
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

JUDGEFLOW: AGENTIC WORKFLOW OPTIMIZATION
VIA BLOCK JUDGE

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimizing LLM-based agentic workflows is challenging for scaling AI capa-
bilities, some current methods rely on coarse, end-to-end evaluation signals and
lack fine-grained signals on where to refine, often resulting in inefficient or low-
impact modifications. To address these limitations, we propose JUDGEFLOW,
an Evaluation-Judge-Optimization-Update pipeline. We incorporate reusable and
configurable logic blocks into agentic workflows, capturing fundamental forms
of logic. On top of this abstraction, we design a dedicated Judge module that
inspects execution traces, particularly failed runs, and assigns rank-based respon-
sibility scores to problematic blocks. These fine-grained diagnostic signals are
then leveraged by an LLM-based optimizer, which focuses modifications on the
most problematic block in the workflow. Our approach improves sample efficiency,
enhances interpretability through block-level diagnostics, and provides a scalable
foundation for automating increasingly complex agentic workflows. We evalu-
ate JUDGEFLOW on mathematical reasoning and code generation benchmarks,
and the results demonstrate that JUDGEFLOW achieves superior performance and
optimization efficiency compared to existing methods.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020) have achieved remarkable success across a
wide range of domains. Moving beyond the scope of foundation models (Bommasani et al., 2022),
by integrating LLMs into intelligent agent architectures, the emerging foundation agents (Liu et al.,
2025a) have attracted more attention. Starting from early work on prompt engineering, such as
reasoning-enhanced methods (Wei et al., 2023; Wang et al., 2023b; Yao et al., 2023a), to more recent
developments in multi-agent system approaches (Du et al., 2023; Li et al., 2023; Hong et al., 2024),
these handcrafted strategies have achieved strong performance across a range of tasks, including
mathematical reasoning (Cobbe et al., 2021), code generation (Austin et al., 2021), and question
answering (Yang et al., 2018).

However, these agentic systems still depend heavily on manual design, making workflow construction
complex, costly, and inflexible. AutoML (Hutter et al., 2019) has shown that automating traditionally
handcrafted and labor-intensive processes in machine learning can substantially reduce human
effort and accelerate the development of high-performance models. Inspired by this success, recent
efforts aim to automate the design and optimization of LLM-based agentic workflows (Lee et al.,
2025). While these agentic systems still rely on LLMs as core execution engines, optimizing
the LLMs themselves through pretraining or fine-tuning (Rafailov et al., 2023) often demands
substantial computational resources and massive-scale data, making such approaches expensive in
many settings (Kaplan et al., 2020). Instead, keeping the underlying model parameters fixed, and
focusing on optimizing the systems structure and behavior leads to a more tractable and efficient
optimization.

Automation efforts in agentic systems initially focused on prompt optimization, exemplified by
Textual Gradients which leverage LLM feedback for end-to-end optimization (Pryzant et al., 2023;
Yuksekgonul et al., 2024; Wang et al., 2024b; Yin & Wang, 2025). Current efforts are expanding to
optimize architecture and execution flow of entire agentic systems. Agentic workflow can be modeled
as neural network (Liu et al., 2024; Ma et al., 2025), graph (Zhuge et al., 2024a; Zhang et al., 2025a),
and code (Hu et al., 2025; Zhang et al., 2025b; Zheng et al., 2025), each offering different levels of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

representational capacity, interpretability, and optimization difficulty. For instance, Directed Acyclic
Graphs (DAGs)-represented workflows facilitate tractable optimization but constrain the ability to
represent complex structures such as loops or conditional branching. In contrast, code-represented
workflows provide comprehensive expressivity in defining intricate logic and control flow, but error
attribution within code execution is difficult, and optimization often has to rely solely on end-to-end
evaluation signals rather than fine-grained intermediate feedback. Building on code-represented
workflows, Zhang et al. (2025b) introduce operators as modular units that encapsulate common
agentic actions and propose a Monte Carlo Tree Search (MCTS) framework that employs LLMs to
iteratively optimize workflow structures using past experience. However, the expansion phase in
MCTS and the subsequent evaluation of candidate workflows can be expensive, and the effectiveness
of the optimization process is constrained by the granularity of guidance available for modifications.
In the absence of sufficiently fine-grained diagnostic information to precisely identify which specific
part within the complex workflow requires modification, the search may explore ineffective or
low-impact alterations. Furthermore, complex code structural interactions—such as conditional
constructs where only one branch of an if-else statement is executed along a trajectory—leave
certain components without informative signals, thereby hindering fine-grained analysis.

To address these challenges, we introduce JUDGEFLOW, an Evaluation-Judge-Optimization-Update
pipeline. First, we incorporate reusable and configurable logic blocks into agentic workflows. These
blocks capture three fundamental forms of logic: sequential, loop, and conditional, which are able to
broadly represent code-based workflows. Compared with operators, which abstract specific agentic
operations or functionalities (Zhang et al., 2025b), logic blocks serve as higher-level structural
abstractions. By introducing logic blocks that abstract such common control structures, we retain the
structural diversity of code-represented workflows while providing an intermediate level of abstraction
between operators and workflows. This additional layer facilitates interpretability and exposes more
meaningful diagnostic information for subsequent optimization.

Second, we incorporate a dedicated Judge module
that analyzes the execution trace, with particular
emphasis on failed runs. We hypothesize that op-
timizers should receive both evaluation and opti-
mization signals. For each unsuccessful execution,
the Judge attempts to identify the most problematic
block within the workflow as illustrated in Fig. 1.
To further improve the precision of diagnosis, we
adopt a rank-based approach at the block level.
The resulting targeted diagnostic signals are prop-
agated to the subsequent optimization stage, en-
abling more focused and efficient refinement of
weak blocks. In this way, optimization efforts
can be concentrated on repairing underperform-
ing components, resulting in more effective and
reliable improvements in overall workflow perfor-
mance. Besides relying solely on end-to-end eval-
uation signals, our approach leverages block-level
diagnostic information, enabling the optimizer to
focus on the most problematic components.

Question Workflow Answer

LLM
Optimizer

Which part should I focus on...?

Previous Works

Question Workflow Answer

I know where the problem is!

JudgeFlow

Judge

LLM
Optimizer

Figure 1: Block-level judging guides agentic
workflow optimization by identifying the most
problematic block in failed executions.

In summary, our contributions are as follows:

• We propose a novel Evaluation-Judge-Optimization-Update pipeline named JUDGEFLOW;

• We introduce reusable and configurable logic blocks as higher-level structural units, which
balance the expressivity of code-based workflows with tractable optimization, while sup-
porting interpretability and intermediate execution tracing;

• We design a Judge module that analyzes execution traces, especially failed runs, and
assigns rank-based responsibility scores to problematic blocks, enabling fine-grained error
localization and targeted refinement for subsequent optimization.

• We evaluate JUDGEFLOW on mathematical reasoning and code generation benchmarks,
showing that it outperforms existing methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

LLM-based (Multi-)Agent Systems In recent years, LLM-based (multi-)agent systems have
achieved notable successes (Wang et al., 2024a; Huang et al., 2024; Tran et al., 2025) across
planning (Huang et al., 2024), reasoning (Putta et al., 2024), and human–AI coordination (Zou
et al., 2025). At the single-agent level, foundational works have enabled agents to reason and
act by interleaving thought and action (Yao et al., 2023b), to enhance complex problem-solving
through structured exploration of thoughts (Yao et al., 2023a), and to interact effectively with external
tools and APIs (Wu et al., 2024). At the multi-agent level, frameworks such as CAMEL (Li et al.,
2023), AutoGen (Wu et al., 2023), and MetaGPT (Hong et al., 2024) have facilitated sophisticated
collaboration on complex tasks like software development, demonstrating strong performance across
diverse domains. Despite these advances, existing systems remain constrained by a reliance on
handcrafted prompts and rigid communication topologies, which limit adaptability as task complexity
scales. This has spurred a shift toward automated agentic systems capable of optimizing their own
architectures and behaviors.

Agentic Systems Automation Early automation efforts in agentic systems primarily focused on
prompt optimization (Pryzant et al., 2023; Ramnath et al., 2025; Li et al., 2025), with approaches
such as LLMs-as-optimizers (Yang et al., 2024), self-referential evolution (Fernando et al., 2023),
textual gradients (Yuksekgonul et al., 2024), and self-supervised optimization (Xiang et al., 2025).
More recent research has expanded beyond prompt-level tuning toward optimizing the architectures
and execution flows of entire agentic systems. For example, Liu et al. (2024) explores dynamic
communication structures for adaptive collaboration, while Zhuge et al. (2024a) models agents
as computational graphs to refine both prompts and inter-agent orchestration. Shang et al. (2024)
proposes a novel modular design automatically searching for high-performance agent structures.
Zhou et al. (2024) investigates agents capable of self-optimization using symbolic optimizers. Hu et al.
(2025) introduces a meta agent that automatically discovers novel, high-performing, and generalizable
agentic system designs. Yin et al. (2025) introduces a self-referential framework that enables agents
to recursively improve themselves. Zhang et al. (2025b) employs LLMs as optimizers with a Monte
Carlo Tree Search (MCTS) variant to discover effective workflows. Zhang et al. (2025a) automatically
evolve agentic supernet systems leading to query-specific workflows. Su et al. (2025) leverages
debate and reflexion to collaboratively refine workflows while reducing search redundancy. Zheng
et al. (2025) introduces safety-constrained evolutionary programming in a declarative graph space,
ensuring structural validity and robustness. While these efforts mark significant progress, most
existing approaches still focus on end-to-end or global architectural optimization, often leading to
inefficient search and a lack of fine-grained diagnostic feedback, which limits both scalability and
interpretability as task complexity grows.

LLM as a Judge The LLM-as-a-judge paradigm leverages large language models to automate the
evaluation of generated content, addressing the scalability limitations of human assessment (Gu et al.,
2025). This approach has been widely adopted for assessing complex outputs based on predefined
criteria like correctness, relevance, or rule compliance (Li et al., 2024). However, the effectiveness of
the LLM-as-a-Judge framework may be limited by inherent biases in LLMs (Wang et al., 2023a). To
mitigate these issues, various methods have been proposed. Liu et al. (2025b) propose a ranking-based
alignment method that significantly improves the judging performance of LLMs. In addition, (Zhuge
et al., 2024b) proposed the framework to use agentic systems to evaluate agentic systems. In a related
application, (Zhang et al., 2025c) attempts to automate the failure attribution for LLM multi-agent
systems. Their findings reveal that providing stronger ground-truth signals can substantially improve
attribution quality, and aggregated analysis across multiple failures can uncover reliable error patterns.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Our framework models an agentic workflow by hierarchically composing basic agentic actions
(Operators) into structured logical units (Blocks) as follows.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

A configured operator O(D) is the basic unit of agentic action, where O represents a categorical
label for its core function like generate or self_refine (details in Appendix A), and D is the
operator configuration, which includes the LLM backbone, prompt template, and other hyperparame-
ters (Zhang et al., 2025b). Building upon operators, a logic block (B,C) is a higher-level structural
unit that orchestrates one or more configured operators, where B ∈ B is the logic block type, dictating
how the operators are orchestrated. The set of available types B includes three fundamental forms of
logic as shown in Fig. 2 (details in Appendix B):

• SequenceLogic (seq): A sequential execution block where operators are executed one after
another. Each operator consumes the output of its predecessor, ensuring a linear flow of
intermediate results until the final operator produces the block output.

• LoopLogic (for): An iterative block that repeatedly invokes its internal operators. The
iteration continues until the stopping condition is satisfied.

• ConditionalLogic (cond): A branching block that first executes a designated condition
operator. Based on the evaluation outcome, it then activates one of two operator sequences.
Only the operators in the selected branch are executed to generate the block output.

Sequence Logic Block

seq_block = SequenceLogic(
 name=“b1”,
 operators=[
 "generate",
 "self_refine",
 "test"]
)

loop_block = LoopLogic(
 name="b2",
 operators=[
 "generate",
 "test"],
 max_iterations=3
)

cond_block = ConditionalLogic(
 name="b3",
 condition_operator="test",
 success_operators=["self_refine"],
 failure_operators=["generate"],
 condition_field="result"
)

Loop Logic Block
Conditional Logic Block

Generate Operator Self-refine Operator Test Operator

x3

Figure 2: The illustration of logic blocks.

Correspondingly, C is the logic block configuration, which contains the set of configured operators
O(D) in the block and block-level parameters (e.g., stopping condition in LoopLogic). Finally,
the agentic workflow W is defined as a tuple W =

(
{(Bi, Ci)}Mi=1 , S

)
, where M is the total

number of logic blocks in the workflow, and S denotes the ordered sequence of logic blocks at the
top level while each individual block may internally contain conditional or iterative control. This
definition not only preserves the common logic patterns in code-represented workflows ensuring
expressive diversity (Hu et al., 2025; Zhang et al., 2025b), but also enhances interpretability, including
the explicit semantic characteristics of each logic block and the overall execution trajectory of the
workflow, which facilitates subsequent optimization.

Given an input query q from the dataset D which is available to every block, the execution function
ϕexe processes workflow W by sequentially applying its logic blocks along the execution order S.
Each block (Bi, Ci) receives the state from the previous block, a′i−1, and produces a new state, a′i,
formally defined as:

a′i = ϕ(i)
exe(a

′
i−1, q;Bi, Ci), i = 1, 2, . . . ,M, (1)

where ϕ(i)
exe is the execution function for block i and a′0 = ∅. The final workflow output is obtained as

a′M , and then scored by the evaluation function ϕeval against the ground-truth answer a corresponding
to q. The objective of agentic workflow optimization is to find the optimal workflow W ∗ that
maximizes expected evaluation performance across the dataset:

W ∗ = argmax
W∈W

E(q,a)∼D [ϕeval (a
′
M , a)] , (2)

whereW denotes the search space of candidate workflows.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Dataset

Question 1 Answer 1

Question 2 Answer 2

Question N Answer N
......

b

a

c

Init Workflow

Answer N

Answer 1

Answer 2
......

Results
LLM

b

a

c

b

a

c
......

Judge Model

Which logic block could
mostly cost the error?

b

a

c

......

ba c

Judge Conclusion
LLM

Optimizer

b

a

c

b’
a

c

b’ b

a

c

Add Modify Delete

b

a

c

b’

Updated Workflow

Tree Search Update
Pass

Logic
Blocks

Answers

LLM

Question

Figure 3: The main pipeline of JUDGEFLOW

3.2 JUDGEFLOW

Building on the representation of workflow using logic blocks, JUDGEFLOW incorporates a dedicated
Judge module and implements an iterative Evaluation-Judge-Optimization-Update pipeline for the
efficient optimization of agentic workflows and continues until a predefined maximum number of
optimization rounds are met.

3.2.1 EVALUATION-JUDGE

The combined Evaluation-Judge stage, detailed in Algorithm 1, processes each input query from the
dataset. If the workflow W fails on a given query, the stage identifies and logs specific problematic
block within W . This provides targeted diagnostic signals for subsequent workflow optimization,
enabling a more efficient and focused approach on refining these identified weak logic to improve
overall optimization efficiency.

Specifically, for each input query q (with a corresponding ground-truth answer a), we have {a′i}Mi=1 =
ϕexe(q,W), and score s = ϕeval(a

′
M , a). The score s is recorded in a list Pscores for later calculation

of W ’s overall performance. Providing a threshold ε that indicates successful execution, if s ≥ ε, the
instance is marked as successful, and the algorithm simply proceeds to the next input.

However, if s < ε, a quadruple Q = (W, q, a, {a′i}Mi=1) is defined to encapsulate the full context of the
failure. The Judge proceeds to examine the quadruple, assessing each block’s {Bi}Mi=1 responsibility
for the failure and ranking them accordingly. This procedure, guided by specific judging prompts
(detailed in Appendix C), yields a rank-based score vector (Liu et al., 2025b) (ri)Mi=1 for the blocks
where ri = 1 refers to the block deemed most responsible for the failure and ri = M denotes the
least responsible, each rank from 1 to M is assigned exactly once. These block scores (ri)Mi=1 are
appended toRranks. The RoundWorst((ri)

M
i=1,W) function then utilizes this score vector to identify

Brw, the block deemed most problematic for the current instance (i.e. Brw = {Bi | ri = 1 }) .
Subsequently, the instance details (q, a, {a′i}Mi=1) are logged into LBrw , the dedicated log for Brw,
providing targeted few-shot examples for its potential future optimization.

Upon completion of all instances in D, the accumulated diagnostic information is processed. The
OverallWorst(Rranks,W) function analyzes all block rank-based score vectors inRranks to identify
Bsel, the block deemed the most consistently problematic over the whole dataset. In practice, we aggre-
gate rank vectors across all failing instances inRranks by summing the scores rk assigned to each block
Bk, and then selects the block achieving the minimum sum (i.e. Bsel = argminBk∈W

∑T
t=1 r

(t)
k ,

where T is the number of the failure executions). Concurrently, the overall performance PW of
W on D is computed by CalPerformance(Pscores). Finally, this stage returns PW , Bsel, and LBsel ,
providing actionable insights for subsequent optimization.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Evaluation-Judge

1: Input: Workflow W , Dataset D, executor ϕexe, evaluator ϕeval, Judge, threshold ε

2: Output: Performance PW , Selected Block Bsel and the corresponding Log LBsel

3: For k ← 1 to M : Initialize LBk
← ∅

4: Rranks ← ∅, Pscores ← ∅
5: for each (q, a) ∈ D do
6: {a′i}Mi=1 ← ϕexe(q,W)

7: s← ϕeval(a
′
M , a)

8: Pscores ← APPEND(Pscores, s)

9: if s ≥ ε then
10: continue ▷ If success, no judging needed, skipping to next sample

11: else
12: (ri)

M
i=1 ← Judge(W, q, a, {a′i}Mi=1) ▷ Call Judge to rank blocks by responsibility

13: Rranks ← APPEND(Rranks, (ri)
M
i=1) ▷ Append block-wise judge ranking

14: Brw ← RoundWorst((ri)
M
i=1,W) ▷ Get the most problematic block in this round

15: LBrw ← APPEND(LBrw , (q, a, {a′i}Mi=1)) ▷ Append failure execution context to that block’s log

16: end if
17: end for
18: Bsel ← OverallWorst(Rranks,W) ▷ Aggregate across failures to pick the globally weakest block

19: PW ← CalPerformance(Pscores) ▷ Compute overall performance on the dataset

20: return PW , Bsel,LBsel

3.2.2 OPTIMIZATION-UPDATE

In the subsequent Optimization-Update stage, the LLM-based optimizer utilizes the insights from the
previous stage and refines W to produce an improved version W ′ guided by specific optimization
prompts (detailed in Appendix D), which can be formally expressed as

W ′ ← Optimizer(W,Bsel, A, sample(LBsel)) (3)

where sample(LBsel) refers to few-shot samples drawn from the logs LBsel and A ∈ A, where A is a
predefined set of available modification actions as follows:

• Add Block : Introduce a new block Bnew with configuration Cnew, and connect it directly
with the low-performing block Bsel;

• Remove Block: Remove the low-performing block Bsel together with all of its incident
edges while reconnecting its predecessor and successor to preserve sequential flow;

• Modify Block: Reconfigure the existing Bsel by updating its configuration Csel 7→ C ′
sel.

In practice, the LLM-based optimizer selects A adaptively based on the diagnostic signals in LBsel .
Following Zhang et al. (2025b), the refined workflow W ′ is first evaluated to obtain its performance
score PW ′ . The pair (W ′, PW ′) is then added to the candidate poolWpool, which retains at most K
workflows by keeping the top-K highest-scoring entries:

Wpool ← Top-K
(
Wpool ∪ {(W ′, PW ′)}

)
. (4)

At the beginning of the next iteration, the optimizer selects a starting workflow Wstart fromWpool
using a softmax distribution over scores with temperature τ :

Wstart ∼ Wpool, Pr(Wi) =
exp

(
si−maxj sj

τ

)
∑|Wpool|

k=1 exp
(

sk−maxj sj
τ

) , (5)

where si is the evaluation score of workflow Wi.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Benchmarks and Datasets. We evaluate our method on widely used public benchmarks, covering
math reasoning tasks (GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021)) and code
generation tasks (MBPP (Austin et al., 2021), HumanEval (Chen et al., 2021)).

Following previous studies (Zhang et al., 2025b;a), each dataset is divided into training and test sets
with a ratio of 1:4. We report the solve rate (%) on GSM8K and MATH, pass@1 on MBPP and
HumanEval as evaluation metrics.

Baselines. We compare our JUDGEFLOW with a series of baselines, including (1) Single-agent
System: Standard prompting (IO), Chain-of-Thought prompting (CoT) (Wei et al., 2023), and Self-
Consistency (Wang et al., 2023b); (2) Hand-crafted Multi-agent System: MultiPersona (Wang et al.,
2024c), SELF-REFINE (Madaan et al., 2023), LLM-Debate (Du et al., 2023), LLM-Blender (Jiang
et al., 2023), and DyLAN (Liu et al., 2024); (3) Autonomous Multi-agent System: GPTSwarm (Zhuge
et al., 2024a), ADAS (Hu et al., 2025), AFlow (Zhang et al., 2025b), MaAS (Zhang et al., 2025a),
and MermaidFlow (Zheng et al., 2025).

Implementation Details. We use the closed-source LLM gpt-4o-mini-0718 (OpenAI, 2024b) as
both the optimization LLM and execution LLM following the previous works Zhang et al. (2025a)
and Zheng et al. (2025). For a fair comparison, we use the same model as Judge LLM. All the models
are accessed via API with temperature = 0. The number of iteration rounds is set to 20 consistent with
Zhang et al. (2025b) and Zheng et al. (2025). When optimizing, we set M ≤ 3, ε = 1, and K = 3.

4.2 EXPERIMENTAL RESULTS

Table 1: Performance comparison with baselines on GSM8K, MATH, MBPP, and HumanEval. The results
are averaged over three independent runs.

Method GSM8K MATH MBPP HumanEval Avg.
Single-agent System

IO 87.8 48.6 73.9 87.0 74.3
CoT (Wei et al., 2023) 87.0 48.8 74.2 88.6 74.7
CoT SC (Wang et al., 2023b) 86.9 50.4 73.3 91.6 75.6

Hand-crafted Multi-agent System

SELF-REFINE (Madaan et al., 2023) 85.5 46.1 71.8 87.8 72.8
LLM-Debate (Du et al., 2023) 89.5 48.6 70.3 88.8 74.3
LLM-Blender (Jiang et al., 2023) 88.4 46.9 77.1 88.7 75.3
DyLAN (Liu et al., 2024) 90.0 48.5 77.3 90.4 76.6

Autonomous Multi-agent System

GPTSwarm (Zhuge et al., 2024a) 89.1 47.9 77.4 89.3 75.9
ADAS (Hu et al., 2025) 88.4 43.2 77.1 84.2 73.2
AFlow (Zhang et al., 2025b) 90.1 52.8 81.7 90.1 78.7
MaAS (Zhang et al., 2025a) 91.5 52.2 82.2 91.6 79.4
MermaidFlow (Zheng et al., 2025) 92.4 55.4 82.3 92.9 80.8

JUDGEFLOW (Ours) 93.0 58.5 83.8 93.4 82.2

Main Results. As shown in Table 1, JUDGEFLOW achieves superior performance compared to
several strong baselines, including both hand-crafted and autonomous multi-agent systems consis-
tently across all the tasks1. Notably, for some challenging benchmarks such as MATH and MBPP,
JUDGEFLOW outperforms the strongest prior baseline MermaidFlow by +3.1(5.6%) and +1.5(1.8%),

1Some baseline results are referred to Zhang et al. (2025b) and Zheng et al. (2025).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

END

IF

b3:cond
b1:
seq

b2:
for

Stop?

Generator

Test

Self-Refine

(a)

1 5 10 15 20
0.7

0.75

0.8

0.85

0.9

Iteration Number

pa
ss

@
1

sc
or

e

JUDGEFLOW (Train) JUDGEFLOW (Test)
AFlow (Train) AFlow (Test)

(b)

Figure 4: Fig. 4a The optimal workflow found by JUDGEFLOW on MBPP dataset; Fig. 4b The training and
testing curve between JUDGEFLOW and AFlow on MBPP dataset.

respectively. At the same time, for relatively simpler benchmarks such as GSM8K and HumanEval,
JUDGEFLOW still achieves consistent gains of +0.6 and +0.5. Taken together, JUDGEFLOW achieves
the average score of 82.2, representing a +1.4(1.7%) increase. The results highlight the effectiveness
of our Judge-guided block-level optimization across both reasoning and code generation tasks.

4.3 ANALYSIS

We take the MBPP dataset as an illustrative example to analyze JUDGEFLOW.

Best-Performing Workflow. Fig. 4a is the best-performing workflow found by JUDGEFLOW on
MBPP dataset. The workflow is composed of three logic blocks. First, a seq block b1 applies
a generate operator to produce an initial candidate function. Second, a for block b2 repeatedly
invokes the test operator until the stopping condition is satisfied. Finally, a cond block b3 runs
the test operator to check correctness: if the candidate doesn’t pass, it routes the solution to a
self_refine operator for further improvement.

Learning Curves. Fig. 4b compares the training curve and testing curve of the highest performance
found between JUDGEFLOW and AFlow. JUDGEFLOW exhibits clear performance gains within the
first five optimization iterations, with both the training and testing curves showing rapid improvements.
Beyond this early stage, JUDGEFLOW continues to achieve gains, ultimately converging to higher
accuracy. In contrast, AFlow remains stagnant across most iterations and only shows noticeable
improvements in the later stage, and its final training and testing performance remain consistently
lower than those of JUDGEFLOW.
Impact of LLMs. According to Table 2, we keep
gpt-4o-mini-0718 fixed as the executor LLM, while
varying the optimization and Judge models. Par-
ticularly, we consider gpt-4o (OpenAI, 2024a) and
Gemini-2.5-flash (Google-Cloud, 2025) as alterna-
tives for these roles and report the resulting performance.
The experiment confirms that increasing the capacity of
optimization and Judge models consistently improves
performance. While all models yield competitive re-
sults, GPT-4o attains the best score 84.5.

Table 2: Testing performance using different
LLMs on MBPP dataset.

Models Score

GPT-4o-mini 83.8
GPT-4o 84.5
Gemini-2.5-flash 84.4

Optimization Efficiency. We perform an ablation
study on different key components of JUDGEFLOW.
As shown in Table 3, removing the logic block ab-
straction or the judge module leads to consistent perfor-
mance drops, confirming the importance of both design
choices.

Table 3: Ablation results on MBPP.

Method Score

JUDGEFLOW 83.8
- Logic Block 81.8

- Judge 80.6

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 CASE STUDY

To illustrate how JUDGEFLOW works in practice, we present a case study of workflow optimization
on the GSM8K dataset. This example demonstrates how JUDGEFLOW automatically identifies and
rectifies a suboptimal workflow through the pipeline, as shown in Fig. 5. The initial workflow consists
of two logic blocks: b1, a seq block consisting of one multi_generate_ensemble operator designed
to generate and ensemble multiple candidate solutions (with num_solutions set to 3), and b2, a seq
block consisting of one programmer operator, which takes the output from the previous block and
generates the final answer using programming. When processing a batch of GSM8K instances, this
workflow failed multiple times, triggering the Evaluation-Judge stage. The Judge module analyzed
execution traces of these failures and assigned rank-based responsibility scores to each block. For
example, in one failed run, it output {"b2": 1, "b1": 2}, attributing the primary blame to b2, while
in another it output {"b1": 1, "b2": 2}, assigning higher responsibility to b1. By aggregating these
rank-based scores across failures, the system identified b1 as the OverallWorst block, indicating that
low-quality initial solutions from b1 were the main bottleneck, making it difficult for the workflow to
generate correct final answers.

In the Optimization-Update stage, the LLM-based Optimizer received this diagnostic signal and
selected the Add Block action. It introduced a new logic block, b3, of type seq, with operator
self_refine, which iteratively improves candidate solutions. This block was inserted between b1
and b2, producing the new workflow ["b1", "b3", "b2"]. The updated workflow first generates
multiple ideas with b1, then refines them with b3, and finally produces the polished answer through
b2. This case study highlights the strength of JUDGEFLOW: instead of relying solely on end-to-end
success signals, it leverages block-level diagnostics from the Judge to perform precise error attribution,
enabling workflow modifications that directly address weaknesses. As a result, JUDGEFLOW avoids
blind search, achieves more efficient optimization, and substantially improves performance.

"operators": {
 "multi_generate_ensemble": {
 "type": "multi_generate_ensemble"
 },
 "programmer": {
 "type": "programmer"
 },
 "multi_generate_ensemble_v2": {
 "type": "multi_generate_ensemble",
 "num_solutions": 3
 },
 "self_refine": {
 "type": "self_refine"
 }}

+
+
+

+
+
+

+
-

LLM
Data

"blocks": [
 { "name": "b1",
 "type": "seq",
 "operators": ["multi_generate_ensemble_v2"]
 },
 { "name": "b2",
 "type": "seq",
 "operators": ["programmer"]
 },
 { "name": "b3",
 "type": "seq",
 "operators": ["self_refine"]
 }],
"workflow": ["b1", "b2"]}
"workflow": ["b1", "b3", "b2"]

..#
{“b1”: 2, “b2”: 1}

{“b1”: 1, “b2”: 2}
..# ..#

ba

Figure 5: The illustration of the case study in the GSM8K dataset.

5 CONCLUSION

In this paper, we presented a novel Evaluation-Judge-Optimization-Update pipeline named JUDGE-
FLOW for automating the optimization of agentic workflows. By introducing reusable logic blocks as
higher-level structural abstractions, JUDGEFLOW achieves a balance between the expressive flexibility
of code-based workflows and the tractability of optimization. On top of this representation, the Judge
module provides block-level diagnostic signals by analyzing execution traces and assigning respon-
sibility to problematic block, enabling more interpretable and fine-grained optimization. Through
extensive experiments on mathematical reasoning and code generation benchmarks, we demonstrate
that JUDGEFLOW consistently outperforms strong baselines. While achieving success in optimizing
agentic workflows, LLM-as-a-Judge can be biased and may provide misleading responsibility scores.
Future work may include exploring more robust Judge for agentic systems optimization, such as
statistical signals or other validation methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To enable the independent reproducibility of our results, we provide complete access to our im-
plementation. The source code is available at https://anonymous.4open.science/r/JudgeFlow.
Detailed descriptions of the framework, models, and experimental settings are provided in the main
paper and its appendix.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program Synthesis with Large
Language Models, August 2021. URL http://arxiv.org/abs/2108.07732. arXiv:2108.07732
[cs].

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano
Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter
Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil
Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar
Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal
Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu
Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa,
Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles,
Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung
Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu
Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh,
Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori,
Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai
Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi
Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On the
Opportunities and Risks of Foundation Models, July 2022. URL http://arxiv.org/abs/2108.
07258. arXiv:2108.07258 [cs].

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language Models are Few-Shot Learners, July 2020. URL
http://arxiv.org/abs/2005.14165. arXiv:2005.14165 [cs].

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
Large Language Models Trained on Code, July 2021. URL http://arxiv.org/abs/2107.03374.
arXiv:2107.03374 [cs].

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training Verifiers to Solve Math Word Problems, November 2021. URL http:
//arxiv.org/abs/2110.14168. arXiv:2110.14168 [cs].

10

https://anonymous.4open.science/r/JudgeFlow
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
Factuality and Reasoning in Language Models through Multiagent Debate, May 2023. URL
http://arxiv.org/abs/2305.14325.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktäschel.
Promptbreeder: Self-Referential Self-Improvement Via Prompt Evolution, September 2023. URL
http://arxiv.org/abs/2309.16797.

Google-Cloud. Gemini 2.5 flash| vertex ai. https://cloud.google.com/vertex-ai/
generative-ai/docs/models/gemini/2-5-flash, 2025. Accessed: 2025-05-18.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao, Lionel
Ni, and Jian Guo. A Survey on LLM-as-a-Judge, March 2025. URL http://arxiv.org/abs/
2411.15594.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring Mathematical Problem Solving With the MATH Dataset,
November 2021. URL http://arxiv.org/abs/2103.03874. arXiv:2103.03874 [cs].

Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin
Wu, and Jürgen Schmidhuber. MetaGPT: Meta Programming for A Multi-Agent Collaborative
Framework, November 2024. URL http://arxiv.org/abs/2308.00352.

Shengran Hu, Cong Lu, and Jeff Clune. Automated Design of Agentic Systems, March 2025. URL
http://arxiv.org/abs/2408.08435.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of LLM agents: A survey, February
2024. URL http://arxiv.org/abs/2402.02716. arXiv:2402.02716 [cs].

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated Machine Learning: Methods,
Systems, Challenges. Springer Publishing Company, Incorporated, 1st edition, 2019. ISBN
3030053172.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion, 2023. URL https://arxiv.org/abs/2306.02561.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling Laws for Neural Language
Models, January 2020. URL http://arxiv.org/abs/2001.08361. arXiv:2001.08361 [cs].

Yu-Ang Lee, Guan-Ting Yi, Mei-Yi Liu, Jui-Chao Lu, Guan-Bo Yang, and Yun-Nung Chen. Com-
pound AI Systems Optimization: A Survey of Methods, Challenges, and Future Directions, June
2025. URL http://arxiv.org/abs/2506.08234. arXiv:2506.08234 [cs].

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society,
November 2023. URL http://arxiv.org/abs/2303.17760.

Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun Liu.
LLMs-as-Judges: A Comprehensive Survey on LLM-based Evaluation Methods, December 2024.
URL http://arxiv.org/abs/2412.05579.

Wenwu Li, Xiangfeng Wang, Wenhao Li, and Bo Jin. A Survey of Automatic Prompt Engineering:
An Optimization Perspective, February 2025. URL http://arxiv.org/abs/2502.11560.

Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang, Tanjin He, Sirui Hong, Hongzhang Liu, Shaokun
Zhang, Kaitao Song, Kunlun Zhu, Yuheng Cheng, Suyuchen Wang, Xiaoqiang Wang, Yuyu Luo,
Haibo Jin, Peiyan Zhang, Ollie Liu, Jiaqi Chen, Huan Zhang, Zhaoyang Yu, Haochen Shi, Boyan
Li, Dekun Wu, Fengwei Teng, Xiaojun Jia, Jiawei Xu, Jinyu Xiang, Yizhang Lin, Tianming Liu,
Tongliang Liu, Yu Su, Huan Sun, Glen Berseth, Jianyun Nie, Ian Foster, Logan Ward, Qingyun

11

http://arxiv.org/abs/2305.14325
http://arxiv.org/abs/2309.16797
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash
http://arxiv.org/abs/2411.15594
http://arxiv.org/abs/2411.15594
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2408.08435
http://arxiv.org/abs/2402.02716
https://arxiv.org/abs/2306.02561
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2506.08234
http://arxiv.org/abs/2303.17760
http://arxiv.org/abs/2412.05579
http://arxiv.org/abs/2502.11560

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wu, Yu Gu, Mingchen Zhuge, Xiangru Tang, Haohan Wang, Jiaxuan You, Chi Wang, Jian Pei,
Qiang Yang, Xiaoliang Qi, and Chenglin Wu. Advances and Challenges in Foundation Agents:
From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems, March 2025a.
URL http://arxiv.org/abs/2504.01990.

Yinhong Liu, Han Zhou, Zhijiang Guo, Ehsan Shareghi, Ivan Vulić, Anna Korhonen, and Nigel
Collier. Aligning with Human Judgement: The Role of Pairwise Preference in Large Language
Model Evaluators, January 2025b. URL http://arxiv.org/abs/2403.16950.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A Dynamic LLM-Powered Agent
Network for Task-Oriented Agent Collaboration, November 2024. URL http://arxiv.org/abs/
2310.02170.

Xiaowen Ma, Chenyang Lin, Yao Zhang, Volker Tresp, and Yunpu Ma. Agentic Neural Networks:
Self-Evolving Multi-Agent Systems via Textual Backpropagation, July 2025. URL http://arxiv.
org/abs/2506.09046. arXiv:2506.09046 [cs].

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=S37hOerQLB.

OpenAI. Gpt-4o | openai platform documentation. https://platform.openai.com/docs/models/
gpt-4o, 2024a.

OpenAI. Gpt-4o-mini | openai platform documentation. https://platform.openai.com/docs/
models/gpt-4o-mini, 2024b. Accessed: 2025-05-18.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic Prompt
Optimization with “Gradient Descent” and Beam Search. In Houda Bouamor, Juan Pino, and
Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 7957–7968, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.emnlp-main.494. URL https://aclanthology.org/2023.emnlp-main.
494/.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents, August
2024. URL http://arxiv.org/abs/2408.07199. arXiv:2408.07199 [cs].

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct Preference Optimization: Your Language Model is Secretly a Reward Model,
December 2023. URL http://arxiv.org/abs/2305.18290.

Kiran Ramnath, Kang Zhou, Sheng Guan, Soumya Smruti Mishra, Xuan Qi, Zhengyuan Shen, Shuai
Wang, Sangmin Woo, Sullam Jeoung, Yawei Wang, Haozhu Wang, Han Ding, Yuzhe Lu, Zhichao
Xu, Yun Zhou, Balasubramaniam Srinivasan, Qiaojing Yan, Yueyan Chen, Haibo Ding, Panpan
Xu, and Lin Lee Cheong. A Systematic Survey of Automatic Prompt Optimization Techniques,
April 2025. URL http://arxiv.org/abs/2502.16923. arXiv:2502.16923 [cs].

Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. AgentSquare: Automatic
LLM Agent Search in Modular Design Space, October 2024. URL http://arxiv.org/abs/
2410.06153.

Jinwei Su, Yinghui Xia, Ronghua Shi, Jianhui Wang, Jianuo Huang, Yijin Wang, Tianyu Shi, Yang
Jingsong, and Lewei He. DebFlow: Automating Agent Creation via Agent Debate, March 2025.
URL http://arxiv.org/abs/2503.23781. arXiv:2503.23781 [cs].

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
Hoang D. Nguyen. Multi-Agent Collaboration Mechanisms: A Survey of LLMs, January 2025.
URL http://arxiv.org/abs/2501.06322.

12

http://arxiv.org/abs/2504.01990
http://arxiv.org/abs/2403.16950
http://arxiv.org/abs/2310.02170
http://arxiv.org/abs/2310.02170
http://arxiv.org/abs/2506.09046
http://arxiv.org/abs/2506.09046
https://openreview.net/forum?id=S37hOerQLB
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o-mini
https://platform.openai.com/docs/models/gpt-4o-mini
https://aclanthology.org/2023.emnlp-main.494/
https://aclanthology.org/2023.emnlp-main.494/
http://arxiv.org/abs/2408.07199
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2502.16923
http://arxiv.org/abs/2410.06153
http://arxiv.org/abs/2410.06153
http://arxiv.org/abs/2503.23781
http://arxiv.org/abs/2501.06322

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on large
language model based autonomous agents. Frontiers of Computer Science, 18(6), December
2024a. ISSN 2095-2228, 2095-2236. doi: 10.1007/s11704-024-40231-1. URL https://link.
springer.com/10.1007/s11704-024-40231-1.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu
Liu, and Zhifang Sui. Large Language Models are not Fair Evaluators, August 2023a. URL
http://arxiv.org/abs/2305.17926. arXiv:2305.17926 [cs].

Wenyi Wang, Hisham A. Alyahya, Dylan R. Ashley, Oleg Serikov, Dmitrii Khizbullin, Francesco
Faccio, and Jürgen Schmidhuber. How to Correctly do Semantic Backpropagation on Language-
based Agentic Systems, December 2024b. URL http://arxiv.org/abs/2412.03624.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023b. URL https://arxiv.org/abs/2203.11171.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
emergent cognitive synergy in large language models: A task-solving agent through multi-persona
self-collaboration, 2024c. URL https://arxiv.org/abs/2307.05300.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W. White, Doug Burger,
and Chi Wang. AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation,
October 2023. URL http://arxiv.org/abs/2308.08155.

Shirley Wu, Shiyu Zhao, Qian Huang, Kexin Huang, Michihiro Yasunaga, Kaidi Cao, Vassilis N
Ioannidis, Karthik Subbian, Jure Leskovec, and James Zou. AVATAR: Optimizing LLM Agents
for Tool Usage via Contrastive Reasoning. 2024.

Jinyu Xiang, Jiayi Zhang, Zhaoyang Yu, Fengwei Teng, Jinhao Tu, Xinbing Liang, Sirui Hong,
Chenglin Wu, and Yuyu Luo. Self-Supervised Prompt Optimization, February 2025. URL
http://arxiv.org/abs/2502.06855.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen.
Large Language Models as Optimizers, April 2024. URL http://arxiv.org/abs/2309.03409.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering, 2018. URL https://arxiv.org/abs/1809.09600.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of Thoughts: Deliberate Problem Solving with Large Language Models,
December 2023a. URL http://arxiv.org/abs/2305.10601. arXiv:2305.10601 [cs].

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: Synergizing Reasoning and Acting in Language Models, March 2023b. URL http:
//arxiv.org/abs/2210.03629. arXiv:2210.03629 [cs].

Li Yin and Zhangyang Wang. LLM-AutoDiff: Auto-Differentiate Any LLM Workflow, January
2025. URL http://arxiv.org/abs/2501.16673.

Xunjian Yin, Xinyi Wang, Liangming Pan, Xiaojun Wan, and William Yang Wang. Gödel Agent:
A Self-Referential Agent Framework for Recursive Self-Improvement, February 2025. URL
http://arxiv.org/abs/2410.04444.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. TextGrad: Automatic "Differentiation" via Text, June 2024. URL http://arxiv.
org/abs/2406.07496.

13

https://link.springer.com/10.1007/s11704-024-40231-1
https://link.springer.com/10.1007/s11704-024-40231-1
http://arxiv.org/abs/2305.17926
http://arxiv.org/abs/2412.03624
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2307.05300
https://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2308.08155
http://arxiv.org/abs/2502.06855
http://arxiv.org/abs/2309.03409
https://arxiv.org/abs/1809.09600
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2501.16673
http://arxiv.org/abs/2410.04444
http://arxiv.org/abs/2406.07496
http://arxiv.org/abs/2406.07496

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, Lei Bai, and Xiang Wang. Multi-agent
Architecture Search via Agentic Supernet, February 2025a. URL http://arxiv.org/abs/2502.
04180.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
Wu. AFlow: Automating Agentic Workflow Generation, February 2025b. URL http://arxiv.
org/abs/2410.10762.

Shaokun Zhang, Ming Yin, Jieyu Zhang, Jiale Liu, Zhiguang Han, Jingyang Zhang, Beibin Li, Chi
Wang, Huazheng Wang, Yiran Chen, and Qingyun Wu. Which Agent Causes Task Failures and
When? On Automated Failure Attribution of LLM Multi-Agent Systems, April 2025c. URL
http://arxiv.org/pdf/2505.00212. arXiv:2505.00212 [cs].

Chengqi Zheng, Jianda Chen, Yueming Lyu, Wen Zheng Terence Ng, Haopeng Zhang, Yew-Soon Ong,
Ivor Tsang, and Haiyan Yin. MermaidFlow: Redefining Agentic Workflow Generation via Safety-
Constrained Evolutionary Programming, May 2025. URL http://arxiv.org/abs/2505.22967.
arXiv:2505.22967 [cs].

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, Huajun Chen, and Yuchen Eleanor Jiang. Symbolic
Learning Enables Self-Evolving Agents, June 2024. URL http://arxiv.org/abs/2406.18532.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Language Agents as Optimizable Graphs, August 2024a. URL http://arxiv.
org/abs/2402.16823.

Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang
Xiong, Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, Yangyang Shi,
Vikas Chandra, and Jürgen Schmidhuber. Agent-as-a-Judge: Evaluate Agents with Agents, October
2024b. URL http://arxiv.org/abs/2410.10934.

Henry Peng Zou, Wei-Chieh Huang, Yaozu Wu, Yankai Chen, Chunyu Miao, Hoang Nguyen, Yue
Zhou, Weizhi Zhang, Liancheng Fang, Langzhou He, Yangning Li, Dongyuan Li, Renhe Jiang,
Xue Liu, and Philip S. Yu. LLM-Based Human-Agent Collaboration and Interaction Systems: A
Survey, June 2025. URL http://arxiv.org/abs/2505.00753. arXiv:2505.00753 [cs].

14

http://arxiv.org/abs/2502.04180
http://arxiv.org/abs/2502.04180
http://arxiv.org/abs/2410.10762
http://arxiv.org/abs/2410.10762
http://arxiv.org/pdf/2505.00212
http://arxiv.org/abs/2505.22967
http://arxiv.org/abs/2406.18532
http://arxiv.org/abs/2402.16823
http://arxiv.org/abs/2402.16823
http://arxiv.org/abs/2410.10934
http://arxiv.org/abs/2505.00753

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A OPERATORS

Following Zhang et al. (2025b), Zhang et al. (2025a) and Zheng et al. (2025), we adopt the following
set of operators:

1. generate, a generation operator that produces candidate solutions based on the problem
description and optional previous results.

2. test, a testing operator that executes generated solutions against test cases and provides
feedback for refinement.

3. self_refine, a refinement operator that improves a given solution through self-refinement.
4. multi_generate_ensemble, an ensemble operator that generates multiple solutions and

combine them to the best one via self-consistency.
5. programmer, a synthesis-and-execution operator that generates Python code for solving

math problems, runs it in a restricted environment, and iteratively repairs errors.

B LOGIC BLOCKS

We implement three common logic types in code-represented workflows: SequenceLogic (seq),
LoopLogic (for), and ConditionalLogic (cond), whose descriptions and interfaces are listed below.

Logic Blocks

{
"SequenceLogic": {

"type": "seq",
"description": "Execute operators strictly in order. Required

fields: name (string), type (must be 'seq '), operators (
array of operator aliases). No optional fields. Use this
for linear processing flows where you need sequential
execution of operators.",

"structure": {
"name": "block_name",
"type": "seq",
"operators": ["operator"]

},
"input_flow": "block_input -> op1 -> op2 -> ... ->

block_output"
},
"LoopLogic": {

"type": "for",
"description": "Iteratively execute a sequence of operators

until the optional asynchronous condition returns False or
the max iteration limit is reached. Required fields: name
(string), type (must be 'for '), operators (array of

operator aliases). Optional fields: max_iterations (
integer, default 3), condition (object with 'field ' and '
equals ' properties, or null for no condition). Use this
for retry mechanisms and iterative refinement.",

"structure": {
"name": "block_name",
"type": "for",
"operators": ["operator"],
"max_iterations": num_iterations,
"condition": {

"field": "field_name",
"equals":

}
},
"input_flow": "block_input -> repeat [op1 -> op2 -> ...] until

stop -> block_output"

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

},
"ConditionalLogic": {

"type": "cond",
"description": "Run a dedicated condition operator first, then

choose the success or failure branch based on the field
specified by 'condition_field '. The chosen branch runs
sequentially with the same data -passing semantics as
SequenceLogic. Required fields: name (string), type (must
be 'cond '), condition_operator (string, operator alias to
evaluate condition), success_operators (array of operator
aliases for success path), failure_operators (array of
operator aliases for failure path). Optional fields:
condition_field (string, field name to check for condition
result, default 'result '). The condition operator

evaluates criteria and sets a result field, which
determines whether to execute success_operators or
failure_operators. Use this for branching logic and
conditional processing. ",

"structure": {
"name": "block_name",
"type": "cond",
"condition_operator": "condition_operator",
"success_operators": ["success_op"],
"failure_operators": ["failure_op"],
"condition_field": "field_name"

},
"input_flow": "block_input -> condition operator -> select

branch -> branch sequence -> block_output"
}

}

C JUDGE PROMPT

Judge Prompt

You are a workflow failure analyst. Given execution evidence from a block-based AI
workflow that produced an incorrect answer, determine which logic block is
causally responsible for the failure.

↪→
↪→

Knowledge Base
Logic block types
{logic_block_descriptions_text}

Operator types
{operator_descriptions_text}

Responsibility Principles:
- Consider blocks that **actually make mistakes** over blocks that only perform

redundant work.↪→
- Our goal is to identify the weakest block in this workflow, so that in later

optimization we can focus on improving this weakest block.↪→
- You will be given: the **problem**, the **correct answer**, the **incorrect

answer**, the **workflow execution trace**, and **each block’s inputs/outputs**
in a **sequential** pipeline. Ground your judgment in this evidence:

↪→
↪→

- For each block *i*, compare its **output vs. input**, and **output vs. the
correct answer** to locate where the **first critical deviation** was
introduced, how later blocks **propagated/amplified** it, and whether any
block **had enough information to correct** it but failed to do so.

↪→
↪→
↪→
- Do **not** overweight temporal order:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

- **Earlier** blocks bear more responsibility for **introducing** the critical
error.↪→

- **Later** blocks bear responsibility for **failing to correct** earlier errors
given the available context.↪→

- If two blocks seem equally responsible, apply **counterfactual** reasoning: *If
this block were correct, would the final answer be correct?*↪→

- You may form a brief **internal** natural-language reason (e.g., “this block
generated incorrect code”) to aid the decision, but the **output must be JSON
only**.

↪→
↪→

D OPTIMIZATION PROMPT

System Prompt

You are an expert workflow optimization assistant specializing in Logic Block-based
AI workflows for the {{dataset}} dataset.↪→

IMPORTANT: Focus exclusively on optimizing the low-performing logic block to improve
code generation quality and overall workflow performance.↪→

IMPORTANT: You have exactly one optimization attempt. Reason carefully and aim to
improve performance across the entire dataset.↪→

Task Overview

You will be provided with:
1. Error examples showing: problem, correct answer, workflow's wrong answer, and the

low-performing block's output↪→
2. Current workflow definition
3. Performance analysis results

Your objective: Optimize the identified low-performing logic block using the error
examples as guidance while avoiding overfitting.↪→

Logic Block Types and Detailed Semantics
{logic_blocks_section}

Available Operators
{operators_section}

Critical Instructions for Operator Usage

INSTRUCTION Field is Crucial:
- The `instruction` field is extremely important for operator performance and

directly impacts final output quality↪→
- Instructions should clearly guide the operator on how to process input and produce

expected output↪→
- For code generation tasks, instructions need to include specific programming

requirements, output format, and quality standards↪→
- For mathematical reasoning tasks, instructions need to include specific

problem-solving approaches, step-by-step reasoning requirements, and output
format standards

↪→
↪→

Optimization Strategies

Choose exactly one strategy:

1. Add Block Strategy
- Create a completely new logic block with its own name (e.g., "b2", "b3")
- Insert the new block immediately before or after the low-performing block
- Select appropriate block type (seq/for/cond) that complements the low-performing

block↪→

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

- Populate all required parameters (instructions, iteration limits, condition
fields, etc.)↪→

- Run internal counterfactual reasoning but do not output explorations

Example: `"workflow": ["b1", "b2"] ("b2" performs worst) → "workflow": ["b1", "b2",
"b3"]`↪→

2. Remove Block Strategy
- Completely delete the low-performing block when it adds noise or harms outcomes
- Internally evaluate workflow behavior without that block
- Update workflow sequence and remove unused operators

Example: `"workflow": ["b1", "b2"] ("b1" performs worst) → "workflow": ["b2"]`

3. Modify Block Strategy
- Rework the existing low-performing block without introducing new blocks
- Examine block's logic type, operator choices, and parameterization
- Update operators, ordering, and configuration for stronger reasoning
- Focus solely on refining the current block

Critical Constraints

CRITICAL: Maximum 3 blocks per workflow - DO NOT EXCEED this limit
CRITICAL: Create NEW BLOCK with different name when adding
IMPORTANT: Focus on the low-performing block identified in the analysis
IMPORTANT: Maintain compatibility with other blocks in the workflow
IMPORTANT: Each block should have a clear, distinct purpose

Prohibited Actions

- NEVER reproduce workflow configurations matching provided history
- MUST NOT repeat, reuse, or recycle any optimization from Previous Optimization

Analysis↪→
- All workflows in previous optimization analysis are explicitly banned
- Run internal "novelty check" to confirm at least two structural differences from

banned workflows↪→

Output Requirements

- Apply exactly one modification strategy (Add/Remove/Modify)
- Focus only on the identified low-performing logic block
- Output clean JSON without comments or explanations
- Ensure JSON is fully parseable and syntactically correct
- Avoid overfitting to provided error examples

User Prompt

Dataset
<dataset>{dataset}</dataset>

Current Workflow Performance
Current workflow score: <score>{score}</score>

Low-performing logic block identified:
<low_performing_blocks>{low_performing_blocks}</low_performing_blocks>

Current Workflow Definition
```json
<previous_code>{previous_code}</previous_code>
```

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Error Analysis
Error examples show:
- **Problem**: Original code generation task/question
- **Correct Answer**: Expected output
- **Workflow Wrong Answer**: Current workflow output
- **Low-performing Block Output**: Problematic block's specific output

Previous Optimization History
STRICTLY PROHIBITED: Do not repeat or reuse any optimization results below.
<reflection_result>{reflection_result}</reflection_result>

IMPORTANT: All workflows above and current definition are disallowed baselines.

Optimization Task

Analyze the low-performing logic block and improve its output quality.

Core Optimization Objective
Your optimization purpose is to modify the weakest block:
- Deeply analyze why this weak block led to the final incorrect answer
- Understand the block's role and impact within the entire workflow
- Identify the specific failure patterns and root causes of this block
- Your chosen action (Add/Modify/Remove) should be aimed at solving the current

problems↪→

Key Focus Areas
- Low-performing block is your primary optimization target
- Use error cases to understand failure patterns
- Improve block's reasoning or processing capability
- Evaluate block type appropriateness (seq/for/cond)
- Assess operator suitability and configuration
- **Pay special attention to the quality and detail of instruction fields**

Strategy Guidelines
Current workflow has

<workflow_block_count>{workflow_block_count}</workflow_block_count> block(s).↪→

Error Examples
Use these to understand failures, but avoid overfitting:
<error_cases_section>{error_cases_section}</error_cases_section>

Final Instruction
Generate the optimized JSON workflow definition:

E USE OF LARGE LANGUAGE MODELS

LLMs played a crucial role in our paper, as we utilized them for workflow optimization. Outside
of this usage, we have used LLMs as writing assistants for improving clarity, style, and grammar
and as coding assistants. Notably, the core research contributions—among which the design of
the framework and validation of results—were conceived and verified exclusively by the authors.
All outputs from LLMs were critically assessed, refined, and integrated to ensure correctness and
adherence to academic standards.

19

	Introduction
	Related Work
	Methodology
	Problem Formulation
	JudgeFlow
	Evaluation-Judge
	Optimization-Update

	Experiments
	Experimental Setups
	Experimental Results
	Analysis
	Case Study

	Conclusion
	Operators
	Logic Blocks
	Judge Prompt
	Optimization Prompt
	Use of Large Language Models

