Under review as a conference paper at ICLR 2026

SWE-EXT: EXTENDING AND SCALING AUGMENTED
DATA FOR REPOSITORY-LEVEL CODING TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Repository-level benchmarks such as SWE-Bench have highlighted the challenges
of scaling language models to complex software engineering tasks. However, cur-
rent training data remains narrow in scope, primarily focusing on monolingual
issue resolving and feature implementation. In this work, we introduce SWE-
Ext, a large-scale effort to extend and scale augmented data for repository-level
coding tasks. SWE-Ext broadens existing data along two key dimensions: mul-
tilingual coverage (spanning 10 languages) and an auxiliary code completion
task. We uncover distinct transfer mechanisms: data from other programming
languages provides transferable signals that generally enhance localization and
editing capabilities in single-language (Python) settings, while code completion
data strengthens code editing capabilities, particularly for feature implementation
tasks requiring substantial new code generation. These extensions yield consis-
tent improvements on Python repository-level benchmarks like SWE-Bench and
FEA-Bench. Our method offers a simple yet effective way to leverage more open-
source data for advancing repository-level code models.

1 INTRODUCTION

Repository-level coding tasks have emerged as a critical frontier in code generation, shifting focus
from isolated script-level challenges to comprehensive software engineering workflows in full repos-
itories. Early benchmarks emphasized standalone function synthesis, such as HumanEval (Chen
et al., 2021) for Python problems and MBPP (Austin et al., 2021) for basic algorithms. However,
these evaluations often ignored broader repository contexts, including dependencies, multi-file in-
teractions, and real-world specifications (Xu et al., |2022)). Recent advancements have introduced
more holistic benchmarks, with SWE-Bench (Jimenez et al.| [2024) exemplifying repository-level
issue resolution by evaluating models on GitHub pull requests (PRs) tied to verifiable test outcomes.
Complementary efforts like FEA-Bench (L1 et al., 2025) target feature implementation.

To enhance model capabilities on these demanding tasks, substantial work has explored post-training
strategies. Broadly, these approaches fall into two categories: augmented data and verified data.
Augmented data methods construct training instances directly from real-world GitHub PRs, lever-
aging ground-truth information without requiring execution environments (Xie et al.| |2025; |Wang
et al., 2025). For instance, SWE-Fixer (Xie et al.| 2025)) curates PR-based data for instruction tun-
ing, while MCTS-Refine (Wang et al.,|2025) synthesizes reasoning chains via search algorithms. In
contrast, verified data approaches build executable environments to collect agent trajectories, filter-
ing for those that pass unit tests or achieve successful outcomes (Jain et al.l 2025} [Pan et al.| 2024;
Yang et al., 2025b). Techniques like R2E (Jain et al., [2025) and SWE-Gym (Pan et al.,|2024) gen-
erate validated trajectories in sandbox for real PRs, and SWE-Smith (Yang et al.| |2025b) extends
synthetic tasks with verification. While verified data ensures high-quality supervision through ex-
ecution feedback, it demands significant resources for environment setup and scaling. Augmented
data, conversely, offers greater flexibility and avoids these complexities, enabling broader explo-
ration of data domains.

Despite their advantages, existing augmented datasets remain limited in scope, predominantly focus-
ing on Python repositories and monolingual issue resolution or feature implementation (Xie et al.,
2025). This narrow focus underutilizes the vast diversity of open-source GitHub data, restricting
model generalization across languages and task types. In this work, we introduce SWE-Ext, a

Under review as a conference paper at ICLR 2026

scalable pipeline to extend and augment repository-level coding data along two orthogonal dimen-
sions: multilingual coverage and auxiliary task inclusion (e.g., code completion). Starting from
high-quality PRs crawled from GitHub Archive|'|across ten programming languages (Python, Go,
JavaScript, Ruby, PHP, Java, TypeScript, C#, C++, and C), we construct datasets of four com-
plementary sub-tasks: (1) file localization to identify relevant files, (2) component localization to
pinpoint functions or methods, (3) code editing to generate patches for code repositories, and (4)
code completion derived from short-description PRs to provide code in-filling on fixed-positions.
Our contributions are as follows:

* We develop a scalable data extension pipeline that broadens the utility of GitHub PRs
for repository-level tasks, enabling extension across multilingual and completion-based
domains while preserving baseline effectiveness.

* We demonstrate consistent performance gains on repository-level benchmarks like SWE-
Bench and FEA-Bench, with multilingual and completion extensions yielding up to +1.4%
and +2.5% improvements on 32B models, respectively, and up to +5.4% on 7B models.

* We provide preliminary validation of strong cross-task and cross-language transfer effects,
showing that multilingual or completion data can boost single-language downstream per-
formance and highlighting the value of diverse augmentation for generalization.

2 PROBLEM DEFINITION

Notation. Let R denote a software repository represented as a finite collection of files {f;}¥,
together with auxiliary structures (ASTs, file-level skeletons, import graph, etc.). Let ¢ denote
a problem statement (e.g., a PR description, an issue body, a failing test, or a natural-language
specification). Let P be the universe of addressable program positions (file identifiers X component
spans). A localization is a subset £ C .. The space of edits (patches) is denoted P; an edit (patch)
§ € P is an operator p : R — R’ that applies insert/replace/delete/move operations to positions in
PP. Finally, L(R’,) is a task loss measuring how well the edited repository R’ satisfies q. Note that
P(-) denotes a probability distribution.

Repository-level coding task. Given (R, ¢), the objective of a repository-level coding agent is to
produce a patch § € P that minimizes the task loss:
o = in L(3(R 1
arg min L(5(R). q), (1)
or equivalently, under a probabilistic modeling view,

0 = argrglgﬂ);cP(é IR, q). ()

Decomposition into localization and editing. Because modern LLMs cannot feasibly consume
the entirety of large repositories at once, we decompose the posterior over patches by marginalizing
over possible localizations:

P(5|R,q) = > P({|R,q) P(d|R,q,). 3)
lell

This decomposition separates (i) a localization model that identifies candidate regions ¢ of interest,
and (ii) an editing model that produces a concrete patch conditional on the selected regions. In
practice, localization and editing are performed in separate iterative phases: the system first iterates
to identify a sufficiently accurate set of relevant files or components, and only then initiates an
editing phase where patches can be generated, potentially with feedback.

Code completion as a special case. Code completion corresponds to the special case where the
localization £* is given a priori (a fixed position or contiguous span) and the patch is constrained to
be a continuation or replacement at that position:

) = argrglg;(P(MR,q,é). 4)

"https://www.gharchive.org

Under review as a conference paper at ICLR 2026

O 1.Crawl Pull Requests .[g 2.Parsing Files in Repositories @ 3.Extract the ground truth of code editing for PRs

l High Quality PRs with detailed description Low Quality PRs with short description 1
File Localization Component Locallzatlon Code Editing Code Completion
. Provide Skeletons » Construct the code context Extract consecutive
g% Structure-Based Localize @ . based on augmented found segments to be completed

components

N =3 Construct the SEARCH-
L View the component 2 > | 2 REPLACE formatted code edit

View the component 1 Localize to relevant

-0
® Dependency-Based Reflect components using our pipeline

View the file skeletions N target Construct the code context
and summarize localization E’—) using relevant components
i T Provide the reasoning of and SEARCH-REPLACE
R O (s ﬁ Summary the localization edits formatted code completion
missing ground truth Complement missing components Provide the reasoning of
completion
Augmented Found Files Augmented Found Components P

Figure 1: Data collection pipeline for 4 types of tasks in SWE-Ext. We crawl and process pull
requests from GH Archive, and then process well described PRs for localization-editing task and
process other PRs for completion task.

3 SWE-EXT: EXTEND THE REPOSITORY-LEVEL CODING DATA

3.1 DATA COLLECTION

Source data and ground truth. We crawl pull requests (PRs) from GH Archive (recent 10 years)
and retain only high-quality candidate samples. We keep PRs whose repository has both (i) star
count > 100 and (ii) total PR count > 100, and we exclude PRs that modify only non-code files or
that were not merged. For each retained PR we collect metadata (PR description, linked issue text if
any, timestamps) and patch (diff). We parse repository files with tree-sitter parsers for the following
languages: Python, Go, JavaScript, Ruby, PHP, Java, TypeScript, C#, C++, and C. From each file we
extract a compact file skeleton (top-level classes, functions/methods). Using the patch we record the
ground-truth modified files Fy¢ and the ground-truth modified components Cg;. To limit tractability,
we retain only PRs with ||Fg¢|| < 5 and ||Cg|| < 10. The problem statement ¢ is the concatenation
of the PR description and the linked issue body (when available). Formally each retained example
is stored as a tuple

s = (Ra q, th Cgt7 6gt)7 (5)
where dg is the ground-truth patch.

File localization. To approximate P(¢ | R,q) at file granularity, we construct file-localization
data. We employ a three-stage pipeline driven by a expert model: (i) rank files according to the file
tree the problem statement; (ii) expand via file-level dependency to form a candidate set; (iii) re-rank
using file skeletons and the expert model to produce a final top-n set S. If Fo & S, we re-run the
expert with rationalization hints so that .S always covers the ground truth. The resulting dataset pairs
(R, q,S) provide supervision for learning to predict high-recall file sets that contain the true patch
locations, thereby reducing the effective search space for downstream editing.

Component localization. Once file localization is complete, we build component-level (function/-
class level) localization data to approximate P(c | R, ¢,¢). We adapt iterative selection methods
from CoSIL (Jiang et al., [2025) to allow the expert model to sequentially inspect and select com-
ponents from candidate files. The process terminates once up to K = 10 components are selected.
If some ground-truth components are missing, they are inserted into the iterative process and final
list. Each example (R, q,F,Scomp) thus can serves as a high-recall label for a policy that selects
components relevant to q. This supports models in learning to identify fine-grained patch locations
and to maximize recall under constrained inspection budgets.

Code editing. We construct code-editing data directly from J,. For each selected localization
context lopx = Scomp, we convert patches into before/after code fragments (search-replace pairs

dsp). To enrich supervision, a expert model generates a rationale explaining the patch. Each example
(R, ¢, £eix, 0sp) provides supervision for P(§ | R, ¢, cix). This partition trains models to propose
concrete patches given a localized context.

Under review as a conference paper at ICLR 2026

File Localization Function Localization Code Editing Code Completion

(56,384 samples) (56,726 samples) (45,858 samples) (23,853 samples) == Python
I Go

JavaScript

I Ruby
Em PHP
I TypeScript
. Java
. Cc#
N C++

C

Figure 2: Language distribution of dialogues for 4 sub-tasks in SWE-Ext dataset.

Code completion. Finally, we derive a completion dataset from PRs whose problem statements
are short (fewer than 50 words), which are possibly not complete instructions for code editing.
In these cases, we extract newly added functions or contiguous inserted regions and frame them as
completion tasks with a fixed localization £*. Each example provides supervision for P(d | R, g, £*).
Because completions originate from real patches and are abundant, they supply local-generation
signals that improve fluency and act as an effective curriculum for training editing models.

Summary. The construction pipeline yields four complementary datasets, each aligned with a
distinct conditional distribution in the factorization of P(é | R, q). By supervising different stages
separately, we enable scalable training for repository-level coding tasks while ensuring that the final
system can integrate these capabilities into a coherent editing pipeline. For further details, please
refer to Appendix [D]

3.2 DATASET CHARACTERISTICS

The SWE-Ext corpus is a training dataset constructed from real-world pull requests and intended
to supervise models for repository-level coding tasks. The dataset is organized into four comple-
mentary tasks: file localization, component (function/method) localization, code editing, and code
completion. Table[I|reports core statistics. Below we summarize the most important characteristics
and how they relate to model training.

Origin and construction. Table [T| presents the statistics of the SWE-Ext dataset. For the three
localization and editing tasks (File-Localization, Component-Localization, and Code-Editing), we
retain a canonical pool of approximately 56k to 46k PRs. Crucially, these tasks exhibit high data di-
versity, being sourced from 4,319 to 4,746 unique GitHub repositories, which strongly demonstrates
the broad applicability of our data augmentation strategy. The Code-Completion task collects newly-
added functions or contiguous insertion ranges from ~ 23.9k PRs, whose short descriptions make
end-to-end supervision weak but whose insertions are realistic completion targets.

Augmentation of localizations. The Localizations column in Table [I] highlights our data aug-
mentation strategy: The large candidate set size (e.g., 4.83 files vs. 1.66 ground truth files for File-
Localization) confirms that we incorporate highly relevant, non-ground-truth files or components
into the training data. This design is crucial because it makes the dataset more realistic, aligning
with scenarios where agents’ localization is often relevant but not perfectly precise in real-world
software engineering tasks.

Scale, context length and edit complexity. The dataset provides long, realistic contexts: average
input contexts (Dialogue Len) range from ~ 5.9k tokens (completion) up to ~ 9.8k tokens (file-
localization), reflecting the long context challenge for real-word repository-level tasks. Average
Answer Len varies by task (= 60-955 tokens). Edit complexity differs across modalities: code-
editing patches average ~ 32 lines (explicit before/after pairs), while completion targets are larger
on average (~ 88 lines) because they often correspond to newly-added contiguous code regions.

Language coverage. SWE-Ext covers ten languages: Python, Go, JavaScript, Ruby, PHP, Type-
Script, Java, C#, C++, and C. Language distributions (See Figure [2) show consistent dominance

Under review as a conference paper at ICLR 2026

Table 1: Statistics of the dialogue data for 4 tasks in the SWE-Ext dataset. Token counts are com-
puted using Qwen?2 . 5-Coder. Dialogue Len represents the total token count of the full dialogue
after applying a chat template. Answer Len is the average token count of all “assistant” responses
within the dialogue. The ‘Answer Len’ are the final macro-averaged values. The Patch metric shows
the average number of lines changed in the ground truth patches. For Localizations, the values in-
dicate the number of ground truth modified locations versus the total number of locations in the
augmented data.

Dataset Unique Samples Dialogue Len Answer Len Patch Localizations
repos #) (Avg tok.) (Avg tok.) (Avg lines) (Avg GT/Total)
File-Localization 4746 56384 9787.8 552.1 - 1.66/4.83
Component-Localization 4702 56726 8164.3 59.8 - 2.55/6.32
Code-Editing 4319 45858 6447.7 955.0 32.0 -
Code-Completion 1642 23853 5929.7 430.1 88.0 -

of Python and Go across modalities (roughly 27-30% and 15-21% respectively), moderate repre-
sentation for JavaScript, Ruby and PHP (=~ 9-13%), and smaller but present contributions from
Java/TypeScript/C#. Low-resource languages (C, C++) appear at the long tail (< 1-1.1% in most
partitions). This multi-language composition enables cross-lingual training and evaluation of model
robustness while reflecting real-world repository populations.

4 EXPERIMENTS

Training. To empirically validate whether our augmented data, derived from real-world GitHub
PRs, can enhance the proficiency of large language models on complex repository-level coding
tasks, and to explore the synergistic effects of incorporating multilingual and code completion data,
we employ a supervised finetuning approach tailored for a multi-turn dialogue format.

Models. Our methodology leverages GPT-40 (gpt-40-2024-05-13) (Hurst et al.| 2024)) as a
data augmentation expert to transform raw GitHub PR data into a multi-task dataset, as detailed in
Section For the training phase, we utilize Qwen?2 .5-Coder-Instruct (Hui et al.l2024) as
our foundational model. For details of training and models, please refer to Appendix [B]

Agent System. Our agent system adopts a staged approach. We first perform file and compo-
nent localization following the same iterative process used for data generation. Subsequent stages,
including line-level localization, patch generation, and verification, are executed in an Agentless
manner (Xia et al., 2024). We have termed this pipeline CosAgentless, signifying the integration
of the iterative and fine-grained localization process from CoSIL (Xia et al.||2024) into the standard
Agentless inference pipeline.

Data. Our dataset is partitioned into a 96% training set and a 4% validation set. For a compre-
hensive ablation study and a fair comparison with prior works, we define three distinct training
configurations. First, the SWE-Ext-Baseline model is trained on the standard Python-only data for
the first three tasks (localization and editing), consistent with existing agent systems. Second, the
SWE-Ext-Multilingual model is trained on the first three tasks of our multilingual data. Finally,
the SWE-Ext-Completion model is trained on Python-only data but across all four tasks. This
setup enables a clear analysis of the performance gains derived from extending our data along both
multilingual and task-specific dimensions.

Evaluation. We evaluate our models on two distinct repository-level coding benchmarks: the well-
established SWE-bench (Jimenez et al.,[2024) for resolving issues and FEA-Bench (L1 et al., [2025))
for implementing features. Both the benchmarks only contain Python task instances and the primary
metric is the task pass rate (%resolved). For a more granular analysis, we also report the Top-x hit
rates, MRR (Mean Reciprocal Rank), and MPP (Mean Precision at Position)(Manning},|2008) for the
file and component localization stages. In our evaluation, we use a modified Agentless framework
to perform a single complete attempt per task. A task is considered a failure if the process stalls or
errors out, resulting in an empty patch.

Under review as a conference paper at ICLR 2026

5 RESULTS
5.1 SOFTWARE ENGINEERING BENCHMARKS
Model | System | Expert Model | Exec | % Resolved
Closed Weight Models
GPT-40 (Hurst et al.}[2024) Agentless - - 38.8%
Claude 3.5 Sonnet (Anthropic}2024) Agentless - - 50.8%
Claude 3.7 Sonnet (Anthropic}[20252) SWE-agent - - 58.2%
Claude 4 Sonnet (Anthropic} 2025b) SWE-agent - - 72.7%
Llama3-SWE-RL-70B (Wei etal}2025) | Agentless - - 41.0%
Open Weight Models
DeepSeek-V3-671B (Liu et al.| 2024) Agentless - - 42.0%
Kimi K2-1TB (Team et al.|[2025) Agentless - - 65.8%
Lingma-SWE-GPT-72B (Maetal,2024) | SWE-Synlnfer | - - 28.8%
Qwen3-235B-A22B (Yang et al.|[2025a) OpenHands - - 34.4%
SWE-gym-32B (Pan et al.} [2024) OpenHands Hybrid v 20.6%
R2E-Gym-32B (Jain et al.| 2025) OpenHands Claude 3.5 Sonnet v 34.4%
SWE-smith-7B (Yang et al.,[2025b) SWE-agent Claude 3.7 Sonnet” v 15.2%
SWE-smith-32B (Yang et al., 2025b) SWE-agent Claude 3.7 Sonnet” v 40.2%
SWE-fixer-72B (Xie et al}2025) SWE-Fixer - X 32.8%
SoRFT-Qwen-32B (Ma et al.;[2025) Agentless Claude 3.5 Sonnet X 30.8%
MCTS-Refine-32B (Wang et al|[2025) Agentless DeepSeek-v3 X 32.4%
SWE-Ext Models
SWE-Ext-Baseline-32B CosAgentless GPT-40 X 31.2%
SWE-Ext-Multilingual-32B CosAgentless GPT-40 X 32.6%
SWE-Ext-Completion-32B CosAgentless GPT-40 X 32.2%

Table 2: Resolve rates for existing solutions on SWE-bench Verified, collected from (Yang et al.,
2025b) and Kimi-K2 (Team et al., 2025)) technical reports. Expert Model indicates the large lan-
guage models that generated content during the data construction process. Exec indicates whether
execution-based feedback is used in the data construction process. All performance numbers are
pass@1 (Single attempt using agent systems). Indicates the primary data for training is mainly
generated by the specified expert model.

Model | System | % Resolved

Zero-Short Inference

GPT-40 (Hurst ct al| 2024) Agentless 9.0%
01 (Jaech et al.|[2024) Agentless 14.0%
DeepSeek-V3-671B (Liuetal|2024) | Agentless-Lite 11.0%
SWE-Ext Models
SWE-Ext-Baseline-32B CosAgentless 10.0%
SWE-Ext-Multilingual-32B CosAgentless 11.5%
SWE-Ext-Completion-32B CosAgentless 12.5%

Table 3: Resolve rates for existing solutions on FEA-Bench Lite, collected from [Li et al.| (2025)).
All performance numbers are pass@1 (Single attempt using agent systems).

Competitive performance under limited resources. According to Table[2] although the absolute
performance of SWE-Ext models is lower than the strongest closed-weight systems (e.g., Claude 4
Sonnet at 72.7%), our models achieve competitive results among open-weight models even with the
baseline data. It is important to note that most higher-performing models either (i) use significantly
larger parameter counts, or (ii) are distilled from expert models with higher success rates. In contrast,
SWE-Ext only leverages augmented training data without relying on such privileged resources, yet
already achieves notable improvements. The results validate our pipeline of data collection.

Under review as a conference paper at ICLR 2026

Consistent improvements with extended data. Table[2]and Table 3] demonstrate that the models
trained with SWE-Ext consistently outperform the baseline across both benchmarks. On SWE-
Bench Verified, our SWE-EXT-MULTILINGUAL/COMPLETION-32B achieve 32.6% and 32.2% re-
solve rates, respectively, compared to 31.2% of the baseline. On FEA-Bench Lite, similar trends
are observed: the model trained with extended data outperform the baseline by up to +2.5%. These
results confirm that the proposed data extensions are effective in enhancing model performance.

Multilingual vs. Completion extension. We observe distinct patterns between multilingual and
completion data extension. Multilingual extension brings more consistent improvements in issue
resolving, suggesting that cross-lingual signals help models capture generalizable reasoning strate-
gies. In contrast, completion extension is particularly effective for feature implementation, where
generating new functionality requires stronger code completion capabilities. These results highlight
that different types of target complementary aspects of repository-level development, and jointly
contribute to the overall performance gains.

Ablation insights. By comparing the multilingual extension and the completion-based extension,
we find that both augmentation strategies yield consistent gains. This suggests that when the amount
of original supervision is limited, expanding the dataset in orthogonal directions, either through
multilingual variants or through completion-style tasks, can provide complementary signals and
enhance model generalization. This result underscores the value of leveraging diverse forms of
augmented data for repository-level coding tasks.

Overall, these findings highlight that SWE-Ext contributes a practical approach for improving the
software engineering capabilities, providing consistent benefits across different benchmarks.

5.2 LOCALIZATION ANALYSIS

Model System \ Component-level Localization \ File-level Localization

| Hit@1l Hit@3 MAP MRR | Hit@1 Hit@3 MAP MRR
Qwen2.5-Coder-32B CoSIL 43.0 54.3 46.1 48.9 60.7 71.3 69.8 69.4
Qwen2.5-Coder-32B CosAgentless 47.4 61.8 47.4 54.8 69.0 86.2 76.1 71.7
SWE-Ext-Baseline CosAgentless 55.0 65.4 53.0 60.8 72.8 87.6 77.0 80.2

SWE-Ext-Multilingual CosAgentless 57.2 68.2 55.3 63.1 75.8 90.2 794 82.8
SWE-Ext-Completion =~ CosAgentless 52.8 62.0 51.3 57.9 72.8 86.6 76.7 79.8

Table 4: Localization performance on the SWE-bench Verified test set, consolidating Component-
level and File-level results. All scores are reported in percentages (%).

To better understand how augmented data improves final resolution rates, we analyze the interme-
diate step of localization on SWE-bench Verified. Localization accuracy determines whether the
correct files or components are identified, and thus directly affects downstream success.

Effect of multilingual extension. Introducing multilingual data consistently improves localiza-
tion: component Hit@1 increases from 55.0% to 57.2%, and file Hit@1 from 72.8% to 75.8%
(Table d). This shows that data from other programming languages provides transferable structural
and semantic signals that strengthen the model’s ability to locate relevant code regions. As a result,
localization accuracy and overall resolution both improve, even when the target task is restricted to
Python repositories.

Effect of completion extension. In contrast, extending with completion data leads to a different
effect: component Hit@1 decreases from 55.0% to 52.8%, while file-level metrics remain nearly
unchanged. This is expected, since completion data focuses on the code editing objective rather
than localization. Formally, such data trains the model according to Eq.] which optimizes the
synthesis of code edits § given a fixed ground-truth location ¢*, without providing supervision for
selecting ¢. Despite the degradation in localization, the strengthened editing capability yields higher
overall resolution rates, demonstrating that the positive impact on code edit outweighs the negative
impact on localization.

Under review as a conference paper at ICLR 2026

Implication. These results reveal distinct mechanisms: multilingual extension simultaneously im-
proves localization and editing by enabling transfer across languages, whereas completion extension
primarily enhances code editing ability, especially in scenarios that require substantial additions of
new content, such as feature implementation.

5.3 SCALING ANALYSIS

To validate the effectiveness and robustness of our data construction approach, we conduct scal-
ing experiments across both model sizes and training data volumes. We evaluate our method on
Qwen?2.5-Coder-7B-Instruct and systematically sample 20%, 40%, and 100% of our aug-
mented training data to examine scaling behaviors. The results are presented in Figure 3]

Consistent scaling patterns across model sizes. Our experiments reveal that scaling laws hold
consistently across different model capacities. The 32B model substantially outperforms its 7B
counterpart across all configurations, achieving an average improvement of +12.8%. Notably, the
relative performance trends between different extension strategies remain remarkably stable: multi-
lingual extension consistently provides the largest gains (+5.4% for 7B, +1.4% for 32B over base-
line), while completion extension shows modest improvements. This consistency across model
scales validates the robustness of our data construction pipeline and suggests that both multilingual
and completion extensions scale predictably with model parameters.

Extension strategies enhance data scaling. Figure[3[a) shows that applying our extension strate-
gies yields clear logarithmic scaling patterns as the training set size increases. The largest gains
(+9.4%) appear when moving from 0% to 20% of the data, with diminishing returns thereafter.
Compared with the SWE-Ext-Baseline, which simply discards non-Python samples or PRs with
omitted description and achieves only 18.4% on SWE-bench Verified, our approach lifts the entire
scaling curve. By converting previously unusable data into effective training signals through mul-
tilingual and completion extensions, we substantially improve both data efficiency and the scaling
potential of repository-level code generation models.

2 (a) Data Size Scaling on 7B model (b) Model Size Comparison
10.8% w78 Model
20 e 32B Model
o 18.8% 3 35 iy 32.6% 32.2%
<18 4 SWE-Ext 18.4% 73 30
s Multilingual+Completion SWE'IFXt s
16 aseline
14 -4
3 3
12 2
a 8 15
o 10 [}
« 3-‘6 10
8
5
6
0 20 40 60 80 100 0 SWE-Ext SWE-Ext SWE-Ext
Source Data Size (%) Baseline Multilingual Completion

Figure 3: Scaling law analysis on SWE-bench. (a) Performance scaling with training data size
follows an approximate logarithmic curve. (b) Model size comparison across three configurations
demonstrates consistent improvements from 7B to 32B models.

6 RELATED WORK

6.1 REPOSITORY-LEVEL CODING TASK

Early benchmarks for code generation focused on function-level tasks, such as HumanEval
and MBPP (Austin et al [2021)) for simple algorithms. These evaluations emphasized
isolated synthesis but overlooked repository contexts. Subsequent benchmarks introduced class- and
multi-file challenges, including ClassEval 2023), BigCodeBench 2024), and
LiveCodeBench [2024). Evaluation of real problem in cpde repositories is advanced with
SWE-bench (Jimenez et al.| [2024) for GitHub issue resolution, alongside variants like DevEval

et al.| [2024b) and EvoCodeBench 2024a)) that align with real repositories. FEA-Bench
et al., 2025) targets feature additions via pull requests. Our work aims to enhance the capabilities

Under review as a conference paper at ICLR 2026

of large language models in repository-level coding tasks through post-training with augmented
real-world data.

6.2 SOFTWARE ENGINEERING AGENTS

Although basic code large language models (Hui et al.| [2024) can achieve good performance on
many code benchmarks through direct generation, for repository-level tasks involving numerous
files and complex edits, the common practice is to incorporate agent frameworks (Yao et al.,[2023).
Agents for repository-level tasks often employ iterative processes for issue resolution. SWE-
agent (Yang et al., |2024)) uses agent-computer interfaces for navigation and editing, while Au-
toCodeRover (Zhang et al.| [2024) integrates fault localization for repairs. CodePlan (Bairi et al.,
2024) focuses on planning modifications. Localization-specific agents include CoSIL (Jiang et al.,
2025)), and LocAgent (Chen et al.,|2025)) for multi-hop reasoning via heterogeneous graphs. Agent-
less (Xia et al., 2024)) simplifies to a three-phase process without complex tooling. Multi-agent plat-
forms like OpenHands (Wang et al., |2024) facilitate collaboration. Our data construction method
draws from the commonalities of these agents, employing a pipeline to build data for four subtasks,
thereby enhancing model capabilities in repository-level coding.

6.3 TRAINING DATA FOR REPOSITORY-LEVEL CODING

Traditional instruction tuning methods enhance code models’ adaptability for general code gener-
ation, such as WizardCoder (Luo et al., 2023), WaveCoder (Yu et al., 2024)), and Magicoder (Wei
et al., 2024). However, constructing training data for repository-level tasks differs significantly, as it
requires selectively building input-output and reasoning processes to handle complex interactions.

Mainstream approaches involve building executable environments to collect agent trajectories for
rejection sampling and supervised fine-tuning. R2E (Jain et al.| 2025) and SWE-Gym (Pan et al.|
2024) create runtime environments to gather verified trajectories from limited task instances. SWE-
Smith (Yang et al.l 2025b) extends synthetic data generation to produce more verifiable tasks under
constrained environments. Other methods focus on reinforcement learning-compatible data. SWE-
RL (Wei et al.,[2025)) refines reasoning using software evolution data, while SORFT (Ma et al.| [2025))
employs subtask-oriented fine-tuning with rejection sampling and PPO.

Due to the diversity requirements of code repositories, some works augment real-world data or
synthetic data without constructing environments. SWE-Fixer (Xie et al} [2025) gathers data with
chain-of-thought, and MCTS-Refine (Wang et al.,[2025)) builds reasoning chains via MCTS to form
instruction data. In relation to these efforts, while training data construction for repository-level tasks
predominantly focuses on Python, our SWE-Ext pipeline extends the data scope by systematically
gathering multi-language data of different subtasks, demonstrating that even out-of-distribution data
like code completion can further enhance model performance in repository-level scenarios.

7 CONCLUSION

In this work, we introduced SWE-Ext, a scalable pipeline for extending augmented data in
repository-level coding tasks. By broadening coverage to multilingual PRs across ten languages
and incorporating code completion as an auxiliary task, we expand the scope of GitHub-derived
training data beyond traditional Python-centric datasets. Our experiments demonstrate consistent
improvements on benchmarks like SWE-bench and FEA-Bench, with multilingual extensions en-
hancing overall abilities and completion data strengthening code editing. Moreover, we reveal robust
cross-task and cross-language transfer, where diverse data sources benefit monolingual performance,
underscoring the potential of data extension in different dimensions for model generalization.

Limitations and future directions. SWE-Ext primarily focuses on augmented data without inte-
grating execution-based verification, which could further refine supervision quality. Additionally,
due to the constraints on computational and API resources, we cannot use better expert models for
data construction and carry out more experiments for more data combinations and on more base
models. Future work could explore verifiable pipelines or extend to additional languages and task
types, such as refactoring or generation of unit tests.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We are committed to the responsible and ethical development of artificial intelligence. Our source
data is derived exclusively from publicly available, open-source code on GitHub, which inherently
poses minimal privacy risks.

During the data augmentation process, we acknowledge the potential for the expert model to gen-
erate content that could be considered harmful. However, as these outputs are constrained to code-
related reasoning and dialogues, the risk is considered manageable.

As is the case with any model trained on software engineering data, the models trained on our
dataset may produce outputs containing security vulnerabilities or even malicious code. Executing
these outputs carries a risk of compromising a system. Therefore, for all evaluation and deployment
purposes, we strongly recommend that users operate within a securely isolated environment, such
as a Docker container, to mitigate any potential harm.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. To facilitate the replication of
our work, we provide a comprehensive description of our methodology and experimental setup.
In Appendix [D} we detail the prompts and the full pipeline used for data construction. Further-
more, Appendix [B]provides all specified hyperparameters and configurations of our training, which
were conducted using a standard open-source training framework. For further reference and in-
sight into the data format, representative data examples are included in the supplementary materials.
This detailed documentation provides all the necessary components for researchers to reproduce our
findings.

REFERENCES

Anthropic. Introducing Claude 3.5 Sonnet, 2024. URL https://www.anthropic.com/
news/claude—3-5-sonnet.

Anthropic. Introducing Claude 3.7 Sonnet, 2025a. URL https://www.anthropic.com/
news/claude-3-7-sonnet.

Anthropic. Introducing Claude 4, 2025b. URL https://www.anthropic.com/news/
claude—4.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. ArXiv preprint, abs/2108.07732, 2021. URL https://arxiv.org/abs/2108.
07732,

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Arun Iyer, Suresh Parthasarathy, Sriram Raja-
mani, B Ashok, and Shashank Shet. Codeplan: Repository-level coding using 1lms and planning.
Proceedings of the ACM on Software Engineering, 1(FSE):675-698, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. ArXiv preprint, abs/2107.03374, 2021. URL https://
arxiv.org/abs/2107.03374.

Zhaoling Chen, Xiangru Tang, Gangda Deng, Fang Wu, Jialong Wu, Zhiwei Jiang, Viktor Prasanna,
Arman Cohan, and Xingyao Wang. Locagent: Graph-guided 1lm agents for code localization.
arXiv preprint arXiv:2503.09089, 2025.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for
evaluating llms on class-level code generation. ArXiv preprint, abs/2308.01861, 2023. URL
https://arxiv.org/abs/2308.01861.

10

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2308.01861

Under review as a conference paper at ICLR 2026

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. ArXiv preprint, abs/2409.12186,
2024. URL https://arxiv.org/abs/2409.12186l

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. ArXiv preprint,
abs/2410.21276, 2024. URL https://arxiv.org/abs/2410.21276.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. ArXiv
preprint, abs/2412.16720, 2024. URL |https://arxiv.org/abs/2412.16720.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. ArXiv preprint, abs/2403.07974, 2024. URL
https://arxiv.org/abs/2403.07974.

Naman Jain, Jaskirat Singh, Manish Shetty, Liang Zheng, Koushik Sen, and Ion Stoica. R2e-gym:
Procedural environments and hybrid verifiers for scaling open-weights swe agents. arXiv preprint
arXiv:2504.07164, 2025.

Zhonghao Jiang, Xiaoxue Ren, Meng Yan, Wei Jiang, Yong Li, and Zhongxin Liu. Cosil:
Software issue localization via llm-driven code repository graph searching. arXiv preprint
arXiv:2503.22424, 2025.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and Zhi Jin. Evocodebench: An evolving code
generation benchmark aligned with real-world code repositories. ArXiv preprint, abs/2404.00599,
2024a. URL https://arxiv.org/abs/2404.00599.

Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Huanyu Liu, Hao Zhu, Lecheng Wang, Kaibo Liu, Zheng
Fang, Lanshen Wang, et al. Deveval: A manually-annotated code generation benchmark aligned
with real-world code repositories. ArXiv preprint, abs/2405.19856, 2024b. URL https://
arxiv.org/abs/2405.19856.

Wei Li, Xin Zhang, Zhongxin Guo, Shaoguang Mao, Wen Luo, Guangyue Peng, Yangyu Huang,
Houfeng Wang, and Scarlett Li. Fea-bench: A benchmark for evaluating repository-level code
generation for feature implementation. arXiv preprint arXiv:2503.06680, 2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. ArXiv preprint,
abs/2412.19437, 2024. URL https://arxiv.org/abs/2412.19437.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models
with evol-instruct. ArXiv preprint, abs/2306.08568, 2023. URL https://arxiv.org/abs/
2306.08568.

Yingwei Ma, Rongyu Cao, Yongchang Cao, Yue Zhang, Jue Chen, Yibo Liu, Yuchen Liu, Binhua
Li, Fei Huang, and Yongbin Li. Lingma swe-gpt: An open development-process-centric language
model for automated software improvement. arXiv preprint arXiv:2411.00622, 2024.

Zexiong Ma, Chao Peng, Pengfei Gao, Xiangxin Meng, Yanzhen Zou, and Bing Xie. Sorft: Issue
resolving with subtask-oriented reinforced fine-tuning. arXiv preprint arXiv:2502.20127, 2025.

Christopher D Manning. Introduction to information retrieval. Syngress Publishing,, 2008.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym. arXiv preprint
arXiv:2412.21139, 2024.

11

https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2403.07974
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2404.00599
https://arxiv.org/abs/2405.19856
https://arxiv.org/abs/2405.19856
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568

Under review as a conference paper at ICLR 2026

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024.

Yibo Wang, Zhihao Peng, Ying Wang, Zhao Wei, Hai Yu, and Zhiliang Zhu. Mcts-refined
cot: High-quality fine-tuning data for llm-based repository issue resolution. arXiv preprint
arXiv:2506.12728, 2025.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
code generation with oss-instruct. In Forty-first International Conference on Machine Learning,
2024.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-1l: Advancing llm reasoning via rein-
forcement learning on open software evolution. arXiv preprint arXiv:2502.18449, 2025.

Chungiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
IIm-based software engineering agents. ArXiv preprint, abs/2407.01489, 2024. URL https:
//arxiv.orqg/abs/2407.01489.

Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai Lam, Difan Zou, and Kai Chen. Swe-fixer:
Training open-source llms for effective and efficient github issue resolution. arXiv preprint
arXiv:2501.05040, 2025.

Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A systematic evalua-
tion of large language models of code. In Proceedings of the 6th ACM SIGPLAN International
Symposium on Machine Programming, MAPS 2022, pp. 1-10, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery. ISBN 9781450392730. doi: 10.1145/3520312.3534862. URL
https://doi.org/10.1145/3520312.3534862.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
ArXiv preprint, abs/2405.15793, 2024. URL https://arxiv.org/abs/2405.15793.

John Yang, Kilian Lieret, Carlos E Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents. arXiv preprint arXiv:2504.21798, 2025b.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang, Can Xu, Yishujie Zhao, Wenxiang Hu, and
Qiufeng Yin. WaveCoder: Widespread and versatile enhancement for code large language models
by instruction tuning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 5140-5153, Bangkok, Thailand, August 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.acl-long.280. URL https://aclanthology.org/2024.
acl-long.280/.

12

https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2407.01489
https://doi.org/10.1145/3520312.3534862
https://arxiv.org/abs/2405.15793
https://aclanthology.org/2024.acl-long.280/
https://aclanthology.org/2024.acl-long.280/

Under review as a conference paper at ICLR 2026

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement. In Proceedings of the 33rd ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2024, pp. 1592-1604, New York, NY, USA, 2024.
Association for Computing Machinery. ISBN 9798400706127. doi: 10.1145/3650212.3680384.
URL https://doi.org/10.1145/3650212.3680384.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully
sharded data parallel. arXiv preprint arXiv:2304.11277, 2023.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions. ArXiv preprint, abs/2406.15877,
2024. URL https://arxiv.org/abs/2406.15877.

A USE OF LLMs

Large Language Models (LLMs) were applied in this research in two specific ways. First, LLMs
assisted in the development of the codebase, primarily through code completion functionalities.
Second, LLMs were employed for language refinement to improve the clarity and readability of
the manuscript. All research ideas, experimental designs, and methodological frameworks were
independently conceived and implemented by the authors. The authors take full responsibility for
the content and conclusions presented in this work.

B TRAINING SETTINGS

From our preliminary experiments, we found that using Qwen2.5-Coder as the base model
yields strong performance, consistent with prior works on constructing training datasets (Yang
et al.,|2025b; Jain et al., 2025; Wang et al., 2025). We adopt Qwen?2 .5-Coder—-32B-Instruct
and Qwen2.5-Coder-7B-Instruct as the backbone models for fine-tuning. For the training
framework, we use the multi-turn dialogue SFT framework provided by verl (Sheng et al.,|2024),
which is implemented on top of FSDP (Zhao et al.| [2023)).

For the 32B model, we fine-tune on two GPU workstations, each equipped with 8 NVIDIA H200
GPUs. Training is performed in £1loat32 precision with CPU offloading enabled. We set the
maximum sequence length to 32,768. The training configuration includes a sequence parallel size
of 2, a learning rate of 5 x 1075, a training batch size of 128, and training for 3 epochs. The
total training time is approximately 2, 7, and 3 days on the SWE-EXT-BASELINE, SWE-EXT-
MULTILINGUAL, and SWE-EXT-COMPLETION datasets, respectively.

For the 7B model, we fine-tune on a single workstation with 8 NVIDIA A100 GPUs. The setup
remains the same as the 32B model, except that the sequence parallel size is increased to 4. The
training time is similar to that of the 32B model.

C EVALUATION SETTINGS

All execution-based evaluations were conducted on an cloud computing instance equipped with a
32-core AMD EPYC 7763 processor @ 2.45GHz and 256 GB RAM, running Ubuntu 22.04.5 LTS
with Linux kernel 6.8.0-1027-azure. It is important to note that in our evaluation environment, we
encountered compatibility issues with certain test cases where 5 out of 500 gold patches in SWE-
bench Verified and 9 out of 200 gold patches in FEA-Bench Lite failed to execute successfully due to
environment-specific dependencies or configuration conflicts. As a result, the reported performance
metrics may represent a slight underestimate of the true capabilities of our approach.

D PROMPTS OF COSAGENTLESS AND DETAILS OF AUGMENTED DATA

In this section, we detail the prompts used and the specifics of how they construct our four task
datasets. All of our data is built upon real-world GitHub pull requests and augmented based on

13

https://doi.org/10.1145/3650212.3680384
https://arxiv.org/abs/2406.15877

Under review as a conference paper at ICLR 2026

their extracted ground truth results, which is why we refer to it as “augmented data”. This data
augmentation process consists of transforming the raw pull requests into a dialogue-based format,
following the steps of our CosAgentless pipeline.

D.1 FILE LOCALIZATION

Phase 1: File Localization. The first phase of the task is to select a top-5 list of relevant files based
on the problem statement (problem_statement) and the provided file tree (st ructure). The
prompt used for this task is as follows:

The problem description is as follows:
GitHub Problem Description
{problem_statement}

i

Candidate Files
{structure}

#H4#

Let’s locate the relevant file step by step using reasoning.

In order to locate accurately, you can pre-select {pre_select_num} files,
and finally confirm {top_n} file names.

Based on the available information, confirm and provide complete name of

the top-5 most likely relevant files that need to be edited for the

problem.

You should output your reasoning process first.

Since your final answer will be processed automatically, please give your
final answer of relevant files in the format as follows.

The returned files should be separated by new lines ordered by most to

least important and wrapped with ‘''.

filel.py

file2.py

file3.py

filed.py

file5.py

Replace the 'filel.py’ with the actual file path.

For example,

sklearn/linear_model/_ _init_ .py

sklearn/base.py

AURNRY

Phase 2: Dependency Analysis and Reflection. The second phase analyzes the dependencies
of the files selected in the previous stage based on their import relationships import_content.
These relationships are derived from code segments identified by regular expressions. The model is
then prompted to reflect its selection and choose a new list of up to 10 relevant files.

Please look through the following problem description and repository
structure and provide a list of files that one would need to edit to
solve the software development problem.

I have already find 5 relevant files. Accrording to the import relations,
construct the call graph first.

Problem Description ##4#
{problem_statement}

14

Under review as a conference paper at ICLR 2026

#H#

Repository Structure
{structure}

#H4

Files To Be Explored
{pre_files}

###

Import Relations
{import_content}
#H4#

Based on the import relationships, please analyze which files in the
repository depend on which other files within the same repository. Ignore
any libraries or modules that are imported from outside the current
repository. Present the results in the following format:

filel.py -> file6.py, file7.py

file2.py —->

file3.py —> xxx/file8.py

filed.py —> file2.py, file9.py

file5.py -> xxx/filel0.py, xxx/filell.py

Note: Solving the problem not only requires determining where to modify
the code, but also identifying which other code to refer to in order to
understand and invoke.

Based on the files listed above and the import relations, reconfirm and
provide the complete names of the top 10 most likely relevant files,
considering both where changes need to be made and which files are
important to refer to.

Please think step by step and give you reasoning process first. Finally,
provide full path and return top 10 files.

The final returned files should be separated by new lines ordered by most
to least important and wrapped with ‘'

For example:

filel.py

file2.py

file3.py

filed.py

fileb5.py

file6.py

file7.py

file8.py

file9.py

filelO.py

Note: filel.py indicates the top-1 file, file2.py indicates the top-2
file, and so on. Do not include test files.

Phase 3: Refined File Localization. This phase leverages the results of parsing code repository.
The model is provided with the structural skeletons (file_internal_structure, including
class and function definitions) of the files identified in the previous stage. Using the skeletons of
the files, the model makes a final selection, outputting a refined list of at most 5 files as the final
localization result.

15

Under review as a conference paper at ICLR 2026

Please look through the following problem description and repository
structure and provide a list of files that one would need to edit to
solve the software development problem.

I have already find 10 relevent files according to the file structure and
dependency.

I will further give the internal structures of these 10 files.

Please rank them again and reflect the result according to the internal
structures and dependency.

Problem Description
{problem_statement}

###

Import Relations
{import_content}

i

Files To Be Ranked
{file_internal_structure}

i

Please think step by step and give you reasoning process first. Finally,
provide full path and return top 5 files.

The returned files should be separated by new lines ordered by most to
least important and wrapped with ‘!

For example:

filel.py

file2.py

file3.py

filed.py

file5.py

Note: filel.py indicates the top-1 file, file2.py indicates the top-2
file, and so on. Do not include test files.

The CosAgentless inference pipeline is structured as a sequential execution of the three phases
detailed above. However, during the construction of our ground-truth-based augmented dataset, we
employ a specific self-correction process: if the expert model fails to recall all the files in the ground
truth code edit in its initial attempt, we provide the ground truth files as an explicit prompt to guide
a re-prediction.

D.2 COMPONENT LOCALIZATION

The prompt for our component localization process is an enhanced version of the one presented in
Jiang et al.[(2025), specifically adapted to generalize to a broader set of programming languages and
repository-level coding tasks.

System Prompt. Within the system prompt, we define a set of tool-use capabilities that enable the
model to inspect the code of a specified component.

You will be presented with a repository-level coding problem with
repository file structure to access the source code of the software.
Since the modification is based on the code repository, the modified
locations may include files, classes, and functions, and the
modifications may be in the form of addition, deletion, or update.

16

Under review as a conference paper at ICLR 2026

Your task is to locate the top-5 most likely edit locations based on the
problem description and the information you retrieve using given
functions.

Function calls you can use are as follows:

* get_code_of_class(’file_name’, ’'class_name’) -> Get the code of a
specified class in the given file and python project. ’'file_name’ -> The
name of the file. ’'class_name’ —-> The name of the class. =*

* get_code_of_class_function(’file_name’, ’'class_name’, ’'func_name’) ->
Get the code of a specified function in the given class, file, and python
project. ’'file_name’ -> The name of the file. ’‘class_name’ -> The name

of the class. ’func_name’ —-> The name of the function. =

* get_code_of_file_function(’file_name’, ’func_name’) -> Get the code of
a specified function in the given file and python project. ’'file_name’ ->
The name of the file. ’func_name’ -> The name of the function. =

* get_toplevel code(’file_name’) —-> Get all the code in a given file that
is not part of a class or function definition. This is useful for

viewing imports, global variables, constants, and any top-level script
logic. "file_name’ -> The name of the file. x

* exit () —-> Exit function calling to give your final answer when you are
confident of the answer. x

You have {max_try} chances to call function.

Iterative Localization Initialization. The iterative localization process begins with an initializa-
tion step where the model is prompted to identify a single, relevant component. This component
serves as the initial point of inspection for the codebase.

Problem Description
{problem_statement}

#H#

Let’s locate the relevant elements (function/class) step by step using
reasoning and function calls.

I have pre-identified top-5 relevant files. There stuctures are as
follows:

{bug_file_1list}

The formal parameter ’file_name’ takes the value in "file:"

The formal parameter ’class_name’ takes the value in "class:"

The formal parameter ’func_name’ takes the value in "static functions:"
and "class functions: "

Avoid making multiple identical calls to save overhead.

You must strictly follow the structure I give to call different tools.
For static functions, you can use ’'get_code_of_file_function’, and for
class functions, you can use ’get_code_of_ class_function’.

In order to locate accurately, you can pre-select {pre_select_num}
locations, then check them through function calls, and finally confirm {
top_n} file names.

Don’t make the first function call in this message.

Iterative Component Inspection. This process involves the iterative inspection of components.
At each step, the model leverages the full dialogue history to inform its decision. By making sequen-
tial function calls, it dynamically identifies the next component or code segment to examine, progres-
sively refining its understanding of the problem and the codebase. file_internal_structure
are the skeletons of found files in the file localization stage.

Now call a function in this format ’‘FunctionName (Argument)’ in a single
line without any other word or signal (such as ‘‘').

Don’t call the same function you’ve previous called, because this may
waste your context length.

{file_internal_structure}

17

Under review as a conference paper at ICLR 2026

For each component component_retrieved viewed during an iteration, the model is prompted
to assess its relevance to the given problem. If the component is relevant to the problem description,
the model is then directed to consider its internal call and dependency relationships to select the
next component to be viewed. Conversely, if a component is determined to be irrelevant, no further
analysis is conducted on it.

You will be presented with a repository-level coding problem with
repository file structure to access the source code of the software.

Your task is to locate the top-5 most likely edit locations based on the
problem description.

Problem Description ##4#
{problem_statement}

4

Here is a result of a function/class code retrived by ’{content}’.
Please check if the code is related to the problem and if the code should
be added into context.

<code>

{component_retrieved}

</code>

Return True if the code is related to the problem and should be added
into context, otherwise return False.

Since your answer will be processed automatically, please give your
answer in the format as follows.

The returned content should be wrapped with ‘.

AU

True

AU

©1

AU

False

AN

Final Component Localization Qutput. The final component localization output is generated
upon the termination of the iterative process. This occurs when the model either invokes the
exit () function or reaches the maximum iteration limit. The model is then instructed to sum-
marize its full inspection history and produce a final set of predicted components relevant to the
problem_statement.

{file_internal_structure}

Based on the available information, reconfirm and provide complete names
of the most likely edit locations (10 locations at most) .

Before make the final decision, please check whether the function name is
correct or not, for static functions, don’t add class name.
{bug_file_1list}

Please provide the complete set of locations as either a class name, a
function name, or a file name.

The returned files should be separated by new lines ordered by most to
least important and wrapped with ‘1

Since your answer will be processed automatically, please give your
answer in the exapmle format as follows.

topl_file_ fullpath.py

function: Classl.Functionl

top2_file_fullpath.py
function: Function2

top3_file_fullpath.py

18

Under review as a conference paper at ICLR 2026

class: Class3

topd4_file_fullpath.py
function: Class4.Function4

top5_file_fullpath.py
function: Functionb

top6_file_fullpath.py
global

top7_file_fullpath.py

function: Class7.Function?

Replace the ’'Top_file_fullpath.py’ with the actual file path, the ’Class’
with the actual class name and the ’'Function’ with the actual function
name. ’'global’ means the code is not in a class or function.

For example,

sklearn/linear_model/_ _init_ .py

function: LinearRegression.fit

AN

During the construction of our augmented data from GitHub pull requests, we incorporate a feedback
mechanism. If the final localization output does not fully recall all of the locations specified by the
ground truth code edit, we explicitly introduce the omitted locations back into the iterative inspection
process. This allows the model to correct its course and regenerate a complete and accurate final
localization result.

D.3 CoDE EDITING

Final Code Editing. Leveraging the code at the locations identified by our component localization
process, we construct a context block denoted as t op_n_content. This contextual information is
then provided to the large language model to facilitate the code editing task.

We are currently solving the following task within our repository. Here
is the task description.

Task Description
{problem_statement}

###

Below are some code segments, each from a relevant file. One or more of
these files may need to be edited to solve the task.

—-—— BEGIN FILE ———

AN

{top_n_content}

AN

—-—— END FILE —-—-—

Please first localize the positions to edit based on the task statement,
and then output the files that need to be deleted, modified or added.

'— file’ means deleting the file;

"x file’ means modificating the file;

"+ file’ means adding the file.

The file should list like below:

- filel.py

« file2.py

19

Under review as a conference paper at ICLR 2026

+ file3.py
+ filed.py

AN

To solve the task, you should then generate *SEARCH/REPLACEx edits.

Every *SEARCH/REPLACEx edit must use this format:

The file path

The start of search block: <<<<<<< SEARCH

A contiguous chunk of lines to search for in the existing source code
The dividing line: =======

The lines to replace into the source code

The end of the replace block: >>>>>>> REPLACE

o U1 W N

Here is an example:
‘Y 'python

mathweb/flask/app.py
<<<<<<< SEARCH

from flask import Flask

import math
from flask import Flask
>>>>>>> REPLACE

AN

Please note that the *SEARCH/REPLACE* edit REQUIRES PROPER INDENTATION.
If you would like to add the line ' print (x)’, you must fully
write that out, with all those spaces before the code!

Wrap the *SEARCH/REPLACE* edit in blocks ‘‘python... ‘.

When multiple edits should be done, please output *SEARCH/REPLACE* edit
one by one and give your reasoning process before each *SEARCH/REPLACE=*
block.

Code Editing Output Format. The model’s output is structured according to a specific format.
The code edits are presented as SEARCH-REPLACE pairs, where the old code is provided along-
side the corresponding new code. In addition, the model is required to generate a detailed editing
plan and a clear rationale for the proposed changes.

The plan of solving this software task:
{plan}

The files that should be edited include:
{files}

Here are my edits for code.
{search_replaces}

For the construction of our code editing dataset, we first transform the ground truth code edits into
a structured format of SEARCH-REPLACE pairs. Subsequently, we utilize the expert model to
generat the reasoning for these edits, populating the designated plan field of the response.

D.4 CobDE COMPLETION

The code completion data is constructed from pull requests that lack a complete problem descrip-
tion (< 50 words). When generating these samples, we prioritize targeting a complete, newly added
function within the patch. If no such function exists, the target becomes a contiguous block of new
code. The code in the context (top_n_content) is then composed of the target file along with
other relevant components identified via our CosAgentless localization pipeline. The line requir-
ing completion is replaced with the token [TODO], thereby converting the code completion task
as an editing task centered on the [TODO] token. Consequently, the prompt and the subsequent
augmented data generation steps align with those used for our code editing task.

20

Under review as a conference paper at ICLR 2026

E DETAILS OF FILTERING

E.1 FILTERING PULL REQUESTS

To ensure the collection of high-quality data during the pull request (PR) scraping phase, we applied
the following exclusion criteria:

* PRs originating from repositories with fewer than 100 stars or a total of fewer than 100
PRs, as this often indicates low repository quality or inconsistent contribution patterns.

* PRs that were not merged into the main branch, indicating that the proposed code changes
were not accepted.

* PRs whose patches failed to apply cleanly to the codebase.

* PRs where t ree—-sitter encountered parsing errors in the changed files.

* PRs whose changed files exclusively consisted of non-code file extensions, includ-
lng: [".json", ".pngl" "CSV", ".txt", ".md", ".jpg", ".jpeg",
"'pkl", ".yml", "‘yaml", ".toml"].

E.2 FILTERING TRAINING DATA

After the construction of the SWE-Ext training data, further filtering is required to ensure data qual-
ity. First, we remove data samples that contain expert model API call errors, which are commonly
caused by exceeding the context window length. Second, we remove samples with obvious errors
for each data type:

* File Localization data: We remove samples where the ground truth edited files are not
fully contained within the final prediction or are not included in the Phase 2 results.

* Component Localization data: We remove samples where the ground truth edited com-
ponents are not fully contained in the final output.

¢ Code Edit and Code Completion data: We remove samples where the “search” code (the
code to be changed) is not present in the provided context, as well as those with incomplete
search-replace pairs.

To ensure the model is trained on complete conversational data, we also filter out any samples with
a length exceeding 32768 tokens. Finally, we remove any dialogue data that corresponds to pull

requests included in our evaluation datasets, including SWE-bench Verified and FEA-Bench, to
prevent data leakage.

F DATA EXAMPLES

In this section, we present several short data examples for reference. Each turn of the dialogue is
formatted as follows:

>S>>>>>>>>>>>>>>>>>>>{role}
{content}

F.1 FILE LOCALIZATION

>S>>>>>>>>>>>>>>>>>>> gsystem:
You will be presented with a repository-level coding problem with
repository file structure to access the source code of the software.

Your task is to locate the most likely relavant files that need to be
edited based on the problem description.

SS55555555>5>>>>>>>>> user:

21

Under review as a conference paper at ICLR 2026

The problem description is as follows:
#4## GitHub Problem Description ###
<request>
Adding fill parameters to pairwise and windowed
I found these handy for when I needed lookahead/lookbehind, but didn’t
want to add extra processing code before/after the processing loop. Here’
s a sketch of one way I’ve used it:
‘Y 'python
for record, next_record in pairwise_iter (records, fill=None) :
if next_record is not None:
record.link (next_record)
record.process ()

AN

Without fill, I have to call ‘records[-1].process ()" after the loop,
assuming it’s a list and not an iterable.

</request>
#H4#
##4# Candidate Files ###
boltons/
__init___.py

cacheutils.py
debugutils.py
deprutils.py
dictutils.py
easterutils.py
ecoutils.py
excutils.py
fileutils.py
formatutils.py
funcutils.py
gcutils.py
ioutils.py
iterutils.py
jsonutils.py
listutils.py
mathutils.py
mboxutils.py
namedutils.py
pathutils.py
queueutils.py
setutils.py
socketutils.py
statsutils.py
strutils.py
tableutils.py
tbutils.py
timeutils.py
typeutils.py
urlutils.py

docs/
conf.py

misc/
bench_omd.py
linkify_changelog.py
table_html_app.py

setup.py

#

AN

22

Under review as a conference paper at ICLR 2026

Let’s locate the relevant file step by step using reasoning.
In order to locate accurately, you can pre-select 7 files, and finally
confirm 5 file names.

Based on the available information, confirm and provide complete name of

the top-5 most likely relevant files that need to be edited for the

problem.

You should output your reasoning process first.

Since your final answer will be processed automatically, please give your
final answer of relevant files in the format as follows.

The returned files should be separated by new lines ordered by most to

least important and wrapped with ‘'‘'.

filel.py

file2.py

file3.py

filed.py

file5.py

Replace the 'filel.py’ with the actual file path.

For example,

sklearn/linear_model/__init__ .py

sklearn/base.py

AURNRY

>>>>>>>>>>>>>>>>>>>> gssistant:

To solve the problem of adding fill parameters to ‘pairwise‘ and
windowed' functions, we need to identify where these functions are likely
implemented. The problem description suggests that these functions are
related to iterating over collections, which is a common task in utility

modules dealing with iteration or functional programming.

\

\

Given the directory structure, the most relevant file is likely to be
iterutils.py' because:

— The name ‘iterutils.py‘' suggests it contains utilities for iteration,
which aligns with the functions ‘pairwise' and ‘windowed' that deal with
iterating over elements in a collection.

Let’s consider the reasoning for selecting the files:

1. x*boltons/iterutils.py**: This file is the most likely candidate as it

is named to suggest it contains utilities for iteration, which is
directly related to the ‘pairwise' and ‘windowed' functions mentioned in
the problem.

2. xxboltons/funcutils.py*x: This file might contain functional utilities
, which could include higher-order functions or iterators. If ‘pairwise’
and ‘windowed‘ are implemented using functional programming paradigms,
they might be here.

3. x*boltons/listutils.py**: This file could potentially contain
utilities for list operations. If ‘pairwise‘' and ‘windowed‘ are
specifically designed for lists, they might be implemented here.

4. x+boltons/typeutils.py*+: This file might contain utilities related to
type handling, which could include generic functions for handling
iterables of various types.

5. x*boltons/strutils.py**: Although less likely, if ‘pairwise‘ and ‘

windowed' have any specific implementations for strings or string-like
iterables, they might be here.

23

Under review as a conference paper at ICLR 2026

Now, let’s finalize the top 5 files based on the reasoning:

AURNRY

boltons/iterutils.py
boltons/funcutils.py
boltons/listutils.py
boltons/typeutils.py
boltons/strutils.py

AN

SOSO555555555>5>>>>>> user:

Please look through the following problem description and repository
structure and provide a list of files that one would need to edit to
solve the software development problem.

I have already find 5 relevant files. Accrording to the import relations,
construct the call graph first.

Problem Description ##4#
<request>
Adding fill parameters to pairwise and windowed
I found these handy for when I needed lookahead/lookbehind, but didn’t
want to add extra processing code before/after the processing loop. Here’
s a sketch of one way I’ve used it:
‘Y '‘python
for record, next_record in pairwise_iter (records, fill=None) :
if next_record is not None:
record.link (next_record)
record.process ()

AN

Without f£ill, I have to call ‘records|[-1].process () ‘' after the loop,
assuming it’s a list and not an iterable.

</request>
#H#
Repository Structure
boltons/
__init__ .py

cacheutils.py
debugutils.py
deprutils.py
dictutils.py
easterutils.py
ecoutils.py
excutils.py
fileutils.py
formatutils.py
funcutils.py
gcutils.py
ioutils.py
iterutils.py
Jjsonutils.py
listutils.py
mathutils.py
mboxutils.py
namedutils.py
pathutils.py
queueutils.py
setutils.py
socketutils.py
statsutils.py

24

Under review as a conference paper at ICLR 2026

strutils.py
tableutils.py
tbutils.py
timeutils.py
typeutils.py
urlutils.py

docs/
conf.py

misc/
bench_omd.py
linkify_changelog.py
table_html_app.py

setup.py

###

Files To Be Explored
["boltons/iterutils.py’, ’'boltons/funcutils.py’, ’boltons/listutils.py’,
"boltons/typeutils.py’, ’'boltons/strutils.py’]

###

Import Relations
file: boltons/iterutils.py

[/ import os’, ’import math’, ’import time’, ’'import codecs’, ’import
random’, ’import itertools’]

file: boltons/funcutils.py

["from __ future__ import print_function’, ’import sys’, ’'import re’, '
import inspect’, ’import functools’, ’import itertools’, ’from types
import MethodType, FunctionType’]

file: boltons/listutils.py
["from __ future_ import print_function, division’, ’import operator’, '
from math import log as math_log’, ’‘from itertools import chain, islice
"]

file: boltons/typeutils.py
["import sys’, 'from collections import deque’]

file: boltons/strutils.py

["from __ future__ import print_function’, ’import re’, ’import sys’, '
import uuid’, ’'import zlib’, ’'import string’, ’import unicodedata’, '
import collections’, ’from gzip import GzipFile’]

H#

Based on the import relationships, please analyze which files in the
repository depend on which other files within the same repository. Ignore

any libraries or modules that are imported from outside the current
repository. Present the results in the following format:

filel.py -> file6.py, file7.py

file2.py —>

file3.py —> xxx/file8.py

filed.py -> file2.py, fileS.py

file5.py —> xxx/filel0.py, xxx/filell.py

Note: Solving the problem not only requires determining where to modify
the code, but also identifying which other code to refer to in order to
understand and invoke.

Based on the files listed above and the import relations, reconfirm and

provide the complete names of the top 10 most likely relevant files,

25

Under review as a conference paper at ICLR 2026

considering both where changes need to be made and which files are
important to refer to.

Please think step by step and give you reasoning process first. Finally,
provide full path and return top 10 files.

The final returned files should be separated by new lines ordered by most
to least important and wrapped with ‘'

For example:

filel.py

file2.py

file3.py

filed.py

file5.py

file6.py

file7.py

file8.py

file9.py

filelO.py

Note: filel.py indicates the top-1 file, file2.py indicates the top-2
file, and so on. Do not include test files.

>>>>>>>>>>>>>>>>>>>> assistant:

To solve the problem, we need to analyze the import relationships and
determine which files are relevant for adding the "fill" parameter to the
‘pairwise' and ‘windowed‘ functions. Here’s the step-by-step reasoning

process:

1. x»xIdentify the Core Functionalityx*: The problem is about adding a "
fill" parameter to the ‘pairwise' and ‘windowed' functions. These
functions are likely to be part of the ‘iterutils.py' file, as they deal
with iteration utilities.

2. *xAnalyze Import Relations**: We need to understand the dependencies
between the files to see if any other files might be relevant for
understanding or modifying the ‘pairwise' and ‘windowed' functions.

3. xxCheck Import Statementsxx:
- ‘boltons/iterutils.py' imports standard libraries like ‘os‘, ‘math?,
‘time', ‘codecs', ‘random‘, and ‘itertools‘. It does not import any

other files from the ‘boltons‘ package.

- ‘boltons/funcutils.py' imports ‘itertools' and other standard
libraries, but does not import ‘iterutils‘.

- ‘boltons/listutils.py' imports ‘itertools' and other standard
libraries, but does not import ‘iterutils‘.

- ‘boltons/typeutils.py' and ‘boltons/strutils.py' do not import
iterutils' or any other relevant files.

\

4. xxDetermine Relevant Files**: Since ‘iterutils.py‘' does not import or
is not imported by any other files in the list, it is likely self-
contained for the functionality of ‘pairwise‘ and ‘windowed‘'. However,
understanding how these functions might interact with other utilities
could be useful, so we consider the files that import ‘itertools‘ as they
might have similar iteration-related utilities.

5. xxPrioritize Filesxx: Based on the above analysis, ‘iterutils.py' is
the most relevant file for direct modification. The other files (1
funcutils.py', ‘listutils.py', ‘typeutils.py', ‘strutils.py‘) might
provide additional context or similar implementations that could be
useful for reference.

26

Under review as a conference paper at ICLR 2026

6. »*Top 10 Files*x: Since the problem is specific to iteration utilities
, the most relevant file is ‘iterutils.py‘'. The other files are included
for reference and understanding of similar patterns or utilities.

Based on this reasoning, here are the top 10 files, ordered by relevance:

AN

boltons/iterutils.py
boltons/funcutils.py
boltons/listutils.py
boltons/typeutils.py
boltons/strutils.py
boltons/cacheutils.py
boltons/debugutils.py
boltons/deprutils.py
boltons/dictutils.py
boltons/easterutils.py

AN

Note: The last five files are included to fill the top 10 list, assuming
they might provide additional context or utility functions that could be
relevant indirectly.

SS555>5555>>>>>>>>>> user:

Please look through the following problem description and repository
structure and provide a list of files that one would need to edit to
solve the software development problem.

I have already find 10 relevent files according to the file structure and
dependency.

I will further give the internal structures of these 10 files.

Please rank them again and reflect the result according to the internal
structures and dependency.

Problem Description ##4#

<request>

Adding fill parameters to pairwise and windowed

I found these handy for when I needed lookahead/lookbehind, but didn’t
want to add extra processing code before/after the processing loop. Here’
s a sketch of one way I’ve used it:

‘Y 'python
for record, next_record in pairwise_iter (records, fill=None) :
if next_record is not None:
record.link (next_record)
record.process ()

AN

Without f£ill, I have to call ‘records|[-1].process () ‘' after the loop,
assuming it’s a list and not an iterable.
</request>

#H#

Import Relations

file: boltons/iterutils.py
[/import os’, ’import math’, ’'import time’, ’'import codecs’, ’import
random’, ’import itertools’]

file: boltons/funcutils.py
["from __ future__ import print_function’, ’import sys’, ’'import re’, '
import inspect’, ’‘import functools’, ’'import itertools’, ’'from types

import MethodType, FunctionType’]

file: boltons/listutils.py

27

Under review as a conference paper at ICLR 2026

["from __ future__ import print_function, division’, ’import operator’, '
from math import log as math_log’, ’‘from itertools import chain, islice
"]

file: boltons/typeutils.py
["import sys’, ’'from collections import deque’]

file: boltons/strutils.py

["from __ future__ import print_function’, ’import re’, ’import sys’, '
import uuid’, ’'import zlib’, ’'import string’, ’import unicodedata’, '
import collections’, ’from gzip import GzipFile’]

#H#

##4# Files To Be Ranked ###

file: boltons/iterutils.py
class: [’"PathAccessError’, ’GUIDerator’, ’SequentialGUIDerator’]
static functions: ["is_iterable’, ’'is_scalar’, ’"is_collection’,
"split’, ’split_iter’, ’'lstrip’, ’'lstrip_iter’, ’rstrip’, ’
rstrip_iter’, ’strip’, ’'strip_iter’, ’chunked’, ’
_validate_positive_int’, ’chunked_iter’, ’chunk_ranges’, '
pairwise’, ’'pairwise_iter’, ’'windowed’, ’'windowed_iter’, ’xfrange
", "frange’, ’'backoff’, ’'backoff_iter’, ’bucketize’, ’'partition’,

"unique’, ’'unique_iter’, ’redundant’, ’‘one’, ’'first’, '

flatten_iter’, ’'flatten’, ’'same’, ’'default_visit’, ’'default_enter
', 'default_exit’, ’'remap’, ’'get_path’, ’'research’, ’'soft_sorted
", ’'untyped_sorted’]
class functions: [

PathAccessError: [’__init_ ', '_repr_ ', ’'_str__ "]
GUIDerator: [’/_ _init_ ", ’'reseed’, ’'_ _iter_ ', ’'__ _next_
", '_next_ ']

SequentialGUIDerator: [’'reseed’, ’'reseed’, '_ _next_ ']

]

file: boltons/funcutils.py
class: [’InstancePartial’, ’'CachedInstancePartial’, '
FunctionBuilder’, ’MissingArgument’, ’'ExistingArgument’]
static functions: ["inspect_formatargspec’, '
get_module_callables’, ’'mro_items’, ’dir_dict’, ’copy_function’,
"partial_ordering’, ’format_invocation’, ’format_exp_repr’, '
format_nonexp_repr’, ’'wraps’, ’'update_wrapper’, '
_parse_wraps_expected’, ’'_indent’, ’'total_ordering’, ’‘noop’]
class functions: [

InstancePartial: [’_partialmethod’, ’'__get_ ']
CachedInstancePartial: [’_partialmethod’, ’'__set_name_ ',
’ ’
get "]
FunctionBuilder: [’_argspec_to_dict’, ’_argspec_to_dict’,

! init__ ", '"get_sig_str’, ’"get_invocation_str’, '
get_sig_str’, ’'get_invocation_str’, ’from_func’, '
get_func’, ’'get_defaults_dict’, ’'get_arg_names’, ’add_arg
", 'add_arg’, ’'remove_arg’, ’_compile’]

MissingArgument: []
ExistingArgument: []
]
file: boltons/listutils.py
class: [’Barrellist’, ’SplayList’]

static functions: [1]
class functions: [
BarrelList: [’/__init_ ', ’_cur_size_limit’, '

_translate_index’, ’_balance_list’, ’'insert’, ’'append’, ’

extend’, 'pop’, ’'iter_slice’, ’'del_slice’, ’'from _iterable
r, '__iter_ ', '__reversed_ ', '__len_ ', ’'_ contains_ ',
! __getitem_ ', ’'__delitem_ ', '__setitem_ ', '

28

Under review as a conference paper at ICLR 2026

getslice__ ', ' setslice_ ', '__repr_ ', ’'sort’, '

reverse’, ’'count’, ’index’]
SplayList: [’shift’, ’swap’]
]
file: boltons/typeutils.py
class: [’'classproperty’]
static functions: ['make_sentinel’, ’issubclass’, '
get_all_subclasses’]
class functions: [
classproperty: [’/__init__ ', '__get__ ']
]
file: boltons/strutils.py
class: [’DeaccenterDict’, ’"HTMLTextExtractor’, 'MultiReplace’]
static functions: ["camel2under’, ’'under2camel’, ’'slugify’, '
split_punct_ws’, ’‘unit_len’, ’'ordinalize’, ’cardinalize’, '
singularize’, ’'pluralize’, ’'_match_case’, ’'find_hashtags’, ’"alOn
", "strip_ansi’, ’asciify’, ’is_ascii’, ’bytes2human’, ’'html2text
', 'gunzip_bytes’, ’'gzip_bytes’, ’iter_splitlines’, ’indent’, '
is_uuid’, ’escape_shell_args’, ’args2sh’, ’args2cmd’, '
parse_int_1list’, ’format_int_list’, ’complement_int_list’,
int_ranges_from_int_list’, ’'multi_replace’, 'unwrap_text’]
class functions: [
DeaccenterDict: [’/__missing__ ', ’'__getitem__ ']
HTMLTextExtractor: [’/__init_ ', ’"handle_data’, '
handle_charref’, ’'handle_entityref’, ’'get_text’]
MultiReplace: [’__init__ ', ’'_get_value’, ’'sub’]

’

1
file: boltons/cacheutils.py

class: [’RLock’, ’"LRI’, ’'LRU’, ’_HashedKey’, ’CachedFunction’, '
CachedMethod’, ’cachedproperty’, ’'ThresholdCounter’, ’"MinIDMap’]

static functions: ["make_cache_key’, ’'cached’, ’'cachedmethod’]
class functions: [
RLock: [’_enter_ ', ’'_exit_ ']

LRI: [’__init__ ", ’_init_11", ’_print_11", '
_get_flattened_11’, ’'_get_link_and_move_to_front_of_ 11’,
' _set_key_and_add_to_front_of_11’, '
_set_key_and_evict_last_in_11’, ’_remove_from_11',
__setitem_ ', ’__getitem_ ', ’'get’, ’'__delitem ', ’'pop’,

"popitem’, ’clear’, ’'copy’, ’setdefault’, ’'update’, ’
_eq , / ne__ ' "' _repr_ ']

14

— — 7

LRU: [/_ _getitem_ ']
_HashedKey: [’/__init_ ' ’ _hash__’ "' __repr_ ']

4 — 7

CachedFunction: [’__init_ ", ’'__call ', '__repr_ ']
CachedMethod: [’__init__ ', '_get_ ', '_call_ ', '
__repr_ ']

cachedproperty: [’__init_ ', ’'_get_ ', ’'__repr_ ']

ThresholdCounter: [’/__init_ ', ’'threshold’, "add’, '
elements’, ’'most_common’, ’get_common_count’, '
get_uncommon_count’, ’‘get_commonality’, ’__ _getitem_ ', '
len ", '__contains__ ', ’"iterkeys’, ’'keys’, ’itervalues
", ’"values’, ’iteritems’, ’items’, ’‘get’, ’update’]
MinIDMap: [’/__init__ ', ’get’, ’'drop’, ’'_clean’, '
__contains__ ', '__iter_ ', ’'__len__ ', ’'iteritems’]
]
file: boltons/debugutils.py
class: []
static functions: ["pdb_on_signal’, ’'pdb_on_exception’,
trace_print_hook’, ’'wrap_trace’]
class functions: [
]
file: boltons/deprutils.py
class: [’'DeprecatableModule’]
static functions: ["deprecate_module_member’]
class functions: [
DeprecatableModule: [’/__init_ ', ’__getattribute_ ']

’

29

Under review as a conference paper at ICLR 2026

]

file: boltons/dictutils.py
class: [’OrderedMultiDict’, ’'FastIterOrderedMultiDict’, ’OneToOne
", "ManyToMany’, ’'FrozenHashError’, ’'FrozenDict’]

static functions: ["subdict’]
class functions: [
OrderedMultiDict: [’_new__ ', '__init_ ', ’'__getstate_ ',

' _ _setstate_ ', ’'_clear_11’, ’_insert’, ’"add’, ’"addlist
", 'get’, ’'getlist’, ’'clear’, ’'setdefault’, ’copy’, '
fromkeys’, ’"update’, ’update_extend’, ’'__setitem_ ', '
getitem ', ’'__delitem_ ', '_eq ', '_ne_ ', '__ior
", '"pop’, ’'popall’, ’'poplast’, ’'_remove’, ’'_remove_all’,
"iteritems’, ’'iterkeys’, ’itervalues’, ’'todict’, ’'sorted
", ’"sortedvalues’, ’inverted’, ’counts’, ’keys’, ’‘values
", 'items’, ’'__iter ', '__reversed_ ', '_repr_ ', '
viewkeys’, ’viewvalues’, ’'viewitems’]
FastIterOrderedMultiDict: [’_clear_11’, ’_insert’, '
_remove’, ’'_remove_all’, ’'iteritems’, ’iterkeys’, '
__reversed_ ']

OneToOne: [’/__init__ ', "unique’, ’'__setitem_ ', '
__delitem_ ', ’clear’, ’'copy’, ’'pop’, 'popitem’, '
setdefault’, ’update’, '__repr_ ']

ManyToMany: [’/__init__ ", ’'get’, ’'__getitem ', '

pR— ’ —

__setitem_ ', ’'__delitem__ ', ’update’, ’"add’, ’'remove’, '
replace’, ’'iteritems’, ’keys’, ’__contains_ ', '__iter
’ , I_len_l , I_eq_l , ’_repr_’]
FrozenHashError: []
FrozenDict: [’updated’, ’fromkeys’, ’'__repr_ ', '
__reduce_ex__ ", '_hash__ ", '_copy__ ", '
_raise_frozen_typeerror’]

1

file: boltons/easterutils.py

class: []

static functions: ["gobs_program’]

class functions: [

]
#H#

Please think step by step and give you reasoning process first. Finally,
provide full path and return top 5 files.

The returned files should be separated by new lines ordered by most to
least important and wrapped with ‘'

For example:

filel.py

file2.py

file3.py

filed.py

file5.py

Note: filel.py indicates the top-1 file, file2.py indicates the top-2
file, and so on. Do not include test files.

>S>>>>>>>>>>>>>>>>>>> assistant:

To solve the problem of adding fill parameters to the ‘pairwise‘ and
windowed' functions, we need to identify the files that contain these
functions and any related utility functions that might be affected by or
need to support the new feature.

\

Step-by-Step Reasoning:

30

Under review as a conference paper at ICLR 2026

1. xxIdentify the Functions:x*x
— The problem description specifically mentions ‘pairwise_iter' and
implies a similar change might be needed for ‘windowed' functions. We
need to locate these functions in the codebase.

2. *xLocate the Functions:xx
- From the provided internal structure of the files, we see that
pairwise', ‘pairwise_iter', ‘windowed‘, and ‘windowed_iter‘' are static
functions in ‘boltons/iterutils.py’.

\

3. xxAssess Dependencies:*x*
— Since these functions are in ‘boltons/iterutils.py‘, this file is
the primary candidate for modification.
— We should also consider if any other files might be using these
functions or if there are utility functions that might need to be
updated to support the new ‘fill‘ parameter.

4. *xxCheck for Related Utilities:=*x
- The ‘boltons/iterutils.py' file might have other utility functions
that interact with ‘pairwise‘ and ‘windowed‘'. We should ensure that
any such functions are also updated if necessary.

5. xxConsider Other Files:x*x*
— While other files like ‘boltons/funcutils.py‘, ‘boltons/listutils.py
‘, etc., are part of the repository, they do not contain the functions
in question or directly relate to the problem at hand based on the
provided information.

6. **Rank the Files:x*x*
- Given the focus on ‘pairwise‘ and ‘windowed‘, ‘boltons/iterutils.py’
is the most relevant file.
— Other files are less relevant unless they are found to directly use
or extend the functionality of ‘pairwise‘ and ‘windowed’.

Conclusion:

Based on the above reasoning, the top file to edit is ‘boltons/iterutils.
py'. Other files are not directly relevant to the problem as described,
so they are not included in the top 5 list.

AURNRY

boltons/iterutils.py

AN

F.2 COMPONENT LOCALIZATION

SSS>5>5>5>5>>>>>>>>> system:

You will be presented with a repository-level coding problem with
repository file structure to access the source code of the software.
Since the modification is based on the code repository, the modified
locations may include files, classes, and functions, and the
modifications may be in the form of addition, deletion, or update.

Your task is to locate the top-5 most likely edit locations based on the
problem description and the information you retrieve using given
functions.

Function calls you can use are as follows:

* get_code_of_class(’file_name’, ’class_name’) —-> Get the code of a
specified class in the given file and python project. ’"file_name’ -> The
name of the file. ’"class_name’ -> The name of the class. =«

* get_code_of_class_function(’file_name’, ’class_name’, ’'func_name’) ->
Get the code of a specified function in the given class, file, and python

31

Under review as a conference paper at ICLR 2026

project. ’'file_name’

of the class. ’func_name’ -> The

* get_code_of_file_function(’file_name’,
a specified function in the given file and python project.
" func_name’

The name of the file.
* get_toplevel_code(’file_name’)

—> The name of the file.

"class_name’ —-> The name
name of the function. =

" func_name’) —-> Get the code of
"file_name’ ->
—> The name of the function. =

—> Get all the code in a given file that

is not part of a class or function definition. This is useful for
viewing imports, global variables, constants, and any top-level script
logic. ’'file_name’ -> The name of the file. =«
* exit () —-> Exit function calling to give your final answer when you are
confident of the answer. x

You have 10 chances to call function.

>>>>>>>>>>>>>>>>>>>> user:
Problem Description
<request>
(PUP-5548)
systems
In the Debian family, the ‘service' command provides an

abstraction around available init systems, allowing it to be used
to properly determine service state regardless of which init system
is active on the system.

Use ‘service' in debian provider to interact with all init

This commit updates the Debian provider’s ‘statuscmd' method to use
‘service' at all times, allowing the provider to properly query
services regardless of OS version or init system in place.
</request>
4
Let’s locate the relevant elements (function/class)
reasoning and function calls.
I have pre-identified top-5 relevant files.
follows:
file: lib/puppet/provider/service/debian.rb
class: []
static functions: ["disable’,
’, "enable’, ’'statuscmd’]
class functions: [

]

step by step using

There stuctures are as

"enabled?’, ’get_start_link_count

file: lib/puppet/provider/service/base.rb
class: []
static functions: ["getps’, ’"getpid’, ’status’, ’'statuscmd’, '’
start’, ’startcmd’, ’stop’, ’'stopcmd’]
class functions: [
]
file: lib/puppet/type/service.rb
class: [’Puppet’]
static functions: [1
class functions: [
Puppet: [’retrieve’, ’'retrieve’, ’'sync’, ’'refresh’]
]
file: lib/puppet/provider/service/systemd.rb
class: []
static functions: ["instances’, ’'disable’, ’"get_start_link_count
’, "enabled?’, ’debian_enabled?’, ’status’, ’enable’, ’'mask’, '
unmask’, ’'restartcmd’, ’'startcmd’, ’'stopcmd’]
class functions: [
]
file: lib/puppet/provider/service/init.rb

class: []
static functions: ["defpath’, ’excludes’,
get_services’, ’"hasstatus=’, ’initscript’,

’instances’, '
"paths’, ’search’, ’

32

Under review as a conference paper at ICLR 2026

startcmd’, ’stopcmd’, ’restartcmd’, ’texecute’, ’statuscmd’, '
is_init?’]
class functions: [
1
The formal parameter ’file_name’ takes the value in "file:"
The formal parameter ’class_name’ takes the value in "class:"
The formal parameter ’func_name’ takes the value in "static functions:"
and "class functions: "
Avoid making multiple identical calls to save overhead.
You must strictly follow the structure I give to call different tools.
For static functions, you can use ’'get_code_of_file_function’, and for
class functions, you can use ’get_code_of_class_function’.
In order to locate accurately, you can pre-select 7 locations, then check
them through function calls, and finally confirm 5 file names.
Don’t make the first function call in this message.

>>>>>>>>>>>>>>>>>>>> assistant:

To address the problem, we need to focus on the ‘statuscmd' method in the
Debian provider, as the request specifically mentions updating this

method to use the ‘service' command. Based on the provided file structure
, the relevant files and functions to consider are:

1. *xlib/puppet/provider/service/debian.rbx*x
- Function: ‘statuscmd‘

2. x*x1lib/puppet/provider/service/base.rbx*x
- Function: ‘statuscmd®

3. x*1lib/puppet/provider/service/systemd. rb*x*
- Function: ‘statuscmd®

4. x*1lib/puppet/provider/service/init.rb*x
- Function: ‘statuscmd®

These files contain the ‘statuscmd' function, which is likely related to
the service status command functionality. The problem description
specifically mentions the Debian provider, so the ‘debian.rb‘ file is of
primary interest. However, examining the ‘statuscmd' function in other
related files might provide additional context or necessary changes.

Let’s proceed with checking the code of these functions to identify the
necessary modifications. I will start by examining the ‘statuscmd‘
function in ‘lib/puppet/provider/service/debian.rb‘.

SSS55555555>5>>>>>>>>> user:

Now call a function in this format ’'FunctionName (Argument)’ in a single
line without any other word or signal (such as ‘‘').

Don’t call the same function you’ve previous called, because this may
waste your context length.

S>>>>>>>>>>>>>>>>>>> assistant:
get_code_of_file_function (’lib/puppet/provider/service/debian.rb’, ’
statuscmd’)

>S>>>>>>>>>>>>>>>>>>> user:
I have already checked this function/class is related to the task.

S>>SSS5>>>>>>>>>>>>> user:
def statuscmd

os = Facter.value (:operatingsystem) .downcase

if os == ’"debian’

33

Under review as a conference paper at ICLR 2026

majversion = Facter.value (:operatingsystemmajrelease) .to_1i

else
majversion = Facter.value (:operatingsystemmajrelease) .split(’.”)
[0] .to_1

end

if ((os == ’'debian’ && majversion >= 8) || (os == ’'ubuntu’ &&

majversion >= 15))
SysVInit scripts will always return ’'0’ for status when the
service is masked,

even if the service is actually stopped. Use the SysVInit-Systemd

compatibility

layer to determine the actual status. This is only necessary when

the SysVInit
version of a service is queried. I.e, ’'ntp’ instead of ’'ntp.
service’.

(Qresource | :hasstatus] == :true) && ["systemctl", "is-active",
@resource [:name]]

else
super

end

end
>S>>>>>>>>>>>>>>>>>>> user:

Now call a function in this format ’‘FunctionName (Argument)’ in a single
line without any other word or signal (such as ‘‘').

Don’t call the same function you’ve previous called, because this may
waste your context length.

You can check the functions that this part of code calls.

>>>>>>>>>>>>>>>>>>>> assistant:
get_code_of_file_function (’lib/puppet/provider/service/base.rb’, '
statuscmd’)

S>>>>>>>>>>>>>>>>>>> user:
I have already checked this function/class is related to the task.

SS>>>>>>>>>>>>>>>>>> user:
def statuscmd
end

SSS55555555>5>>>>>>>>> user:

Now call a function in this format ’'FunctionName (Argument)’ in a single
line without any other word or signal (such as ‘‘').

Don’t call the same function you’ve previous called, because this may
waste your context length.

You can check the functions that this part of code calls.
>>>>>>>>>>>>>>>>>>>> gssistant:

get_code_of_file_ function(’lib/puppet/provider/service/systemd.rb’, '
statuscmd’)

>S>>>>>>>>>>>>>>>>>>> user:

The call of get_code_of_file function(’lib/puppet/provider/service/
systemd.rb’, ’statuscmd’) encountered error. Maybe you retrieved a

location which does not exist.

SOSO555555555>>>>>>> user:

34

Under review as a conference paper at ICLR 2026

Now call a function in this format ’‘FunctionName (Argument)’ in a single
line without any other word or signal (such as ‘‘'%').

Don’t call the same function you’ve previous called, because this may
waste your context length.

>S>>>>>>>>>>>>>>>>>>> gssistant:
get_code_of_file_function(’lib/puppet/provider/service/init.rb’, '
statuscmd’)

S>>>>>>>>>>>>>>>>>>> user:
I have already checked this function/class is related to the task.

S>>>>>>>>>>>>>>>>>>> user:
def statuscmd
(@resource|:hasstatus] == :true) && [initscript, :status]
end

SS555>5555>>>>>>>>>> user:

Now call a function in this format ’'FunctionName (Argument)’ in a single
line without any other word or signal (such as ‘‘%').

Don’t call the same function you’ve previous called, because this may
waste your context length.

You can check the functions that this part of code calls.

>S>>>>>>>>>>>>>>>>>>> gssistant:
get_code_of_file_function (’lib/puppet/provider/service/init.rb’, '
initscript’)

>>>>>>>>>>>>>>>>>>>> user:
I have already checked this function/class is not related to the task.

S>>>>>>>>>>>>>>>>>>> user:
def initscript
@initscript ||= self.search(@resourcel[:name])
end

SS5555>555>5>>>>>>>>> user:

Now call a function in this format ’'FunctionName (Argument)’ in a single
line without any other word or signal (such as ‘‘').

Don’t call the same function you’ve previous called, because this may
waste your context length.

Don’t check the functions that this part of code calls.

>>>>>>>>>>>>>>>>>>>> assistant:
get_toplevel_code (lib/puppet/provider/service/debian.rb)

S>>>>>>>>>>>>>>>>>>> user:
I have already checked this function/class is related to the task.

>S>>>>>>>>>>>>>>>>>>> user:
Manage debian services. Start/stop is the same as InitSvc, but enable/
disable
is special.
Puppet::Type.type (:service) .provide :debian, :parent => :init do
desc <<-EOT
Debian’s form of ‘init‘-style management.

35

Under review as a conference paper at ICLR 2026

The only differences from ‘init‘' are support for enabling and
disabling

services via ‘update-rc.d' and the ability to determine enabled
status via

‘invoke-rc.d"'.

EOT

commands :update_rc => "/usr/sbin/update-rc.d"
note this isn’t being used as a command until
http://projects.reductivelabs.com/issues/2538
is resolved.

commands :invoke_rc => "/usr/sbin/invoke-rc.d"

defaultfor :operatingsystem => :cumuluslinux
defaultfor :operatingsystem => :debian, :operatingsystemmajrelease =>
[151,16I,I7l]

Remove the symlinks
end
>>>>>>>>>>>>>>>>>>>> user:

Now call a function in this format ’'FunctionName (Argument)’ in a single
line without any other word or signal (such as ‘'%').

Don’t call the same function you’ve previous called, because this may
waste your context length.

You can check the functions that this part of code calls.

>S>>>>>>>>>>>>>>>>>>> gssistant:
exit ()

SE555555>5>>>>>>>>>> user:

Based on the available information, reconfirm and provide complete names
of the most likely edit locations (10 locations at most) .
Before make the final decision, please check whether the function name is
correct or not, for static functions, don’t add class name.
file: lib/puppet/provider/service/debian.rb
class: []
static functions: ["disable’, ’enabled?’, ’"get_start_link_ count
', "enable’, ’'statuscmd’]
class functions: [
]
file: lib/puppet/provider/service/base.rb
class: []
static functions: ["getps’, "getpid’, ’status’, ’'statuscmd’, '’
start’, ’startcmd’, ’stop’, ’stopcmd’]
class functions: [
]
file: lib/puppet/type/service.rb
class: [’Puppet’]
static functions: [1]
class functions: [
Puppet: [’retrieve’, ’'retrieve’, ’'sync’, ’'refresh’]
]
file: lib/puppet/provider/service/systemd.rb
class: []
static functions: ["instances’, ’disable’, ’"get_start_link_count
’, "enabled?’, ’debian_enabled?’, ’status’, ’enable’, ’'mask’, '
unmask’, ’'restartcmd’, ’'startcmd’, ’'stopcmd’]

36

Under review as a conference paper at ICLR 2026

class functions: [
]

file: lib/puppet/provider/service/init.rb
class: []
static functions: ["defpath’, "excludes’, ’'instances’, '
get_services’, ’"hasstatus=’, ’initscript’, ’paths’, ’search’, '
startcmd’, ’stopcmd’, ’restartcmd’, ’texecute’, ’statuscmd’, '
is_init?’]
class functions: [

]

Please provide the complete set of locations as either a class name, a
function name, or a file name.

The returned files should be separated by new lines ordered by most to
least important and wrapped with ‘!

Since your answer will be processed automatically, please give your
answer in the exapmle format as follows.

topl_file_ fullpath.py

function: Classl.Functionl

top2_file_fullpath.py
function: Function2

top3_file_fullpath.py
class: Class3

top4_file_ fullpath.py
function: Class4.Function4

top5_file_fullpath.py
function: Functionb

top6_file_fullpath.py
global

top7_file_fullpath.py

function: Class7.Function?

Replace the ’'Top_file_fullpath.py’ with the actual file path, the ’Class’
with the actual class name and the ’'Function’ with the actual function
name. ’'global’ means the code is not in a class or function.

For example,

sklearn/linear_model/_ _init_ .py

function: LinearRegression.fit

AN

>>>>>>>>>>>>>>>>>>>> assistant:
lib/puppet/provider/service/debian.rb
global

lib/puppet/provider/service/debian.rb
function: statuscmd

lib/puppet/provider/service/base.rb
function: statuscmd

lib/puppet/provider/service/init.rb
function: statuscmd

AURWRY

37

Under review as a conference paper at ICLR 2026

F.3 CoODE EDITING

SE555>555>5>>>>>>>>>> user:

We are currently solving the following task within our repository. Here
is the task description.

Task Description

<request>

Add port mapping on run

CF issue : https://github.com/jolicode/docker-starter/issues/31
</request>

<discussion>
Mapping ports on "run" command
Hi there,

Is there any reason to avoid mapping ports on "run" command ?
https://github.com/jolicode/docker-starter/blob/
c319756cclablde8ed4al3f29beal306695752f84c2/fabfile.py#L179

I just needed to add --service-ports option to the fabfile.py to run my
container with port mapping embed.

:kissing_heart:

* ok k ok ok ok k ok ok ok

since we use docker-compose, it’s better to set the port mapping in it.
But if you need something special, you can use port mapping via the run
command.

Feel free to modify your fabfile. This docker-starter is not a lib, just
a starter that must be customized according to your needs.
—-—-service-ports does actually the mapping defined in docker-compose.yaml.
* ok k ok ok ok k ok ok ok

</discussion>
#H#

Below are some code segments, each from a relevant file. One or more of
these files may need to be edited to solve the task.

—-—— BEGIN FILE —--—-

AN

#4## fabfile.py

env.extra_domains = []
This is the host directory containing your PHP application
env.project_directory = ’"application’

services_to_build_first = [
"php-base’,
"builder’,

def with_builder (func) :
@wraps (func)
def decorated(xargs, *xkwargs):
compose_files = env.compose_files[:]

38

Under review as a conference paper at ICLR 2026

env.compose_files = [’docker-compose.builder.yml’] + env.
compose_files

ret = func(xargs, xxkwargs)

env.compose_files = compose_files

return ret
return decorated

@with_builder
def build() :

Build the infrastructure

wnnn

command = ’build’
command += ’ —--build-arg PROJECT_NAME=%s’ % env.project_name
command += '’ —--build-arg USER_ID=%s’ % env.user_id

for service in services_to_build_first:
commandForService = ’%s %s’ % (command, service)
docker_compose (commandForService)

docker_compose (command)

@task
def up () :

nnn

Build and start the infrastructure
nmmwn

build ()
docker_compose ("up —-remove-orphans -d’)

@task
@Qwith_builder
def destroy () :

Clean the infrastructure (remove container, volume, networks)
nmnwn

docker_compose (' down —--volumes —--rmi=local’)

def run_in_docker_or_locally_ for_dinghy (command) :
mwn

Mac users have a lot of problems running Yarn / Webpack on the Docker

stack so this func allow them to run these tools on their host
if env.dinghy:
local(’cd %s && %s’ % (env.project_directory, command))
else:
docker_compose_run (command)

def docker_compose (command_name) :

domains = " + 7', ‘' .join([env.root_domain] + env.extra_domains)

roNs

localEnv = {
"PROJECT_NAME’ : env.project_name,
"PROJECT_DIRECTORY’ : env.project_directory,
"PROJECT_ROOT_DOMAIN’ : env.root_domain,
’PROJECT_DOMAINS’ : domains,

39

Under review as a conference paper at ICLR 2026

}

with shell _env (*xlocalEnv) :
local (" docker-compose -p %s %s %$s’ % (
env.project_name,
"’ . Join('-f ' + env.root_dir + ’/infrastructure/docker/’ +
file for file in env.compose_files),
command_name

))

def docker_compose_run (command_name, service="builder", user="app",
no_deps=False, workdir=None) :
args = [
"run ',

"-u %s '’ % _shell_escape (user),

if no_deps:
args.append ('’ ——no-deps ')

if workdir is not None:
args.append(’-w %$s ’ % _shell_escape (workdir))
docker_compose (' %s %s /bin/bash -c "exec %s"' % (
! 7’ .join(args),
_shell_escape (service),
_shell_escape (command_name)

))

def set_local_configuration() :

env.compose_files = [’docker—-compose.yml’]
env.user_id = int (local(’id -u’, capture=True))
env.root_dir = os.path.dirname (os.path.abspath(__file_))

if env.user_id > 256000:
env.user_id = 1000

AN

—-—— END FILE ——-—

Please first localize the positions to edit based on the task statement,
and then output the files that need to be deleted, modified or added.

'— file’ means deleting the file;

"x file’ means modificating the file;

"+ file’ means adding the file.

The file should list like below:

- filel.py

« file2.py

* file3.py

+ filed.py

To solve the task, you should then generate *SEARCH/REPLACEx edits.
Every *SEARCH/REPLACE* edit must use this format:

1. The file path
2. The start of search block: <<<<<<< SEARCH

40

Under review as a conference paper at ICLR 2026

3. A contiguous chunk of lines to search for in the existing source code
4. The dividing line: =======

5. The lines to replace into the source code

6. The end of the replace block: >>>>>>> REPLACE

Here is an example:
‘Y'python

mathweb/flask/app.py
<<<<<<< SEARCH

from flask import Flask

import math
from flask import Flask
>>>>>>> REPLACE

AURURY

Please note that the *SEARCH/REPLACEx edit REQUIRES PROPER INDENTATION.

If you would like to add the line ' print (x)’, you must fully
write that out, with all those spaces before the code!
Wrap the »SEARCH/REPLACE* edit in blocks ‘‘‘python...‘‘‘.

When multiple edits should be done, please output *SEARCH/REPLACE«* edit
one by one and give your reasoning process before each *SEARCH/REPLACE=*
block.

>>>>>>>>>>>>>>>>>>>> gssistant:

The plan of solving this software task:

To address the task of adding port mapping on the "run" command, we need
to modify the ‘docker_compose_run' function in the ‘fabfile.py‘'. The
discussion suggests using the ‘--service-ports' option to enable port

mapping as defined in the ‘docker-compose.yml' file. We will add a

parameter to the ‘docker_compose_run' function to allow this option to be
toggled.

The files that should be edited include:
« fabfile.py

Here are my edits for code.

The motivation of this edit:

We need to modify the ‘docker_compose_run' function to include an
optional parameter for port mapping. By adding a ‘port_mapping' parameter
, we can control whether the ‘--service-ports' option is included in the
Docker run command. This change allows users to enable port mapping when
running a service, which is useful for exposing ports as defined in the
docker-compose.yml' file.

\

AURNRY

python
fabfile.py
<<<<<<< SEARCH
))

def docker_compose_run (command_name, service="builder", user="app",
no_deps=False, workdir=None) :
args = [

def docker_compose_run (command_name, service="builder", user="app",
no_deps=False, workdir=None, port_mapping=False) :

41

Under review as a conference paper at ICLR 2026

args = [
"run ',
' ——ym ,
>>>>>>> REPLACE
<<<<<<< SEARCH
if no_deps:
args.append (' ——no-deps ')

if workdir is not None:
args.append(’-w $s ’ % _shell escape (workdir))

if no_deps:
args.append (/' ——no-deps ')

if port_mapping:
args.append ('’ -—-service-ports ')

if workdir is not None:
args.append(’-w $s ’ % _shell_ escape (workdir))

>>>>>>> REPLACE

AN

F.4 CoDE COMPLETION

SS55555>55>5>>>>>>>>> user:

We are currently solving the following task within our repository. Here
is the task description.

Task Description

Please help me to complete the code at the position of 7 [TODO]’, in the

b2/sync/scan_policies.py

def _ _init__ (
self,
exclude_dir_regexes=tuple(),
exclude_file_regexes=tuple (),
)

include_file_regexes=tuple(),

###

Below are some code segments, each from a relevant file. One or more of
these files may need to be edited to solve the task.

-—— BEGIN FILE —-—-

b2/sync/scan_policies.py

FHAFH AR H AR R A R A A R A R
i File: b2/sync/scan_policies.py

% Copyright 2018 Backblaze Inc. All Rights Reserved.

License https://www.backblaze.com/using_b2_code.html

#

FHH A A A A
import logging

import re

42

Under review as a conference paper at ICLR 2026

logger = logging.getLogger (__name_)

class RegexSet (object) :
Holds a (possibly empty) set of regular expressions, and knows how to
check
whether a string matches any of them.

def __init__ (self, regex_iterable):
self._ compiled_list = [re.compile(r) for r in regex_iterable]

def matches (self, s):
return any (c.match(s) is not None for c in self._compiled_list)

class ScanPoliciesManager (object) :
nmmn
Policy object used when scanning folders for syncing, used to decide

which files to include in the list of files to be synced.
nmmwn

def __init__ (
self,
exclude_dir_regexes=tuple(),
exclude_file_regexes=tuple(),
include_file_regexes=tuple(),

[TODO]

def should_exclude_file(self, file_path):
mmon
Given the full path of a file, should it be excluded from the
scan?

:param file_path: The path of the file, relative to the root
directory
being scanned.
:return: True iff excluded.
mmwnw
return self._exclude_file_set.matches (file_path) and \
not self._include_file_set.matches (file_path)

def should_exclude_directory(self, dir_path):

Given the full path of a directory, should all of the files in it
be
excluded from the scan?

:param dir_path: The path of the directory, relative to the root
directory
being scanned. The path will never end in ' /’.

:return: True iff excluded.
mmwn

return self._exclude_dir_set.matches (dir_path)

DEFAULT_SCAN_MANAGER = ScanPoliciesManager ()

AN

—-—— END FILE —-—-—

43

Under review as a conference paper at ICLR 2026

Please first localize the positions to edit based on the task statement,
and then output the files that need to be deleted, modified or added.

'— file’ means deleting the file;

"x file’ means modificating the file;

"+ file’ means adding the file.

The file should list like below:

- filel.py

« file2.py

+ file3.py

+ filed.py

AN

To solve the task, you should then generate *SEARCH/REPLACEx* edits.

Every *SEARCH/REPLACEx edit must use this format:

The file path

The start of search block: <<<<<<< SEARCH

A contiguous chunk of lines to search for in the existing source code
The dividing line: =======

The lines to replace into the source code

The end of the replace block: >>>>>>> REPLACE

o U1 W N

Here is an example:
‘Y '‘python

mathweb/flask/app.py
<<<<<<< SEARCH

from flask import Flask

import math
from flask import Flask
>>>>>>> REPLACE

AURNRY

Please note that the *SEARCH/REPLACEx edit REQUIRES PROPER INDENTATION.
If you would like to add the line ' print (x)’, you must fully
write that out, with all those spaces before the code!

Wrap the »SEARCH/REPLACE* edit in blocks ‘‘‘python...‘‘‘.

When multiple edits should be done, please output *SEARCH/REPLACE«* edit
one by one and give your reasoning process before each *SEARCH/REPLACE=*
block.

>S>>>>>>>>>>>>>>>>>>> gssistant:

The plan of solving this software task:

The task requires completing the ‘__init__ ' method of the '
ScanPoliciesManager' class in the ‘b2/sync/scan_policies.py' file. The
method should initialize the class attributes using the provided regular
expression tuples. The class uses ‘RegexSet' objects to manage and check
regular expressions. Therefore, the ‘__init__ ' method should create
RegexSet ' instances for each of the regular expression tuples: '
exclude_dir_regexes‘, ‘exclude_file_regexes', and ‘include_file_regexes"'.

\

The files that should be edited include:
* b2/sync/scan_policies.py

Here are my edits for code.

The motivation of this edit:

The ‘ScanPoliciesManager' class is designed to manage policies for
scanning directories and files, determining which should be included or
excluded based on regular expressions. The ‘__init__ ' method needs to
initialize the class attributes ‘_exclude_dir_set‘, ‘_exclude_file_set?,

\

44

Under review as a conference paper at ICLR 2026

and ‘_include_file_set‘ using the ‘RegexSet‘

class. This setup allows the

‘should_exclude_file' and ‘should_exclude_directory' methods to function
correctly by checking file and directory paths against the compiled

regular expressions.

‘Y'python

b2/sync/scan_policies.py

<<<<<<< SEARCH
exclude_file_regexes=tuple(),
include_file_regexes=tuple(),

[TODO]

def should_exclude_file(self, file_path):

exclude_file_regexes=tuple(),
include_file_regexes=tuple(),

self._exclude_dir_set = RegexSet (exclude_dir_regexes)
self. _exclude_file_set = RegexSet (exclude_file_regexes)
self._include_file_set = RegexSet (include_file_regexes)

def should_exclude_file(self, file_path):

nun

>>>>>>> REPLACE

AURNRY

45

	Introduction
	Problem Definition
	SWE-Ext: Extend the Repository-Level Coding Data
	Data Collection
	Dataset Characteristics

	Experiments
	Results
	Software Engineering Benchmarks
	Localization Analysis
	Scaling Analysis

	Related Work
	Repository-level Coding Task
	Software Engineering Agents
	Training Data for Repository-level Coding

	Conclusion
	Use of LLMs
	Training Settings
	Evaluation Settings
	Prompts of CosAgentless and Details of Augmented Data
	File localization
	Component localization
	Code Editing
	Code Completion

	Details of Filtering
	Filtering pull requests
	Filtering Training Data

	Data Examples
	File localization
	Component localization
	Code Editing
	Code Completion

