loss across a
range of classification tasks (Section 4). Full details of CE and all the other existing loss functions
that we consider are given in Appendix A.

131

132

133
2 ANALYSIS AND MOTIVATION

134

135

136
2.1 ISSUES WITH CE LOSS

137

138
139
140
141
142
143
144
145
Even when a classifier produces the correct classification with high confidence, the CE loss is far
from zero (Table 1, row 1). Consequently the gradients will be non-zero and each presentation of a
correctly classified training sample will cause the weights to be modified so that the outputs become
ever more extreme (highly positive for the logit representing the correct class and highly negative
for the logits representing the incorrect classes). CE loss therefore encourages a DNN to map every
training exemplar to an output where confidence in the predicted classification is extremely high. It
is to be expected that such a DNN will produce high confidence for all samples, including ones not
seen during training. It is unsurprising, therefore, that CE-trained DNNs have issues using prediction
confidence to distinguish known from unknown classes.

146

147
148
149
150
151
152
153
CE loss continuing to update the weights even when the correct classification has been learnt
successfully, will cause weights to be over-written. This behaviour may underlie some of the issues
when CE loss is used for continual learning and learning with imbalanced training data. For good
performance in these tasks it is necessary to maintain weights that represent classes learnt earlier
or that have few training samples. Even after the classifier has achieved perfect performance, CE
loss will update the weights further causing some forgetting of the previously learnt classes or the
minority classes. This is consistent with the observation that models learn fewer features relevant to
the minority classes than the majority classes (Dablain et al., 2024).

154

155
156
157
158
Another issue with CE loss is that it can be lowered by reducing the logit for an already clearly
rejected class without increasing the difference to the closest competitor class. As a result, CE loss can
behave quite counter-intuitively: decreasing even though the prediction is becoming poorer (Table 1,
second to third rows). Most concerningly, CE loss can even be lower for incorrect classification
(Table 1, penultimate row), than for correct classification.

159

160
161
LogitNorm (LN), multi-class margin (MM) and the proposed high error margin (HEM) losses, do
not suffer from these issues. These losses produce a loss of zero for samples where the output of the
neuron representing the true class is sufficiently larger than the outputs of other neurons (Table 1 top
rows) and non-zero losses only for predictions that are worse at distinguishing the true class from the

162 alternatives (Table 1 bottom rows). In the case of MM and HEM, this is due to these losses using a
 163 margin. In the case of LN loss this is due to it behaving like a margin loss (Appendix A.2.1).
 164

165 2.2 ISSUES WITH MM LOSS

167 The analysis in Section 2.1 suggests that a margin-based loss should have advantages over CE loss. A
 168 margin loss, including our proposed High Error Margin (HEM) loss, defines an error, e_i , associated
 169 with each logit, y_i , as follows:

$$170 \quad 171 \quad e_i = \begin{cases} \max(0, y_i - y_l + \mu_i) & \text{if } i \neq l \\ 172 \quad 0 & \text{if } i = l \end{cases} \quad (1)$$

173 where μ_i is the margin (a non-negative hyper-parameter) for logit i , and l is the index corresponding
 174 to the correct class (*i.e.*, the ground-truth class label). The error is zero when the output from the
 175 neuron representing the correct class exceeds the outputs of the other logit by at least the margin.

176 MM loss, the existing margin-based loss (see Appendix A.5 for full details), produces classifiers
 177 that have significantly lower accuracy on the standard test data compared to equivalent CE-trained
 178 classifiers (as shown in Fig. 1). We put this down to the method used to combine the errors. In
 179 MM loss this is achieved by averaging (or summing) the errors (across logits and samples in the
 180 batch). We believe this method of combining the error causes the gradient magnitude to change too
 181 much over the course of training. The loss is much higher at the start of training than near its end,
 182 because most errors become zero. This effect either prevents the suppression of the last non-zero
 183 errors towards the end of training or leads to instability at the start. The severity of this problem is
 184 increased for tasks with more classes.

185 3 HIGH ERROR MARGIN LOSS

188 We propose to solve the training issues of MM loss (Section 2.2) by combining the errors (Eq. (1)) in
 189 a more adaptive way to reduce the change in gradient magnitude during training. For each sample, all
 190 error values below the mean are set to zero, and the mean of above-zero values is calculated:

$$191 \quad 192 \quad \mathcal{L}_{HEM} = \frac{\sum_{i=1}^n (\mathbf{1}[e_i \geq \frac{1}{n} \sum e_j] \times e_i)}{\sum_{i=1}^n \mathbf{1}[e_i \geq \frac{1}{n} \sum e_j]} \quad (2)$$

194 where n is the number of classes, and $\mathbf{1}[\cdot]$ is the indicator function, which equals 1 if the argument is
 195 true and 0 otherwise. We call this loss the high error margin (HEM) loss, as it takes the average only
 196 of high errors. Losses for different samples in the batch are also combined by finding the mean of
 197 above-zero values. Note that the computation of the mean error, used by the indicator function in
 198 Eq. (2), is detached from the computational graph so that it does not affect the gradients.

199 At the start of learning, when a large number of logits produce errors (especially when n is large),
 200 the mean error for each sample will be significant and, by only considering those losses above the
 201 mean, HEM concentrates on reducing the largest errors. Later in learning, there will be many zero
 202 errors and as a result, the mean error will be small (likely smaller than the few non-zero errors that
 203 remain). Hence, at this stage in training thresholding the errors by the mean will have little effect.
 204 However, by taking the mean of only the above-zero values, the loss will remain large even when
 205 there are few non-zero errors in each sample, and/or few incorrectly classified samples in a batch. As
 206 a result, HEM loss concentrates on the logits that produce the highest errors throughout learning. The
 207 effectiveness of the proposed method of combining errors, compared to that used in MM loss, was
 208 confirmed in an ablation study presented in Section 4.5.

209 We present results for two variants of the proposed loss:

210 **High Error Margin with adjusted margins (HEM)** which uses per-logit margins as defined in
 211 Eq. (1). Each margin was set to be inversely proportional to the number of training samples
 212 associated with that class. Specifically, $\mu_i = \sqrt{M/(ns_i)}$, and s_i is the number of samples
 213 in class i . The separate, class specific, margins help deal with class imbalance.

214 **High Error Margin with shared margin (HEM-)** which (like MM loss) sets all margins to the
 215 same value (*i.e.*, $\mu_i = \mu \forall i$). The shared margin was made equal to $\sqrt{M/\sum_{i=1}^n s_i}$. HEM-

216 is an ablated version of the proposed loss that we use to provide a fairer comparison with
 217 CE and MM losses which do not employ mechanisms to deal with class imbalance.
 218

219 Both versions employ a single hyper-parameter, M . Based on preliminary experiments (see Ap-
 220 pendix D.1) M was set to a value of 2000 for all other experiments described in this paper. Note that
 221 when the training data contains the same number of samples per class, all the margins used by HEM
 222 are equal, and HEM is identical to HEM-.

223 **4 RESULTS**

224 **4.1 LEARNING WITH STANDARD DATA-SETS**

225 We compared the performance of networks trained with our proposed loss, HEM, to the performance
 226 of identical networks trained with the alternative losses described in Appendix A. We have sought
 227 to produce a fair and representative evaluation of the different losses by using many different tasks,
 228 data-sets, and network architectures. Performance was tested using a number of different metrics
 229 to assess accuracy, generalisation, and robustness. For all metrics larger values correspond to better
 230 performance. Full details of the tasks, data-sets, evaluation metrics, DNN architectures and training
 231 set-ups are provided in Appendix B.

232 The tasks were chosen to include essential and important applications in computer vision (image
 233 classification and semantic segmentation), and tasks where we expected our margin loss to perform
 234 well, due to it not learning to make predictions with very high confidence (unknown class rejection)
 235 and stopping weight updates once adequate performance is achieved (continual learning and learning
 236 with imbalanced data).

237 For each experimental condition (combination of data-set, network architecture, and loss function) a
 238 network was trained and evaluated multiple times (typically five), each time with a different random
 239 weight initialisation and random presentation order of training samples. In the main text, summary
 240 results are presented by showing the average performance relative to CE loss. Detailed results
 241 showing absolute performance together with error-bars are reported in Appendix C.

242 Each experiment was performed using a single NVIDIA Tesla V100 GPU with 16GB of memory,
 243 except for experiments with ImageNet1k which were executed in parallel on four such GPUs.
 244 Performance differences can be interpreted independently of computational cost because the time
 245 taken to compute any of the losses is negligible compared to the overall execution time.

246 Performance on standard image classification tasks was assessed using five benchmark data-sets:
 247 MNIST, CIFAR10, CIFAR100, TinyImageNet and ImageNet1k. For each training data-set ex-
 248 periments were performed using three different neural network architectures (see Table 3 in Ap-
 249 pendix B.1.3). Performance was evaluated in terms of the following criteria: accuracy on standard
 250 test data, accuracy on common corruptions test data, ability to identify and reject samples from
 251 unknown classes, and the proportion of adversarial samples correctly classified or rejected (details in
 252 Appendix B.1).

253 **4.1.1 PERFORMANCE ON STANDARD TEST DATA AND COMMON CORRUPTIONS DATA**

254 Networks trained using CE loss and HEM loss (here, because the training data is balanced, HEM- =
 255 HEM) have comparable performance on classifying the standard test data and the common corruptions
 256 data (Figs. 1 and 2, 1st and 2nd segments), although CE loss has a small advantage. On average this
 257 advantage for clean accuracy is 1.19% across the fifteen conditions (five data-sets with three network
 258 architectures per data-set). This difference is small compared to the changes in clean accuracy that
 259 can be produced by small changes to the training setup (He et al., 2019; Wightman et al., 2021;
 260 Pang et al., 2021). Of the specialized losses, LN loss achieves similar accuracy on clean and corrupt
 261 test data as HEM, while DICE and MM losses perform much worse (Fig. 1, 1st and 2nd segments).
 262 Detailed results are given in Appendix C.1.1.

263 **4.1.2 PERFORMANCE ON UNKNOWN CLASS REJECTION**

264 Classification accuracy measured on the standard test set, which contains samples from a similar
 265 input distribution to the training data, has been the main pre-occupation of most research in the

Figure 2: Summary results for all the different tasks considered, showing the relative performance of high error margin (HEM) loss compared to Cross-Entropy (CE) loss. Relative performance is calculated as described in Fig. 1. Hence, points above the horizontal line indicate HEM performance better than that of CE. Please note the separate y-axis scales used in each segment of this figure. In contrast to Fig. 1, here separate results are shown for each training data-set. When there are multiple results for the same data-set, these were obtained using different DNN architectures, or in the case of continual learning different techniques for preventing catastrophic forgetting. Each marker shows the difference in the mean performance achieved across multiple trials. The ‘x’ and ‘+’ markers indicate experiments where there was or was not a significant statistical difference in the performance produced by the two losses, as evaluated using the two-sample t-test (with $p < 0.05$). The blue/red markers indicate conditions where CE/HEM loss had the significantly better performance. For information about the variability of performance across trials please see the more detailed results in Appendix C.

history of machine learning so far. On such data, as confirmed by the preceding results, CE loss performs the best and for this reason has become the standard loss function for training classifiers. However, more recently, there has been growing concern that accuracy on the standard test data is insufficient to ensure that classifiers are safe, reliable, and trustworthy in more realistic scenarios (Spratling, 2025; Bowers et al., 2023; Amodei et al., 2016; Heaven, 2019; Serre, 2019; Yuille & Liu, 2021; Marcus, 2020; Nguyen et al., 2015; Roy et al., 2022; Sa-Couto & Wichert, 2021; Geirhos et al., 2020, 2018; Ilyas et al., 2019; Papernot et al., 2016; Akhtar & Mian, 2018). In particular, it is well known that CE-trained DNNs are susceptible to making over-confident predictions. For example, when shown samples that do not belong to any of the classes in the training data a DNN may predict with high confidence that these samples belong to one of the known categories (Hendrycks & Gimpel, 2017; Amodei et al., 2016; Kumano et al., 2022; Nguyen et al., 2015). Such over-confidence for unknown classes may cause errors in real-world scenarios where such samples might be commonly encountered and in situations where dishonest actors deliberately attempt to fool the classifier into making erroneous predictions.

To evaluate how susceptible a network is to this kind of overconfidence error, we can test whether we can detect and reject out-of-distribution samples based on the confidence of the network (see Appendix B.1.2 for details). This evaluation method is called open-set recognition (Vaze et al., 2022; Yang et al., 2022), out-of-distribution (OOD) detection/rejection (Hendrycks & Gimpel, 2017; Mohseni et al., 2020; Bitterwolf et al., 2022; Zhang & Ranganath, 2023; Hendrycks et al., 2022b),

324 or unknown class rejection (Spratling, 2025). For the results reported here, Maximum Softmax
 325 Probability (MSP; Hendrycks & Gimpel, 2017) was used as the confidence score, but similar results
 326 were obtained using Maximum Logit Score (MLS; Vaze et al., 2022; Hendrycks et al., 2022a) (see
 327 Fig. 4(c) in Appendix C.1.2).

328 For unknown class rejection, HEM provides significantly better performance on average than all other
 329 tested losses (Fig. 1, 3rd segment). In all but one of the fifteen conditions we tested (five data-sets
 330 with three network architectures per data-set) HEM outperforms CE (Fig. 2, 3rd segment). DICE
 331 loss and MM loss perform very badly (Fig. 1, 3rd segment). HEM loss even beats LN loss despite
 332 LN being a specialised loss that produces state-of-the-art performance on unknown class rejection.
 333 Detailed results are given in Appendix C.1.2, and an analysis of the prediction confidence scores
 334 produced by different losses is given in Appendix D.2.

335

336

337 4.1.3 PERFORMANCE ON AUTOATTACK REJECTION

338

339 Another robustness problem faced by DNNs is their susceptibility to adversarial attacks: being fooled
 340 into making the wrong prediction by small perturbations that do not change the class of the perturbed
 341 sample to a human observer (Szegedy et al., 2014; Goodfellow et al., 2015; Kurakin et al., 2017;
 342 Eykholt et al., 2018; Biggio & Roli, 2018). Here we test susceptibility to this problem using the DAR
 343 score (Spratling, 2025), which is the proportion of adversarially perturbed samples that are rejected as
 344 out-of-distribution or are not rejected but still classified correctly. The rejection/acceptance threshold
 345 is set so that 95% of correctly classified clean examples are accepted. Adversarial samples were
 346 generated using AutoAttack (AA; Croce & Hein, 2020) (details in Appendix B.1.2).

347

348

349 HEM-trained networks have a large advantage over identical CE-trained architectures in terms of
 350 correctly dealing with adversarial attacks (Fig. 1, 4th segment). In this case, HEM outperforms CE in
 351 all fifteen conditions (Fig. 2, 4th segment). Compared to CE, HEM loss has a much larger advantage
 352 in terms of its ability to enable accurate unknown class rejection, and also to detect adversarial attacks,
 353 than the small disadvantage it has in terms of clean and corrupt accuracy. HEM also outperforms, by
 354 a large margin, the other tested losses on adversarial robustness (Fig. 1, 4th segment). Detailed results
 355 are given in Appendix C.1.2.

356

357

358 4.2 LEARNING WITH IMBALANCED DATA-SETS

359

360 The ability to learn when the training data contains a very different number of samples for different
 361 classes (*i.e.*, with long-tailed data) was tested using the CIFAR10, CIFAR100 and ImageNet training
 362 data. This training data was modified to produce long-tailed data, using standard methods used in
 363 previous literature, by removing different numbers of samples from each class. Performance was
 364 evaluated on multiple network architectures using all the performance criteria used in the Section 4.1
 365 to evaluate networks trained with balanced data-sets. Full details of the experimental methods are
 366 provided in Appendix B.2.

367

368

369 A comparison of the performance of networks trained on imbalanced data using CE and HEM losses
 370 reveals a similar pattern of results as where obtained with standard training data. Specifically, similar
 371 performance for the two losses on standard and corrupt test data (Figs. 1 and 2, 5th and 6th segments),
 372 better performance with HEM loss on unknown class rejection and adversarial attacks (Figs. 1 and 2,
 373 7th and 8th segments).

374

375

376 Comparing HEM and LA loss (a version of CE designed to improve performance on imbalanced
 377 data) shows that LA has an advantage in terms of clean and corrupt accuracy, but that networks
 378 trained with HEM are better at identifying, and rejecting, unknown and adversarial samples. The
 379 high performance of LA loss on the clean data raises the prospect that there may be more optimal
 380 settings for the margins in HEM.

381

382

383 HEM (and HEM-) perform as well as, or better than LN on all of the four evaluation metrics. DICE
 384 loss performs significantly worse than HEM on all evaluation criteria. However, the performance
 385 of DICE loss on adversarial attacks can, surprisingly, be improved beyond all other losses by using
 386 the MLS score as the rejection criterion (see Fig. 6(e) in Appendix C.2). A full set of more detailed
 387 results are provided in Appendix C.2.

378 4.3 CONTINUAL LEARNING
379

380 The performance of HEM loss when applied to continual learning was assessed using standard
381 benchmark tasks: PermutedMNIST, SplitMNIST, SplitCIFAR10, and SplitCIFAR100. Due to
382 catastrophic forgetting (French, 2003), the over-writing of previously learned weights when training
383 on a new task, all loss functions perform very poorly at continual learning unless a strategy is
384 used to reduce forgetting. Many such strategies have been proposed. Here five were used: Replay
385 (Robins, 1993; Chaudhry et al., 2019), Synaptic Intelligence (SI; Zenke et al., 2017), Elastic Weight
386 Consolidation (EWC; Kirkpatrick et al., 2017), Less-Forgetful Learning (LFL; Jung et al., 2016), and
387 Learning without Forgetting (LwF; Li & Hoiem, 2016). Each loss function was used in combination
388 with each of these continual learning strategies, and performance was evaluated at the end of a
389 sequence of five training episodes using unseen test data for all the five sub-tasks that were learnt
390 during training. Full details of the experimental methods are provided in Appendix B.3

391 HEM performed considerably better on average at continual learning than CE loss (Fig. 1, 9th
392 segment), consistent with our expectations (Section 2.1). In 11 of the 16 conditions tested, better
393 performance was obtained using HEM loss rather than CE loss (Fig. 2, 9th segment). Furthermore,
394 if only the best performing combination of loss and strategy of reducing catastrophic forgetting is
395 considered for each loss, then in three of the four tasks HEM loss produces better performance than
396 CE loss (Figs. 7(a) to 7(d) in Appendix C.3). This is remarkable as the training recipes used were
397 designed to produce the best performance for each method of reducing catastrophic forgetting when
398 paired with CE loss.

399 HEM has even greater advantages over the other applicable losses that were tested: LN, DICE and
400 MM. LN and DICE losses perform very poorly on continual learning. This suggests that, unlike
401 HEM and CE losses, they do not generalise to tasks outside of the specialised domain for which they
402 were developed. As there is no class imbalance in the training data used here, LA is equivalent to CE,
403 and HEM is equivalent to HEM-. Detailed results are given in Appendix C.3.

404 4.4 SEMANTIC SEGMENTATION
405

406 Performance on semantic segmentation was assessed using four standard data-sets: CamVid (Brostow
407 et al., 2009), Cityscapes (Cordts et al., 2016), SBD (Hariharan et al., 2011), and ADE20k (Zhou et al.,
408 2017). For each data-set multiple experiments were performed using the FPN architecture (Kirillov
409 et al., 2019) with four different backbones. Full details can be found in Appendix B.4.

410 HEM- performs better than HEM (Fig. 1, 10th segment), suggesting that our heuristic for setting
411 the margins does not generalise from image classification to semantic segmentation. However, even
412 with sub-optimal margins, HEM shows considerably better average performance than CE, and all the
413 other existing losses considered. For some backbone architectures CE loss produced superior image
414 segmentation performance to HEM loss on the CamVid data-set (Fig. 2, 10th segment and Fig. 8(a)
415 in Appendix C.4). However, for the three larger data-sets, HEM loss out-performed CE loss with all
416 four backbone architectures (Fig. 2, 10th segment and Figs. 8(b) to 8(d) in Appendix C.4).

417 LN and LA losses perform very poorly (Fig. 1, 10th segment) showing that these specialised losses
418 do not work well outside of the specific domain for which they were created. DICE, a specialised
419 loss developed specifically for segmentation tasks, has performance similar to that of CE, but worse
420 than HEM (the proposed loss that uses class specific margins to help deal with imbalanced data) and
421 HEM- (the ablated version of the proposed loss with a single, shared, margin). The advantage of
422 HEM is even clearer if for each data-set only the results for the backbone architecture that gives the
423 best results for each loss is considered (Fig. 8(e) in Appendix C.4).

424 4.5 ABLATION STUDY
425

426 HEM, differs from MM loss in terms of 1) using class-specific margins, and 2) how the errors are
427 combined (Section 3). The effects of the first modification can be seen from the results for HEM-
428 that have already been presented. The effects of the second modification were tested using ResNet18
429 networks trained on CIFAR10 and CIFAR100. The training set-up was as described in Appendix B.1.

430 The first change to how the errors are combined is to include only above-zero error values when
431 calculating the mean error. This modification alone produces an improvement in classification

432
 433 Table 2: Ablation study on the effects of the proposed changes to MM loss on classification accuracy.
 434 Results are for ResNet18 networks trained on CIFAR10 and CIFAR100 using a margin of $\mu = 0.2$.
 435 Results are averaged over five trials and the standard deviation is given after the \pm symbol. The best
 436 result in each column is highlighted in bold. The changes made to standard MM loss are denoted as
 437 “maz” for taking the mean of above-zero errors, and “thres” for setting errors below the mean to zero.

438	Loss	Clean Accuracy (%)	
		CIFAR10	CIFAR100
439	MM	93.79 \pm 0.11	70.13 \pm 0.19
440	+maz	93.81 \pm 0.23	74.94 \pm 0.35
441	+thres	93.78 \pm 0.22	73.13 \pm 0.26
442	+maz+thres = HEM	93.84 \pm 0.19	74.95 \pm 0.46

444
 445 accuracy (Table 2). As expected, this improvement is greatest for the data-set with the most class
 446 labels, as there will be more zero-valued errors across the larger number of logits that this modification
 447 enables the loss to ignore.

448 The second change to how the errors are combined was to set errors less than the mean to zero. On
 449 its own this modification is less effective than the first. This is to be expected, as this modification
 450 causes even more zeros to be included in the average, causing the loss to become low and learning
 451 to cease prematurely. However, when this modification is combined with the first it provides a
 452 small additional boost to performance by encouraging the loss to concentrate on the largest errors,
 453 particularly at the start of training when there are many errors. The advantage of HEM over MM in
 454 terms of clean accuracy is fairly small for the conditions shown in Table 2. However, as shown in
 455 Fig. 1, on average, over many data-sets and network architectures, the advantages of HEM over MM
 456 are highly significant.

458 5 CONCLUSION

460 The proposed high error margin (HEM) loss has been shown to performs well across a very wide
 461 range of tasks, data-set sizes, and network architectures. It trains classifiers that outperform, or
 462 are as good as, those trained with CE loss in all the tasks we have considered except clean and
 463 corrupt image classification with balanced training data. Specifically, over the ten different types of
 464 evaluation we have performed, corresponding the ten segments of Fig. 2, HEM is superior in eight
 465 situations while CE is the best only in two. It is common for there to be a trade-off between clean
 466 accuracy and increased robustness (Spratling, 2025), with HEM the sacrifice in clean accuracy is
 467 relatively small compared to the large increases in performance on other metrics. Furthermore, the
 468 reduction in clean accuracy is likely to be negligible, as optimising the training hyper-parameters
 469 can yielded much bigger improvements in clean accuracy than the difference we observe (He et al.,
 470 2019; Wightman et al., 2021; Pang et al., 2021). A simple experiment where only the initial learning
 471 rate was modified based on intuition gained from observing the learning dynamics substantiates this
 472 claim (see Appendix D.3). In all our experiments, our newly proposed loss was at a disadvantage
 473 because all training and evaluation choices were optimized for CE loss. This applies to the training
 474 hyper-parameters, training schedules, the network architectures, the OOD rejection methods, and the
 475 continual learning techniques: all of which have been painstakingly refined over many years to work
 476 well with CE loss. Despite these disadvantages HEM almost always performs better than CE loss.

477 Some specialised losses performed better than CE loss for the tasks they were designed for, but
 478 all failed on other tasks. In contrast, HEM loss performed well on all tasks. Comparing all the
 479 tested losses across the ten different types of evaluation we have performed, corresponding the ten
 480 segments of Fig. 1, HEM is the best performing in five situations while CE is the best only in two.
 481 LogitNorm (LN) loss (Wei et al., 2022), performs almost as well as HEM loss at out-of-distribution
 482 rejection, but HEM out-performs LN by a considerable margin on continual learning and semantic
 483 segmentation. With imbalanced training data, logit-adjusted (LA) loss (Menon et al., 2021) yields
 484 better performance on standard test data than HEM loss, but HEM is superior at rejecting out-of-
 485 distribution samples. Furthermore, HEM out-performs LA at semantic segmentation, our only other
 486 task with class imbalance. For semantic segmentation the commonly used specialised loss, DICE
 487 (Milletari et al., 2016), performed no better than CE loss in the experimental set-ups we used. HEM

loss performed semantic segmentation more accurately than DICE, and out-performed DICE by a considerable margin on all other tasks. Following current standard practice we have separately assessed performance against different benchmarks. However, it is not hard to imagine real-world scenarios where multiple advantages of our loss might combine to yield even greater advantages over CE and the specialised losses. For example, a task where it is necessary to learn continuously with long-tailed data and the resulting classifier needs to be robust to unknown classes.

HEM loss is zero for any training sample where the activation of the target logit is sufficiently above the value of the other logits. This means that during the later stages of learning many training samples cause no changes to the network weights, and it is possible for autograd to prune the computational graph. As a result training with HEM is faster than training with CE. For example, it reduces training time by approximately 10% for a ResNet18 trained for 200 epochs on TinyImageNet. In dense prediction tasks there will be fewer opportunities to prune the computational graph, however, we still observe a small reduction in training time when using HEM. For example, training the ResNet34 backbone on Cityscapes was approximately 4% quicker using HEM compared to CE. Future research might explore if, rather than saving time, such zero-loss training samples could be augmented to improve generalisation and/or robustness. More generally, it would be particularly interesting to combine HEM with techniques for improving adversarial robustness, or to see if regularisation terms could be added to HEM loss to improve the representations that are learnt. Additionally, further work might explore alternative heuristics for setting the margins or ways of learning margins for different tasks. Subsequent research might also test HEM in other domains, such as language, as there is no reason why HEM loss should not also work for non-visual classification tasks.

6 REPRODUCIBILITY STATEMENT

The experimental set-ups are described in detail in Appendix B. The proposed loss is described fully in Section 3. HEM is trivial to implement and incorporate with an existing code-base. However, to ensure the reproducibility of our results, open-source code implemented in PyTorch (Paszke et al., 2019) which performs all the experiments described in this article will be made publicly available upon publication of this work.

REFERENCES

N. Akhtar and A. Mian. Threat of adversarial attacks on deep learning in computer vision: A survey. *IEEE Access*, 6:14410–30, 2018. doi:[10.1109/ACCESS.2018.2807385](https://doi.org/10.1109/ACCESS.2018.2807385).

D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané. Concrete problems in AI safety, 2016. [arXiv:1606.06565](https://arxiv.org/abs/1606.06565).

P. Awasthi, A. Mao, M. Mohri, and Y. Zhong. Theoretically grounded loss functions and algorithms for adversarial robustness. In F. Ruiz, J. Dy, and J.-W. van de Meent (eds.), *Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS)*, volume 206 of *Proceedings of Machine Learning Research*, pp. 10077–94, 2023. URL <https://proceedings.mlr.press/v206/awasthi23c.html>.

R. Azad, M. Heidary, K. Yilmaz, M. Hüttemann, S. Karimijafarbigloo, Y. Wu, A. Schmeink, and D. Merhof. Loss functions in the era of semantic segmentation: A survey and outlook, 2023. [arXiv:2312.05391](https://arxiv.org/abs/2312.05391).

V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 39(12):2481–2495, 2017. doi:[10.1109/TPAMI.2016.2644615](https://doi.org/10.1109/TPAMI.2016.2644615).

B. Biggio and F. Roli. Wild patterns: Ten years after the rise of adversarial machine learning. *Pattern Recognition*, 84:317–31, 2018. doi:[10.1016/j.patcog.2018.07.023](https://doi.org/10.1016/j.patcog.2018.07.023).

J. Bitterwolf, A. Meinke, M. Augustin, and M. Hein. Breaking down out-of-distribution detection: Many methods based on OOD training data estimate a combination of the same core quantities. In *Proceedings of the International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 2041–74, 2022. [arXiv:2206.09880](https://arxiv.org/abs/2206.09880).

540 J. S. Bowers, G. Malhotra, M. Dujmović, M. L. Montero, C. Tsvetkov, V. Biscione, G. Puebla,
 541 F. Adolfi, J. E. Hummel, R. F. Heaton, B. D. Evans, J. Mitchell, and R. Blything. Deep problems
 542 with neural network models of human vision. *Behavioral and Brain Sciences*, 46:e385, 2023.
 543 doi:[10.1017/S0140525X22002813](https://doi.org/10.1017/S0140525X22002813).

544 P. Branco, L. Torgo, and R. Ribeiro. A survey of predictive modelling under imbalanced distributions,
 545 2015. [arXiv:1505.01658](https://arxiv.org/abs/1505.01658).

546 G. J. Brostow, J. Fauqueur, and R. Cipolla. Semantic object classes in video: A high-definition ground
 547 truth database. *Pattern Recognition Letters*, 30(2):88–97, 2009. doi:[10.1016/j.patrec.2008.04.005](https://doi.org/10.1016/j.patrec.2008.04.005).

548 K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma. Learning imbalanced datasets with label-
 549 distribution-aware margin loss. In *Proceedings of the Conference on Advances in Neural Infor-
 550 mation Processing Systems*, pp. 1567–78, Red Hook, NY, USA, 2019. Curran Associates Inc.
 551 [arXiv:1906.07413](https://arxiv.org/abs/1906.07413).

552 A. Carta, L. Pellegrini, A. Cossu, H. Hemati, and V. Lomonaco. Avalanche: A pytorch library
 553 for deep continual learning. *Journal of Machine Learning Research*, 24(363):1–6, 2023. URL
 554 [http://jmlr.org/papers/v24/23-0130.html](https://jmlr.org/papers/v24/23-0130.html).

555 A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania, P. H. S. Torr, and M. Ranzato.
 556 On tiny episodic memories in continual learning, 2019. [arXiv:1902.10486](https://arxiv.org/abs/1902.10486).

557 Y. Chen, Y. Lin, R. Xu, and P. A. Vela. WDiscOOD: Out-of-distribution detection via whitened linear
 558 discriminant analysis. In *Proceedings of the International Conference on Computer Vision*, 2023.
 559 [arXiv:2303.07543](https://arxiv.org/abs/2303.07543).

560 Z. Cheng, F. Zhu, X.-Y. Zhang, and C.-L. Liu. Average of pruning: Improving performance and
 561 stability of out-of-distribution detection, 2023. [arXiv:2303.01201](https://arxiv.org/abs/2303.01201).

562 M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the
 563 wild. In *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
 564 Recognition*, 2014.

565 T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto, and D. Ha. Deep learning
 566 for classical Japanese literature. In *Proceedings of the Conference on Advances in Neural Infor-
 567 mation Processing Systems*, Workshop on Machine Learning for Creativity and Design, 2018.
 568 [arXiv:1812.01718](https://arxiv.org/abs/1812.01718).

569 M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth,
 570 and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In *Proceedings
 571 of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, 2016.
 572 [arXiv:1604.01685](https://arxiv.org/abs/1604.01685).

573 K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector
 574 machines. *Journal of Machine Learning Research*, 2:265–92, 2002.

575 F. Croce and M. Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse
 576 parameter-free attacks. In *Proceedings of the International Conference on Machine Learning*,
 577 volume 119 of *Proceedings of Machine Learning Research*, pp. 2206–16, 2020. [arXiv:2003.01690](https://arxiv.org/abs/2003.01690).

578 J. Cui, Z. Tian, Z. Zhong, X. Qi, B. Yu, and H. Zhang. Decoupled kullback-leibler divergence
 579 loss. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang
 580 (eds.), *Proceedings of the Conference on Advances in Neural Information Processing Systems*, pp.
 581 74461–86. Curran Associates, Inc., 2024. URL <https://openreview.net/forum?id=bnZZedw9CM>. [arXiv:2305.13948](https://arxiv.org/abs/2305.13948).

582 Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie. Class-balanced loss based on effective number
 583 of samples. In *Proceedings of the IEEE Computer Society Conference on Computer Vision and
 584 Pattern Recognition*, pp. 9260–9, 2019. doi:[10.1109/CVPR.2019.00949](https://doi.org/10.1109/CVPR.2019.00949). [arXiv:1901.05555](https://arxiv.org/abs/1901.05555).

585 D. Dablain, K. N. Jacobson, C. Bellinger, M. Roberts, and N. V. Chawla. Understanding CNN fragility
 586 when learning with imbalanced data. *Machine Learning*, 113:4785–810, 2024. doi:[10.1007/s10994-023-06326-9](https://doi.org/10.1007/s10994-023-06326-9).

594 A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
 595 M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words:
 596 Transformers for image recognition at scale. In *Proceedings of the International Conference on*
 597 *Learning Representations*, 2020. [arXiv:2010.11929](https://arxiv.org/abs/2010.11929).

598 K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, and D. Song.
 599 Robust physical-world attacks on deep learning models. In *Proceedings of the IEEE Computer*
 600 *Society Conference on Computer Vision and Pattern Recognition*, 2018. [arXiv:1707.08945](https://arxiv.org/abs/1707.08945).

602 R. M. French. Catastrophic forgetting in connectionist networks. In L. Nadel (ed.), *Encyclopedia of*
 603 *Cognitive Science*, volume 1, pp. 431–5. Nature Publishing Group, London, UK, 2003.

604 R. Geirhos, C. R. M. Temme, J. Rauber, H. H. Schütt, M. Bethge, and F. A. Wichmann. Generalisation
 605 in humans and deep neural networks. In *Proceedings of the Conference on Advances in Neural*
 606 *Information Processing Systems*, 2018. [arXiv:1808.08750](https://arxiv.org/abs/1808.08750).

608 R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel, M. Bethge, and F. A. Wichmann.
 609 Shortcut learning in deep neural networks. *Nature Machine Intelligence*, 2(11):665–73, 2020.
 610 doi:[10.1038/s42256-020-00257-z](https://doi.org/10.1038/s42256-020-00257-z). [arXiv:2004.07780](https://arxiv.org/abs/2004.07780).

612 I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In
 613 *Proceedings of the International Conference on Learning Representations*, 2015. [arXiv:1412.6572](https://arxiv.org/abs/1412.6572).

614 B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik. Semantic contours from inverse
 615 detectors. In *Proceedings of the International Conference on Computer Vision*, 2011.

617 K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In *Proceedings of*
 618 *the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, pp. 770–8,
 619 2016a. [arXiv:1512.03385](https://arxiv.org/abs/1512.03385).

620 K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In *Proceedings of*
 621 *the European Conference on Computer Vision*, pp. 630–45, Cham, 2016b. Springer International
 622 Publishing. [arXiv:1603.05027](https://arxiv.org/abs/1603.05027).

624 T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li. Bag of tricks for image classification with
 625 convolutional neural networks. In *Proceedings of the IEEE Computer Society Conference on*
 626 *Computer Vision and Pattern Recognition*, pp. 558–567, 2019. doi:[10.1109/CVPR.2019.00065](https://doi.org/10.1109/CVPR.2019.00065).
 627 [arXiv:1812.01187](https://arxiv.org/abs/1812.01187).

628 D. Heaven. Why deep-learning AIs are so easy to fool. *Nature*, 574:163–6, 2019.

630 D. Hendrycks and T. G. Dietterich. Benchmarking neural network robustness to common corruptions
 631 and perturbations. In *Proceedings of the International Conference on Learning Representations*,
 632 2019. [arXiv:1903.12261](https://arxiv.org/abs/1903.12261).

633 D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and out-of-distribution examples
 634 in neural networks. In *Proceedings of the International Conference on Learning Representations*,
 635 2017. URL <https://openreview.net/forum?id=Hkg4TI9x1>. [arXiv:1610.02136](https://arxiv.org/abs/1610.02136).

637 D. Hendrycks, M. Mazeika, and T. Dietterich. Deep anomaly detection with outlier exposure. In *Pro-*
 638 *ceedings of the International Conference on Learning Representations*, 2019. [arXiv:1812.04606](https://arxiv.org/abs/1812.04606).

640 D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song. Natural adversarial examples.
 641 In *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern*
 642 *Recognition*, 2021. [arXiv:1907.07174](https://arxiv.org/abs/1907.07174).

643 D. Hendrycks, S. Basart, M. Mazeika, A. Zou, J. Kwon, M. Mostajabi, J. Steinhardt, , and D. Song.
 644 Scaling out-of-distribution detection for real-world settings. In K. Chaudhuri, S. Jegelka, L. Song,
 645 C. Szepesvari, G. Niu, and S. Sabato (eds.), *Proceedings of the International Conference on*
 646 *Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 8759–73,
 647 2022a. URL <https://proceedings.mlr.press/v162/hendrycks22a.html>.
 648 [arXiv:1911.11132](https://arxiv.org/abs/1911.11132).

648 D. Hendrycks, A. Zou, M. Mazeika, L. Tang, B. Li, D. Song, and J. Steinhardt. Pixmix: Dreamlike
 649 pictures comprehensively improve safety measures. In *Proceedings of the IEEE Computer Society*
 650 *Conference on Computer Vision and Pattern Recognition*, 2022b. [arXiv:2112.05135](https://arxiv.org/abs/2112.05135).

651

652 A. Howard, M. Sandler, G. Chu, L. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan,
 653 Q. V. Le, and H. Adam. Searching for mobilenetV3. In *Proceedings of the International Conference*
 654 *on Computer Vision*, pp. 1314–24, 2019. doi:[10.1109/ICCV.2019.00140](https://doi.org/10.1109/ICCV.2019.00140). [arXiv:1905.02244](https://arxiv.org/abs/1905.02244).

655

656 A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
 657 H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications,
 658 2017. [arXiv:1704.04861](https://arxiv.org/abs/1704.04861).

659

660 G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely connected convolutional
 661 networks. In *Proceedings of the IEEE Computer Society Conference on Computer Vision and*
 662 *Pattern Recognition*, pp. 2261–9, 2017. doi:[10.1109/CVPR.2017.243](https://doi.org/10.1109/CVPR.2017.243). [arXiv:1608.06993](https://arxiv.org/abs/1608.06993).

663

664 A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry. Adversarial examples are not
 665 bugs, they are features. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and
 666 R. Garnett (eds.), *Proceedings of the Conference on Advances in Neural Information Processing*
 667 *Systems*, volume 32. Curran Associates, Inc., 2019. [arXiv:1905.02175](https://arxiv.org/abs/1905.02175).

668

669 S. Irandoost, T. Durand, Y. Rakhmangulova, W. Zi, and H. Hajimirsadeghi. Training a vision
 670 transformer from scratch in less than 24 hours with 1 GPU. In *Proceedings of the Conference*
 671 *on Advances in Neural Information Processing Systems*, Has it Trained Yet? Workshop, 2022.
 672 [arXiv:2211.05187](https://arxiv.org/abs/2211.05187).

673

674 H. Jung, J. Ju, M. Jung, and J. Kim. Less-forgetting learning in deep neural networks, 2016.
 675 [arXiv:1607.00122](https://arxiv.org/abs/1607.00122).

676

677 S. Kanai, S. Yamaguchi, M. Yamada, H. Takahashi, K. Ohno, and Y. Ida. One-vs-the-rest loss to
 678 focus on important samples in adversarial training. In *Proceedings of the International Conference*
 679 *on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, 2023.
 680 [arXiv:2207.10283](https://arxiv.org/abs/2207.10283).

681

682 H. Kannan, A. Kurakin, and I. Goodfellow. Adversarial logit pairing, 2018. [arXiv:1803.06373](https://arxiv.org/abs/1803.06373).

683

684 H. Kim. Torchattacks: a pytorch repository for adversarial attacks, 2021. [arXiv:2010.01950](https://arxiv.org/abs/2010.01950).

685

686 D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In *Proceedings of the*
 687 *International Conference on Learning Representations*, 2015. [arXiv:1412.6980](https://arxiv.org/abs/1412.6980).

688

689 K. Kirchheim, M. Filax, and F. Ortmeier. Pytorch-OOD: A library for out-of-distribution detection
 690 based on pytorch. In *Proceedings of the IEEE Computer Society Conference on Computer Vision*
 691 *and Pattern Recognition*, Workshops, pp. 4351–60, 2022. doi:[10.1109/CVPRW56347.2022.00481](https://doi.org/10.1109/CVPRW56347.2022.00481).

692

693 A. Kirillov, R. Girshick, K. He, and P. Dollár. Panoptic feature pyramid networks. In *Proceedings*
 694 *of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, pp.
 695 6392–401, 2019. doi:[10.1109/CVPR.2019.00656](https://doi.org/10.1109/CVPR.2019.00656). [arXiv:1901.02446](https://arxiv.org/abs/1901.02446).

696

697 J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan,
 698 T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell.
 699 Overcoming catastrophic forgetting in neural networks. *Proceedings of the National Academy of*
 700 *Sciences USA*, 114(13):3521–6, 2017. doi:[10.1073/pnas.1611835114](https://doi.org/10.1073/pnas.1611835114).

701

702 A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of
 703 Toronto, 2009.

704

705 S. Kumano, H. Kera, and T. Yamasaki. Are DNNs fooled by extremely unrecognizable images?,
 706 2022. [arXiv:2012.03843](https://arxiv.org/abs/2012.03843).

707

708 A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial examples in the physical world. In *Proceedings*
 709 *of the International Conference on Learning Representations*, 2017. [arXiv:1607.02533](https://arxiv.org/abs/1607.02533).

702 B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through proba-
 703 biletic program induction. *Science*, 350(6266):1332–8, 2015. doi:[10.1126/science.aab3050](https://doi.org/10.1126/science.aab3050).

704

705 Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
 706 recognition. *Proceedings of the IEEE*, 86(11):2278–324, 1998. doi:[10.1109/5.726791](https://doi.org/10.1109/5.726791).

707

708 J. Lee, M. Prabhushankar, and G. AlRegib. Gradient-based adversarial and out-of-distribution
 709 detection. In *Proceedings of the International Conference on Machine Learning*, Workshop on
 710 New Frontiers in Adversarial Machine Learning, 2022. [arXiv:2206.08255](https://arxiv.org/abs/2206.08255).

711

712 Z. Li and D. Hoiem. Learning without forgetting. In *Proceedings of the European Conference on
 Computer Vision*, pp. 614–29, 2016. [arXiv:1606.09282](https://arxiv.org/abs/1606.09282).

713

714 T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection.
 715 In *Proceedings of the International Conference on Computer Vision*, pp. 2980–8, 2017. URL
 716 http://openaccess.thecvf.com/content_iccv_2017/html/Lin_Focal_Loss_for_ICCV_2017_paper.html.

717

718 W. Liu, X. Wang, J. Owens, and Y. Li. Energy-based out-of-distribution detection. In H. Larochelle,
 719 M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), *Proceedings of the Conference on
 Advances in Neural Information Processing Systems*, volume 33, pp. 21464–75. Curran Associates,
 720 Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/f5496252609c43eb8a3d147ab9b9c006-Paper.pdf.

721

722

723 X. Liu, Y. Lochman, and C. Zach. GEN: Pushing the limits of softmax-based out-of-distribution
 724 detection. In *Proceedings of the IEEE Computer Society Conference on Computer Vision and
 Pattern Recognition*, pp. 23946–55, June 2023. doi:[10.1109/CVPR52729.2023.02293](https://doi.org/10.1109/CVPR52729.2023.02293).

725

726 Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer: Hierarchical
 727 vision transformer using shifted windows. In *Proceedings of the International Conference on
 Computer Vision*, pp. 10012–22, 2021. [arXiv:2103.14030](https://arxiv.org/abs/2103.14030).

728

729

730 Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang, L. Dong, F. Wei, and
 731 B. Guo. Swin transformer V2: Scaling up capacity and resolution. In *Proceedings of the IEEE
 Computer Society Conference on Computer Vision and Pattern Recognition*, pp. 11999–12009,
 732 2022a. doi:[10.1109/CVPR52688.2022.01170](https://doi.org/10.1109/CVPR52688.2022.01170).

733

734 Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. A convnet for the 2020s.
 735 In *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
 Recognition*, 2022b. [arXiv:2201.03545](https://arxiv.org/abs/2201.03545).

736

737 Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu. Large-scale long-tailed recognition in an
 738 open world. In *Proceedings of the IEEE Computer Society Conference on Computer Vision and
 Pattern Recognition*, pp. 2537–46, 2019.

739

740

741 V. Lomonaco, L. Pellegrini, A. Cossu, A. Carta, G. Graffieti, T. L. Hayes, M. D. Lange, M. Masana,
 742 J. Pomponi, G. van de Ven, M. Mundt, Q. She, K. Cooper, J. Forest, E. Belouadah, S. Calderara,
 743 G. I. Parisi, F. Cuzzolin, A. Tolias, S. Scardapane, L. Antiga, S. Amhad, A. Popescu, C. Kanan,
 744 J. van de Weijer, T. Tuytelaars, D. Bacciu, and D. Maltoni. Avalanche: an end-to-end library
 745 for continual learning. In *Proceedings of the IEEE Computer Society Conference on Computer
 Vision and Pattern Recognition*, 2nd Continual Learning in Computer Vision Workshop, 2021.
 746 [arXiv:2104.00405](https://arxiv.org/abs/2104.00405).

747

748 J. Ma, J. Chen, M. Ng, R. Huang, Y. Li, C. Li, X. Yang, and A. L. Martel. Loss odyssey in medical
 749 image segmentation. *Medical Image Analysis*, 71:102035, 2021. doi:[10.1016/j.media.2021.102035](https://doi.org/10.1016/j.media.2021.102035).

750

751 A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models resistant
 752 to adversarial attacks. In *Proceedings of the International Conference on Learning Representations*,
 753 2018. [arXiv:1706.06083](https://arxiv.org/abs/1706.06083).

754

755 C. Mao, Z. Zhong, J. Yang, C. Vondrick, and B. Ray. Metric learning for adversarial robustness.
 In *Proceedings of the Conference on Advances in Neural Information Processing Systems*, 2019.
[arXiv:1909.00900](https://arxiv.org/abs/1909.00900).

756 G. Marcus. The next decade in AI: Four steps towards robust artificial intelligence, 2020.
 757 [arXiv:2002.06177](https://arxiv.org/abs/2002.06177).

758

759 A. K. Menon, S. Jayasumana, A. S. Rawat, H. Jain, A. Veit, and S. Kumar. Long-tail learning via
 760 logit adjustment. In *Proceedings of the International Conference on Learning Representations*,
 761 2021. URL <https://openreview.net/forum?id=37nvvqkCo5>. [arXiv:2007.07314](https://arxiv.org/abs/2007.07314).

762

763 F. Milletari, N. Navab, and S.-A. Ahmadi. V-net: Fully convolutional neural networks for volumetric
 764 medical image segmentation. In *2016 Fourth International Conference on 3D Vision (3DV)*, pp.
 765 565–71, 2016. doi:[10.1109/3DV.2016.79](https://doi.org/10.1109/3DV.2016.79).

766

767 Y. Ming, Y. Sun, O. Dia, and Y. Li. How to exploit hyperspherical embeddings for out-of-distribution
 768 detection? In *Proceedings of the International Conference on Learning Representations*, 2023.
 769 URL <https://openreview.net/forum?id=aEFaE0W5pAd>.

770

771 S. Mohseni, M. Pitale, J. Yadawa, and Z. Wang. Self-supervised learning for generalizable out-of-
 772 distribution detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34,
 773 pp. 5216–23, 2020. doi:[10.1609/aaai.v34i04.5966](https://doi.org/10.1609/aaai.v34i04.5966).

774

775 N. Mu and J. Gilmer. MNIST-C: A robustness benchmark for computer vision, 2019.
 776 [arXiv:1906.02337](https://arxiv.org/abs/1906.02337).

777

778 J. Mukhoti, V. Kulharia, A. Sanyal, S. Golodetz, P. Torr, and P. Dokania. Calibrating deep neural
 779 networks using focal loss. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin
 780 (eds.), *Proceedings of the Conference on Advances in Neural Information Processing Systems*,
 781 volume 33, pp. 15288–99. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/aeb7b30ef1d024a76f21a1d40e30c302-Paper.pdf.

782

783 Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images
 784 with unsupervised feature learning. In *Proceedings of the Conference on Advances in Neural
 785 Information Processing Systems*, Workshop on Deep Learning and Unsupervised Feature Learning,
 786 2011.

787

788 A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence
 789 predictions for unrecognizable images. In *Proceedings of the IEEE Computer Society Conference
 790 on Computer Vision and Pattern Recognition*, 2015. [arXiv:1412.1897](https://arxiv.org/abs/1412.1897).

791

792 T. Pang, K. Xu, Y. Dong, C. Du, N. Chen, and J. Zhu. Rethinking softmax cross-entropy loss for ad-
 793 versarial robustness. In *Proceedings of the International Conference on Learning Representations*,
 794 2020. [arXiv:1905.10626](https://arxiv.org/abs/1905.10626).

795

796 T. Pang, X. Yang, Y. Dong, H. Su, and J. Zhu. Bag of tricks for adversarial training. In *Proceedings
 797 of the International Conference on Learning Representations*, 2021. [arXiv:2010.00467](https://arxiv.org/abs/2010.00467).

798

799 T. K. Panum, Z. Wang, P. Kan, E. Fernandes, and S. Jha. Exploring adversarial robustness of deep
 800 metric learning, 2021. [arXiv:2102.07265](https://arxiv.org/abs/2102.07265).

801

802 N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The limitations of deep
 803 learning in adversarial settings. In *IEEE European Symposium on Security and Privacy*, 2016.
 804 [arXiv:1511.07528](https://arxiv.org/abs/1511.07528).

805

806 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
 807 L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
 808 B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep
 809 learning library. In *Proceedings of the Conference on Advances in Neural Information Processing
 Systems*, volume 32, 2019. [arXiv:1912.01703](https://arxiv.org/abs/1912.01703).

810

811 J. Ren, C. Yu, S. Sheng, X. Ma, H. Zhao, S. Yi, and H. Li. Balanced meta-softmax for long-tailed
 812 visual recognition. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin (eds.),
 813 *Proceedings of the Conference on Advances in Neural Information Processing Systems*, volume 33,
 814 pp. 4175–4186. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/2ba61cc3a8f44143e1f2f13b2b729ab3-Paper.pdf. [arXiv:2007.10740](https://arxiv.org/abs/2007.10740).

810 L. Rice, E. Wong, and J. Z. Kolter. Overfitting in adversarially robust deep learning. In H. D.
 811 III and A. Singh (eds.), *Proceedings of the International Conference on Machine Learning*,
 812 volume 119 of *Proceedings of Machine Learning Research*, pp. 8093–104, 2020. URL <https://proceedings.mlr.press/v119/rice20a.html>. arXiv:2002.11569.

813

814 A. Robins. Catastrophic forgetting in neural networks: the role of rehearsal mechanisms. In
 815 *Proceedings of the First New Zealand International Two-Stream Conference on Artificial Neural*
 816 *Networks and Expert Systems*, pp. 65–8. IEEE, 1993.

817

818 A. Roy, A. Cobb, N. D. Bastian, B. Jalaian, and S. Jha. Runtime monitoring of deep neural networks
 819 using top-down context models inspired by predictive processing and dual process theory. In
 820 *Proceedings of the AAAI Conference on Artificial Intelligence*, 2022.

821

822 O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
 823 M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
 824 *International Journal of Computer Vision*, 115(3):211–52, 2015. doi:10.1007/s11263-015-0816-y.

825

826 L. Sa-Couto and A. Wichert. Simple Convolutional-Based Models: Are They Learning the Task or
 827 the Data? *Neural Computation*, 33(12):3334–50, 2021. doi:10.1162/neco_a_01446.

828

829 T. Serre. Deep learning: The good, the bad, and the ugly. *Annual Review of Vision Science*, 5(1):
 830 399–426, 2019. doi:10.1146/annurev-vision-091718-014951.

831

830 M. W. Spratling. A comprehensive assessment benchmark for rigorously evaluating deep learning
 831 image classifiers. *Neural Networks*, 192(107801), 2025. arXiv:2308.04137.

832

833 C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fergus. Intriguing
 834 properties of neural networks. In *Proceedings of the International Conference on Learning
 835 Representations*, 2014. arXiv:1312.6199.

836

837 C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
 838 A. Rabinovich. Going deeper with convolutions. In *Proceedings of the IEEE Computer Society
 839 Conference on Computer Vision and Pattern Recognition*, pp. 1–9, 2015. arXiv:1409.4842.

840

841 C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for
 842 computer vision. In *Proceedings of the IEEE Computer Society Conference on Computer Vision
 843 and Pattern Recognition*, pp. 2818–26, 2016. arXiv:1512.00567.

844

845 K. Szyc, T. Walkowiak, and H. Maciejewski. Why out-of-distribution detection experiments are
 846 not reliable - subtle experimental details muddle the OOD detector rankings. In R. J. Evans
 847 and I. Shpitser (eds.), *Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial
 848 Intelligence*, volume 216 of *Proceedings of Machine Learning Research*, pp. 2078–88, 2023. URL
 849 <https://proceedings.mlr.press/v216/szyc23a.html>.

850

851 J. Tack, S. Yu, J. Jeong, M. Kim, S. J. Hwang, and J. Shin. Consistency regularization for ad-
 852 versarial robustness. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2022.
 853 arXiv:2103.04623.

854

855 F. Tajwar, A. Kumar, S. M. Xie, and P. Liang. No true state-of-the-art? OOD detection methods are
 856 inconsistent across datasets. In *Proceedings of the International Conference on Machine Learning*,
 857 Workshop on Uncertainty and Robustness in Deep Learning, 2021. arXiv:2109.05554.

858

859 J. Tan, C. Wang, B. Li, Q. Li, W. Ouyang, C. Yin, and J. Yan. Equalization loss for long-tailed object
 860 recognition. In *Proceedings of the IEEE Computer Society Conference on Computer Vision and
 861 Pattern Recognition*, pp. 11662–71, 2020. arXiv:2003.05176.

862

863 M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
 864 In K. Chaudhuri and R. Salakhutdinov (eds.), *Proceedings of the International Conference on
 865 Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp. 6105–14, 2019.
 866 URL <https://proceedings.mlr.press/v97/tan19a.html>. arXiv:1905.11946.

867

868 J. Terven, D.-M. Cordova-Esparza, J.-A. Romero-González, A. Ramírez-Pedraza, and E. A. Chávez-
 869 Urbiola. A comprehensive survey of loss functions and metrics in deep learning. *Artificial
 870 Intelligence Review*, 58(195), 2025. doi:10.1007/s10462-025-11198-7.

864 G. Van Horn, O. M. Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard, H. Adam, P. Perona, and S. Belongie.
 865 The inaturalist species classification and detection dataset. In *Proceedings of the IEEE Computer*
 866 *Society Conference on Computer Vision and Pattern Recognition*, 2018. [arXiv:1707.06642](https://arxiv.org/abs/1707.06642).

867 S. Vaze, K. Han, A. Vedaldi, and A. Zisserman. Open-set recognition: a good closed-set classifier is
 868 all you need? In *Proceedings of the International Conference on Learning Representations*, 2022.
 869 URL <https://openreview.net/forum?id=5hLP5JY9S2d>. [arXiv:2110.06207](https://arxiv.org/abs/2110.06207).

870 T. Vojir, J. Sochman, R. Aljundi, and J. Matas. Calibrated out-of-distribution detection with a generic
 871 representation. In *Proceedings of the International Conference on Computer Vision*, Workshop on
 872 Uncertainty Quantification for Computer Vision, 2023. [arXiv:2303.13148](https://arxiv.org/abs/2303.13148).

873 Q. Wang, Y. Ma, K. Zhao, and Y. Tian. A comprehensive survey of loss functions in machine learning.
 874 *Annals of Data Science*, 9:187–212, 2022. doi:[10.1007/s40745-020-00253-5](https://doi.org/10.1007/s40745-020-00253-5).

875 X. Wang, L. Lian, Z. Miao, Z. Liu, and S. Yu. Long-tailed recognition by routing diverse distribution-
 876 aware experts. In *Proceedings of the International Conference on Learning Representations*, 2021.
 877 URL <https://openreview.net/forum?id=D9I3drBz4UC>.

878 H. Wei, R. Xie, H. Cheng, L. Feng, B. An, and Y. Li. Mitigating neural network overconfidence with
 879 logit normalization. In *Proceedings of the International Conference on Machine Learning*, volume
 880 162 of *Proceedings of Machine Learning Research*, pp. 23631–44, 2022. [arXiv:2205.09310](https://arxiv.org/abs/2205.09310).

881 R. Wightman, H. Touvron, and H. Jégou. ResNet strikes back: An improved training procedure in
 882 timm. In *Proceedings of the Conference on Advances in Neural Information Processing Systems*,
 883 Workshop on ImageNet: Past, Present, and Future, 2021. URL [https://openreview.net](https://openreview.net/forum?id=NG6MJnV16M5)
 884 [/forum?id=NG6MJnV16M5](https://openreview.net/forum?id=NG6MJnV16M5). [arXiv:2110.00476](https://arxiv.org/abs/2110.00476).

885 H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking
 886 machine learning algorithms, 2017. [arXiv:1708.07747](https://arxiv.org/abs/1708.07747).

887 S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations for deep neural
 888 networks. In *Proceedings of the IEEE Computer Society Conference on Computer Vision and*
 889 *Pattern Recognition*, 2017. [arXiv:1611.05431](https://arxiv.org/abs/1611.05431).

890 R. Xu-Darme, J. Girard-Satabin, D. Hond, G. Incorvaia, and Z. Chihani. Interpretable out-of-
 891 distribution detection using pattern identification, 2023. URL <https://hal-cea.archives-ouvertes.fr/cea-03951966>.

892 J. Yang, P. Wang, D. Zou, Z. Zhou, K. Ding, W. Peng, H. Wang, G. Chen, B. Li, Y. Sun, X. Du,
 893 K. Zhou, W. Zhang, D. Hendrycks, Y. Li, and Z. Liu. OpenOOD: Benchmarking generalized
 894 out-of-distribution detection. In *Proceedings of the Conference on Advances in Neural Information*
 895 *Processing Systems*, 2022. [arXiv:2210.07242](https://arxiv.org/abs/2210.07242).

896 T. Yang, Y. Huang, Y. Xie, J. Liu, and S. Wang. MixOOD: Improving out-of-distribution detection
 897 with enhanced data mixup. *ACM Transactions on Multimedia Computing, Communications, and*
 898 *Applications*, 2023. doi:[10.1145/3578935](https://doi.org/10.1145/3578935).

899 Y. Yu and C.-Z. Xu. Efficient loss function by minimizing the detrimental effect of floating-point errors
 900 on gradient-based attacks. In *Proceedings of the IEEE Computer Society Conference on Computer*
 901 *Vision and Pattern Recognition*, pp. 4056–66, 2023. doi:[10.1109/CVPR52729.2023.00395](https://doi.org/10.1109/CVPR52729.2023.00395).

902 A. L. Yuille and C. Liu. Deep nets: What have they ever done for vision? *International Journal of*
 903 *Computer Vision*, 129:781–802, 2021. doi:[10.1007/s11263-020-01405-z](https://doi.org/10.1007/s11263-020-01405-z).

904 S. Zagoruyko and N. Komodakis. Wide residual networks. In E. R. H. Richard C. Wilson and W. A. P.
 905 Smith (eds.), *Proceedings of the British Machine Vision Conference*, pp. 87.1–87.12. BMVA Press,
 906 2016. doi:[10.5244/C.30.87](https://doi.org/10.5244/C.30.87). [arXiv:1605.07146](https://arxiv.org/abs/1605.07146).

907 F. Zenke, B. Poole, and S. Ganguli. Continual learning through synaptic intelligence. In *Proceedings*
 908 *of the International Conference on Machine Learning*, volume 70 of *Proceedings of Machine*
 909 *Learning Research*, pp. 3987–95, 2017. [arXiv:1703.04200](https://arxiv.org/abs/1703.04200).

918 H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan. Theoretically principled trade-off
919 between robustness and accuracy. In *Proceedings of the International Conference on Machine*
920 *Learning*, 2019. [arXiv:1901.08573](https://arxiv.org/abs/1901.08573).

921 L. H. Zhang and R. Ranganath. Robustness to spurious correlations improves semantic out-of-
922 distribution detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2023.
923 [arXiv:2302.04132](https://arxiv.org/abs/2302.04132).

925 L. Zhao, Y. Teng, and L. Wang. Logit normalization for long-tail object detection. *International*
926 *Journal of Computer Vision*, 132:2114–34, 2024. doi:[10.1007/s11263-023-01971-y](https://doi.org/10.1007/s11263-023-01971-y).

927 B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. Scene parsing through ade20k
928 dataset. In *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern*
929 *Recognition*, 2017.

931 Q. Zhu, G. Zheng, and Y. Yan. Effective out-of-distribution detection in classifier based on PEDCC-
932 loss. *Neural Processing Letters*, 55:1937–49, 2023. doi:[10.1007/s11063-022-10970-y](https://doi.org/10.1007/s11063-022-10970-y).

933 Y. Zhu, Y. Chen, X. Li, R. Zhang, H. Xue, X. Tian, R. Jiang, B. Zheng, and Y. Chen. Rethinking
934 out-of-distribution detection from a human-centric perspective. *International Journal of Computer*
935 *Vision*, 132:4633–50, 2024. doi:[10.1007/s11263-024-02099-3](https://doi.org/10.1007/s11263-024-02099-3). [arXiv:2211.16778](https://arxiv.org/abs/2211.16778).

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

A EXISTING LOSS FUNCTIONS

973

974 For each input image \mathbf{x} , a classifier, g , produces a vector of outputs, each element of which is
975 associated with a class label, *i.e.*, $\mathbf{y} = g(\mathbf{x})$, where $\mathbf{y} \in \mathbb{R}^n$, and n is the number of classes. For a
976 neural network these outputs are the activations of the neurons in the last layer before applying an
977 activation function. These values are commonly known as the “logits” following a literal interpretation
978 of the cross-entropy loss. The class label, c , predicted by such a classifier is that associated with the
979 output with the highest value, *i.e.*, $c = \text{argmax}(\mathbf{y})$.

980 In addition to predicting the class of the input sample, the classifier can also provide an estimate
981 of its confidence in the classification it has made. Two standard methods of confidence scoring are
982 Maximum Logit Score (MLS; [Vaze et al., 2022](#); [Hendrycks et al., 2022a](#)), and Maximum Softmax
983 Probability (MSP; [Hendrycks & Gimpel, 2017](#)). MLS is the maximum response of the network
984 before any activation function is applied, *i.e.*, $\max(\mathbf{y})$. MSP is the maximum value of the network
985 output after the application of the softmax activation function, *i.e.*, $\max(\mathbf{z})$ where \mathbf{z} is defined as:

986
$$z_j = \frac{\exp(\frac{y_j}{\tau})}{\sum_{i=1}^n \exp(\frac{y_i}{\tau})} \quad (3)$$
987

988 τ is a non-negative hyper-parameter that is typically set to a value of one. The softmax function
989 normalises the output values so that they sum to one and can be interpreted as a probability distribution.
990 Smaller values of τ cause the softmax function to produce a more peaked probability distribution.

991 The output of the network is also used to define a differentiable loss function that is used to update
992 the parameters so that predictions become more accurate. Those existing loss functions most relevant
993 to this work are described in the following subsections.

994

A.1 CROSS-ENTROPY LOSS

995

996 Cross-Entropy (CE) loss is defined as:

997
$$\mathcal{L}_{CE} = -\log z_l \quad (4)$$
998

1000 where l is the index corresponding to the correct class (*i.e.*, the ground-truth class label), and \mathbf{z} is
1001 the output of the softmax activation function applied to the logits (Eq. (3)). As described earlier, the
1002 softmax function has a hyper-parameter, τ , which means that CE could be applied using different
1003 values of this parameter. However, for almost all applications of CE, τ is set to a value of one. Hence,
1004 a value of $\tau = 1$ was used in all experiments with CE loss described in this paper.

1005

A.2 LOGITNORM LOSS

1006

1007 LogitNorm (LN) loss is a variation of CE loss that has been shown to produce state-of-the-art results
1008 on unknown class rejection when used in conjunction with the Maximum Softmax Probability (MSP)
1009 confidence scoring method ([Wei et al., 2022](#)). LN loss makes two modifications to CE loss: (1)
1010 it normalises the logits by their l_2 -norm before application of the softmax function, (2) it uses a
1011 low value of τ that causes the softmax function to produce a more peaked probability distribution.
1012 Preliminary experiments (Appendix D.1) showed that a hyper-parameter of $\tau = 0.04$ was most
1013 effective at unknown class rejection, and hence, that value was used in all experiments with LN loss
1014 described in this paper.

1015

A.2.1 LOGITNORM LOSS AS A MARGIN-LIKE LOSS

1016

1017 The LogitNorm loss yields values close to zero when the output of the correct neuron is sufficiently
1018 larger than the other neurons’ outputs (Table 1). This behaviour is due to the use of a reduced value of
1019 τ . When τ is sufficiently small the softmax function produces a highly peaked probability distribution
1020 and $\frac{\exp(\frac{y_l}{\tau})}{\sum_{i=1}^n \exp(\frac{y_i}{\tau})} \rightarrow 1$. This causes LN loss to be zero when the response of the node corresponding
1021 to the correct class is sufficiently dominant. Hence, LN loss behaves like a margin loss, as learning
1022 stops for samples that are sufficiently well classified. We believe this margin-like behaviour, which
1023 prevents increasing confidence, explains the effectiveness of LN loss at distinguishing known from
1024 unknown classes.

1026 In contrast, [Wei et al. \(2022\)](#) claim that the effectiveness of LN loss is due to the normalisation of the
 1027 logits. They believe that normalisation forces learning to generate logit vectors for different classes
 1028 that are distinct from each other in terms of the angle between them, rather than their magnitude. While
 1029 we do not believe that normalisation is the primary factor in avoiding over-confidence, normalisation
 1030 provides other advantages. The normalisation of the logits is responsible for the loss monotonically
 1031 increasing as the predictions become worse (this is true even when $\tau = 1$). Large negative logits
 1032 produced by neurons that do not represent the true class (activities that would reduce CE loss) cause
 1033 a reduction in the normalised logit value associated with the true class, and hence, increase the LN
 1034 loss. The normalisation of the logits performed by LN also seems to be important to prevent training
 1035 becoming unstable: we found that LN loss was capable of successfully training networks with small
 1036 τ values, while the same small τ values would cause CE loss to fail. The cause of this instability is
 1037 possibly that a low value of τ can result in the loss being very large when the prediction is very wrong
 1038 (see last row of Table 1), a situation that is common early in training when the network’s outputs are
 1039 random.

1040 A.3 LOGIT-ADJUSTED LOSS

1041 Logit-adjusted (LA) loss is a variation of CE loss that is designed to produce improved performance
 1042 when training with imbalanced data ([Menon et al., 2021](#)). Before the application of the softmax
 1043 function, the logits are modified by a term that is proportional to the relative number of training
 1044 samples in each class. Hence,

$$1046 \mathcal{L}_{LA} = -\log z'_l \quad (5)$$

1047 where:

$$1048 z'_j = \frac{\exp(y_j + \log(p_j))}{\sum_{i=1}^n \exp(y_i + \log(p_i))} \quad (6)$$

1049 The term p_j is the proportion of training samples in class j , i.e. $p_j = s_j / \sum_{i=1}^n s_i$ where s_j is the
 1050 number of samples in class j . A number of similar losses have been proposed which use alternative
 1051 methods to adjust the logits ([Tan et al., 2020](#); [Ren et al., 2020](#); [Cao et al., 2019](#)). However, LA loss
 1052 has been found to produce better results than these alternatives and other methods of dealing with
 1053 class imbalance ([Menon et al., 2021](#); [Zhao et al., 2024](#)). Note, that for balanced data-sets, p_j has the
 1054 same value for each class and LA loss is identical to CE loss.

1055 A.4 DICE LOSS

1056 DICE loss ([Milletari et al., 2016](#)) is an alternative to CE that is frequently used for image segmentation
 1057 tasks ([Azad et al., 2023](#); [Ma et al., 2021](#)). It uses a measure of the overlap between the one-hot
 1058 encoded target outputs, \mathbf{t} , and the softmax predictions, \mathbf{z} , such that:

$$1059 \mathcal{L}_{DICE} = 1 - 2 \frac{\sum_i (t_i \times z_i)}{\sum_i (t_i + z_i)} \quad (7)$$

1060 In multi-class applications, DICE loss is calculated separately for each class (the sums in Eq. (7)
 1061 are taken over the samples in the batch), and the overall DICE loss is the mean of the separate class
 1062 losses.

1063 A.5 MULTI-CLASS MARGIN LOSS

1064 Multi-class Margin (MM) loss, also known as the classification hinge loss ([Crammer & Singer, 2002](#)),
 1065 defines an error, e_i , associated with each logit, y_i , as follows:

$$1066 e_i = \begin{cases} \max(0, y_i - y_l + \mu) & \text{if } i \neq l \\ 0 & \text{if } i = l \end{cases} \quad (8)$$

1067 where μ is the margin, a non-negative hyper-parameter. MM loss combines the error for different
 1068 logits (and across all samples in a batch) by taking the mean, so that:

$$1069 \mathcal{L}_{MM} = \frac{1}{n} \sum_{i=1}^n e_i \quad (9)$$

1080 Preliminary experiments (Appendix D.1) showed that the value of the margin had little influence
 1081 on classification accuracy, but had a stronger influence on unknown class rejection performance. A
 1082 value of $\mu = 1$ was used in all subsequent experiments as this was most effective at unknown class
 1083 rejection and is the default value typically used for this loss.

1085 B EXPERIMENTAL METHODS

1086 B.1 LEARNING WITH STANDARD DATA-SETS

1089 B.1.1 TRAINING DATA

1091 Performance was assessed for DNNs trained on standard image classification data-sets: MNIST
 1092 (LeCun et al., 1998), CIFAR10 (Krizhevsky, 2009), CIFAR100 (Krizhevsky, 2009), TinyImageNet
 1093 (TIN) and ImageNet1k (IN Russakovsky et al., 2015)(IN). These data-set vary in terms of the size of
 1094 the images (from 28-by-28 pixels with 1 colour channel to 224-by-224 pixels with 3 colour channels),
 1095 the number of categories (10 to 1000), and the number of training samples (from 50k to 1.28M). For
 1096 all datasets, standard data augmentations were applied to the training images: horizontal flipping and
 1097 random cropping for both CIFAR data-sets and TinyImageNet, horizontal flipping, resizing to 256
 1098 pixels, and a centre crop for ImageNet1k. For all data-sets the standard split between training and
 1099 testing exemplars was employed. Pixel values in both the training and testing samples were scaled to
 the range [0,1].

1101 B.1.2 PERFORMANCE METRICS

1102 Performance was evaluated against a number of different criteria.

1104 **Performance on standard test data** Firstly, the percentage of samples correctly classified from
 1105 the standard test set provided with each training data-set was calculated (the “clean” accuracy).

1107 **Performance on common corruptions data** Secondly, the ability of trained networks to generalise
 1108 to input distribution shifts was assessed by determining classification accuracy with the common
 1109 corruptions data-sets: MNIST-C, CIFAR10-C, CIFAR100-C, TinyImageNet-C and ImageNet-C
 1110 (Hendrycks & Dietterich, 2019; Mu & Gilmer, 2019). MNIST-C contains 15 different corruptions
 1111 including different types of noise, blurring, geometric transformations, and superimposed patterns.
 1112 The others contain 18 different corruptions including different types of noise, blurring, synthetic
 1113 weather conditions, and digital corruptions. As is typical in the literature, performance was evaluated
 1114 by averaging performance over all the corruptions at all degrees of intensity.

1116 **Performance on unknown class rejection** A third performance metric was used to assess the
 1117 ability of a network to distinguish known from unknown classes. This was evaluated using the Area
 1118 Under the Receiver Operating Characteristic curve (AUROC) as this is a common choice in the
 1119 literature (Kirchheim et al., 2022; Chen et al., 2023; Cheng et al., 2023; Xu-Darme et al., 2023;
 1120 Yang et al., 2022; 2023; Lee et al., 2022). AUROC is calculated separately for each unknown class
 1121 data-set, evaluating how distinct the confidence scores produced by samples from the standard test-set
 1122 are from the confidence scores produced in response to samples from the unknown class data-set.
 1123 The standard, baseline, method for determining confidence uses the maximum value of the network
 1124 output after the application of the softmax activation function (*i.e.*, $\max(\mathbf{z})$). As a result it is called
 1125 Maximum Softmax Probability (MSP; Hendrycks & Gimpel, 2017). MSP was used by default in our
 1126 assessment, but some evaluations were repeated using an alternative: Maximum Logit Score (MLS;
 1127 Vaze et al., 2022; Hendrycks et al., 2022a). MLS defines the confidence that a sample is of a known
 1128 class as the maximum response of the network output before any activation function is applied (*i.e.*,
 1129 $\max(\mathbf{y})$).

1130 AUROC was calculated using seven data-sets containing unknown classes, and the average AUROC
 1131 across all seven data-sets was reported. The seven data-set used to evaluate networks trained with
 1132 MNIST were the test-sets of Omniglot (Lake et al., 2015), FashionMNIST (Xiao et al., 2017), KM-
 1133 NIST (Clanuwat et al., 2018) and four data-sets containing synthetic images: (1) images containing
 random blobs, as used in (Hendrycks et al., 2019); (2) images in which each pixel intensity value
 was independently and randomly selected from a uniform distribution; (3) the images of the standard

(clean) test set after a random permutation of all pixels; (4) the images of the clean test set after randomising the phase, in the Fourier domain, of each image. Each of these four synthetic data-sets contained 10000 samples. The CIFAR10 trained networks were tested using unknown classes from the test-sets of the Textures (Cimpoi et al., 2014), SVHN (Netzer et al., 2011), and CIFAR100 data-sets, plus, four synthetic image data-sets generated as described before. For CIFAR100 trained networks the same seven OOD data-sets were used as for CIFAR10, except CIFAR10 was used in place of CIFAR100. Networks trained on TinyImageNet and ImageNet1k were evaluated using Textures (Cimpoi et al., 2014), the iNaturalist 2021 validation set (Van Horn et al., 2018), the ImageNet-O data-set (Hendrycks et al., 2021), and the four synthetic image data-sets generated as described previously.

Performance on AutoAttack rejection Finally, performance was also evaluated using adversarial attacks generated using AutoAttack (AA; Croce & Hein, 2020), a state-of-the-art ensemble attack method that employs both gradient-based (white-box) and gradient-free (black-box) attacks. AA was implemented using the torchattacks PyTorch library (Kim, 2021). Two sets of adversarial samples were created. Each set was created by perturbing 10000 samples from the standard (clean) test-set, but with a different method of constraining the magnitude of the perturbation. Specifically, AA was used to apply both l_∞ and l_2 -norm constrained attacks. The perturbation budget (ϵ) used for each attack was the standard value used in the previous literature for each data-set. Specifically, ϵ was set to $\frac{8}{255}$ and 0.5 for l_∞ and l_2 -norm attacks, respectively, against networks trained on CIFAR10, CIFAR100, TinyImageNet, and ImageNet1k, and ϵ was set to 0.3 for l_∞ -norm and to 2 for l_2 -norm attacks on MNIST trained networks.

Networks were not trained to be able to correctly classify adversarial examples, and hence, robust accuracy was low for all the evaluated losses. However, networks can still be robust if they are capable of identifying, and rejecting samples that have been adversarially perturbed. Adversarial robustness was evaluated using detection accuracy rate (DAR; Spratling, 2025). DAR determines the proportion of samples that are processed correctly. Where for adversarial samples, “processed correctly” means that the sample is accepted and the predicted class label is correct, or it is rejected and the predicted class label is wrong (Zhu et al., 2024). As for unknown class rejection, a sample is accepted or rejected based on the confidence of the prediction made by the network under evaluation. Confidence was measured using either Maximum Softmax Probability (MSP) or Maximum Logit Score (MLS), and the threshold used to reject samples was set such that 95% of correctly classified samples from the standard test set were accepted (Zhu et al., 2024).

B.1.3 NEURAL NETWORK ARCHITECTURES

A large variety of DNNs architectures were used as summarised in Table 3. A small version of LeNet (LeCun et al., 1998) with 16 channels in the two convolutional layers, and 50 neurons in the penultimate, fully-connected, layer. A simple, fully-convolutional neural network (ConvNet) consisting of 5 convolutional layers, each containing 32 3-by-3 masks and using the ReLU activation function. This architecture performed down-sampling using average pooling and it did not use batch (or any other form of) normalisation. It is a simple, sequential, hierarchy without any parallel pathways or skip connections. A simple fully-connected network (MLP) consisting of three hidden layers each containing 200 neurons and employing the ReLU activation function. ResNets (He et al., 2016a), specifically, ResNet18, ResNet32, and ResNet50. WideResNets (Zagoruyko & Komodakis, 2016), specifically, WRN22-10 and WRN28-10. PreActResNet18 (PARN18; He et al., 2016b). MobileNet version 3 (Howard et al., 2019; 2017), specifically the small model (MobileNetS) and the large model (MobileNetL). The inception architecture version 3 (Szegedy et al., 2016; 2015). The Swin Transformer (version 2) (Liu et al., 2021; 2022a) tiny (SwinT). The vision transformer (Dosovitskiy et al., 2020) base model with 16×16 input patch size (ViT-B/16).

Our implementations of ResNets, WRNs, and PARN were based on the code provided with (Pang et al., 2021),¹ except for the implementation of ResNet32 which was adapted from code by Yerlan Idelbayev,² and ResNet50 which came from the PyTorch Hub.³ The implementations of MobileNetv3, inception3, and the Transformers were also from the PyTorch Hub. The inception3 was modified to

¹<https://github.com/P2333/Bag-of-Tricks-for-AT>

²https://github.com/akamaster/pytorch_resnet_cifar10/

³<https://pytorch.org/vision/stable/models.html>

1188

1189 Table 3: A summary of the neural network architectures used to assess performance on image classifi-
 1190 cation when learning with standard data-sets. For each model the number of trainable parameters
 1191 is indicated in brackets. For each data-set the architectures are arranged from left-to-right in order
 1192 of increasing size. Note that ResNet50 and ResNet18 are large networks designed for use with
 1193 ImageNet1k (but using a different stem when applied to smaller images), while ResNet32 is a smaller
 1194 network designed for use with CIFAR10, and hence, has fewer parameters than ResNet18 despite its
 1195 greater depth.

1196

Data-set	Model 1	Model 2	Model 3
MNIST	LeNet (20,194)	ConvNet (30,954)	MLP (239,410)
CIFAR10	ResNet32 (464,154)	MobileNetS (1,528,106)	WRN22-10 (27,977,146)
CIFAR100	MobileNetL (4,330,132)	ResNet18 (11,220,132)	PARN18 (11,218,340)
TinyImageNet	ResNet18 (11,173,962)	inception (23,995,504)	WRN28-10 (38,241,656)
ImageNet1k	ResNet50 (25,557,032)	SwinT (28,351,570)	ViT-B/16 (86,567,656)

1202

1203

1204 allow it to work with TinyImageNet as follows. Before the inception layers the original architecture,
 1205 designed for use with the larger images in ImageNet1k, contains three standard convolution layers,
 1206 a max pooling layer, two further standard convolution layers, and another max pooling layer. Both
 1207 maxpooling and the two convolution layers between them were removed. Furthermore, the size of the
 1208 filters in the second convolutional layer in the auxiliary head were changed from 5-by-5 to 4-by-4.

1209

1210

B.1.4 TRAINING SETTINGS

1211

1212

1213 To ensure a fair comparison between loss functions, while avoiding the need to search for optimal
 1214 training hyper-parameters for each combination of loss function, network architecture and data-
 1215 set, the same training hyper-parameters were used for all the experiments performed using the
 1216 same combination of data-set and network architecture. In general, five repeats were made of each
 1217 experiment, except those experiments performed with ImageNet1k where either three repeats (when
 1218 using the two smaller models listed in Table 3) or one experiment (using the largest model listed in
 1219 Table 3) were performed.

1220

1221

1222

MNIST For all experiments with MNIST, training was performed for 20 epochs using the Adam
 1223 optimiser (Kingma & Ba, 2015) with a batch size of 128 and a fixed learning rate of 10^{-3} . This
 1224 set-up was found in preliminary experiments to be adequate for obtaining high test-set accuracy when
 1225 training ConvNet with CE loss.

1226

1227

1228

1229

1230

1231

1232

1233

CIFAR10 and CIFAR100 For training with both CIFAR data-sets, the SGD optimiser was used
 1234 for 110 epochs with a momentum of 0.9, a batch size of 128, weight decay of 5e-4, an initial learning
 1235 rate of 0.1 and a step-wise learning schedule reducing the learning rate by a factor of 10 at epochs
 1236 100 and 105. This set-up was taken from (Pang et al., 2021) where it was found to be optimal for the
 1237 adversarial-training of networks using CE loss. As we are not using adversarial training, this set-up is
 1238 probably sub-optimal for all the loss functions we compare. If it does favour one loss function, that is
 1239 likely to be CE. Using this training setup with MobileNets resulted in poor results: CIFAR100 clean
 1240 accuracy of less than 50% with all loss functions, and chance accuracy on one trial with LN loss. A
 1241 search for a better initial learning rate (with all other learning hyper-parameters as described before),
 1242 performed using CE loss and CIFAR100, found that a value of 0.02 produced the best performance.
 1243 This lower initial learning rate was therefore used for all experiments with MobileNet.

1244

1245

1246

1247

1248

1249

TinyImageNet For training networks on TinyImageNet more epochs are required to reach reasonable
 1250 performance. Hence, compared to the settings for CIFAR, the number of epochs was increased
 1251 to 200. Furthermore, the training schedule was changed to decay (by a factor of 10) the learning rate
 1252 at 50, 100, and 150 epochs. Except for an additional learning rate decay at 50 epochs, the resulting
 1253 set-up is identical to that used in (Rice et al., 2020), for adversarially-training networks with CE loss.

1254

1255

1256

1257

1258

1259

ImageNet1k With the ImageNet1k data-set the ResNet50 architecture was trained using SGD for
 1260 100 epochs with a momentum of 0.9, a batch size of 512, weight decay of 1e-4, and an initial learning
 1261 rate of 0.1 that decayed by a factor of 10 at epochs 25, 50, and 75. This recipe uses a larger batch

size, 10 more epochs, and one more learning rate decay, but is otherwise the same as baseline training method typically used for training ResNet50 on ImageNet1k.⁴ For training the Swin Transformer on ImageNet1k the set-up was based on that proposed in Irandoost et al. (2022). Namely, using the AdamW optimiser with a fixed learning rate of 10^{-3} preceded by an exponential learning-rate warm-up period of five epochs.⁵ Training was performed for 100 epochs with a batch size of 256. This same set-up, but with a 10 epoch warm-up period, was used to train the ViT-B/16 architecture.

1249 B.2 LEARNING WITH IMBALANCED DATA-SETS

1250 B.2.1 TRAINING DATA

1252 Learning with imbalanced training data was assessed using long-tailed versions of CIFAR10, CI-
 1253 FAR100 and ImageNet (Cao et al., 2019; Liu et al., 2019; Wang et al., 2021). These are standard
 1254 benchmark tasks in this domain, where the training data is generated from the original, balanced,
 1255 data-sets by removing samples unequally from each class. Specifically, each long-tailed data-set is
 1256 created by taking only the first $s_j \times f^j$ samples for the class with index j ($j \in \{0, \dots, n-1\}$). f
 1257 is a factor that determines the degree of imbalance. From CIFAR10 two long-tailed data-sets were
 1258 created using $f = 0.6$ and $f = 0.7744$, and from CIFAR10 two long-tailed data-sets were created
 1259 using $f = 0.955$ and $f = 0.9771$. The first value of f for each data-set generates a long-tailed set
 1260 in which the ratio of the number of samples in the classes with the largest and smallest numbers is
 1261 100. The second values of f produce an imbalance ratio of 10. For ImageNetLT the standard image
 1262 sub-sets were used⁶ which define an imbalance ratio of 256.

1263 B.2.2 PERFORMANCE METRICS

1265 Performance was assessed using standard, balanced, test-data sets. The same range of evaluation
 1266 metrics were used as were used to assess the performance of networks trained on standard training
 1267 data-sets (as described in Appendix B.1.2).

1269 B.2.3 NEURAL NETWORK ARCHITECTURES

1271 Each of the four long-tailed CIFAR data-sets were used to train three architectures: ResNet32,
 1272 ResNet18, and WideResNet20-10. ImageNetLT was used to train ResNet18, SwinT, and ConvNeXt-
 1273 tiny (Liu et al., 2022b).

1274 B.2.4 TRAINING SETTINGS

1276 Five repeats were performed of each experiment (combination of loss, network architecture, and
 1277 training data-set). For the CIFAR data-sets, the training set-up was based on that used in previous
 1278 work with the same training data (Cao et al., 2019; Cui et al., 2019). Specifically, networks were
 1279 trained for 200 epochs using SGD with a momentum of 0.9, a batch size of 128, weight decay of
 1280 $2e-4$, and an initial learning rate of 0.1, that was reduced by a factor of 100 at the end of epochs 160
 1281 and 180. For ImageNetLT the training set-up was that same as that used for ImageNet as described in
 1282 Appendix B.1.4.

1283 B.3 CONTINUAL LEARNING

1285 B.3.1 TRAINING DATA

1287 Performance on continual learning was assessed with the aid of the Avalanche library (Lomonaco
 1288 et al., 2021; Carta et al., 2023) using four standard benchmark tasks: PermutedMNIST, SplitMNIST,
 1289 SplitCIFAR10, and SplitCIFAR100. In each case models were trained on a sequence of five sub-sets
 1290 of data (training “episodes”). Each trial used a different, randomly selected, sequence of training data

1291 ⁴<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>

1293 ⁵The warm-up period was extended to 10 epochs when using CE loss, as training with the original set-up
 1294 resulted in a training collapse and final training set accuracy at chance level.

1295 ⁶<https://drive.google.com/drive/u/1/folders/1j7Nkfe6ZhzKFxePHdsseeeGI877Xu1yf>

1296 sub-sets, and this same sequence of sub-tasks was used with each loss to ensure a fair comparison.
 1297 Each loss function was tested in combination with five strategies for reducing catastrophic forgetting:
 1298 Replay (Robins, 1993; Chaudhry et al., 2019), Synaptic Intelligence (SI; Zenke et al., 2017), Elastic
 1299 Weight Consolidation (EWC; Kirkpatrick et al., 2017), Less-Forgetful Learning (LFL; Jung et al.,
 1300 2016), and Learning without Forgetting (LwF; Li & Hoiem, 2016). The tasks and continual learning
 1301 strategies were chosen as code for implementing them was available in the Continual Learning
 1302 Baselines repository.⁷

1303 B.3.2 PERFORMANCE METRICS

1304 Performance was evaluated at the end of training by measuring classification accuracy with an unseen
 1305 test set containing equal numbers of samples from each sub-task.

1306 B.3.3 NEURAL NETWORK ARCHITECTURES

1307 For each combination of task and continual learning strategy we used the same neural network
 1308 architecture as used in the Continual Learning Baselines repository. For the MNIST tasks the
 1309 networks were MLPs, while for the CIFAR tasks the architecture was a ResNet18.

1310 B.3.4 TRAINING SETTINGS

1311 Five repeats were performed of each experiment (combination of loss, continual learning strategy,
 1312 and task). For each combination of task and continual learning strategy we used the same training
 1313 set-up as used in the Continual Learning Baselines repository. Where this repository only provided a
 1314 training recipe for MNIST (or CIFAR10/100), we altered it for use with the other data-sets only by
 1315 changing the number of epochs (so that the number was 10 times larger for the CIFAR data-sets than
 1316 for MNIST).

1317 B.4 SEMANTIC SEGMENTATION

1318 B.4.1 TRAINING DATA

1319 Performance on semantic segmentation was assessed with the aid of the Pytorch Segmentation Models
 1320 Library⁸ using four data-sets: CamVid (Brostow et al., 2009), Cityscapes (Cordts et al., 2016), and
 1321 SBD (Hariharan et al., 2011), and ADE20k (Zhou et al., 2017).

1322 B.4.2 PERFORMANCE METRICS

1323 In each case, performance was evaluated using the mean percentage intersection-over-union (IoU)
 1324 metric.

1325 B.4.3 NEURAL NETWORK ARCHITECTURES

1326 All experiments were performed with the FPN architecture (Kirillov et al., 2019) using four different
 1327 networks as the encoder-backbone: ResNet34 (He et al., 2016a), EfficientNet-b4 (Tan & Le, 2019),
 1328 DenseNet201 (Huang et al., 2017), and ResNeXt50 (Xie et al., 2017).

1329 B.4.4 TRAINING SETTINGS

1330 Five repeats were made of each experiment (combination of loss, backbone, and training data-set),
 1331 except those experiments performed with ADE20k where four repeats were performed.

1332 The training set-up was based on that used previously for training on the CamVid data-set (Badri-
 1333 narayanan et al., 2017). Specifically, SGD with momentum of 0.9 was used with a fixed learning
 1334 rate of 0.1 and a batch size of 12. As not all data-sets contain separate test and validation data a
 1335 fixed number of training epochs was used, rather than selecting the best checkpoint as was done by
 1336 Badrinarayanan et al. (2017). 100 epochs was used for CamVid, 50 epochs were used for Cityscapes

1337 ⁷<https://github.com/ContinualAI/continual-learning-baselines>

1338 ⁸https://github.com/qubvel/segmentation_models.pytorch

Figure 3: Results when learning with standard data-sets and testing with clean and corrupt images. (a) and (b) directly compare the performance produced by HEM and cross-entropy (CE) losses when used to train networks with MNIST, CIFAR10, CIFAR100, TinyImageNet (TIN), and ImageNet1k (IN) using three different network architectures for each data-set. For each data-set the size of the marker used corresponds to the size of the network. Results above the diagonal are conditions where better performance was obtained when training with HEM rather than CE loss. Performance metrics are averaged over multiple trials performed for each condition (data-set and architecture) and the error bars show the standard deviation recorded across the trials in each condition (in the majority of cases these error bars are too small to be visible). (a) Compares the performance of the two losses in terms of the accuracy of classifying the standard test-data. (b) Compares the performance of the two losses in terms of the accuracy of classifying the common-corruptions test-data. (c) Shows results averaged over all the data-sets and network architecture (and multiple trials in each condition) for all relevant losses: cross-entropy (CE), LogitNorm (LN), DICE, multi-class margin (MM) and HEM. Error bars show the mean standard deviation recorded across the trials in each condition. The inset shows the results for CE, LN, and HEM losses plotted on a separate scale to allow the differences between these losses to be visible.

and SBD, and 20 epochs for ADE20k. For the larger data-sets (Cityscapes, SBD, and ADE20k) the batch size was reduced to four in order to fit within GPU memory.

For the SBD data-set, CE loss failed to learn when using a learning rate of 0.1. A hyper-parameter search was therefore carried out using CE loss to test alternative learning rates (0.05, 0.02, 0.005, 0.001). A learning rate of 0.05 was found to work best with CE loss, so this learning rate was used in all experiments with all losses and the SBD data-set. A learning rate of 0.05 was also used for all experiments with the ADE20k where it was found that the performance of CE loss was unaffected across a range (0.1, 0.05, 0.02, 0.01) of different learning.

C DETAILED EXPERIMENTAL RESULTS

C.1 LEARNING WITH STANDARD DATA-SETS

C.1.1 PERFORMANCE ON STANDARD TEST DATA AND COMMON CORRUPTIONS DATA

Detailed results showing the absolute, rather than relative, performance of CE and HEM trained networks for each individual condition together with error-bars can be seen in Fig. 3(a) for the standard test data, and in Fig. 3(b) the common corruptions data. This is the data summarised in the 1st and 2nd segments of Fig. 2. A comparison of the performance of all tested losses is provided in Fig. 3(c). The same results appear in the 1st and 2nd segments of Fig. 1. The numerical data can be found in the columns headed ‘‘Clean’’ and ‘‘Corrupt’’ in Table 4.

Figure 4: Results when learning with standard data-sets and testing on unknown and adversarial images. This figure has an identical format to Fig. 3 except (a) compares the performance of CE and HEM losses in terms of the ability to distinguish samples from known and unknown classes, and (b) compares the performance of CE and HEM losses in terms of the ability to deal correctly with adversarially perturbed samples. In both (a) and (b) Maximum Softmax Probability (MSP) is used as the confidence score. (c) Shows results averaged over all the data-sets and network architecture (and multiple trials in each condition) for all relevant losses. Closed markers indicate that Maximum Softmax Probability (MSP) was used as the confidence score, while open markers plot results when using Maximum Logit Score (MLS).

C.1.2 PERFORMANCE ON UNKNOWN CLASS REJECTION AND AUTOATTACK REJECTION

Detailed results showing the absolute, rather than relative, performance of CE and HEM trained networks for each individual condition together with error-bars can be seen in Fig. 4(a) for unknown class rejection, and in Fig. 4(b) for AutoAttack rejection. This is the data summarised in the 3rd and 4th segments of Fig. 2. A comparison of the performance of all tested losses is provided in Fig. 4(c). The same results appear in the 3rd and 4th segments of Fig. 1. The numerical data can be found in the columns headed “OOD” and “AA” in Table 4.

C.2 LEARNING WITH IMBALANCED DATA-SETS

C.2.1 PERFORMANCE ON STANDARD TEST DATA AND COMMON CORRUPTIONS DATA

A detailed comparison of the performance of CE and HEM- (the ablated version of HEM that uses a single margin, and hence, like CE has no additional mechanism for dealing with class imbalance) is provided in Figs. 5(a) and 5(b) for the standard test data, and the common corruptions data, respectively. The corresponding detailed comparisons of HEM and LA losses is provided in Figs. 5(c) and 5(d). The 5th and 6th segments Fig. 2 show the performance of HEM relative to CE for the standard test data, and the common corruptions data, respectively.

A comparison of results for all tested losses, averaged over the four conditions (and 5 trials per condition) can be seen in Fig. 5(e). The same results appear in the 5th and 6th segments of Fig. 1. The numerical data can be found in the columns headed “Clean” and “Corrupt” in Table 5.

C.2.2 PERFORMANCE ON UNKNOWN CLASS REJECTION AND AUTOATTACK REJECTION

A detailed comparison of the performance of CE and HEM- is provided in Figs. 6(a) and 6(b) for unknown class rejection and adversarial sample rejection, respectively. The corresponding detailed comparisons of HEM and LA losses is provided in Figs. 6(c) and 6(d). The 7th and 8th segments Fig. 2 show the performance of HEM relative to CE for unknown class rejection and adversarial sample rejection, respectively.

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

Table 4: A comparison of the performance produced by different losses when applied to learning with standard data-sets. Bold text indicates the best performance on each metric for each combination of training data-set and network architecture.

Task	Clean Loss	Acc. (%)	Corrupt Acc. (%)	OOD AUROC (%)	AA DAR (%)	Clean Acc. (%)	Corrupt Acc. (%)	OOD AUROC (%)	AA DAR (%)
LeNet									
MNIST									
CE	99.02 ± 0.05	88.33 ± 1.20	97.69 ± 0.26	40.04 ± 4.19	85.50 ± 0.99	98.84 ± 0.07	86.13 ± 6.22	67.29 ± 0.91	86.13 ± 6.22
LN	98.88 ± 0.21	81.85 ± 1.66	97.56 ± 0.80	72.33 ± 9.93	99.02 ± 0.11	83.18 ± 1.87	97.18 ± 1.45	82.49 ± 4.36	89.48 ± 1.88
DICE	98.83 ± 0.10	88.15 ± 0.72	95.70 ± 0.53	53.61 ± 3.77	98.29 ± 0.31	85.16 ± 2.15	88.58 ± 0.70	37.60 ± 6.76	92.57 ± 1.96
MM	99.07 ± 0.08	87.93 ± 1.61	97.91 ± 0.34	41.14 ± 5.73	98.94 ± 0.10	84.34 ± 1.65	97.08 ± 0.82	30.45 ± 2.68	24.80 ± 2.89
HEM-	99.03 ± 0.14	84.57 ± 2.09	98.67 ± 0.38	75.66 ± 6.14	99.07 ± 0.10	85.44 ± 1.71	98.84 ± 0.37	85.04 ± 3.65	12.33 ± 1.11
ResNet32									
CIFAR10									
CE	92.43 ± 0.12	72.88 ± 0.59	91.92 ± 1.16	4.14 ± 0.28	75.37 ± 1.42	62.71 ± 1.62	68.89 ± 3.06	7.15 ± 0.30	95.43 ± 0.18
LN	92.23 ± 0.12	73.04 ± 0.59	95.40 ± 0.45	3.89 ± 0.29	58.36 ± 27.31	48.46 ± 21.89	62.19 ± 7.11	10.11 ± 0.39	95.11 ± 0.12
DICE	86.64 ± 0.23	67.16 ± 0.42	88.07 ± 0.95	5.50 ± 0.20	70.12 ± 0.67	59.02 ± 0.60	63.38 ± 1.97	12.34 ± 1.10	92.42 ± 0.27
MM	91.54 ± 0.14	70.66 ± 0.60	92.49 ± 1.53	3.96 ± 0.25	72.90 ± 0.98	61.03 ± 1.35	67.82 ± 2.49	8.78 ± 0.46	94.85 ± 0.12
HEM-	91.67 ± 0.29	72.82 ± 0.55	95.20 ± 0.71	7.26 ± 0.71	70.72 ± 0.71	58.02 ± 0.86	67.17 ± 2.10	10.26 ± 0.42	94.73 ± 0.06
MobileNetV2									
CIFAR100									
CE	49.25 ± 0.96	32.31 ± 1.02	56.96 ± 1.44	13.86 ± 0.70	76.52 ± 0.29	50.27 ± 0.40	79.61 ± 2.57	9.01 ± 0.36	76.87 ± 0.23
LN	49.73 ± 0.71	33.11 ± 0.53	59.41 ± 2.44	14.04 ± 0.78	76.19 ± 0.28	49.90 ± 0.22	80.51 ± 3.14	15.75 ± 0.98	79.99 ± 2.68
DICE	2.20 ± 0.40	2.03 ± 0.35	44.79 ± 7.42	42.48 ± 18.16	66.96 ± 0.11	44.81 ± 0.31	73.97 ± 2.46	12.10 ± 0.64	15.35 ± 1.50
MM	40.34 ± 0.37	26.17 ± 0.43	56.96 ± 4.11	13.97 ± 0.78	70.59 ± 0.30	45.20 ± 0.32	80.24 ± 4.27	10.85 ± 0.71	48.95 ± 0.27
HEM-	49.86 ± 0.90	33.33 ± 0.80	60.70 ± 4.24	19.99 ± 0.82	74.95 ± 0.46	49.22 ± 0.26	82.79 ± 2.33	22.36 ± 1.27	79.29 ± 5.88
ResNet18									
TIN									
CE	65.09 ± 0.32	25.71 ± 0.28	73.52 ± 2.52	15.58 ± 0.27	64.30 ± 0.34	29.30 ± 0.27	69.05 ± 2.06	15.66 ± 0.44	68.25 ± 0.13
LN	64.90 ± 0.14	26.72 ± 0.19	78.67 ± 3.82	25.38 ± 0.34	63.87 ± 0.47	28.50 ± 0.58	76.99 ± 2.30	24.24 ± 1.08	67.84 ± 0.30
DICE	2.87 ± 2.81	1.59 ± 1.45	43.98 ± 8.98	21.60 ± 24.28	0.50	0.50	50.00	0.50	0.50
MM	59.16 ± 0.22	20.43 ± 0.43	69.09 ± 3.15	22.99 ± 1.11	48.49 ± 0.41	18.17 ± 0.17	68.14 ± 2.69	19.05 ± 0.45	63.13 ± 0.37
HEM-	63.36 ± 0.23	25.47 ± 0.42	77.26 ± 5.66	31.42 ± 0.67	60.33 ± 0.73	26.37 ± 0.43	72.18 ± 1.13	26.84 ± 1.30	67.25 ± 0.52
ResNet50									
IN									
CE	68.05 ± 0.10	30.61 ± 0.27	72.88 ± 4.22	12.22 ± 0.51	66.77 ± 0.28	24.53 ± 0.23	74.95 ± 7.63	11.87 ± 0.25	52.35
LN	67.82 ± 0.25	30.13 ± 0.37	85.53 ± 1.02	21.12 ± 0.53	70.90 ± 0.03	28.01 ± 0.60	78.09 ± 5.15	9.80 ± 0.25	53.66
DICE	1.67 ± 0.70	0.96 ± 0.39	43.83 ± 4.17	84.76 ± 7.59	16.18 ± 27.85	6.56 ± 9.19	51.34 ± 7.44	8.85 ± 8.23	3.71
MM	55.75 ± 0.32	22.36 ± 0.22	60.50 ± 1.60	25.37 ± 0.49	24.57 ± 26.53	8.30 ± 8.51	54.16 ± 11.96	11.07 ± 9.52	56.75
HEM-	67.10 ± 0.19	29.14 ± 0.39	81.77 ± 2.86	35.59 ± 1.09	66.92 ± 0.36	24.71 ± 1.00	85.09 ± 3.70	34.65 ± 0.78	49.83
SwinT									
VIT-B16									
CE									62.64
LN									64.30
DICE									13.42
MM									11.72
HEM-									20.63
PARN18									
WRN28-10									
CE									8.90 ± 0.37
LN									15.93 ± 0.47
DICE									61.32 ± 5.36
MM									55.93 ± 1.52
HEM-									20.52 ± 1.13
PARN18									
WRN28-10									
CE									23.63 ± 1.10
LN									50.00
DICE									0.50
MM									23.83 ± 0.60
HEM-									28.53 ± 0.88

Figure 5: Results when learning with imbalanced data-sets and testing on clean and corrupt images. (a) and (b) directly compare the performance produced by HEM- and cross-entropy (CE) losses when used to train networks with long-tailed (LT) CIFAR10, CIFAR100, and ImageNet data-sets. Three different network architectures were used with each data-set, and the size of the marker used corresponds to the size of the network (sizes increase from left to right in Table 5). (c) and (d) show the same comparisons for HEM and LA losses. (e) Shows results averaged over all the data-sets and network architectures (and five trials in each condition) for all relevant losses: cross-entropy (CE), LogitNorm (LN), logit-adjusted (LA), DICE, multi-class margin (MM), HEM-, and HEM losses. The format of this figure is otherwise the same as, and described in the caption of, Fig. 3.

Figure 6: Results when learning with imbalanced data-sets and testing on unknown and adversarial images. This figure has an identical format to Fig. 5 except (a) and (c) compares performance of pairs of losses in terms of the ability to distinguish samples from known and unknown classes, and (b) and (d) compares the performance of pairs of losses in terms of the ability to deal correctly with adversarially perturbed samples. In (a) to (d) Maximum Softmax Probability (MSP) is used as the confidence score. (e) Shows results averaged over all the data-sets and network architecture (and five trials in each condition) for all relevant losses. Closed markers indicate that Maximum Softmax Probability (MSP) was used as the confidence score, while open markers plot results when using Maximum Logit Score (MLS). The format of this figure is otherwise the same as, and described in the caption of, Fig. 4.

1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

Table 5: A comparison of the performance produced by different losses when applied to learning with imbalanced data-sets. Bold text indicates the best performance on each metric for each combination of training data-set and network architecture.

Task	Clean Acc. (%)	Corrupt Acc. (%)	OOD AUROC (%)	AA DAR (%)	Clean Acc. (%)	Corrupt Acc. (%)	OOD AUROC (%)	AA DAR (%)	Clean Acc. (%)	Corrupt Acc. (%)	OOD AUROC (%)	AA DAR (%)
CIFAR10LT-T100												
ResNet32												
CE	70.65 ± 1.81	56.46 ± 0.57	80.89 ± 2.37	6.82 ± 0.47	71.58 ± 1.60	56.23 ± 1.22	76.18 ± 1.75	7.27 ± 0.36	74.73 ± 0.87	55.77 ± 1.26	77.45 ± 3.72	6.51 ± 0.22
LN	71.01 ± 2.08	54.61 ± 1.13	81.20 ± 2.60	7.02 ± 0.42	70.16 ± 1.51	56.88 ± 1.00	83.46 ± 3.22	7.43 ± 0.72	73.21 ± 0.42	54.18 ± 1.42	87.35 ± 2.82	6.59 ± 0.43
LA	78.44 ± 1.48	62.09 ± 0.84	83.25 ± 2.71	6.38 ± 0.33	79.55 ± 0.71	63.14 ± 0.70	81.82 ± 2.82	6.46 ± 0.49	81.72 ± 0.74	62.93 ± 0.66	83.16 ± 7.13	5.86 ± 0.11
DICE	62.81 ± 0.90	49.04 ± 1.12	58.44 ± 4.00	9.34 ± 1.50	63.58 ± 1.46	51.20 ± 1.09	64.36 ± 6.10	10.69 ± 0.93	70.32 ± 0.63	52.71 ± 0.89	73.71 ± 2.62	8.91 ± 0.52
MM	70.21 ± 1.55	53.18 ± 0.45	76.36 ± 3.07	7.19 ± 0.43	70.04 ± 1.82	56.21 ± 1.20	80.14 ± 1.92	8.31 ± 0.79	74.15 ± 0.58	56.36 ± 1.13	82.17 ± 1.45	7.17 ± 0.53
HEM	70.73 ± 1.16	58.25 ± 1.28	84.95 ± 0.99	9.03 ± 0.70	74.21 ± 1.09	57.66 ± 0.68	87.23 ± 1.99	7.48 ± 0.26	75.21 ± 1.33	57.64 ± 0.43	89.54 ± 0.79	6.67 ± 0.48
HEM	73.19 ± 1.88	60.21 ± 1.43	87.57 ± 1.95	8.88 ± 0.90	75.55 ± 0.21	60.80 ± 0.75	89.52 ± 1.34	8.04 ± 0.74	77.24 ± 1.00	60.34 ± 1.10	90.29 ± 1.18	6.90 ± 0.39
CIFAR10LT-T10												
ResNet32												
CE	87.03 ± 0.57	67.86 ± 0.81	86.82 ± 2.19	5.18 ± 0.23	88.52 ± 0.12	69.59 ± 0.63	85.27 ± 1.73	5.25 ± 0.26	89.74 ± 0.38	69.02 ± 0.72	86.52 ± 1.89	4.64 ± 0.18
LN	86.81 ± 0.26	67.71 ± 0.78	91.96 ± 0.80	5.00 ± 0.62	87.47 ± 0.23	69.97 ± 0.57	90.79 ± 1.99	5.15 ± 0.31	89.16 ± 0.19	69.01 ± 0.56	94.64 ± 1.06	4.65 ± 0.35
LA	88.24 ± 0.27	69.47 ± 1.13	88.78 ± 3.13	4.97 ± 0.19	89.36 ± 0.42	70.60 ± 0.30	86.51 ± 2.63	5.29 ± 0.20	90.65 ± 0.13	69.73 ± 0.89	91.14 ± 1.35	4.59 ± 0.25
DICE	80.02 ± 0.37	60.33 ± 1.01	79.58 ± 2.80	7.53 ± 0.33	82.25 ± 0.46	63.05 ± 0.87	82.85 ± 1.47	6.65 ± 0.28	85.92 ± 0.16	64.81 ± 0.61	87.54 ± 1.33	5.75 ± 0.24
MM	86.61 ± 0.34	67.00 ± 0.61	85.68 ± 2.60	5.13 ± 0.16	88.51 ± 0.14	68.73 ± 0.60	88.30 ± 2.04	5.54 ± 0.37	89.40 ± 0.35	68.80 ± 0.89	89.40 ± 3.64	5.14 ± 0.12
HEM	86.73 ± 0.50	68.45 ± 1.17	91.15 ± 2.26	6.22 ± 0.27	88.85 ± 0.38	69.80 ± 0.89	92.56 ± 1.14	6.24 ± 0.24	88.80 ± 0.48	70.74 ± 1.08	94.12 ± 1.30	4.67 ± 0.24
HEM	86.90 ± 0.55	69.36 ± 1.06	91.59 ± 1.46	5.91 ± 0.63	88.74 ± 0.37	69.81 ± 0.76	90.31 ± 2.57	6.38 ± 0.54	89.95 ± 0.35	71.37 ± 0.78	94.81 ± 0.80	4.72 ± 0.16
CIFAR100LT-T100												
ResNet32												
CE	39.02 ± 0.65	28.31 ± 0.51	55.29 ± 4.56	14.08 ± 1.01	40.60 ± 0.83	28.82 ± 0.58	56.02 ± 4.73	14.63 ± 0.75	44.35 ± 0.49	30.64 ± 0.36	56.30 ± 3.90	13.86 ± 0.36
LN	39.80 ± 0.40	27.36 ± 0.63	60.77 ± 5.10	10.65 ± 0.58	41.59 ± 0.85	30.23 ± 0.74	62.80 ± 3.31	18.58 ± 2.59	44.06 ± 0.39	30.68 ± 0.42	70.38 ± 6.79	14.61 ± 1.41
LA	42.16 ± 1.87	31.01 ± 0.94	50.95 ± 3.18	13.91 ± 1.03	43.78 ± 1.05	31.48 ± 0.69	57.63 ± 2.81	14.86 ± 0.85	49.34 ± 0.50	33.38 ± 0.56	58.16 ± 4.37	13.79 ± 0.37
DICE	32.98 ± 0.90	21.91 ± 0.25	48.94 ± 5.66	18.77 ± 0.44	35.56 ± 2.15	24.46 ± 1.51	53.72 ± 2.40	16.50 ± 1.01	41.29 ± 0.24	27.66 ± 0.29	55.04 ± 4.91	20.48 ± 0.84
MM	34.49 ± 0.69	23.30 ± 0.57	51.75 ± 4.27	14.77 ± 1.12	39.95 ± 0.37	29.04 ± 0.36	54.25 ± 4.51	23.70 ± 1.50	42.48 ± 1.66	29.05 ± 1.41	57.48 ± 5.19	18.32 ± 1.51
HEM	39.20 ± 1.01	29.28 ± 0.94	56.60 ± 1.90	15.77 ± 1.35	36.35 ± 0.84	28.69 ± 0.41	60.23 ± 3.23	19.16 ± 1.00	45.39 ± 0.61	31.92 ± 0.58	72.75 ± 3.39	13.87 ± 0.52
HEM	40.18 ± 1.26	30.20 ± 1.29	55.78 ± 6.17	18.00 ± 0.84	39.13 ± 1.51	29.07 ± 0.72	63.43 ± 4.91	20.23 ± 1.01	46.24 ± 0.79	31.92 ± 0.34	65.89 ± 6.44	16.45 ± 0.81
CIFAR100LT-T10												
ResNet32												
CE	57.19 ± 0.44	37.37 ± 0.62	59.55 ± 3.17	12.09 ± 0.76	59.09 ± 0.64	39.00 ± 0.59	64.40 ± 3.55	12.76 ± 0.70	63.18 ± 0.28	40.80 ± 0.03	66.04 ± 4.09	11.81 ± 0.36
LN	57.44 ± 0.38	37.02 ± 0.27	65.26 ± 6.84	9.48 ± 0.33	59.78 ± 0.88	39.62 ± 0.48	64.95 ± 5.74	16.34 ± 0.75	62.45 ± 0.28	41.13 ± 0.40	71.12 ± 5.14	13.58 ± 0.78
LA	58.90 ± 0.72	38.88 ± 0.73	61.74 ± 5.51	11.88 ± 0.31	60.47 ± 0.84	40.21 ± 0.69	67.04 ± 4.41	12.16 ± 0.70	64.88 ± 0.46	42.04 ± 0.46	71.71 ± 3.42	11.41 ± 0.59
DICE	49.17 ± 0.61	31.49 ± 0.47	53.99 ± 6.72	14.44 ± 0.49	52.99 ± 3.75	34.59 ± 2.89	62.79 ± 2.43	15.69 ± 0.37	63.48 ± 0.52	40.42 ± 0.38	63.26 ± 4.97	12.76 ± 0.80
MM	51.81 ± 0.20	32.56 ± 0.38	61.66 ± 6.91	11.56 ± 1.08	60.32 ± 0.62	39.86 ± 0.35	70.48 ± 3.88	17.48 ± 1.23	62.04 ± 1.82	39.04 ± 1.28	73.30 ± 2.57	12.73 ± 0.50
HEM	56.23 ± 1.23	38.27 ± 0.60	67.57 ± 6.93	14.36 ± 1.68	57.32 ± 1.19	38.85 ± 0.49	64.25 ± 4.66	19.99 ± 1.47	63.59 ± 0.61	42.24 ± 0.44	73.27 ± 3.07	13.74 ± 0.90
HEM	57.01 ± 0.62	38.51 ± 0.62	64.70 ± 3.82	15.09 ± 1.40	58.16 ± 0.49	38.84 ± 0.58	64.01 ± 2.93	19.48 ± 0.60	64.30 ± 0.28	42.77 ± 0.64	80.16 ± 5.66	14.25 ± 0.91
ImageNetLT												
ResNet18												
CE	38.31 ± 1.04	14.80 ± 0.32	64.67 ± 2.58	20.21 ± 0.32	29.95 ± 0.31	8.08 ± 0.23	55.55 ± 7.83	19.82 ± 0.45	30.46 ± 0.63	11.40 ± 0.19	63.51 ± 5.86	20.72 ± 1.54
LN	36.31 ± 0.52	14.99 ± 0.17	75.73 ± 4.46	23.38 ± 1.23	33.95 ± 0.42	9.98 ± 0.45	63.50 ± 6.64	18.56 ± 2.19	33.93 ± 0.42	13.58 ± 0.53	54.52 ± 5.44	15.31 ± 0.67
LA	42.85 ± 0.37	15.87 ± 0.31	66.00 ± 4.20	20.36 ± 1.44	32.11 ± 0.41	8.73 ± 0.25	62.67 ± 3.49	19.70 ± 1.75	32.78 ± 0.68	12.23 ± 0.31	64.38 ± 3.95	19.38 ± 0.86
DICE	0.41 ± 0.11	0.35 ± 0.11	38.42 ± 9.76	60.50 ± 19.57	0.09 ± 0.01	0.10 ± 0.01	49.73 ± 6.19	3.52 ± 6.51	4.50 ± 1.24	2.72 ± 0.45	44.69 ± 6.62	14.53 ± 2.05
MM	17.21 ± 0.36	6.21 ± 0.04	55.81 ± 2.63	17.88 ± 1.86	3.74 ± 8.13	1.22 ± 2.50	51.82 ± 3.87	4.24 ± 9.26	22.32 ± 0.57	8.30 ± 0.20	65.91 ± 5.95	20.37 ± 1.96
HEM	36.69 ± 0.70	14.13 ± 0.16	72.05 ± 3.28	25.56 ± 1.70	30.84 ± 0.36	8.50 ± 0.35	77.08 ± 3.68	25.44 ± 2.53	29.64 ± 0.65	11.31 ± 0.25	77.61 ± 4.30	26.23 ± 1.34
HEM	38.25 ± 0.51	14.40 ± 0.19	75.40 ± 2.06	26.33 ± 1.24	30.85 ± 0.36	8.89 ± 0.19	81.18 ± 1.89	23.44 ± 1.31	29.15 ± 0.67	10.80 ± 0.27	79.75 ± 2.52	23.07 ± 2.45

Figure 7: Results for continual learning. (a) to (d) directly compare the performance produced by HEM and cross-entropy (CE) losses when applied to the PermutatedMNIST, SplitMNIST, SplitCIFAR10 and SplitCIFAR100 tasks. Results above the diagonal are conditions where better performance was obtained when training with HEM rather than CE loss. Performance is measured as accuracy on the test data for all tasks after training on a sequence of five tasks. Error bars show the standard deviation recorded over five trials. Experiments were performed using a number of techniques to reduce the effects of catastrophic forgetting: Replay, Synaptic Intelligence (SI), Elastic Weight Consolidation (EWC), Less-Forgetful Learning (LFL), and Learning without Forgetting (LwF). LFL was used for PermutatedMIST and LwF for the other tasks. (e) Shows results averaged over the four tasks and the four methods of reducing catastrophic forgetting applied to each task (and five trials in each condition) for all relevant losses: cross-entropy (CE), LogitNorm (LN), DICE, multi-class margin (MM), and HEM. Error bars show the mean standard deviation recorded across five trials in each condition. The light grey bars show results averaged over task and trials when for each loss only the best performing method of reducing catastrophic forgetting is chosen.

A comparison of results for all tested losses, averaged over the four conditions (and 5 trials per condition) can be seen in Fig. 6(e). The same results appear in the 7th and 8th segments of Fig. 1. In addition, Fig. 6(e) also shows performance when MLS is used as the rejection criterion. The numerical data can be found in the columns headed “OOD” and “AA” in Table 5.

C.3 CONTINUAL LEARNING

Detailed results comparing the performance of CE and HEM trained networks for each individual condition together with error-bars can be seen in Figs. 7(a) to 7(d) for each of the four continual learning tasks. This is the data summarised in the 9th segment of Fig. 2. A comparison of the performance of all tested losses averaged over tasks and conditions (and 5 trials per condition) are shown in Fig. 7(e). The same results appear in the 9th segments of Fig. 1, but in terms of relative rather than absolute performance. The numerical data can be found in Table 6.

1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742 Table 6: A comparison of the performance produced by different losses when applied to continual
 1743 learning. Bold text indicates the best performance for each combination of training data-set and
 1744 method of reducing catastrophic interference.

Task	Accuracy (%)	Accuracy (%)	Accuracy (%)	Accuracy (%)
Loss	<u>Reply</u>	<u>SI</u>	<u>EWC</u>	<u>LFL</u>
PermutedMNIST				
CE	89.23 \pm 0.34	90.95 \pm 1.25	84.74 \pm 0.33	89.17 \pm 0.13
LN	92.86 \pm 0.19	83.64 \pm 1.61	87.35 \pm 0.45	94.92 \pm 0.23
DICE	37.61 \pm 2.01	89.92 \pm 1.01	9.74 \pm 1.44	33.24 \pm 3.78
MM	82.92 \pm 0.19	92.95 \pm 0.20	75.03 \pm 0.99	84.69 \pm 0.44
HEM-	93.30 \pm 0.15	67.17 \pm 2.44	88.45 \pm 0.48	94.28 \pm 0.33
SplitMNIST				
CE	97.56 \pm 0.87	98.68 \pm 0.66	93.27 \pm 3.38	98.05 \pm 0.37
LN	63.86 \pm 3.77	87.74 \pm 10.52	53.65 \pm 6.02	61.70 \pm 4.13
DICE	50.17 \pm 0.67	50.17 \pm 0.90	50.53 \pm 0.93	50.89 \pm 1.09
MM	96.44 \pm 1.10	98.76 \pm 0.68	80.31 \pm 3.73	97.04 \pm 0.39
HEM-	98.59 \pm 0.50	96.36 \pm 1.11	98.10 \pm 0.43	99.42 \pm 0.14
SplitCIFAR10				
CE	83.68 \pm 1.71	58.81 \pm 10.06	73.92 \pm 5.97	88.270 \pm 3.444
LN	69.66 \pm 5.89	66.87 \pm 8.93	62.96 \pm 5.12	69.59 \pm 4.90
DICE	50.00 \pm 0.00	50.00 \pm 0.00	50.00 \pm 0.00	50.00 \pm 0.00
MM	81.32 \pm 3.34	66.83 \pm 9.00	74.31 \pm 3.83	86.66 \pm 3.28
HEM-	91.65 \pm 1.19	64.83 \pm 10.50	79.63 \pm 4.44	89.01 \pm 3.99
SplitCIFAR100				
CE	42.90 \pm 2.36	45.57 \pm 1.95	20.44 \pm 1.74	59.70 \pm 1.09
LN	7.36 \pm 0.73	32.42 \pm 1.82	5.17 \pm 0.28	6.27 \pm 1.07
DICE	5.00 \pm 0.00	5.00 \pm 0.00	5.00 \pm 0.00	5.00 \pm 0.00
MM	30.12 \pm 2.09	56.39 \pm 1.11	18.17 \pm 1.32	32.84 \pm 1.89
HEM-	42.48 \pm 2.68	54.55 \pm 3.52	28.04 \pm 2.62	49.43 \pm 1.61

1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781

Figure 8: Results for semantic segmentation. (a), (b), (c) and (d) directly compare the performance produced by HEM and cross-entropy (CE) losses when applied to the CamVid, Cityscapes, SBD and ADE20k benchmarks. Results above the diagonal are conditions where better performance was obtained when training with HEM rather than CE loss. Performance is measured as mean percentage Intersection-over-Union (IoU). Results are averaged over five trials (four with ADE20k) performed for each encoder-backbone architecture (ResNet34, EfficientNet-b4, DenseNet201, and ResNeXt50). Error bars show the standard deviation recorded over these trials for each condition. (e) Shows results averaged over the four data-sets and four encoder-backbone architectures (and multiple trials in each condition) for all relevant losses: cross-entropy (CE), LogitNorm (LN), Logit-adjusted (LA), DICE, multi-class margin (MM), HEM-, and HEM. Error bars show the mean standard deviation recorded across trials in each condition. The light grey bars show results averaged over data-set and trials when for each loss only the backbone architecture that produces the best results is chosen.

1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843

1844 Table 7: A comparison of the performance produced by different losses when applied to semantic
 1845 segmentation. Bold text indicates the best performance for each combination of training data-set and
 1846 and network architecture.

Task		IoU	IoU	IoU	IoU
	Loss	(%)	(%)	(%)	(%)
CamVid	<u>(ResNet34)</u>	<u>EfficientNet-b4</u>	<u>DenseNet201</u>	<u>ResNeXt50</u>	
CE	65.79 ± 1.56	64.21 ± 10.52	65.92 ± 0.52	62.20 ± 3.07	
LN	25.91 ± 2.94	27.67 ± 3.37	23.37 ± 2.42	20.43 ± 3.20	
LA	39.61 ± 2.30	43.80 ± 1.30	40.72 ± 1.74	38.82 ± 1.86	
Focal	65.78 ± 2.19	62.70 ± 10.08	63.80 ± 1.55	57.63 ± 9.20	
DICE	57.79 ± 1.12	58.02 ± 0.82	58.17 ± 0.80	56.74 ± 1.74	
MM	61.05 ± 3.03	61.51 ± 9.78	61.59 ± 1.28	53.07 ± 12.81	
HEM-	58.97 ± 2.05	61.26 ± 1.64	60.97 ± 1.73	58.56 ± 2.89	
HEM	61.77 ± 4.60	64.62 ± 3.55	55.89 ± 7.71	61.88 ± 4.11	
Cityscapes	<u>(ResNet34)</u>	<u>EfficientNet-b4</u>	<u>DenseNet201</u>	<u>ResNeXt50</u>	
CE	66.49 ± 1.01	63.20 ± 11.43	66.98 ± 0.55	67.23 ± 1.11	
LN	52.84 ± 1.55	46.19 ± 7.86	51.17 ± 1.41	49.38 ± 3.11	
LA	54.63 ± 0.95	52.28 ± 0.80	55.84 ± 8.04	52.00 ± 0.27	
Focal	68.27 ± 0.76	58.03 ± 14.14	68.16 ± 0.35	67.63 ± 0.78	
DICE	70.44 ± 0.10	70.31 ± 1.81	70.97 ± 0.17	67.44 ± 6.27	
MM	66.97 ± 13.21	60.81 ± 15.71	71.48 ± 1.82	65.83 ± 12.56	
HEM-	80.02 ± 0.22	82.26 ± 0.61	81.28 ± 0.76	80.98 ± 0.19	
HEM	74.25 ± 2.42	68.01 ± 6.20	71.98 ± 3.13	74.21 ± 1.52	
SBD	<u>(ResNet34)</u>	<u>EfficientNet-b4</u>	<u>DenseNet201</u>	<u>ResNeXt50</u>	
CE	49.44 ± 1.41	49.64 ± 1.09	48.14 ± 1.76	39.51 ± 8.99	
LN	19.83 ± 0.65	20.22 ± 2.37	20.35 ± 1.54	17.41 ± 1.05	
LA	24.18 ± 0.87	27.11 ± 2.16	27.29 ± 1.71	24.08 ± 1.58	
Focal	39.08 ± 8.50	48.63 ± 2.06	47.88 ± 2.67	44.38 ± 7.35	
DICE	49.00 ± 0.00	49.00 ± 0.00	49.00 ± 0.00	49.00 ± 0.00	
MM	33.74 ± 1.78	32.07 ± 1.60	36.02 ± 4.51	29.30 ± 5.02	
HEM-	51.80 ± 5.03	29.59 ± 22.64	31.30 ± 20.84	37.96 ± 23.60	
HEM	55.46 ± 1.14	55.91 ± 1.65	55.73 ± 0.96	53.77 ± 1.73	
ADE20k	<u>(ResNet34)</u>	<u>EfficientNet-b4</u>	<u>DenseNet201</u>	<u>ResNeXt50</u>	
CE	12.76 ± 0.73	12.25 ± 0.47	12.34 ± 0.12	11.83 ± 0.93	
LN	17.06 ± 0.19	16.70 ± 0.36	16.81 ± 0.58	16.00 ± 0.62	
LA	6.16 ± 0.34	6.54 ± 0.13	6.48 ± 0.14	6.23 ± 0.23	
Focal	12.12 ± 0.99	12.58 ± 0.08	12.50 ± 1.03	11.48 ± 0.45	
DICE	6.60 ± 0.57	6.14 ± 0.24	6.93 ± 0.25	4.63 ± 0.33	
MM	8.64 ± 0.13	9.35 ± 0.74	8.52 ± 0.51	4.74 ± 2.13	
HEM-	41.54 ± 0.91	42.37 ± 1.61	42.99 ± 0.67	41.98 ± 0.87	
HEM	22.82 ± 0.78	22.22 ± 0.74	22.58 ± 0.56	21.77 ± 1.09	

1883
 1884
 1885
 1886
 1887
 1888
 1889

Figure 9: The effects of the loss hyper-parameter on LogitNorm (LN) and Multi-class Margin (MM) losses. Results for LN are shown in (a) and (b). Results for MM are shown in (c) and (d). Performance metrics are averaged over five trials performed with each parameter value, and the error bars show the standard deviation recorded across these five trials. Experiments were performed using the ResNet18 architecture trained using the standard training data for CIFAR10. Performance was evaluated using accuracy on the standard (clean) test data-set (a) and (c), and using AUROC to evaluate the accuracy with which known and unknown classes can be distinguished when Maximum Softmax Probability is used as the confidence score (b) and (d).

C.4 SEMANTIC SEGMENTATION

Detailed results comparing the performance of CE and HEM trained networks for each backbone architecture together with error-bars can be seen in Figs. 8(a) to 8(d) for each of the four semantic segmentation benchmarks. This is the data summarised in the 10th segment of Fig. 2. A comparison of the performance of all tested losses averaged over datasets and architectures (and multiple trials per condition) are shown in Fig. 8(e). The same results appear in the 10th segments of Fig. 1, but in terms of relative rather than absolute performance. The numerical data can be found in Table 7. This table also includes results for Focal loss, a popular loss for segmentation tasks. Focal loss (Lin et al., 2017; Mukhoti et al., 2020) is a variant of CE loss that reduces the push towards infinite confidence. It defines a scaling factor that modifies the CE loss so that samples that are well classified (*i.e.*, have low CE loss) have even lower Focal loss. This hyper-parameter was set to a value of 2 in our experiments, which is the commonly used default value. Overall Focal loss performed similarly to CE loss (sometimes better, sometimes worse), and hence, much worse than HEM. The condition in which Focal loss out-performs CE loss by the largest margin was for the SBD data-set using the ResNeXt50 backbone. Here, CE achieves an IoU of 39.5% while Focal loss achieves 44.4%. However, this is still far behind HEM which achieves 53.8%.

D SUPPLEMENTARY EXPERIMENTS

D.1 LOSS HYPER-PARAMETER SELECTION

One of the great advantages of CE loss is that it does not introduce additional hyper-parameters that need to be tuned for different network architectures and tasks. Ideally, an alternative loss should also work without the need for hyper-parameter tuning. Preliminary experiments were performed to select an appropriate value for the hyper-parameter of each loss function that introduces such a parameter. These experiments were carried out using ResNet18 networks trained on CIFAR10: a combination of network architecture and data-set that was not used in the main experiments. The training set-up was as described in Appendix B.1 for training other ResNets, WRNs and PARN on CIFAR data. Results for these preliminary experiments are shown in Fig. 9 for LN and MM losses, and Fig. 10 for HEM loss.

Because the CIFAR10 training data is balanced, HEM is equivalent to HEM-, and we only consider a single, shared, margin μ . For HEM, we expected that the results would be insensitive to the choice of μ as learning would scale the magnitude of the logits to match the chosen margin. Consistent with this expectation, the accuracy in classifying the CIFAR10 test set was fairly constant for networks trained using margin values ranging over more than two orders of magnitude (Fig. 10(a)). The choice of margin does, however, effect the ability to differentiate known and unknown classes using the

Figure 10: The effects of the HEM loss margin. Performance metrics are averaged over five trials performed with each margin value, and the error bars show the standard deviation recorded across these five trials. Experiments were performed using the ResNet18 architecture. Results in (a) and (b) are for networks trained using the full CIFAR10 training dataset. Results in (c) and (d) are for networks trained using a reduced CIFAR10 training dataset containing 50 samples per class. (a) and (c) show the effect of the margin on the accuracy of classifying the CIFAR10 test-set. (b) and (d) show the effects of the margin on the ability to identify, and reject, samples from unknown classes. Performance is averaged over seven out-of-distribution data-sets and the rejection criteria is based on either Maximum Softmax Probability (MSP) or Maximum Logit Score (MLS).

Maximum Softmax Probability (MSP) confidence score, as shown in Fig. 10(b). A large margin will cause the network to learn to produce high magnitude logits. The softmax function applied to larger magnitude logits will produce a more peaked distribution. As a result, the confidence in the prediction being made when measured using MSP, for both known and unknown classes, will be higher and it will become more difficult to distinguish known from unknown classes. However, even with a large margin, it is possible perform unknown class rejection if Maximum Logit Score (MLS) is used as the measure of prediction confidence (Fig. 10(b)).

If the margin is reduced so that it approaches zero (or becomes negative) performance should degrade, as the classifier will not have learnt to produce higher logits for the correct class. For example, ResNet18 networks trained on CIFAR10 with HEM loss and $\mu = 0$ have mean standard test-set accuracy of 90.7% (*cf.*, with the results in Fig. 10(a)). We expected that the point at which the performance would degrade would depend on the number of training exemplars. When there are few training exemplars a larger margin is likely to be required in order to allow accurate generalisation, whereas, when there are many training exemplars the decision boundary can be positioned more accurately and a smaller margin is sufficient to separate samples from different classes. To demonstrate this the previous experiments were repeated using a version of the CIFAR10 training data-set that contained only 50 samples per class (rather than the 5000 samples per class in the full CIFAR10 training set). As can be seen from Fig. 10(c), a larger margin is required to reach the upper limit of accuracy in this case. Based on these results it was decided to set the margin to be equal to $\sqrt{M/\sum_{i=1}^n s_i}$, where s_i is the number of samples in class i and M was fixed at 2000. This equates to $\mu = 0.2$ for the full CIFAR10 training set, and $\mu = 2$ for the 50 samples per class version.

D.2 ANALYSIS OF PREDICTION CONFIDENCE

As expected given the analysis in Section 2.1, CE loss tends to produce very high confidence for most samples (Fig. 11(a)). In contrast, the margin-based losses produce a much wider range of prediction confidence values for the known data (Figs. 11(b) and 11(c)). This was expected as none of these losses can be optimised by increasing the magnitude of the logits vector, and hence, the MSP. This confirms that the advantages in unknown class rejection we observe for HEM is indeed due to less severe overconfidence. MM loss fails to improve unknown class rejection performance beyond that of CE loss, and typically results in lower accuracy on the standard test data, particularly for data-sets with a large number of classes. As discussed in Section 2.2, an explanation for these empirical observations is that the MM loss tends to become close to zero prior to all samples being correctly classified (especially when n is large), and hence, MM loss effectively terminates weight updates prematurely.

Figure 11: Prediction confidence after learning with standard data-sets. Results are for WRN22-10 networks trained on CIFAR10. Each graph shows histograms of the number of samples classified with different levels of prediction confidence (MSP). Separate histograms are shown for the response generated to unseen samples from known classes (the CIFAR10 test set) and unknown classes (the CIFAR100 test set). The former is measured against the right-hand vertical axis and the latter against the left-hand vertical axis.

Figure 12: Learning dynamics for WRN22-10 networks trained on CIFAR10 with (a) cross-entropy (CE) loss, (b) high error margin (HEM) loss. Each graph shows the change during training of the loss, the mean percentage AUROC averaged over seven data-sets containing unknown classes (see Appendix B.1.2), and the percentage clean accuracy on the standard test-set. The loss is measured against the left-hand vertical axis and the others two metrics against the right-hand axis. The solid lines show the mean values over five trials, and the shaded regions indicate the minimum and maximum values recorded in any of the five trials.

D.3 ANALYSIS OF LEARNING

To check that our loss leads to equally effective learning as CE loss we investigated the changes in various metrics over the course of training (see Fig. 12). A major difference between CE and HEM loss is that the latter does not monotonically reduce over the whole course of training. This is to be expected, as only errors greater than the average contribute to the loss. Hence, it is possible that parameter updates during learning cause errors to move from just above the average to below the average. This will increase the mean of the remaining errors. Hence, it is important to prevent the calculation of the average from being used in the calculation of the gradients.

It can be seen that HEM benefits most from the drop in learning rate near the end of training and that there are large fluctuations in the loss, and the other recorded metrics, before the learning rate drop at 100 epochs. Both these observations suggest that HEM might benefit from a lower initial learning rate. This was confirmed experimentally by reducing the initial learning rate from 0.1 to 0.05. This increased performance for WRN22-10 networks trained on CIFAR10 with HEM loss on all the metrics used in this paper: the mean clean accuracy increased from 94.73% to 95.32%, the mean accuracy on common corruption increased from 75.08% to 75.41%, the mean AUROC for unknown class rejection increased from 96.16% to 96.56%, and mean DAR for adversarial attacks

2052

2053 Table 8: The effects of random oversampling, a complementary approach for dealing with training
2054 data imbalance, on the performance of CE and HEM- losses. Results are for the CIFAR10LT-100
2055 data-set and the WRN22-10 architecture.

Loss	Clean Acc. (%)	Corrupt Acc. (%)	OOD AUROC (%)	AA DAR (%)	Complementary Method	Clean Acc. (%)	Corrupt Acc. (%)	OOD AUROC (%)	AA DAR (%)
CE	74.73 \pm 0.87	55.77 \pm 1.26	77.45 \pm 3.72	6.51 \pm 0.22	oversampling	73.67 \pm 0.86	55.26 \pm 0.55	80.86 \pm 1.84	6.87 \pm 0.20
HEM-	75.21 \pm 1.33	57.64 \pm 0.43	89.54 \pm 0.79	6.67 \pm 0.48	oversampling	71.89 \pm 1.35	55.83 \pm 1.57	89.03 \pm 2.22	8.21 \pm 0.59

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2071 Table 9: The effects of adversarial training, a complementary approach for improving adversarial
2072 robustness, on the performance of CE and HEM- losses. Results are for the CIFAR10 data-set and
2073 the WRN22-10 architecture. Adversarial training was performed using 10 steps of Projected Gradient
2074 Descent (PGD) and the maximum allowed perturbation was constrained by the l_∞ -norm to be less
2075 than $\frac{8}{255}$.

Loss	Clean Acc. (%)	Corrupt Acc. (%)	OOD AUROC (%)	AA DAR (%)	Complementary Method	Clean Acc. (%)	Corrupt Acc. (%)	OOD AUROC (%)	AA DAR (%)
CE	95.43 \pm 0.18	76.10 \pm 0.67	93.31 \pm 1.01	3.21 \pm 0.20	PGD $_{l_\infty}^{10}$	88.04 \pm 0.21	79.73 \pm 0.16	77.92 \pm 2.35	68.72 \pm 0.42
HEM-	94.73 \pm 0.06	75.08 \pm 0.86	96.16 \pm 0.48	5.91 \pm 0.38	PGD $_{l_\infty}^{10}$	86.42 \pm 0.88	78.40 \pm 0.78	78.10 \pm 2.00	70.00 \pm 0.90

2071 increased from 5.91% to 6.34%. Further improvements in performance might be expected by more
2072 carefully tuning the learning hyper-parameters for each task.2073

E LOSSES COMBINED WITH COMPLEMENTARY APPROACHES

2074 The article introduces a new loss. We have, therefore, focused on evaluating this new loss in
2075 comparison with alternative loss functions. For some of the criteria that we have used in our
2076 assessments there exist methods for improving performance that can be used in conjunction with any
2077 loss, including HEM. Comprehensively testing a loss with all of these complementary techniques
2078 would be a very large undertaking, and hence, we leave that for future work. Here, we report only a
2079 few preliminary experiments combining HEM with some well-known complementary approaches.
2080 These methods, like all the others we have used, such as those for reducing catastrophic forgetting,
2081 have been developed to work well with CE loss. As well as evaluating existing methods with HEM,
2082 future work might also develop new techniques specifically designed to work well with HEM.2083

E.1 COMPLEMENTARY METHODS FOR DEALING WITH IMBALANCED TRAINING DATA

2084 Random oversampling is a standard, baseline, method for training with imbalanced data (Branco
2085 et al., 2015). This method changes the relative frequency with which training samples are selected,
2086 so that samples from all classes appear equally often in the training batches. The result of using
2087 this method with CE and HEM- losses is shown in Table 8. It can be seen that oversampling is
2088 ineffective, resulting in poorer clean accuracy with both losses. This is likely due to the well-known
2089 issue of overfitting to the oversampled samples (Branco et al., 2015). For the other metrics and this
2090 particular combination of data-set and network architecture, HEM- outperforms CE both with and
2091 without oversampling.2092

E.2 COMPLEMENTARY METHODS FOR ADVERSARIAL ROBUSTNESS

2093 Adversarial training (AT) is a standard, and highly effective, defence against adversarial attack. It
2094 is a data-augmentation technique where training images are modified by adversarial perturbations.
2095 Augmenting the training images using multiple steps of Projected Gradient Descent (PGD; Madry
2096 et al., 2018) has become a standard method of AT against which all other methods of adversarial
2097 defence are benchmarked. The effects of using this form of adversarial training with CE and HEM-
2098 losses are shown in Table 9. It can be seen that AT has similar effects for both losses: trading-off
2099 clean accuracy and OOD rejection performance for increased adversarial robustness and a slight
2100 increase for corrupt accuracy.

2106
 2107 Table 10: Results for alternative methods of unknown class rejection when used with CE and HEM-
 2108 losses.

2109 2110	Loss	Data-set	Architecture	OOD AUROC (%)			
				MSP	MLS	Energy	GEN
2111	CE	CIFAR10	ResNet32	91.92 ± 1.16	94.27 ± 0.83	94.28 ± 0.90	94.42 ± 0.78
2112	HEM-	CIFAR10	ResNet32	95.20 ± 0.71	95.15 ± 0.71	93.97 ± 0.84	94.06 ± 0.82
2113	CE	TIN	ResNet18	73.52 ± 2.52	74.03 ± 1.81	74.06 ± 1.69	73.32 ± 1.72
2114	HEM-	TIN	ResNet18	79.49 ± 3.15	79.53 ± 3.14	77.63 ± 3.05	77.68 ± 3.04

2115
 2116 E.3 ALTERNATIVE METHODS FOR UNKNOWN CLASS REJECTION

2117
 2118 Many methods have been proposed for detecting samples that come from unknown classes (Yang
 2119 et al., 2022; Zhu et al., 2024; Tajwar et al., 2021; Szyc et al., 2023; Vojir et al., 2023). Here we test
 2120 four representative post-hoc rejection methods: ones that can be used without re-training the classifier
 2121 or modifying its architecture. MSP and MLS, results for which have already been presented in earlier
 2122 sections, and two additional methods, Energy score (Liu et al., 2020) and Generalized Entropy score
 2123 (GEN; Liu et al., 2023). Energy score defines prediction confidence as the negative logarithm of
 2124 the denominator of the softmax function applied the network output layer. GEN defines confidence
 2125 as being inversely proportional to the entropy of the class probability distribution produced by the
 2126 classifier. As shown in Table 10, we found that all these methods produced very similar results.
 2127 Furthermore, none of these methods enhanced the OOD rejection ability of CE-trained networks to
 2128 be better than that of HEM-trained networks.

2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159