
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SWE-EXT: EXTENDING AND SCALING AUGMENTED
DATA FOR REPOSITORY-LEVEL CODING TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Repository-level benchmarks such as SWE-Bench have highlighted the challenges
of scaling language models to complex software engineering tasks. However, cur-
rent training data remains narrow in scope, primarily focusing on monolingual
issue resolving and feature implementation. In this work, we introduce SWE-
Ext, a large-scale effort to extend and scale augmented data for repository-level
coding tasks. SWE-Ext broadens existing data along two key dimensions: mul-
tilingual coverage (spanning 10 languages) and an auxiliary code completion
task. We uncover distinct transfer mechanisms: data from other programming
languages provides transferable signals that generally enhance localization and
editing capabilities in single-language (Python) settings, while code completion
data strengthens code editing capabilities, particularly for feature implementation
tasks requiring substantial new code generation. These extensions yield consis-
tent improvements on Python repository-level benchmarks like SWE-Bench and
FEA-Bench. Our method offers a simple yet effective way to leverage more open-
source data for advancing repository-level code models.

1 INTRODUCTION

Repository-level coding tasks have emerged as a critical frontier in code generation, shifting focus
from isolated script-level challenges to comprehensive software engineering workflows in full repos-
itories. Early benchmarks emphasized standalone function synthesis, such as HumanEval (Chen
et al., 2021) for Python problems and MBPP (Austin et al., 2021) for basic algorithms. However,
these evaluations often ignored broader repository contexts, including dependencies, multi-file in-
teractions, and real-world specifications (Xu et al., 2022). Recent advancements have introduced
more holistic benchmarks, with SWE-Bench (Jimenez et al., 2024) exemplifying repository-level
issue resolution by evaluating models on GitHub pull requests (PRs) tied to verifiable test outcomes.
Complementary efforts like FEA-Bench (Li et al., 2025) target feature implementation.

To enhance model capabilities on these demanding tasks, substantial work has explored post-training
strategies. Broadly, these approaches fall into two categories: augmented data and verified data.
Augmented data methods construct training instances directly from real-world GitHub PRs, lever-
aging ground-truth information without requiring execution environments (Xie et al., 2025; Wang
et al., 2025). For instance, SWE-Fixer (Xie et al., 2025) curates PR-based data for instruction tun-
ing, while MCTS-Refine (Wang et al., 2025) synthesizes reasoning chains via search algorithms. In
contrast, verified data approaches build executable environments to collect agent trajectories, filter-
ing for those that pass unit tests or achieve successful outcomes (Jain et al., 2025; Pan et al., 2024;
Yang et al., 2025b). Techniques like R2E (Jain et al., 2025) and SWE-Gym (Pan et al., 2024) gen-
erate validated trajectories in sandbox for real PRs, and SWE-Smith (Yang et al., 2025b) extends
synthetic tasks with verification. While verified data ensures high-quality supervision through ex-
ecution feedback, it demands significant resources for environment setup and scaling. Augmented
data, conversely, offers greater flexibility and avoids these complexities, enabling broader explo-
ration of data domains.

Despite their advantages, existing augmented datasets remain limited in scope, predominantly focus-
ing on Python repositories and monolingual issue resolution or feature implementation (Xie et al.,
2025). This narrow focus underutilizes the vast diversity of open-source GitHub data, restricting
model generalization across languages and task types. In this work, we introduce SWE-Ext, a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

scalable pipeline to extend and augment repository-level coding data along two orthogonal dimen-
sions: multilingual coverage and auxiliary task inclusion (e.g., code completion). Starting from
high-quality PRs crawled from GitHub Archive 1 across ten programming languages (Python, Go,
JavaScript, Ruby, PHP, Java, TypeScript, C#, C++, and C), we construct datasets of four com-
plementary sub-tasks: (1) file localization to identify relevant files, (2) component localization to
pinpoint functions or methods, (3) code editing to generate patches for code repositories, and (4)
code completion derived from short-description PRs to provide code in-filling on fixed-positions.
Our contributions are as follows:

• We develop a scalable data extension pipeline that broadens the utility of GitHub PRs
for repository-level tasks, enabling extension across multilingual and completion-based
domains while preserving baseline effectiveness.

• We demonstrate consistent performance gains on repository-level benchmarks like SWE-
Bench and FEA-Bench, with multilingual and completion extensions yielding up to +1.4%
and +2.5% improvements on 32B models, respectively, and up to +5.4% on 7B models.

• We provide preliminary validation of strong cross-task and cross-language transfer effects,
showing that multilingual or completion data can boost single-language downstream per-
formance and highlighting the value of diverse augmentation for generalization.

2 PROBLEM DEFINITION

Notation. Let R denote a software repository represented as a finite collection of files {fi}Ni=1
together with auxiliary structures (ASTs, file-level skeletons, import graph, etc.). Let q denote
a problem statement (e.g., a PR description, an issue body, a failing test, or a natural-language
specification). Let P be the universe of addressable program positions (file identifiers × component
spans). A localization is a subset ℓ ⊆ L. The space of edits (patches) is denoted P; an edit (patch)
δ ∈ P is an operator p : R → R′ that applies insert/replace/delete/move operations to positions in
P. Finally, L(R′, q) is a task loss measuring how well the edited repository R′ satisfies q. Note that
P (·) denotes a probability distribution.

Repository-level coding task. Given (R, q), the objective of a repository-level coding agent is to
produce a patch δ ∈ P that minimizes the task loss:

δ̂ = argmin
δ∈P

L
(
δ(R), q

)
, (1)

or equivalently, under a probabilistic modeling view,

δ̂ = argmax
δ∈P

P
(
δ | R, q

)
. (2)

Decomposition into localization and editing. Because modern LLMs cannot feasibly consume
the entirety of large repositories at once, we decompose the posterior over patches by marginalizing
over possible localizations:

P (δ | R, q) =
∑
ℓ∈L

P (ℓ | R, q)P (δ | R, q, ℓ). (3)

This decomposition separates (i) a localization model that identifies candidate regions ℓ of interest,
and (ii) an editing model that produces a concrete patch conditional on the selected regions. In
practice, localization and editing are performed in separate iterative phases: the system first iterates
to identify a sufficiently accurate set of relevant files or components, and only then initiates an
editing phase where patches can be generated, potentially with feedback.

Code completion as a special case. Code completion corresponds to the special case where the
localization ℓ⋆ is given a priori (a fixed position or contiguous span) and the patch is constrained to
be a continuation or replacement at that position:

δ̂ = argmax
δ∈P

P
(
δ | R, q, ℓ⋆

)
. (4)

1https://www.gharchive.org

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Data collection pipeline for 4 types of tasks in SWE-Ext. We crawl and process pull
requests from GH Archive, and then process well described PRs for localization-editing task and
process other PRs for completion task.

3 SWE-EXT: EXTEND THE REPOSITORY-LEVEL CODING DATA

3.1 DATA COLLECTION

Source data and ground truth. We crawl pull requests (PRs) from GH Archive (recent 10 years)
and retain only high-quality candidate samples. We keep PRs whose repository has both (i) star
count > 100 and (ii) total PR count > 100, and we exclude PRs that modify only non-code files or
that were not merged. For each retained PR we collect metadata (PR description, linked issue text if
any, timestamps) and patch (diff). We parse repository files with tree-sitter parsers for the following
languages: Python, Go, JavaScript, Ruby, PHP, Java, TypeScript, C#, C++, and C. From each file we
extract a compact file skeleton (top-level classes, functions/methods). Using the patch we record the
ground-truth modified files Fgt and the ground-truth modified components Cgt. To limit tractability,
we retain only PRs with ||Fgt|| ≤ 5 and ||Cgt|| ≤ 10. The problem statement q is the concatenation
of the PR description and the linked issue body (when available). Formally each retained example
is stored as a tuple

s =
(
R, q, Fgt, Cgt, δgt), (5)

where δgt is the ground-truth patch.

File localization. To approximate P (ℓ | R, q) at file granularity, we construct file-localization
data. We employ a three-stage pipeline driven by a expert model: (i) rank files according to the file
tree the problem statement; (ii) expand via file-level dependency to form a candidate set; (iii) re-rank
using file skeletons and the expert model to produce a final top-n set S. If Fgt ̸⊆ S, we re-run the
expert with rationalization hints so that S always covers the ground truth. The resulting dataset pairs
(R, q,S) provide supervision for learning to predict high-recall file sets that contain the true patch
locations, thereby reducing the effective search space for downstream editing.

Component localization. Once file localization is complete, we build component-level (function/-
class level) localization data to approximate P (c | R, q, ℓ). We adapt iterative selection methods
from CoSIL (Jiang et al., 2025) to allow the expert model to sequentially inspect and select com-
ponents from candidate files. The process terminates once up to K = 10 components are selected.
If some ground-truth components are missing, they are inserted into the iterative process and final
list. Each example (R, q,F, Scomp) thus can serves as a high-recall label for a policy that selects
components relevant to q. This supports models in learning to identify fine-grained patch locations
and to maximize recall under constrained inspection budgets.

Code editing. We construct code-editing data directly from δgt. For each selected localization
context ℓctx = Scomp, we convert patches into before/after code fragments (search–replace pairs
δsp). To enrich supervision, a expert model generates a rationale explaining the patch. Each example
(R, q, ℓctx, δsp) provides supervision for P (δ | R, q, ℓctx). This partition trains models to propose
concrete patches given a localized context.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

30.0%

18.4%
12.3%

11.9%

8.6%

File Localization
(56,384 samples)

29.6%

20.7% 11.8%

10.9%

8.7%

Function Localization
(56,726 samples)

29.9%

20.2% 13.2%

11.7%

9.3%

Code Editing
(45,858 samples)

26.7%

18.1%
15.0%

11.4%

Code Completion
(23,853 samples)

Python
Go
JavaScript
Ruby
PHP
TypeScript
Java
C#
C++
C

Figure 2: Language distribution of dialogues for 4 sub-tasks in SWE-Ext dataset.

Code completion. Finally, we derive a completion dataset from PRs whose problem statements
are short (fewer than 50 words), which are possibly not complete instructions for code editing.
In these cases, we extract newly added functions or contiguous inserted regions and frame them as
completion tasks with a fixed localization ℓ⋆. Each example provides supervision for P (δ | R, q, ℓ⋆).
Because completions originate from real patches and are abundant, they supply local-generation
signals that improve fluency and act as an effective curriculum for training editing models.

Summary. The construction pipeline yields four complementary datasets, each aligned with a
distinct conditional distribution in the factorization of P (δ | R, q). By supervising different stages
separately, we enable scalable training for repository-level coding tasks while ensuring that the final
system can integrate these capabilities into a coherent editing pipeline. For further details, please
refer to Appendix D.

3.2 DATASET CHARACTERISTICS

The SWE-Ext corpus is a training dataset constructed from real-world pull requests and intended
to supervise models for repository-level coding tasks. The dataset is organized into four comple-
mentary tasks: file localization, component (function/method) localization, code editing, and code
completion. Table 1 reports core statistics. Below we summarize the most important characteristics
and how they relate to model training.

Origin and construction. Table 1 presents the statistics of the SWE-Ext dataset. For the three
localization and editing tasks (File-Localization, Component-Localization, and Code-Editing), we
retain a canonical pool of approximately 56k to 46k PRs. Crucially, these tasks exhibit high data di-
versity, being sourced from 4,319 to 4,746 unique GitHub repositories, which strongly demonstrates
the broad applicability of our data augmentation strategy. The Code-Completion task collects newly-
added functions or contiguous insertion ranges from ∼ 23.9k PRs, whose short descriptions make
end-to-end supervision weak but whose insertions are realistic completion targets.

Augmentation of localizations. The Localizations column in Table 1 highlights our data aug-
mentation strategy: The large candidate set size (e.g., 4.83 files vs. 1.66 ground truth files for File-
Localization) confirms that we incorporate highly relevant, non-ground-truth files or components
into the training data. This design is crucial because it makes the dataset more realistic, aligning
with scenarios where agents’ localization is often relevant but not perfectly precise in real-world
software engineering tasks.

Scale, context length and edit complexity. The dataset provides long, realistic contexts: average
input contexts (Dialogue Len) range from ∼ 5.9k tokens (completion) up to ∼ 9.8k tokens (file-
localization), reflecting the long context challenge for real-word repository-level tasks. Average
Answer Len varies by task (≈ 60–955 tokens). Edit complexity differs across modalities: code-
editing patches average ∼ 32 lines (explicit before/after pairs), while completion targets are larger
on average (∼ 88 lines) because they often correspond to newly-added contiguous code regions.

Language coverage. SWE-Ext covers ten languages: Python, Go, JavaScript, Ruby, PHP, Type-
Script, Java, C#, C++, and C. Language distributions (See Figure 2) show consistent dominance

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Statistics of the dialogue data for 4 tasks in the SWE-Ext dataset. Token counts are com-
puted using Qwen2.5-Coder. Dialogue Len represents the total token count of the full dialogue
after applying a chat template. Answer Len is the average token count of all “assistant” responses
within the dialogue. The ‘Answer Len’ are the final macro-averaged values. The Patch metric shows
the average number of lines changed in the ground truth patches. For Localizations, the values in-
dicate the number of ground truth modified locations versus the total number of locations in the
augmented data.

Dataset Unique Samples Dialogue Len Answer Len Patch Localizations
repos (#) (Avg tok.) (Avg tok.) (Avg lines) (Avg GT/Total)

File-Localization 4 746 56 384 9 787.8 552.1 - 1.66/4.83
Component-Localization 4 702 56 726 8 164.3 59.8 - 2.55/6.32
Code-Editing 4 319 45 858 6 447.7 955.0 32.0 -
Code-Completion 1 642 23 853 5 929.7 430.1 88.0 -

of Python and Go across modalities (roughly 27–30% and 15–21% respectively), moderate repre-
sentation for JavaScript, Ruby and PHP (≈ 9–13%), and smaller but present contributions from
Java/TypeScript/C#. Low-resource languages (C, C++) appear at the long tail (< 1–1.1% in most
partitions). This multi-language composition enables cross-lingual training and evaluation of model
robustness while reflecting real-world repository populations.

4 EXPERIMENTS

Training. To empirically validate whether our augmented data, derived from real-world GitHub
PRs, can enhance the proficiency of large language models on complex repository-level coding
tasks, and to explore the synergistic effects of incorporating multilingual and code completion data,
we employ a supervised finetuning approach tailored for a multi-turn dialogue format.

Models. Our methodology leverages GPT-4o (gpt-4o-2024-05-13) (Hurst et al., 2024) as a
data augmentation expert to transform raw GitHub PR data into a multi-task dataset, as detailed in
Section 3.1. For the training phase, we utilize Qwen2.5-Coder-Instruct (Hui et al., 2024) as
our foundational model. For details of training and models, please refer to Appendix B.

Agent System. Our agent system adopts a staged approach. We first perform file and compo-
nent localization following the same iterative process used for data generation. Subsequent stages,
including line-level localization, patch generation, and verification, are executed in an Agentless
manner (Xia et al., 2024). We have termed this pipeline CosAgentless, signifying the integration
of the iterative and fine-grained localization process from CoSIL (Xia et al., 2024) into the standard
Agentless inference pipeline.

Data. Our dataset is partitioned into a 96% training set and a 4% validation set. For a compre-
hensive ablation study and a fair comparison with prior works, we define three distinct training
configurations. First, the SWE-Ext-Baseline model is trained on the standard Python-only data for
the first three tasks (localization and editing), consistent with existing agent systems. Second, the
SWE-Ext-Multilingual model is trained on the first three tasks of our multilingual data. Finally,
the SWE-Ext-Completion model is trained on Python-only data but across all four tasks. This
setup enables a clear analysis of the performance gains derived from extending our data along both
multilingual and task-specific dimensions.

Evaluation. We evaluate our models on two distinct repository-level coding benchmarks: the well-
established SWE-bench (Jimenez et al., 2024) for resolving issues and FEA-Bench (Li et al., 2025)
for implementing features. Both the benchmarks only contain Python task instances and the primary
metric is the task pass rate (%resolved). For a more granular analysis, we also report the Top-x hit
rates, MRR (Mean Reciprocal Rank), and MPP (Mean Precision at Position)(Manning, 2008) for the
file and component localization stages. In our evaluation, we use a modified Agentless framework
to perform a single complete attempt per task. A task is considered a failure if the process stalls or
errors out, resulting in an empty patch.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 RESULTS

5.1 SOFTWARE ENGINEERING BENCHMARKS

Model System Expert Model Exec % Resolved

Closed Weight Models

GPT-4o (Hurst et al., 2024) Agentless - - 38.8%
Claude 3.5 Sonnet (Anthropic, 2024) Agentless - - 50.8%
Claude 3.7 Sonnet (Anthropic, 2025a) SWE-agent - - 58.2%
Claude 4 Sonnet (Anthropic, 2025b) SWE-agent - - 72.7%
Llama3-SWE-RL-70B (Wei et al., 2025) Agentless - - 41.0%

Open Weight Models

DeepSeek-V3-671B (Liu et al., 2024) Agentless - - 42.0%
Kimi K2-1TB (Team et al., 2025) Agentless - - 65.8%
Lingma-SWE-GPT-72B (Ma et al., 2024) SWE-SynInfer - - 28.8%
Qwen3-235B-A22B (Yang et al., 2025a) OpenHands - - 34.4%
SWE-gym-32B (Pan et al., 2024) OpenHands Hybrid ✓ 20.6%
R2E-Gym-32B (Jain et al., 2025) OpenHands Claude 3.5 Sonnet ✓ 34.4%
SWE-smith-7B (Yang et al., 2025b) SWE-agent Claude 3.7 Sonnet* ✓ 15.2%
SWE-smith-32B (Yang et al., 2025b) SWE-agent Claude 3.7 Sonnet* ✓ 40.2%
SWE-fixer-72B (Xie et al., 2025) SWE-Fixer - ✗ 32.8%
SoRFT-Qwen-32B (Ma et al., 2025) Agentless Claude 3.5 Sonnet ✗ 30.8%
MCTS-Refine-32B (Wang et al., 2025) Agentless DeepSeek-v3 ✗ 32.4%

SWE-Ext Models

SWE-Ext-Baseline-32B CosAgentless GPT-4o ✗ 31.2%
SWE-Ext-Multilingual-32B CosAgentless GPT-4o ✗ 32.6%
SWE-Ext-Completion-32B CosAgentless GPT-4o ✗ 32.2%

Table 2: Resolve rates for existing solutions on SWE-bench Verified, collected from (Yang et al.,
2025b) and Kimi-K2 (Team et al., 2025) technical reports. Expert Model indicates the large lan-
guage models that generated content during the data construction process. Exec indicates whether
execution-based feedback is used in the data construction process. All performance numbers are
pass@1 (Single attempt using agent systems). *Indicates the primary data for training is mainly
generated by the specified expert model.

Model System % Resolved

Zero-Short Inference

GPT-4o (Hurst et al., 2024) Agentless 9.0%
o1 (Jaech et al., 2024) Agentless 14.0%
DeepSeek-V3-671B (Liu et al., 2024) Agentless-Lite 11.0%

SWE-Ext Models

SWE-Ext-Baseline-32B CosAgentless 10.0%
SWE-Ext-Multilingual-32B CosAgentless 11.5%
SWE-Ext-Completion-32B CosAgentless 12.5%

Table 3: Resolve rates for existing solutions on FEA-Bench Lite, collected from Li et al. (2025).
All performance numbers are pass@1 (Single attempt using agent systems).

Competitive performance under limited resources. According to Table 2, although the absolute
performance of SWE-Ext models is lower than the strongest closed-weight systems (e.g., Claude 4
Sonnet at 72.7%), our models achieve competitive results among open-weight models even with the
baseline data. It is important to note that most higher-performing models either (i) use significantly
larger parameter counts, or (ii) are distilled from expert models with higher success rates. In contrast,
SWE-Ext only leverages augmented training data without relying on such privileged resources, yet
already achieves notable improvements. The results validate our pipeline of data collection.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Consistent improvements with extended data. Table 2 and Table 3 demonstrate that the models
trained with SWE-Ext consistently outperform the baseline across both benchmarks. On SWE-
Bench Verified, our SWE-EXT-MULTILINGUAL/COMPLETION-32B achieve 32.6% and 32.2% re-
solve rates, respectively, compared to 31.2% of the baseline. On FEA-Bench Lite, similar trends
are observed: the model trained with extended data outperform the baseline by up to +2.5%. These
results confirm that the proposed data extensions are effective in enhancing model performance.

Multilingual vs. Completion extension. We observe distinct patterns between multilingual and
completion data extension. Multilingual extension brings more consistent improvements in issue
resolving, suggesting that cross-lingual signals help models capture generalizable reasoning strate-
gies. In contrast, completion extension is particularly effective for feature implementation, where
generating new functionality requires stronger code completion capabilities. These results highlight
that different types of target complementary aspects of repository-level development, and jointly
contribute to the overall performance gains.

Ablation insights. By comparing the multilingual extension and the completion-based extension,
we find that both augmentation strategies yield consistent gains. This suggests that when the amount
of original supervision is limited, expanding the dataset in orthogonal directions, either through
multilingual variants or through completion-style tasks, can provide complementary signals and
enhance model generalization. This result underscores the value of leveraging diverse forms of
augmented data for repository-level coding tasks.

Overall, these findings highlight that SWE-Ext contributes a practical approach for improving the
software engineering capabilities, providing consistent benefits across different benchmarks.

5.2 LOCALIZATION ANALYSIS

Model System Component-level Localization File-level Localization

Hit@1 Hit@3 MAP MRR Hit@1 Hit@3 MAP MRR

Qwen2.5-Coder-32B CoSIL 43.0 54.3 46.1 48.9 60.7 77.3 69.8 69.4
Qwen2.5-Coder-32B CosAgentless 47.4 61.8 47.4 54.8 69.0 86.2 76.1 77.7
SWE-Ext-Baseline CosAgentless 55.0 65.4 53.0 60.8 72.8 87.6 77.0 80.2
SWE-Ext-Multilingual CosAgentless 57.2 68.2 55.3 63.1 75.8 90.2 79.4 82.8
SWE-Ext-Completion CosAgentless 52.8 62.0 51.3 57.9 72.8 86.6 76.7 79.8

Table 4: Localization performance on the SWE-bench Verified test set, consolidating Component-
level and File-level results. All scores are reported in percentages (%).

To better understand how augmented data improves final resolution rates, we analyze the interme-
diate step of localization on SWE-bench Verified. Localization accuracy determines whether the
correct files or components are identified, and thus directly affects downstream success.

Effect of multilingual extension. Introducing multilingual data consistently improves localiza-
tion: component Hit@1 increases from 55.0% to 57.2%, and file Hit@1 from 72.8% to 75.8%
(Table 4). This shows that data from other programming languages provides transferable structural
and semantic signals that strengthen the model’s ability to locate relevant code regions. As a result,
localization accuracy and overall resolution both improve, even when the target task is restricted to
Python repositories.

Effect of completion extension. In contrast, extending with completion data leads to a different
effect: component Hit@1 decreases from 55.0% to 52.8%, while file-level metrics remain nearly
unchanged. This is expected, since completion data focuses on the code editing objective rather
than localization. Formally, such data trains the model according to Eq. 4, which optimizes the
synthesis of code edits δ given a fixed ground-truth location ℓ⋆, without providing supervision for
selecting ℓ. Despite the degradation in localization, the strengthened editing capability yields higher
overall resolution rates, demonstrating that the positive impact on code edit outweighs the negative
impact on localization.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Implication. These results reveal distinct mechanisms: multilingual extension simultaneously im-
proves localization and editing by enabling transfer across languages, whereas completion extension
primarily enhances code editing ability, especially in scenarios that require substantial additions of
new content, such as feature implementation.

5.3 SCALING ANALYSIS

To validate the effectiveness and robustness of our data construction approach, we conduct scal-
ing experiments across both model sizes and training data volumes. We evaluate our method on
Qwen2.5-Coder-7B-Instruct and systematically sample 20%, 40%, and 100% of our aug-
mented training data to examine scaling behaviors. The results are presented in Figure 3.

Consistent scaling patterns across model sizes. Our experiments reveal that scaling laws hold
consistently across different model capacities. The 32B model substantially outperforms its 7B
counterpart across all configurations, achieving an average improvement of +12.8%. Notably, the
relative performance trends between different extension strategies remain remarkably stable: multi-
lingual extension consistently provides the largest gains (+5.4% for 7B, +1.4% for 32B over base-
line), while completion extension shows modest improvements. This consistency across model
scales validates the robustness of our data construction pipeline and suggests that both multilingual
and completion extensions scale predictably with model parameters.

Extension strategies enhance data scaling. Figure 3(a) shows that applying our extension strate-
gies yields clear logarithmic scaling patterns as the training set size increases. The largest gains
(+9.4%) appear when moving from 0% to 20% of the data, with diminishing returns thereafter.
Compared with the SWE-Ext-Baseline, which simply discards non-Python samples or PRs with
omitted description and achieves only 18.4% on SWE-bench Verified, our approach lifts the entire
scaling curve. By converting previously unusable data into effective training signals through mul-
tilingual and completion extensions, we substantially improve both data efficiency and the scaling
potential of repository-level code generation models.

0 20 40 60 80 100
Source Data Size (%)

6

8

10

12

14

16

18

20

22

Re
so

lv
ed

 R
at

e
(%

)

8.6%

18.0%
18.8%

19.8%

18.4%
SWE-Ext
Baseline

SWE-Ext
Multilingual+Completion

(a) Data Size Scaling on 7B model

SWE-Ext
Baseline

SWE-Ext
Multilingual

SWE-Ext
Completion

0

5

10

15

20

25

30

35

Re
so

lv
ed

 R
at

e
(%

)

18.4%

23.8%

19.8%

31.2%
32.6% 32.2%

(b) Model Size Comparison
7B Model
32B Model

Figure 3: Scaling law analysis on SWE-bench. (a) Performance scaling with training data size
follows an approximate logarithmic curve. (b) Model size comparison across three configurations
demonstrates consistent improvements from 7B to 32B models.

6 RELATED WORK

6.1 REPOSITORY-LEVEL CODING TASK

Early benchmarks for code generation focused on function-level tasks, such as HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021) for simple algorithms. These evaluations emphasized
isolated synthesis but overlooked repository contexts. Subsequent benchmarks introduced class- and
multi-file challenges, including ClassEval (Du et al., 2023), BigCodeBench (Zhuo et al., 2024), and
LiveCodeBench (Jain et al., 2024). Evaluation of real problem in cpde repositories is advanced with
SWE-bench (Jimenez et al., 2024) for GitHub issue resolution, alongside variants like DevEval (Li
et al., 2024b) and EvoCodeBench (Li et al., 2024a) that align with real repositories. FEA-Bench (Li
et al., 2025) targets feature additions via pull requests. Our work aims to enhance the capabilities

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

of large language models in repository-level coding tasks through post-training with augmented
real-world data.

6.2 SOFTWARE ENGINEERING AGENTS

Although basic code large language models (Hui et al., 2024) can achieve good performance on
many code benchmarks through direct generation, for repository-level tasks involving numerous
files and complex edits, the common practice is to incorporate agent frameworks (Yao et al., 2023).
Agents for repository-level tasks often employ iterative processes for issue resolution. SWE-
agent (Yang et al., 2024) uses agent-computer interfaces for navigation and editing, while Au-
toCodeRover (Zhang et al., 2024) integrates fault localization for repairs. CodePlan (Bairi et al.,
2024) focuses on planning modifications. Localization-specific agents include CoSIL (Jiang et al.,
2025), and LocAgent (Chen et al., 2025) for multi-hop reasoning via heterogeneous graphs. Agent-
less (Xia et al., 2024) simplifies to a three-phase process without complex tooling. Multi-agent plat-
forms like OpenHands (Wang et al., 2024) facilitate collaboration. Our data construction method
draws from the commonalities of these agents, employing a pipeline to build data for four subtasks,
thereby enhancing model capabilities in repository-level coding.

6.3 TRAINING DATA FOR REPOSITORY-LEVEL CODING

Traditional instruction tuning methods enhance code models’ adaptability for general code gener-
ation, such as WizardCoder (Luo et al., 2023), WaveCoder (Yu et al., 2024), and Magicoder (Wei
et al., 2024). However, constructing training data for repository-level tasks differs significantly, as it
requires selectively building input-output and reasoning processes to handle complex interactions.

Mainstream approaches involve building executable environments to collect agent trajectories for
rejection sampling and supervised fine-tuning. R2E (Jain et al., 2025) and SWE-Gym (Pan et al.,
2024) create runtime environments to gather verified trajectories from limited task instances. SWE-
Smith (Yang et al., 2025b) extends synthetic data generation to produce more verifiable tasks under
constrained environments. Other methods focus on reinforcement learning-compatible data. SWE-
RL (Wei et al., 2025) refines reasoning using software evolution data, while SoRFT (Ma et al., 2025)
employs subtask-oriented fine-tuning with rejection sampling and PPO.

Due to the diversity requirements of code repositories, some works augment real-world data or
synthetic data without constructing environments. SWE-Fixer (Xie et al., 2025) gathers data with
chain-of-thought, and MCTS-Refine (Wang et al., 2025) builds reasoning chains via MCTS to form
instruction data. In relation to these efforts, while training data construction for repository-level tasks
predominantly focuses on Python, our SWE-Ext pipeline extends the data scope by systematically
gathering multi-language data of different subtasks, demonstrating that even out-of-distribution data
like code completion can further enhance model performance in repository-level scenarios.

7 CONCLUSION

In this work, we introduced SWE-Ext, a scalable pipeline for extending augmented data in
repository-level coding tasks. By broadening coverage to multilingual PRs across ten languages
and incorporating code completion as an auxiliary task, we expand the scope of GitHub-derived
training data beyond traditional Python-centric datasets. Our experiments demonstrate consistent
improvements on benchmarks like SWE-bench and FEA-Bench, with multilingual extensions en-
hancing overall abilities and completion data strengthening code editing. Moreover, we reveal robust
cross-task and cross-language transfer, where diverse data sources benefit monolingual performance,
underscoring the potential of data extension in different dimensions for model generalization.

Limitations and future directions. SWE-Ext primarily focuses on augmented data without inte-
grating execution-based verification, which could further refine supervision quality. Additionally,
due to the constraints on computational and API resources, we cannot use better expert models for
data construction and carry out more experiments for more data combinations and on more base
models. Future work could explore verifiable pipelines or extend to additional languages and task
types, such as refactoring or generation of unit tests.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We are committed to the responsible and ethical development of artificial intelligence. Our source
data is derived exclusively from publicly available, open-source code on GitHub, which inherently
poses minimal privacy risks.

During the data augmentation process, we acknowledge the potential for the expert model to gen-
erate content that could be considered harmful. However, as these outputs are constrained to code-
related reasoning and dialogues, the risk is considered manageable.

As is the case with any model trained on software engineering data, the models trained on our
dataset may produce outputs containing security vulnerabilities or even malicious code. Executing
these outputs carries a risk of compromising a system. Therefore, for all evaluation and deployment
purposes, we strongly recommend that users operate within a securely isolated environment, such
as a Docker container, to mitigate any potential harm.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. To facilitate the replication of
our work, we provide a comprehensive description of our methodology and experimental setup.
In Appendix D, we detail the prompts and the full pipeline used for data construction. Further-
more, Appendix B provides all specified hyperparameters and configurations of our training, which
were conducted using a standard open-source training framework. For further reference and in-
sight into the data format, representative data examples are included in the supplementary materials.
This detailed documentation provides all the necessary components for researchers to reproduce our
findings.

REFERENCES

Anthropic. Introducing Claude 3.5 Sonnet, 2024. URL https://www.anthropic.com/
news/claude-3-5-sonnet.

Anthropic. Introducing Claude 3.7 Sonnet, 2025a. URL https://www.anthropic.com/
news/claude-3-7-sonnet.

Anthropic. Introducing Claude 4, 2025b. URL https://www.anthropic.com/news/
claude-4.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. ArXiv preprint, abs/2108.07732, 2021. URL https://arxiv.org/abs/2108.
07732.

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Arun Iyer, Suresh Parthasarathy, Sriram Raja-
mani, B Ashok, and Shashank Shet. Codeplan: Repository-level coding using llms and planning.
Proceedings of the ACM on Software Engineering, 1(FSE):675–698, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. ArXiv preprint, abs/2107.03374, 2021. URL https://
arxiv.org/abs/2107.03374.

Zhaoling Chen, Xiangru Tang, Gangda Deng, Fang Wu, Jialong Wu, Zhiwei Jiang, Viktor Prasanna,
Arman Cohan, and Xingyao Wang. Locagent: Graph-guided llm agents for code localization.
arXiv preprint arXiv:2503.09089, 2025.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for
evaluating llms on class-level code generation. ArXiv preprint, abs/2308.01861, 2023. URL
https://arxiv.org/abs/2308.01861.

10

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2308.01861

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. ArXiv preprint, abs/2409.12186,
2024. URL https://arxiv.org/abs/2409.12186.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. ArXiv preprint,
abs/2410.21276, 2024. URL https://arxiv.org/abs/2410.21276.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. ArXiv
preprint, abs/2412.16720, 2024. URL https://arxiv.org/abs/2412.16720.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. ArXiv preprint, abs/2403.07974, 2024. URL
https://arxiv.org/abs/2403.07974.

Naman Jain, Jaskirat Singh, Manish Shetty, Liang Zheng, Koushik Sen, and Ion Stoica. R2e-gym:
Procedural environments and hybrid verifiers for scaling open-weights swe agents. arXiv preprint
arXiv:2504.07164, 2025.

Zhonghao Jiang, Xiaoxue Ren, Meng Yan, Wei Jiang, Yong Li, and Zhongxin Liu. Cosil:
Software issue localization via llm-driven code repository graph searching. arXiv preprint
arXiv:2503.22424, 2025.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and Zhi Jin. Evocodebench: An evolving code
generation benchmark aligned with real-world code repositories. ArXiv preprint, abs/2404.00599,
2024a. URL https://arxiv.org/abs/2404.00599.

Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Huanyu Liu, Hao Zhu, Lecheng Wang, Kaibo Liu, Zheng
Fang, Lanshen Wang, et al. Deveval: A manually-annotated code generation benchmark aligned
with real-world code repositories. ArXiv preprint, abs/2405.19856, 2024b. URL https://
arxiv.org/abs/2405.19856.

Wei Li, Xin Zhang, Zhongxin Guo, Shaoguang Mao, Wen Luo, Guangyue Peng, Yangyu Huang,
Houfeng Wang, and Scarlett Li. Fea-bench: A benchmark for evaluating repository-level code
generation for feature implementation. arXiv preprint arXiv:2503.06680, 2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. ArXiv preprint,
abs/2412.19437, 2024. URL https://arxiv.org/abs/2412.19437.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models
with evol-instruct. ArXiv preprint, abs/2306.08568, 2023. URL https://arxiv.org/abs/
2306.08568.

Yingwei Ma, Rongyu Cao, Yongchang Cao, Yue Zhang, Jue Chen, Yibo Liu, Yuchen Liu, Binhua
Li, Fei Huang, and Yongbin Li. Lingma swe-gpt: An open development-process-centric language
model for automated software improvement. arXiv preprint arXiv:2411.00622, 2024.

Zexiong Ma, Chao Peng, Pengfei Gao, Xiangxin Meng, Yanzhen Zou, and Bing Xie. Sorft: Issue
resolving with subtask-oriented reinforced fine-tuning. arXiv preprint arXiv:2502.20127, 2025.

Christopher D Manning. Introduction to information retrieval. Syngress Publishing,, 2008.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym. arXiv preprint
arXiv:2412.21139, 2024.

11

https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2403.07974
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2404.00599
https://arxiv.org/abs/2405.19856
https://arxiv.org/abs/2405.19856
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024.

Yibo Wang, Zhihao Peng, Ying Wang, Zhao Wei, Hai Yu, and Zhiliang Zhu. Mcts-refined
cot: High-quality fine-tuning data for llm-based repository issue resolution. arXiv preprint
arXiv:2506.12728, 2025.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
code generation with oss-instruct. In Forty-first International Conference on Machine Learning,
2024.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via rein-
forcement learning on open software evolution. arXiv preprint arXiv:2502.18449, 2025.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. ArXiv preprint, abs/2407.01489, 2024. URL https:
//arxiv.org/abs/2407.01489.

Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai Lam, Difan Zou, and Kai Chen. Swe-fixer:
Training open-source llms for effective and efficient github issue resolution. arXiv preprint
arXiv:2501.05040, 2025.

Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A systematic evalua-
tion of large language models of code. In Proceedings of the 6th ACM SIGPLAN International
Symposium on Machine Programming, MAPS 2022, pp. 1–10, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery. ISBN 9781450392730. doi: 10.1145/3520312.3534862. URL
https://doi.org/10.1145/3520312.3534862.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
ArXiv preprint, abs/2405.15793, 2024. URL https://arxiv.org/abs/2405.15793.

John Yang, Kilian Lieret, Carlos E Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents. arXiv preprint arXiv:2504.21798, 2025b.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang, Can Xu, Yishujie Zhao, Wenxiang Hu, and
Qiufeng Yin. WaveCoder: Widespread and versatile enhancement for code large language models
by instruction tuning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 5140–5153, Bangkok, Thailand, August 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.acl-long.280. URL https://aclanthology.org/2024.
acl-long.280/.

12

https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2407.01489
https://doi.org/10.1145/3520312.3534862
https://arxiv.org/abs/2405.15793
https://aclanthology.org/2024.acl-long.280/
https://aclanthology.org/2024.acl-long.280/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement. In Proceedings of the 33rd ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2024, pp. 1592–1604, New York, NY, USA, 2024.
Association for Computing Machinery. ISBN 9798400706127. doi: 10.1145/3650212.3680384.
URL https://doi.org/10.1145/3650212.3680384.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully
sharded data parallel. arXiv preprint arXiv:2304.11277, 2023.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions. ArXiv preprint, abs/2406.15877,
2024. URL https://arxiv.org/abs/2406.15877.

A USE OF LLMS

Large Language Models (LLMs) were applied in this research in two specific ways. First, LLMs
assisted in the development of the codebase, primarily through code completion functionalities.
Second, LLMs were employed for language refinement to improve the clarity and readability of
the manuscript. All research ideas, experimental designs, and methodological frameworks were
independently conceived and implemented by the authors. The authors take full responsibility for
the content and conclusions presented in this work.

B TRAINING SETTINGS

From our preliminary experiments, we found that using Qwen2.5-Coder as the base model
yields strong performance, consistent with prior works on constructing training datasets (Yang
et al., 2025b; Jain et al., 2025; Wang et al., 2025). We adopt Qwen2.5-Coder-32B-Instruct
and Qwen2.5-Coder-7B-Instruct as the backbone models for fine-tuning. For the training
framework, we use the multi-turn dialogue SFT framework provided by verl (Sheng et al., 2024),
which is implemented on top of FSDP (Zhao et al., 2023).

For the 32B model, we fine-tune on two GPU workstations, each equipped with 8 NVIDIA H200
GPUs. Training is performed in float32 precision with CPU offloading enabled. We set the
maximum sequence length to 32,768. The training configuration includes a sequence parallel size
of 2, a learning rate of 5 × 10−6, a training batch size of 128, and training for 3 epochs. The
total training time is approximately 2, 7, and 3 days on the SWE-EXT-BASELINE, SWE-EXT-
MULTILINGUAL, and SWE-EXT-COMPLETION datasets, respectively.

For the 7B model, we fine-tune on a single workstation with 8 NVIDIA A100 GPUs. The setup
remains the same as the 32B model, except that the sequence parallel size is increased to 4. The
training time is similar to that of the 32B model.

C EVALUATION SETTINGS

All execution-based evaluations were conducted on an cloud computing instance equipped with a
32-core AMD EPYC 7763 processor @ 2.45GHz and 256 GB RAM, running Ubuntu 22.04.5 LTS
with Linux kernel 6.8.0-1027-azure. It is important to note that in our evaluation environment, we
encountered compatibility issues with certain test cases where 5 out of 500 gold patches in SWE-
bench Verified and 9 out of 200 gold patches in FEA-Bench Lite failed to execute successfully due to
environment-specific dependencies or configuration conflicts. As a result, the reported performance
metrics may represent a slight underestimate of the true capabilities of our approach.

D PROMPTS OF COSAGENTLESS AND DETAILS OF AUGMENTED DATA

In this section, we detail the prompts used and the specifics of how they construct our four task
datasets. All of our data is built upon real-world GitHub pull requests and augmented based on

13

https://doi.org/10.1145/3650212.3680384
https://arxiv.org/abs/2406.15877

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

their extracted ground truth results, which is why we refer to it as “augmented data”. This data
augmentation process consists of transforming the raw pull requests into a dialogue-based format,
following the steps of our CosAgentless pipeline.

D.1 FILE LOCALIZATION

Phase 1: File Localization. The first phase of the task is to select a top-5 list of relevant files based
on the problem statement (problem statement) and the provided file tree (structure). The
prompt used for this task is as follows:

The problem description is as follows:
‘‘‘
GitHub Problem Description
{problem_statement}

###

Candidate Files
{structure}

###
‘‘‘
Let’s locate the relevant file step by step using reasoning.
In order to locate accurately, you can pre-select {pre_select_num} files,
and finally confirm {top_n} file names.

Based on the available information, confirm and provide complete name of
the top-5 most likely relevant files that need to be edited for the
problem.
You should output your reasoning process first.
Since your final answer will be processed automatically, please give your
final answer of relevant files in the format as follows.

The returned files should be separated by new lines ordered by most to
least important and wrapped with ‘‘‘.
‘‘‘
file1.py
file2.py
file3.py
file4.py
file5.py
‘‘‘
Replace the ’file1.py’ with the actual file path.
For example,
‘‘‘
sklearn/linear_model/__init__.py
sklearn/base.py
‘‘‘

Phase 2: Dependency Analysis and Reflection. The second phase analyzes the dependencies
of the files selected in the previous stage based on their import relationships import content.
These relationships are derived from code segments identified by regular expressions. The model is
then prompted to reflect its selection and choose a new list of up to 10 relevant files.

Please look through the following problem description and repository
structure and provide a list of files that one would need to edit to
solve the software development problem.
I have already find 5 relevant files. Accrording to the import relations,
construct the call graph first.

Problem Description
{problem_statement}

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

###

Repository Structure
{structure}

###

Files To Be Explored
{pre_files}

###

Import Relations
{import_content}
###

Based on the import relationships, please analyze which files in the
repository depend on which other files within the same repository. Ignore
any libraries or modules that are imported from outside the current

repository. Present the results in the following format:

file1.py -> file6.py, file7.py
file2.py ->
file3.py -> xxx/file8.py
file4.py -> file2.py, file9.py
file5.py -> xxx/file10.py, xxx/file11.py

Note: Solving the problem not only requires determining where to modify
the code, but also identifying which other code to refer to in order to
understand and invoke.

Based on the files listed above and the import relations, reconfirm and
provide the complete names of the top 10 most likely relevant files,
considering both where changes need to be made and which files are
important to refer to.

Please think step by step and give you reasoning process first. Finally,
provide full path and return top 10 files.

The final returned files should be separated by new lines ordered by most
to least important and wrapped with ‘‘‘

For example:
‘‘‘
file1.py
file2.py
file3.py
file4.py
file5.py
file6.py
file7.py
file8.py
file9.py
file10.py
‘‘‘
Note: file1.py indicates the top-1 file, file2.py indicates the top-2
file, and so on. Do not include test files.

Phase 3: Refined File Localization. This phase leverages the results of parsing code repository.
The model is provided with the structural skeletons (file internal structure, including
class and function definitions) of the files identified in the previous stage. Using the skeletons of
the files, the model makes a final selection, outputting a refined list of at most 5 files as the final
localization result.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Please look through the following problem description and repository
structure and provide a list of files that one would need to edit to
solve the software development problem.
I have already find 10 relevent files according to the file structure and
dependency.

I will further give the internal structures of these 10 files.
Please rank them again and reflect the result according to the internal
structures and dependency.

Problem Description
{problem_statement}

###

Import Relations
{import_content}

###

Files To Be Ranked
{file_internal_structure}

###

Please think step by step and give you reasoning process first. Finally,
provide full path and return top 5 files.

The returned files should be separated by new lines ordered by most to
least important and wrapped with ‘‘‘
For example:
‘‘‘
file1.py
file2.py
file3.py
file4.py
file5.py
‘‘‘
Note: file1.py indicates the top-1 file, file2.py indicates the top-2
file, and so on. Do not include test files.

The CosAgentless inference pipeline is structured as a sequential execution of the three phases
detailed above. However, during the construction of our ground-truth-based augmented dataset, we
employ a specific self-correction process: if the expert model fails to recall all the files in the ground
truth code edit in its initial attempt, we provide the ground truth files as an explicit prompt to guide
a re-prediction.

D.2 COMPONENT LOCALIZATION

The prompt for our component localization process is an enhanced version of the one presented in
Jiang et al. (2025), specifically adapted to generalize to a broader set of programming languages and
repository-level coding tasks.

System Prompt. Within the system prompt, we define a set of tool-use capabilities that enable the
model to inspect the code of a specified component.

You will be presented with a repository-level coding problem with
repository file structure to access the source code of the software.
Since the modification is based on the code repository, the modified
locations may include files, classes, and functions, and the
modifications may be in the form of addition, deletion, or update.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Your task is to locate the top-5 most likely edit locations based on the
problem description and the information you retrieve using given
functions.
Function calls you can use are as follows:
* get_code_of_class(’file_name’, ’class_name’) -> Get the code of a
specified class in the given file and python project. ’file_name’ -> The
name of the file. ’class_name’ -> The name of the class. *
* get_code_of_class_function(’file_name’, ’class_name’, ’func_name’) ->
Get the code of a specified function in the given class, file, and python
project. ’file_name’ -> The name of the file. ’class_name’ -> The name

of the class. ’func_name’ -> The name of the function. *
* get_code_of_file_function(’file_name’, ’func_name’) -> Get the code of
a specified function in the given file and python project. ’file_name’ ->
The name of the file. ’func_name’ -> The name of the function. *

* get_toplevel_code(’file_name’) -> Get all the code in a given file that
is not part of a class or function definition. This is useful for

viewing imports, global variables, constants, and any top-level script
logic. ’file_name’ -> The name of the file. *
* exit() -> Exit function calling to give your final answer when you are
confident of the answer. *
You have {max_try} chances to call function.

Iterative Localization Initialization. The iterative localization process begins with an initializa-
tion step where the model is prompted to identify a single, relevant component. This component
serves as the initial point of inspection for the codebase.

Problem Description
{problem_statement}

###
Let’s locate the relevant elements (function/class) step by step using
reasoning and function calls.
I have pre-identified top-5 relevant files. There stuctures are as
follows:
{bug_file_list}
The formal parameter ’file_name’ takes the value in "file:"
The formal parameter ’class_name’ takes the value in "class:"
The formal parameter ’func_name’ takes the value in "static functions:"
and "class functions: "
Avoid making multiple identical calls to save overhead.
You must strictly follow the structure I give to call different tools.
For static functions, you can use ’get_code_of_file_function’, and for
class functions, you can use ’get_code_of_class_function’.
In order to locate accurately, you can pre-select {pre_select_num}
locations, then check them through function calls, and finally confirm {
top_n} file names.
Don’t make the first function call in this message.

Iterative Component Inspection. This process involves the iterative inspection of components.
At each step, the model leverages the full dialogue history to inform its decision. By making sequen-
tial function calls, it dynamically identifies the next component or code segment to examine, progres-
sively refining its understanding of the problem and the codebase. file internal structure
are the skeletons of found files in the file localization stage.

Now call a function in this format ’FunctionName(Argument)’ in a single
line without any other word or signal (such as ‘‘‘).
Don’t call the same function you’ve previous called, because this may
waste your context length.
{file_internal_structure}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

For each component component retrieved viewed during an iteration, the model is prompted
to assess its relevance to the given problem. If the component is relevant to the problem description,
the model is then directed to consider its internal call and dependency relationships to select the
next component to be viewed. Conversely, if a component is determined to be irrelevant, no further
analysis is conducted on it.

You will be presented with a repository-level coding problem with
repository file structure to access the source code of the software.

Your task is to locate the top-5 most likely edit locations based on the
problem description.

Problem Description
{problem_statement}

###

Here is a result of a function/class code retrived by ’{content}’.
Please check if the code is related to the problem and if the code should
be added into context.

<code>
{component_retrieved}
</code>
Return True if the code is related to the problem and should be added
into context, otherwise return False.
Since your answer will be processed automatically, please give your
answer in the format as follows.
The returned content should be wrapped with ‘‘‘.
‘‘‘
True
‘‘‘
or
‘‘‘
False
‘‘‘

Final Component Localization Output. The final component localization output is generated
upon the termination of the iterative process. This occurs when the model either invokes the
exit() function or reaches the maximum iteration limit. The model is then instructed to sum-
marize its full inspection history and produce a final set of predicted components relevant to the
problem statement.

{file_internal_structure}
Based on the available information, reconfirm and provide complete names
of the most likely edit locations (10 locations at most).
Before make the final decision, please check whether the function name is
correct or not, for static functions, don’t add class name.

{bug_file_list}

Please provide the complete set of locations as either a class name, a
function name, or a file name.
The returned files should be separated by new lines ordered by most to
least important and wrapped with ‘‘‘
Since your answer will be processed automatically, please give your
answer in the exapmle format as follows.
‘‘‘
top1_file_fullpath.py
function: Class1.Function1

top2_file_fullpath.py
function: Function2

top3_file_fullpath.py

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

class: Class3

top4_file_fullpath.py
function: Class4.Function4

top5_file_fullpath.py
function: Function5

top6_file_fullpath.py
global

top7_file_fullpath.py
function: Class7.Function7
‘‘‘
Replace the ’Top_file_fullpath.py’ with the actual file path, the ’Class’
with the actual class name and the ’Function’ with the actual function

name. ’global’ means the code is not in a class or function.
For example,
‘‘‘
sklearn/linear_model/__init__.py
function: LinearRegression.fit
‘‘‘

During the construction of our augmented data from GitHub pull requests, we incorporate a feedback
mechanism. If the final localization output does not fully recall all of the locations specified by the
ground truth code edit, we explicitly introduce the omitted locations back into the iterative inspection
process. This allows the model to correct its course and regenerate a complete and accurate final
localization result.

D.3 CODE EDITING

Final Code Editing. Leveraging the code at the locations identified by our component localization
process, we construct a context block denoted as top n content. This contextual information is
then provided to the large language model to facilitate the code editing task.

We are currently solving the following task within our repository. Here
is the task description.

Task Description
{problem_statement}

###

Below are some code segments, each from a relevant file. One or more of
these files may need to be edited to solve the task.

--- BEGIN FILE ---
‘‘‘
{top_n_content}
‘‘‘
--- END FILE ---

Please first localize the positions to edit based on the task statement,
and then output the files that need to be deleted, modified or added.
’- file’ means deleting the file;
’* file’ means modificating the file;
’+ file’ means adding the file.
The file should list like below:
‘‘‘
- file1.py
* file2.py

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

* file3.py
+ file4.py
‘‘‘

To solve the task, you should then generate *SEARCH/REPLACE* edits.

Every *SEARCH/REPLACE* edit must use this format:
1. The file path
2. The start of search block: <<<<<<< SEARCH
3. A contiguous chunk of lines to search for in the existing source code
4. The dividing line: =======
5. The lines to replace into the source code
6. The end of the replace block: >>>>>>> REPLACE

Here is an example:

‘‘‘python
mathweb/flask/app.py
<<<<<<< SEARCH
from flask import Flask
=======
import math
from flask import Flask
>>>>>>> REPLACE
‘‘‘

Please note that the *SEARCH/REPLACE* edit REQUIRES PROPER INDENTATION.
If you would like to add the line ’ print(x)’, you must fully
write that out, with all those spaces before the code!
Wrap the *SEARCH/REPLACE* edit in blocks ‘‘‘python...‘‘‘.
When multiple edits should be done, please output *SEARCH/REPLACE* edit
one by one and give your reasoning process before each *SEARCH/REPLACE*
block.

Code Editing Output Format. The model’s output is structured according to a specific format.
The code edits are presented as SEARCH-REPLACE pairs, where the old code is provided along-
side the corresponding new code. In addition, the model is required to generate a detailed editing
plan and a clear rationale for the proposed changes.

The plan of solving this software task:
{plan}
The files that should be edited include:
{files}

Here are my edits for code.
{search_replaces}

For the construction of our code editing dataset, we first transform the ground truth code edits into
a structured format of SEARCH-REPLACE pairs. Subsequently, we utilize the expert model to
generat the reasoning for these edits, populating the designated plan field of the response.

D.4 CODE COMPLETION

The code completion data is constructed from pull requests that lack a complete problem descrip-
tion (< 50 words). When generating these samples, we prioritize targeting a complete, newly added
function within the patch. If no such function exists, the target becomes a contiguous block of new
code. The code in the context (top n content) is then composed of the target file along with
other relevant components identified via our CosAgentless localization pipeline. The line requir-
ing completion is replaced with the token [TODO], thereby converting the code completion task
as an editing task centered on the [TODO] token. Consequently, the prompt and the subsequent
augmented data generation steps align with those used for our code editing task.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E DETAILS OF FILTERING

E.1 FILTERING PULL REQUESTS

To ensure the collection of high-quality data during the pull request (PR) scraping phase, we applied
the following exclusion criteria:

• PRs originating from repositories with fewer than 100 stars or a total of fewer than 100
PRs, as this often indicates low repository quality or inconsistent contribution patterns.

• PRs that were not merged into the main branch, indicating that the proposed code changes
were not accepted.

• PRs whose patches failed to apply cleanly to the codebase.
• PRs where tree-sitter encountered parsing errors in the changed files.
• PRs whose changed files exclusively consisted of non-code file extensions, includ-

ing: [".json", ".png", "csv", ".txt", ".md", ".jpg", ".jpeg",
".pkl", ".yml", ".yaml", ".toml"].

E.2 FILTERING TRAINING DATA

After the construction of the SWE-Ext training data, further filtering is required to ensure data qual-
ity. First, we remove data samples that contain expert model API call errors, which are commonly
caused by exceeding the context window length. Second, we remove samples with obvious errors
for each data type:

• File Localization data: We remove samples where the ground truth edited files are not
fully contained within the final prediction or are not included in the Phase 2 results.

• Component Localization data: We remove samples where the ground truth edited com-
ponents are not fully contained in the final output.

• Code Edit and Code Completion data: We remove samples where the “search” code (the
code to be changed) is not present in the provided context, as well as those with incomplete
search-replace pairs.

To ensure the model is trained on complete conversational data, we also filter out any samples with
a length exceeding 32768 tokens. Finally, we remove any dialogue data that corresponds to pull
requests included in our evaluation datasets, including SWE-bench Verified and FEA-Bench, to
prevent data leakage.

F DATA EXAMPLES

In this section, we present several short data examples for reference. Each turn of the dialogue is
formatted as follows:

>>>>>>>>>>>>>>>>>>>>{role}
{content}

F.1 FILE LOCALIZATION

>>>>>>>>>>>>>>>>>>>> system:

You will be presented with a repository-level coding problem with
repository file structure to access the source code of the software.
Your task is to locate the most likely relavant files that need to be
edited based on the problem description.

>>>>>>>>>>>>>>>>>>>> user:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

The problem description is as follows:
‘‘‘
GitHub Problem Description
<request>
Adding fill parameters to pairwise and windowed
I found these handy for when I needed lookahead/lookbehind, but didn’t
want to add extra processing code before/after the processing loop. Here’
s a sketch of one way I’ve used it:

‘‘‘python
for record, next_record in pairwise_iter(records, fill=None):

if next_record is not None:
record.link(next_record)

record.process()
‘‘‘

Without fill, I have to call ‘records[-1].process()‘ after the loop,
assuming it’s a list and not an iterable.
</request>

###

Candidate Files
boltons/

__init__.py
cacheutils.py
debugutils.py
deprutils.py
dictutils.py
easterutils.py
ecoutils.py
excutils.py
fileutils.py
formatutils.py
funcutils.py
gcutils.py
ioutils.py
iterutils.py
jsonutils.py
listutils.py
mathutils.py
mboxutils.py
namedutils.py
pathutils.py
queueutils.py
setutils.py
socketutils.py
statsutils.py
strutils.py
tableutils.py
tbutils.py
timeutils.py
typeutils.py
urlutils.py

docs/
conf.py

misc/
bench_omd.py
linkify_changelog.py
table_html_app.py

setup.py

###
‘‘‘

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Let’s locate the relevant file step by step using reasoning.
In order to locate accurately, you can pre-select 7 files, and finally
confirm 5 file names.

Based on the available information, confirm and provide complete name of
the top-5 most likely relevant files that need to be edited for the
problem.
You should output your reasoning process first.
Since your final answer will be processed automatically, please give your
final answer of relevant files in the format as follows.

The returned files should be separated by new lines ordered by most to
least important and wrapped with ‘‘‘.
‘‘‘
file1.py
file2.py
file3.py
file4.py
file5.py
‘‘‘
Replace the ’file1.py’ with the actual file path.
For example,
‘‘‘
sklearn/linear_model/__init__.py
sklearn/base.py
‘‘‘

>>>>>>>>>>>>>>>>>>>> assistant:
To solve the problem of adding fill parameters to ‘pairwise‘ and ‘
windowed‘ functions, we need to identify where these functions are likely
implemented. The problem description suggests that these functions are

related to iterating over collections, which is a common task in utility
modules dealing with iteration or functional programming.

Given the directory structure, the most relevant file is likely to be ‘
iterutils.py‘ because:
- The name ‘iterutils.py‘ suggests it contains utilities for iteration,
which aligns with the functions ‘pairwise‘ and ‘windowed‘ that deal with
iterating over elements in a collection.

Let’s consider the reasoning for selecting the files:

1. **boltons/iterutils.py**: This file is the most likely candidate as it
is named to suggest it contains utilities for iteration, which is

directly related to the ‘pairwise‘ and ‘windowed‘ functions mentioned in
the problem.

2. **boltons/funcutils.py**: This file might contain functional utilities
, which could include higher-order functions or iterators. If ‘pairwise‘
and ‘windowed‘ are implemented using functional programming paradigms,
they might be here.

3. **boltons/listutils.py**: This file could potentially contain
utilities for list operations. If ‘pairwise‘ and ‘windowed‘ are
specifically designed for lists, they might be implemented here.

4. **boltons/typeutils.py**: This file might contain utilities related to
type handling, which could include generic functions for handling

iterables of various types.

5. **boltons/strutils.py**: Although less likely, if ‘pairwise‘ and ‘
windowed‘ have any specific implementations for strings or string-like
iterables, they might be here.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Now, let’s finalize the top 5 files based on the reasoning:

‘‘‘
boltons/iterutils.py
boltons/funcutils.py
boltons/listutils.py
boltons/typeutils.py
boltons/strutils.py
‘‘‘

>>>>>>>>>>>>>>>>>>>> user:

Please look through the following problem description and repository
structure and provide a list of files that one would need to edit to
solve the software development problem.
I have already find 5 relevant files. Accrording to the import relations,
construct the call graph first.

Problem Description
<request>
Adding fill parameters to pairwise and windowed
I found these handy for when I needed lookahead/lookbehind, but didn’t
want to add extra processing code before/after the processing loop. Here’
s a sketch of one way I’ve used it:

‘‘‘python
for record, next_record in pairwise_iter(records, fill=None):

if next_record is not None:
record.link(next_record)

record.process()
‘‘‘

Without fill, I have to call ‘records[-1].process()‘ after the loop,
assuming it’s a list and not an iterable.
</request>

###

Repository Structure
boltons/

__init__.py
cacheutils.py
debugutils.py
deprutils.py
dictutils.py
easterutils.py
ecoutils.py
excutils.py
fileutils.py
formatutils.py
funcutils.py
gcutils.py
ioutils.py
iterutils.py
jsonutils.py
listutils.py
mathutils.py
mboxutils.py
namedutils.py
pathutils.py
queueutils.py
setutils.py
socketutils.py
statsutils.py

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

strutils.py
tableutils.py
tbutils.py
timeutils.py
typeutils.py
urlutils.py

docs/
conf.py

misc/
bench_omd.py
linkify_changelog.py
table_html_app.py

setup.py

###

Files To Be Explored
[’boltons/iterutils.py’, ’boltons/funcutils.py’, ’boltons/listutils.py’,
’boltons/typeutils.py’, ’boltons/strutils.py’]

###

Import Relations
file: boltons/iterutils.py
[’import os’, ’import math’, ’import time’, ’import codecs’, ’import
random’, ’import itertools’]

file: boltons/funcutils.py
[’from __future__ import print_function’, ’import sys’, ’import re’, ’
import inspect’, ’import functools’, ’import itertools’, ’from types
import MethodType, FunctionType’]

file: boltons/listutils.py
[’from __future__ import print_function, division’, ’import operator’, ’
from math import log as math_log’, ’from itertools import chain, islice
’]

file: boltons/typeutils.py
[’import sys’, ’from collections import deque’]

file: boltons/strutils.py
[’from __future__ import print_function’, ’import re’, ’import sys’, ’
import uuid’, ’import zlib’, ’import string’, ’import unicodedata’, ’
import collections’, ’from gzip import GzipFile’]

###

Based on the import relationships, please analyze which files in the
repository depend on which other files within the same repository. Ignore
any libraries or modules that are imported from outside the current

repository. Present the results in the following format:

file1.py -> file6.py, file7.py
file2.py ->
file3.py -> xxx/file8.py
file4.py -> file2.py, file9.py
file5.py -> xxx/file10.py, xxx/file11.py

Note: Solving the problem not only requires determining where to modify
the code, but also identifying which other code to refer to in order to
understand and invoke.

Based on the files listed above and the import relations, reconfirm and
provide the complete names of the top 10 most likely relevant files,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

considering both where changes need to be made and which files are
important to refer to.

Please think step by step and give you reasoning process first. Finally,
provide full path and return top 10 files.

The final returned files should be separated by new lines ordered by most
to least important and wrapped with ‘‘‘

For example:
‘‘‘
file1.py
file2.py
file3.py
file4.py
file5.py
file6.py
file7.py
file8.py
file9.py
file10.py
‘‘‘
Note: file1.py indicates the top-1 file, file2.py indicates the top-2
file, and so on. Do not include test files.

>>>>>>>>>>>>>>>>>>>> assistant:
To solve the problem, we need to analyze the import relationships and
determine which files are relevant for adding the "fill" parameter to the
‘pairwise‘ and ‘windowed‘ functions. Here’s the step-by-step reasoning

process:

1. **Identify the Core Functionality**: The problem is about adding a "
fill" parameter to the ‘pairwise‘ and ‘windowed‘ functions. These
functions are likely to be part of the ‘iterutils.py‘ file, as they deal
with iteration utilities.

2. **Analyze Import Relations**: We need to understand the dependencies
between the files to see if any other files might be relevant for
understanding or modifying the ‘pairwise‘ and ‘windowed‘ functions.

3. **Check Import Statements**:
- ‘boltons/iterutils.py‘ imports standard libraries like ‘os‘, ‘math‘,
‘time‘, ‘codecs‘, ‘random‘, and ‘itertools‘. It does not import any

other files from the ‘boltons‘ package.
- ‘boltons/funcutils.py‘ imports ‘itertools‘ and other standard
libraries, but does not import ‘iterutils‘.
- ‘boltons/listutils.py‘ imports ‘itertools‘ and other standard
libraries, but does not import ‘iterutils‘.
- ‘boltons/typeutils.py‘ and ‘boltons/strutils.py‘ do not import ‘
iterutils‘ or any other relevant files.

4. **Determine Relevant Files**: Since ‘iterutils.py‘ does not import or
is not imported by any other files in the list, it is likely self-
contained for the functionality of ‘pairwise‘ and ‘windowed‘. However,
understanding how these functions might interact with other utilities
could be useful, so we consider the files that import ‘itertools‘ as they
might have similar iteration-related utilities.

5. **Prioritize Files**: Based on the above analysis, ‘iterutils.py‘ is
the most relevant file for direct modification. The other files (‘
funcutils.py‘, ‘listutils.py‘, ‘typeutils.py‘, ‘strutils.py‘) might
provide additional context or similar implementations that could be
useful for reference.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

6. **Top 10 Files**: Since the problem is specific to iteration utilities
, the most relevant file is ‘iterutils.py‘. The other files are included
for reference and understanding of similar patterns or utilities.

Based on this reasoning, here are the top 10 files, ordered by relevance:

‘‘‘
boltons/iterutils.py
boltons/funcutils.py
boltons/listutils.py
boltons/typeutils.py
boltons/strutils.py
boltons/cacheutils.py
boltons/debugutils.py
boltons/deprutils.py
boltons/dictutils.py
boltons/easterutils.py
‘‘‘

Note: The last five files are included to fill the top 10 list, assuming
they might provide additional context or utility functions that could be
relevant indirectly.

>>>>>>>>>>>>>>>>>>>> user:

Please look through the following problem description and repository
structure and provide a list of files that one would need to edit to
solve the software development problem.
I have already find 10 relevent files according to the file structure and
dependency.

I will further give the internal structures of these 10 files.
Please rank them again and reflect the result according to the internal
structures and dependency.

Problem Description
<request>
Adding fill parameters to pairwise and windowed
I found these handy for when I needed lookahead/lookbehind, but didn’t
want to add extra processing code before/after the processing loop. Here’
s a sketch of one way I’ve used it:

‘‘‘python
for record, next_record in pairwise_iter(records, fill=None):

if next_record is not None:
record.link(next_record)

record.process()
‘‘‘

Without fill, I have to call ‘records[-1].process()‘ after the loop,
assuming it’s a list and not an iterable.
</request>

###

Import Relations
file: boltons/iterutils.py
[’import os’, ’import math’, ’import time’, ’import codecs’, ’import
random’, ’import itertools’]

file: boltons/funcutils.py
[’from __future__ import print_function’, ’import sys’, ’import re’, ’
import inspect’, ’import functools’, ’import itertools’, ’from types
import MethodType, FunctionType’]

file: boltons/listutils.py

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

[’from __future__ import print_function, division’, ’import operator’, ’
from math import log as math_log’, ’from itertools import chain, islice
’]

file: boltons/typeutils.py
[’import sys’, ’from collections import deque’]

file: boltons/strutils.py
[’from __future__ import print_function’, ’import re’, ’import sys’, ’
import uuid’, ’import zlib’, ’import string’, ’import unicodedata’, ’
import collections’, ’from gzip import GzipFile’]

###

Files To Be Ranked
file: boltons/iterutils.py

class: [’PathAccessError’, ’GUIDerator’, ’SequentialGUIDerator’]
static functions: [’is_iterable’, ’is_scalar’, ’is_collection’,
’split’, ’split_iter’, ’lstrip’, ’lstrip_iter’, ’rstrip’, ’
rstrip_iter’, ’strip’, ’strip_iter’, ’chunked’, ’
_validate_positive_int’, ’chunked_iter’, ’chunk_ranges’, ’
pairwise’, ’pairwise_iter’, ’windowed’, ’windowed_iter’, ’xfrange
’, ’frange’, ’backoff’, ’backoff_iter’, ’bucketize’, ’partition’,
’unique’, ’unique_iter’, ’redundant’, ’one’, ’first’, ’

flatten_iter’, ’flatten’, ’same’, ’default_visit’, ’default_enter
’, ’default_exit’, ’remap’, ’get_path’, ’research’, ’soft_sorted
’, ’untyped_sorted’]
class functions: [

PathAccessError: [’__init__’, ’__repr__’, ’__str__’]
GUIDerator: [’__init__’, ’reseed’, ’__iter__’, ’__next__
’, ’__next__’]
SequentialGUIDerator: [’reseed’, ’reseed’, ’__next__’]

]
file: boltons/funcutils.py

class: [’InstancePartial’, ’CachedInstancePartial’, ’
FunctionBuilder’, ’MissingArgument’, ’ExistingArgument’]
static functions: [’inspect_formatargspec’, ’
get_module_callables’, ’mro_items’, ’dir_dict’, ’copy_function’,
’partial_ordering’, ’format_invocation’, ’format_exp_repr’, ’
format_nonexp_repr’, ’wraps’, ’update_wrapper’, ’
_parse_wraps_expected’, ’_indent’, ’total_ordering’, ’noop’]
class functions: [

InstancePartial: [’_partialmethod’, ’__get__’]
CachedInstancePartial: [’_partialmethod’, ’__set_name__’,
’__get__’]

FunctionBuilder: [’_argspec_to_dict’, ’_argspec_to_dict’,
’__init__’, ’get_sig_str’, ’get_invocation_str’, ’

get_sig_str’, ’get_invocation_str’, ’from_func’, ’
get_func’, ’get_defaults_dict’, ’get_arg_names’, ’add_arg
’, ’add_arg’, ’remove_arg’, ’_compile’]
MissingArgument: []
ExistingArgument: []

]
file: boltons/listutils.py

class: [’BarrelList’, ’SplayList’]
static functions: []
class functions: [

BarrelList: [’__init__’, ’_cur_size_limit’, ’
_translate_index’, ’_balance_list’, ’insert’, ’append’, ’
extend’, ’pop’, ’iter_slice’, ’del_slice’, ’from_iterable
’, ’__iter__’, ’__reversed__’, ’__len__’, ’__contains__’,
’__getitem__’, ’__delitem__’, ’__setitem__’, ’

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

__getslice__’, ’__setslice__’, ’__repr__’, ’sort’, ’
reverse’, ’count’, ’index’]
SplayList: [’shift’, ’swap’]

]
file: boltons/typeutils.py

class: [’classproperty’]
static functions: [’make_sentinel’, ’issubclass’, ’
get_all_subclasses’]
class functions: [

classproperty: [’__init__’, ’__get__’]
]

file: boltons/strutils.py
class: [’DeaccenterDict’, ’HTMLTextExtractor’, ’MultiReplace’]
static functions: [’camel2under’, ’under2camel’, ’slugify’, ’
split_punct_ws’, ’unit_len’, ’ordinalize’, ’cardinalize’, ’
singularize’, ’pluralize’, ’_match_case’, ’find_hashtags’, ’a10n
’, ’strip_ansi’, ’asciify’, ’is_ascii’, ’bytes2human’, ’html2text
’, ’gunzip_bytes’, ’gzip_bytes’, ’iter_splitlines’, ’indent’, ’
is_uuid’, ’escape_shell_args’, ’args2sh’, ’args2cmd’, ’
parse_int_list’, ’format_int_list’, ’complement_int_list’, ’
int_ranges_from_int_list’, ’multi_replace’, ’unwrap_text’]
class functions: [

DeaccenterDict: [’__missing__’, ’__getitem__’]
HTMLTextExtractor: [’__init__’, ’handle_data’, ’
handle_charref’, ’handle_entityref’, ’get_text’]
MultiReplace: [’__init__’, ’_get_value’, ’sub’]

]
file: boltons/cacheutils.py

class: [’RLock’, ’LRI’, ’LRU’, ’_HashedKey’, ’CachedFunction’, ’
CachedMethod’, ’cachedproperty’, ’ThresholdCounter’, ’MinIDMap’]
static functions: [’make_cache_key’, ’cached’, ’cachedmethod’]
class functions: [

RLock: [’__enter__’, ’__exit__’]
LRI: [’__init__’, ’_init_ll’, ’_print_ll’, ’
_get_flattened_ll’, ’_get_link_and_move_to_front_of_ll’,
’_set_key_and_add_to_front_of_ll’, ’
_set_key_and_evict_last_in_ll’, ’_remove_from_ll’, ’
__setitem__’, ’__getitem__’, ’get’, ’__delitem__’, ’pop’,
’popitem’, ’clear’, ’copy’, ’setdefault’, ’update’, ’

__eq__’, ’__ne__’, ’__repr__’]
LRU: [’__getitem__’]
_HashedKey: [’__init__’, ’__hash__’, ’__repr__’]
CachedFunction: [’__init__’, ’__call__’, ’__repr__’]
CachedMethod: [’__init__’, ’__get__’, ’__call__’, ’
__repr__’]
cachedproperty: [’__init__’, ’__get__’, ’__repr__’]
ThresholdCounter: [’__init__’, ’threshold’, ’add’, ’
elements’, ’most_common’, ’get_common_count’, ’
get_uncommon_count’, ’get_commonality’, ’__getitem__’, ’
__len__’, ’__contains__’, ’iterkeys’, ’keys’, ’itervalues
’, ’values’, ’iteritems’, ’items’, ’get’, ’update’]
MinIDMap: [’__init__’, ’get’, ’drop’, ’_clean’, ’
__contains__’, ’__iter__’, ’__len__’, ’iteritems’]

]
file: boltons/debugutils.py

class: []
static functions: [’pdb_on_signal’, ’pdb_on_exception’, ’
trace_print_hook’, ’wrap_trace’]
class functions: [
]

file: boltons/deprutils.py
class: [’DeprecatableModule’]
static functions: [’deprecate_module_member’]
class functions: [

DeprecatableModule: [’__init__’, ’__getattribute__’]

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

]
file: boltons/dictutils.py

class: [’OrderedMultiDict’, ’FastIterOrderedMultiDict’, ’OneToOne
’, ’ManyToMany’, ’FrozenHashError’, ’FrozenDict’]
static functions: [’subdict’]
class functions: [

OrderedMultiDict: [’__new__’, ’__init__’, ’__getstate__’,
’__setstate__’, ’_clear_ll’, ’_insert’, ’add’, ’addlist

’, ’get’, ’getlist’, ’clear’, ’setdefault’, ’copy’, ’
fromkeys’, ’update’, ’update_extend’, ’__setitem__’, ’
__getitem__’, ’__delitem__’, ’__eq__’, ’__ne__’, ’__ior__
’, ’pop’, ’popall’, ’poplast’, ’_remove’, ’_remove_all’,
’iteritems’, ’iterkeys’, ’itervalues’, ’todict’, ’sorted
’, ’sortedvalues’, ’inverted’, ’counts’, ’keys’, ’values
’, ’items’, ’__iter__’, ’__reversed__’, ’__repr__’, ’
viewkeys’, ’viewvalues’, ’viewitems’]
FastIterOrderedMultiDict: [’_clear_ll’, ’_insert’, ’
_remove’, ’_remove_all’, ’iteritems’, ’iterkeys’, ’
__reversed__’]
OneToOne: [’__init__’, ’unique’, ’__setitem__’, ’
__delitem__’, ’clear’, ’copy’, ’pop’, ’popitem’, ’
setdefault’, ’update’, ’__repr__’]
ManyToMany: [’__init__’, ’get’, ’__getitem__’, ’
__setitem__’, ’__delitem__’, ’update’, ’add’, ’remove’, ’
replace’, ’iteritems’, ’keys’, ’__contains__’, ’__iter__
’, ’__len__’, ’__eq__’, ’__repr__’]
FrozenHashError: []
FrozenDict: [’updated’, ’fromkeys’, ’__repr__’, ’
__reduce_ex__’, ’__hash__’, ’__copy__’, ’
_raise_frozen_typeerror’]

]
file: boltons/easterutils.py

class: []
static functions: [’gobs_program’]
class functions: [
]

###

Please think step by step and give you reasoning process first. Finally,
provide full path and return top 5 files.

The returned files should be separated by new lines ordered by most to
least important and wrapped with ‘‘‘
For example:
‘‘‘
file1.py
file2.py
file3.py
file4.py
file5.py
‘‘‘
Note: file1.py indicates the top-1 file, file2.py indicates the top-2
file, and so on. Do not include test files.

>>>>>>>>>>>>>>>>>>>> assistant:
To solve the problem of adding fill parameters to the ‘pairwise‘ and ‘
windowed‘ functions, we need to identify the files that contain these
functions and any related utility functions that might be affected by or
need to support the new feature.

Step-by-Step Reasoning:

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

1. **Identify the Functions:**
- The problem description specifically mentions ‘pairwise_iter‘ and
implies a similar change might be needed for ‘windowed‘ functions. We
need to locate these functions in the codebase.

2. **Locate the Functions:**
- From the provided internal structure of the files, we see that ‘
pairwise‘, ‘pairwise_iter‘, ‘windowed‘, and ‘windowed_iter‘ are static
functions in ‘boltons/iterutils.py‘.

3. **Assess Dependencies:**
- Since these functions are in ‘boltons/iterutils.py‘, this file is
the primary candidate for modification.
- We should also consider if any other files might be using these
functions or if there are utility functions that might need to be
updated to support the new ‘fill‘ parameter.

4. **Check for Related Utilities:**
- The ‘boltons/iterutils.py‘ file might have other utility functions
that interact with ‘pairwise‘ and ‘windowed‘. We should ensure that
any such functions are also updated if necessary.

5. **Consider Other Files:**
- While other files like ‘boltons/funcutils.py‘, ‘boltons/listutils.py
‘, etc., are part of the repository, they do not contain the functions
in question or directly relate to the problem at hand based on the

provided information.

6. **Rank the Files:**
- Given the focus on ‘pairwise‘ and ‘windowed‘, ‘boltons/iterutils.py‘
is the most relevant file.

- Other files are less relevant unless they are found to directly use
or extend the functionality of ‘pairwise‘ and ‘windowed‘.

Conclusion:

Based on the above reasoning, the top file to edit is ‘boltons/iterutils.
py‘. Other files are not directly relevant to the problem as described,
so they are not included in the top 5 list.

‘‘‘
boltons/iterutils.py
‘‘‘

F.2 COMPONENT LOCALIZATION

>>>>>>>>>>>>>>>>>>>> system:

You will be presented with a repository-level coding problem with
repository file structure to access the source code of the software.
Since the modification is based on the code repository, the modified
locations may include files, classes, and functions, and the
modifications may be in the form of addition, deletion, or update.
Your task is to locate the top-5 most likely edit locations based on the
problem description and the information you retrieve using given
functions.

Function calls you can use are as follows:
* get_code_of_class(’file_name’, ’class_name’) -> Get the code of a
specified class in the given file and python project. ’file_name’ -> The
name of the file. ’class_name’ -> The name of the class. *
* get_code_of_class_function(’file_name’, ’class_name’, ’func_name’) ->
Get the code of a specified function in the given class, file, and python

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

project. ’file_name’ -> The name of the file. ’class_name’ -> The name
of the class. ’func_name’ -> The name of the function. *
* get_code_of_file_function(’file_name’, ’func_name’) -> Get the code of
a specified function in the given file and python project. ’file_name’ ->
The name of the file. ’func_name’ -> The name of the function. *

* get_toplevel_code(’file_name’) -> Get all the code in a given file that
is not part of a class or function definition. This is useful for

viewing imports, global variables, constants, and any top-level script
logic. ’file_name’ -> The name of the file. *
* exit() -> Exit function calling to give your final answer when you are
confident of the answer. *

You have 10 chances to call function.

>>>>>>>>>>>>>>>>>>>> user:
Problem Description
<request>
(PUP-5548) Use ‘service‘ in debian provider to interact with all init
systems
In the Debian family, the ‘service‘ command provides an
abstraction around available init systems, allowing it to be used
to properly determine service state regardless of which init system
is active on the system.

This commit updates the Debian provider’s ‘statuscmd‘ method to use
‘service‘ at all times, allowing the provider to properly query
services regardless of OS version or init system in place.
</request>

###

Let’s locate the relevant elements (function/class) step by step using
reasoning and function calls.
I have pre-identified top-5 relevant files. There stuctures are as
follows:
file: lib/puppet/provider/service/debian.rb

class: []
static functions: [’disable’, ’enabled?’, ’get_start_link_count
’, ’enable’, ’statuscmd’]
class functions: [
]

file: lib/puppet/provider/service/base.rb
class: []
static functions: [’getps’, ’getpid’, ’status’, ’statuscmd’, ’
start’, ’startcmd’, ’stop’, ’stopcmd’]
class functions: [
]

file: lib/puppet/type/service.rb
class: [’Puppet’]
static functions: []
class functions: [

Puppet: [’retrieve’, ’retrieve’, ’sync’, ’refresh’]
]

file: lib/puppet/provider/service/systemd.rb
class: []
static functions: [’instances’, ’disable’, ’get_start_link_count
’, ’enabled?’, ’debian_enabled?’, ’status’, ’enable’, ’mask’, ’
unmask’, ’restartcmd’, ’startcmd’, ’stopcmd’]
class functions: [
]

file: lib/puppet/provider/service/init.rb
class: []
static functions: [’defpath’, ’excludes’, ’instances’, ’
get_services’, ’hasstatus=’, ’initscript’, ’paths’, ’search’, ’

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

startcmd’, ’stopcmd’, ’restartcmd’, ’texecute’, ’statuscmd’, ’
is_init?’]
class functions: [
]

The formal parameter ’file_name’ takes the value in "file:"
The formal parameter ’class_name’ takes the value in "class:"
The formal parameter ’func_name’ takes the value in "static functions:"
and "class functions: "
Avoid making multiple identical calls to save overhead.
You must strictly follow the structure I give to call different tools.
For static functions, you can use ’get_code_of_file_function’, and for
class functions, you can use ’get_code_of_class_function’.
In order to locate accurately, you can pre-select 7 locations, then check
them through function calls, and finally confirm 5 file names.

Don’t make the first function call in this message.

>>>>>>>>>>>>>>>>>>>> assistant:
To address the problem, we need to focus on the ‘statuscmd‘ method in the
Debian provider, as the request specifically mentions updating this

method to use the ‘service‘ command. Based on the provided file structure
, the relevant files and functions to consider are:

1. **lib/puppet/provider/service/debian.rb**
- Function: ‘statuscmd‘

2. **lib/puppet/provider/service/base.rb**
- Function: ‘statuscmd‘

3. **lib/puppet/provider/service/systemd.rb**
- Function: ‘statuscmd‘

4. **lib/puppet/provider/service/init.rb**
- Function: ‘statuscmd‘

These files contain the ‘statuscmd‘ function, which is likely related to
the service status command functionality. The problem description
specifically mentions the Debian provider, so the ‘debian.rb‘ file is of
primary interest. However, examining the ‘statuscmd‘ function in other
related files might provide additional context or necessary changes.

Let’s proceed with checking the code of these functions to identify the
necessary modifications. I will start by examining the ‘statuscmd‘
function in ‘lib/puppet/provider/service/debian.rb‘.

>>>>>>>>>>>>>>>>>>>> user:

Now call a function in this format ’FunctionName(Argument)’ in a single
line without any other word or signal (such as ‘‘‘).
Don’t call the same function you’ve previous called, because this may
waste your context length.

>>>>>>>>>>>>>>>>>>>> assistant:
get_code_of_file_function(’lib/puppet/provider/service/debian.rb’, ’
statuscmd’)

>>>>>>>>>>>>>>>>>>>> user:
I have already checked this function/class is related to the task.

>>>>>>>>>>>>>>>>>>>> user:
def statuscmd

os = Facter.value(:operatingsystem).downcase

if os == ’debian’

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

majversion = Facter.value(:operatingsystemmajrelease).to_i
else
majversion = Facter.value(:operatingsystemmajrelease).split(’.’)
[0].to_i

end

if ((os == ’debian’ && majversion >= 8) || (os == ’ubuntu’ &&
majversion >= 15))
SysVInit scripts will always return ’0’ for status when the
service is masked,
even if the service is actually stopped. Use the SysVInit-Systemd
compatibility

layer to determine the actual status. This is only necessary when
the SysVInit

version of a service is queried. I.e, ’ntp’ instead of ’ntp.
service’.
(@resource[:hasstatus] == :true) && ["systemctl", "is-active",
@resource[:name]]

else
super

end
end

>>>>>>>>>>>>>>>>>>>> user:

Now call a function in this format ’FunctionName(Argument)’ in a single
line without any other word or signal (such as ‘‘‘).
Don’t call the same function you’ve previous called, because this may
waste your context length.

You can check the functions that this part of code calls.

>>>>>>>>>>>>>>>>>>>> assistant:
get_code_of_file_function(’lib/puppet/provider/service/base.rb’, ’
statuscmd’)

>>>>>>>>>>>>>>>>>>>> user:
I have already checked this function/class is related to the task.

>>>>>>>>>>>>>>>>>>>> user:
def statuscmd
end

>>>>>>>>>>>>>>>>>>>> user:

Now call a function in this format ’FunctionName(Argument)’ in a single
line without any other word or signal (such as ‘‘‘).
Don’t call the same function you’ve previous called, because this may
waste your context length.

You can check the functions that this part of code calls.

>>>>>>>>>>>>>>>>>>>> assistant:
get_code_of_file_function(’lib/puppet/provider/service/systemd.rb’, ’
statuscmd’)

>>>>>>>>>>>>>>>>>>>> user:
The call of get_code_of_file_function(’lib/puppet/provider/service/
systemd.rb’, ’statuscmd’) encountered error. Maybe you retrieved a
location which does not exist.

>>>>>>>>>>>>>>>>>>>> user:

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Now call a function in this format ’FunctionName(Argument)’ in a single
line without any other word or signal (such as ‘‘‘).
Don’t call the same function you’ve previous called, because this may
waste your context length.

>>>>>>>>>>>>>>>>>>>> assistant:
get_code_of_file_function(’lib/puppet/provider/service/init.rb’, ’
statuscmd’)

>>>>>>>>>>>>>>>>>>>> user:
I have already checked this function/class is related to the task.

>>>>>>>>>>>>>>>>>>>> user:
def statuscmd

(@resource[:hasstatus] == :true) && [initscript, :status]
end

>>>>>>>>>>>>>>>>>>>> user:

Now call a function in this format ’FunctionName(Argument)’ in a single
line without any other word or signal (such as ‘‘‘).
Don’t call the same function you’ve previous called, because this may
waste your context length.

You can check the functions that this part of code calls.

>>>>>>>>>>>>>>>>>>>> assistant:
get_code_of_file_function(’lib/puppet/provider/service/init.rb’, ’
initscript’)

>>>>>>>>>>>>>>>>>>>> user:
I have already checked this function/class is not related to the task.

>>>>>>>>>>>>>>>>>>>> user:
def initscript

@initscript ||= self.search(@resource[:name])
end

>>>>>>>>>>>>>>>>>>>> user:

Now call a function in this format ’FunctionName(Argument)’ in a single
line without any other word or signal (such as ‘‘‘).
Don’t call the same function you’ve previous called, because this may
waste your context length.

Don’t check the functions that this part of code calls.

>>>>>>>>>>>>>>>>>>>> assistant:
get_toplevel_code(lib/puppet/provider/service/debian.rb)

>>>>>>>>>>>>>>>>>>>> user:
I have already checked this function/class is related to the task.

>>>>>>>>>>>>>>>>>>>> user:
Manage debian services. Start/stop is the same as InitSvc, but enable/
disable
is special.
Puppet::Type.type(:service).provide :debian, :parent => :init do

desc <<-EOT
Debian’s form of ‘init‘-style management.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

The only differences from ‘init‘ are support for enabling and
disabling
services via ‘update-rc.d‘ and the ability to determine enabled
status via
‘invoke-rc.d‘.

EOT

commands :update_rc => "/usr/sbin/update-rc.d"
note this isn’t being used as a command until
http://projects.reductivelabs.com/issues/2538
is resolved.
commands :invoke_rc => "/usr/sbin/invoke-rc.d"

defaultfor :operatingsystem => :cumuluslinux
defaultfor :operatingsystem => :debian, :operatingsystemmajrelease =>
[’5’,’6’,’7’]

Remove the symlinks
...
end
...

>>>>>>>>>>>>>>>>>>>> user:

Now call a function in this format ’FunctionName(Argument)’ in a single
line without any other word or signal (such as ‘‘‘).
Don’t call the same function you’ve previous called, because this may
waste your context length.

You can check the functions that this part of code calls.

>>>>>>>>>>>>>>>>>>>> assistant:
exit()

>>>>>>>>>>>>>>>>>>>> user:

Based on the available information, reconfirm and provide complete names
of the most likely edit locations (10 locations at most).
Before make the final decision, please check whether the function name is
correct or not, for static functions, don’t add class name.

file: lib/puppet/provider/service/debian.rb
class: []
static functions: [’disable’, ’enabled?’, ’get_start_link_count
’, ’enable’, ’statuscmd’]
class functions: [
]

file: lib/puppet/provider/service/base.rb
class: []
static functions: [’getps’, ’getpid’, ’status’, ’statuscmd’, ’
start’, ’startcmd’, ’stop’, ’stopcmd’]
class functions: [
]

file: lib/puppet/type/service.rb
class: [’Puppet’]
static functions: []
class functions: [

Puppet: [’retrieve’, ’retrieve’, ’sync’, ’refresh’]
]

file: lib/puppet/provider/service/systemd.rb
class: []
static functions: [’instances’, ’disable’, ’get_start_link_count
’, ’enabled?’, ’debian_enabled?’, ’status’, ’enable’, ’mask’, ’
unmask’, ’restartcmd’, ’startcmd’, ’stopcmd’]

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

class functions: [
]

file: lib/puppet/provider/service/init.rb
class: []
static functions: [’defpath’, ’excludes’, ’instances’, ’
get_services’, ’hasstatus=’, ’initscript’, ’paths’, ’search’, ’
startcmd’, ’stopcmd’, ’restartcmd’, ’texecute’, ’statuscmd’, ’
is_init?’]
class functions: [
]

Please provide the complete set of locations as either a class name, a
function name, or a file name.
The returned files should be separated by new lines ordered by most to
least important and wrapped with ‘‘‘
Since your answer will be processed automatically, please give your
answer in the exapmle format as follows.
‘‘‘
top1_file_fullpath.py
function: Class1.Function1

top2_file_fullpath.py
function: Function2

top3_file_fullpath.py
class: Class3

top4_file_fullpath.py
function: Class4.Function4

top5_file_fullpath.py
function: Function5

top6_file_fullpath.py
global

top7_file_fullpath.py
function: Class7.Function7
‘‘‘
Replace the ’Top_file_fullpath.py’ with the actual file path, the ’Class’
with the actual class name and the ’Function’ with the actual function

name. ’global’ means the code is not in a class or function.
For example,
‘‘‘
sklearn/linear_model/__init__.py
function: LinearRegression.fit
‘‘‘

>>>>>>>>>>>>>>>>>>>> assistant:
‘‘‘
lib/puppet/provider/service/debian.rb
global

lib/puppet/provider/service/debian.rb
function: statuscmd

lib/puppet/provider/service/base.rb
function: statuscmd

lib/puppet/provider/service/init.rb
function: statuscmd
‘‘‘

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

F.3 CODE EDITING

>>>>>>>>>>>>>>>>>>>> user:

We are currently solving the following task within our repository. Here
is the task description.

Task Description
<request>
Add port mapping on run
CF issue : https://github.com/jolicode/docker-starter/issues/31
</request>

<discussion>

Mapping ports on "run" command
Hi there,

Is there any reason to avoid mapping ports on "run" command ?
https://github.com/jolicode/docker-starter/blob/
c319756cc1ab1de8e4a3f29bea306695752f84c2/fabfile.py#L179

I just needed to add --service-ports option to the fabfile.py to run my
container with port mapping embed.

:kissing_heart:

since we use docker-compose, it’s better to set the port mapping in it.
But if you need something special, you can use port mapping via the run
command.

Feel free to modify your fabfile. This docker-starter is not a lib, just
a starter that must be customized according to your needs.
--service-ports does actually the mapping defined in docker-compose.yaml.

</discussion>

###

Below are some code segments, each from a relevant file. One or more of
these files may need to be edited to solve the task.

--- BEGIN FILE ---
‘‘‘
fabfile.py
...
env.extra_domains = []
This is the host directory containing your PHP application
env.project_directory = ’application’

services_to_build_first = [
’php-base’,
’builder’,

]

def with_builder(func):
@wraps(func)
def decorated(*args, **kwargs):

compose_files = env.compose_files[:]

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

env.compose_files = [’docker-compose.builder.yml’] + env.
compose_files
ret = func(*args, **kwargs)
env.compose_files = compose_files

return ret
return decorated

@with_builder
def build():

"""
Build the infrastructure
"""
command = ’build’
command += ’ --build-arg PROJECT_NAME=%s’ % env.project_name
command += ’ --build-arg USER_ID=%s’ % env.user_id

for service in services_to_build_first:
commandForService = ’%s %s’ % (command, service)
docker_compose(commandForService)

docker_compose(command)

@task
def up():

"""
Build and start the infrastructure
"""
build()
docker_compose(’up --remove-orphans -d’)

...

@task
@with_builder
def destroy():

"""
Clean the infrastructure (remove container, volume, networks)
"""
docker_compose(’down --volumes --rmi=local’)

def run_in_docker_or_locally_for_dinghy(command):
"""
Mac users have a lot of problems running Yarn / Webpack on the Docker
stack so this func allow them to run these tools on their host
"""
if env.dinghy:

local(’cd %s && %s’ % (env.project_directory, command))
else:

docker_compose_run(command)

def docker_compose(command_name):

domains = ’‘’ + ’‘, ‘’.join([env.root_domain] + env.extra_domains) +
’‘’

localEnv = {
’PROJECT_NAME’: env.project_name,
’PROJECT_DIRECTORY’: env.project_directory,
’PROJECT_ROOT_DOMAIN’: env.root_domain,
’PROJECT_DOMAINS’: domains,

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

}

with shell_env(**localEnv):
local(’docker-compose -p %s %s %s’ % (

env.project_name,
’ ’.join(’-f ’ + env.root_dir + ’/infrastructure/docker/’ +
file for file in env.compose_files),
command_name

))

def docker_compose_run(command_name, service="builder", user="app",
no_deps=False, workdir=None):

args = [
’run ’,
’--rm ’,
’-u %s ’ % _shell_escape(user),

]

if no_deps:
args.append(’--no-deps ’)

if workdir is not None:
args.append(’-w %s ’ % _shell_escape(workdir))

docker_compose(’%s %s /bin/bash -c "exec %s"’ % (
’ ’.join(args),
_shell_escape(service),
_shell_escape(command_name)

))

def set_local_configuration():
env.compose_files = [’docker-compose.yml’]
env.user_id = int(local(’id -u’, capture=True))
env.root_dir = os.path.dirname(os.path.abspath(__file__))

if env.user_id > 256000:
env.user_id = 1000

...

‘‘‘
--- END FILE ---

Please first localize the positions to edit based on the task statement,
and then output the files that need to be deleted, modified or added.
’- file’ means deleting the file;
’* file’ means modificating the file;
’+ file’ means adding the file.
The file should list like below:
‘‘‘
- file1.py
* file2.py
* file3.py
+ file4.py
‘‘‘

To solve the task, you should then generate *SEARCH/REPLACE* edits.

Every *SEARCH/REPLACE* edit must use this format:
1. The file path
2. The start of search block: <<<<<<< SEARCH

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

3. A contiguous chunk of lines to search for in the existing source code
4. The dividing line: =======
5. The lines to replace into the source code
6. The end of the replace block: >>>>>>> REPLACE

Here is an example:

‘‘‘python
mathweb/flask/app.py
<<<<<<< SEARCH
from flask import Flask
=======
import math
from flask import Flask
>>>>>>> REPLACE
‘‘‘

Please note that the *SEARCH/REPLACE* edit REQUIRES PROPER INDENTATION.
If you would like to add the line ’ print(x)’, you must fully
write that out, with all those spaces before the code!
Wrap the *SEARCH/REPLACE* edit in blocks ‘‘‘python...‘‘‘.
When multiple edits should be done, please output *SEARCH/REPLACE* edit
one by one and give your reasoning process before each *SEARCH/REPLACE*
block.

>>>>>>>>>>>>>>>>>>>> assistant:
The plan of solving this software task:
To address the task of adding port mapping on the "run" command, we need
to modify the ‘docker_compose_run‘ function in the ‘fabfile.py‘. The
discussion suggests using the ‘--service-ports‘ option to enable port
mapping as defined in the ‘docker-compose.yml‘ file. We will add a
parameter to the ‘docker_compose_run‘ function to allow this option to be
toggled.

The files that should be edited include:
* fabfile.py

Here are my edits for code.

The motivation of this edit:
We need to modify the ‘docker_compose_run‘ function to include an
optional parameter for port mapping. By adding a ‘port_mapping‘ parameter
, we can control whether the ‘--service-ports‘ option is included in the
Docker run command. This change allows users to enable port mapping when
running a service, which is useful for exposing ports as defined in the ‘
docker-compose.yml‘ file.

‘‘‘python
fabfile.py
<<<<<<< SEARCH

))

def docker_compose_run(command_name, service="builder", user="app",
no_deps=False, workdir=None):

args = [
’run ’,
’--rm ’,

=======
))

def docker_compose_run(command_name, service="builder", user="app",
no_deps=False, workdir=None, port_mapping=False):

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

args = [
’run ’,
’--rm ’,

>>>>>>> REPLACE
<<<<<<< SEARCH

if no_deps:
args.append(’--no-deps ’)

if workdir is not None:
args.append(’-w %s ’ % _shell_escape(workdir))

=======
if no_deps:

args.append(’--no-deps ’)

if port_mapping:
args.append(’--service-ports ’)

if workdir is not None:
args.append(’-w %s ’ % _shell_escape(workdir))

>>>>>>> REPLACE
‘‘‘

F.4 CODE COMPLETION

>>>>>>>>>>>>>>>>>>>> user:

We are currently solving the following task within our repository. Here
is the task description.

Task Description
Please help me to complete the code at the position of ’[TODO]’, in the
b2/sync/scan_policies.py

def __init__(
self,
exclude_dir_regexes=tuple(),
exclude_file_regexes=tuple(),
include_file_regexes=tuple(),

):

###

Below are some code segments, each from a relevant file. One or more of
these files may need to be edited to solve the task.

--- BEGIN FILE ---
‘‘‘
b2/sync/scan_policies.py
##
#
File: b2/sync/scan_policies.py
#
Copyright 2018 Backblaze Inc. All Rights Reserved.
#
License https://www.backblaze.com/using_b2_code.html
#
##

import logging
import re

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

logger = logging.getLogger(__name__)

class RegexSet(object):
"""
Holds a (possibly empty) set of regular expressions, and knows how to
check
whether a string matches any of them.
"""

def __init__(self, regex_iterable):
self._compiled_list = [re.compile(r) for r in regex_iterable]

def matches(self, s):
return any(c.match(s) is not None for c in self._compiled_list)

class ScanPoliciesManager(object):
"""
Policy object used when scanning folders for syncing, used to decide
which files to include in the list of files to be synced.
"""

def __init__(
self,
exclude_dir_regexes=tuple(),
exclude_file_regexes=tuple(),
include_file_regexes=tuple(),

):
[TODO]

def should_exclude_file(self, file_path):
"""
Given the full path of a file, should it be excluded from the
scan?

:param file_path: The path of the file, relative to the root
directory

being scanned.
:return: True iff excluded.
"""
return self._exclude_file_set.matches(file_path) and \

not self._include_file_set.matches(file_path)

def should_exclude_directory(self, dir_path):
"""
Given the full path of a directory, should all of the files in it
be

excluded from the scan?

:param dir_path: The path of the directory, relative to the root
directory

being scanned. The path will never end in ’/’.
:return: True iff excluded.
"""
return self._exclude_dir_set.matches(dir_path)

DEFAULT_SCAN_MANAGER = ScanPoliciesManager()

‘‘‘
--- END FILE ---

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Please first localize the positions to edit based on the task statement,
and then output the files that need to be deleted, modified or added.
’- file’ means deleting the file;
’* file’ means modificating the file;
’+ file’ means adding the file.
The file should list like below:
‘‘‘
- file1.py
* file2.py
* file3.py
+ file4.py
‘‘‘

To solve the task, you should then generate *SEARCH/REPLACE* edits.

Every *SEARCH/REPLACE* edit must use this format:
1. The file path
2. The start of search block: <<<<<<< SEARCH
3. A contiguous chunk of lines to search for in the existing source code
4. The dividing line: =======
5. The lines to replace into the source code
6. The end of the replace block: >>>>>>> REPLACE

Here is an example:

‘‘‘python
mathweb/flask/app.py
<<<<<<< SEARCH
from flask import Flask
=======
import math
from flask import Flask
>>>>>>> REPLACE
‘‘‘

Please note that the *SEARCH/REPLACE* edit REQUIRES PROPER INDENTATION.
If you would like to add the line ’ print(x)’, you must fully
write that out, with all those spaces before the code!
Wrap the *SEARCH/REPLACE* edit in blocks ‘‘‘python...‘‘‘.
When multiple edits should be done, please output *SEARCH/REPLACE* edit
one by one and give your reasoning process before each *SEARCH/REPLACE*
block.

>>>>>>>>>>>>>>>>>>>> assistant:
The plan of solving this software task:
The task requires completing the ‘__init__‘ method of the ‘
ScanPoliciesManager‘ class in the ‘b2/sync/scan_policies.py‘ file. The
method should initialize the class attributes using the provided regular
expression tuples. The class uses ‘RegexSet‘ objects to manage and check
regular expressions. Therefore, the ‘__init__‘ method should create ‘
RegexSet‘ instances for each of the regular expression tuples: ‘
exclude_dir_regexes‘, ‘exclude_file_regexes‘, and ‘include_file_regexes‘.

The files that should be edited include:
* b2/sync/scan_policies.py

Here are my edits for code.

The motivation of this edit:
The ‘ScanPoliciesManager‘ class is designed to manage policies for
scanning directories and files, determining which should be included or
excluded based on regular expressions. The ‘__init__‘ method needs to
initialize the class attributes ‘_exclude_dir_set‘, ‘_exclude_file_set‘,

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

and ‘_include_file_set‘ using the ‘RegexSet‘ class. This setup allows the
‘should_exclude_file‘ and ‘should_exclude_directory‘ methods to function
correctly by checking file and directory paths against the compiled

regular expressions.

‘‘‘python
b2/sync/scan_policies.py
<<<<<<< SEARCH

exclude_file_regexes=tuple(),
include_file_regexes=tuple(),

):
[TODO]

def should_exclude_file(self, file_path):
"""

=======
exclude_file_regexes=tuple(),
include_file_regexes=tuple(),

):
self._exclude_dir_set = RegexSet(exclude_dir_regexes)
self._exclude_file_set = RegexSet(exclude_file_regexes)
self._include_file_set = RegexSet(include_file_regexes)

def should_exclude_file(self, file_path):
"""

>>>>>>> REPLACE
‘‘‘

45

	Introduction
	Problem Definition
	SWE-Ext: Extend the Repository-Level Coding Data
	Data Collection
	Dataset Characteristics

	Experiments
	Results
	Software Engineering Benchmarks
	Localization Analysis
	Scaling Analysis

	Related Work
	Repository-level Coding Task
	Software Engineering Agents
	Training Data for Repository-level Coding

	Conclusion
	Use of LLMs
	Training Settings
	Evaluation Settings
	Prompts of CosAgentless and Details of Augmented Data
	File localization
	Component localization
	Code Editing
	Code Completion

	Details of Filtering
	Filtering pull requests
	Filtering Training Data

	Data Examples
	File localization
	Component localization
	Code Editing
	Code Completion

