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ABSTRACT

Optimizing LLM-based agentic workflows is challenging for scaling AI capa-
bilities, some current methods rely on coarse, end-to-end evaluation signals and
lack fine-grained signals on where to refine, often resulting in inefficient or low-
impact modifications. To address these limitations, we propose JUDGEFLOW,
an Evaluation-Judge-Optimization-Update pipeline. We incorporate reusable and
configurable logic blocks into agentic workflows, capturing fundamental forms
of logic. On top of this abstraction, we design a dedicated Judge module that
inspects execution traces, particularly failed runs, and assigns rank-based respon-
sibility scores to problematic blocks. These fine-grained diagnostic signals are
then leveraged by an LLM-based optimizer, which focuses modifications on the
most problematic block in the workflow. Our approach improves sample efficiency,
enhances interpretability through block-level diagnostics, and provides a scalable
foundation for automating increasingly complex agentic workflows. We evalu-
ate JUDGEFLOW on mathematical reasoning and code generation benchmarks,
and the results demonstrate that JUDGEFLOW achieves superior performance and
optimization efficiency compared to existing methods.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020) have achieved remarkable success across a
wide range of domains. Moving beyond the scope of foundation models (Bommasani et al., 2022),
by integrating LLMs into intelligent agent architectures, the emerging foundation agents (Liu et al.,
2025a) have attracted more attention. Starting from early work on prompt engineering, such as
reasoning-enhanced methods (Wei et al., 2023; Wang et al., 2023b; Yao et al., 2023a), to more recent
developments in multi-agent system approaches (Du et al., 2023; Li et al., 2023; Hong et al., 2024),
these handcrafted strategies have achieved strong performance across a range of tasks, including
mathematical reasoning (Cobbe et al., 2021), code generation (Austin et al., 2021), and question
answering (Yang et al., 2018).

However, these agentic systems still depend heavily on manual design, making workflow construction
complex, costly, and inflexible. AutoML (Hutter et al., 2019) has shown that automating traditionally
handcrafted and labor-intensive processes in machine learning can substantially reduce human
effort and accelerate the development of high-performance models. Inspired by this success, recent
efforts aim to automate the design and optimization of LLM-based agentic workflows (Lee et al.,
2025). While these agentic systems still rely on LLMs as core execution engines, optimizing
the LLMs themselves through pretraining or fine-tuning (Rafailov et al., 2023) often demands
substantial computational resources and massive-scale data, making such approaches expensive in
many settings (Kaplan et al., 2020). Instead, keeping the underlying model parameters fixed, and
focusing on optimizing the systems structure and behavior leads to a more tractable and efficient
optimization.

Automation efforts in agentic systems initially focused on prompt optimization, exemplified by
Textual Gradients which leverage LLM feedback for end-to-end optimization (Pryzant et al., 2023;
Yuksekgonul et al., 2024; Wang et al., 2024b; Yin & Wang, 2025). Current efforts are expanding to
optimize architecture and execution flow of entire agentic systems. Agentic workflow can be modeled
as neural network (Liu et al., 2024; Ma et al., 2025), graph (Zhuge et al., 2024a; Zhang et al., 2025a),
and code (Hu et al., 2025; Zhang et al., 2025b; Zheng et al., 2025), each offering different levels of
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representational capacity, interpretability, and optimization difficulty. For instance, Directed Acyclic
Graphs (DAGs)-represented workflows facilitate tractable optimization but constrain the ability to
represent complex structures such as loops or conditional branching. In contrast, code-represented
workflows provide comprehensive expressivity in defining intricate logic and control flow, but error
attribution within code execution is difficult, and optimization often has to rely solely on end-to-end
evaluation signals rather than fine-grained intermediate feedback. Building on code-represented
workflows, Zhang et al. (2025b) introduce operators as modular units that encapsulate common
agentic actions and propose a Monte Carlo Tree Search (MCTS) framework that employs LLMs to
iteratively optimize workflow structures using past experience. However, the expansion phase in
MCTS and the subsequent evaluation of candidate workflows can be expensive, and the effectiveness
of the optimization process is constrained by the granularity of guidance available for modifications.
In the absence of sufficiently fine-grained diagnostic information to precisely identify which specific
part within the complex workflow requires modification, the search may explore ineffective or
low-impact alterations. Furthermore, complex code structural interactions—such as conditional
constructs where only one branch of an if-else statement is executed along a trajectory—leave
certain components without informative signals, thereby hindering fine-grained analysis.

To address these challenges, we introduce JUDGEFLOW, an Evaluation-Judge-Optimization-Update
pipeline. First, we incorporate reusable and configurable logic blocks into agentic workflows. These
blocks capture three fundamental forms of logic: sequential, loop, and conditional, which are able to
broadly represent code-based workflows. Compared with operators, which abstract specific agentic
operations or functionalities (Zhang et al., 2025b), logic blocks serve as higher-level structural
abstractions. By introducing logic blocks that abstract such common control structures, we retain the
structural diversity of code-represented workflows while providing an intermediate level of abstraction
between operators and workflows. This additional layer facilitates interpretability and exposes more
meaningful diagnostic information for subsequent optimization.

Second, we incorporate a dedicated Judge module
that analyzes the execution trace, with particular
emphasis on failed runs. We hypothesize that op-
timizers should receive both evaluation and opti-
mization signals. For each unsuccessful execution,
the Judge attempts to identify the most problematic
block within the workflow as illustrated in Fig. 1.
To further improve the precision of diagnosis, we
adopt a rank-based approach at the block level.
The resulting targeted diagnostic signals are prop-
agated to the subsequent optimization stage, en-
abling more focused and efficient refinement of
weak blocks. In this way, optimization efforts
can be concentrated on repairing underperform-
ing components, resulting in more effective and
reliable improvements in overall workflow perfor-
mance. Besides relying solely on end-to-end eval-
uation signals, our approach leverages block-level
diagnostic information, enabling the optimizer to
focus on the most problematic components.

Question Workflow Answer

LLM
Optimizer

Which part should I focus on...?

Previous Works

Question Workflow Answer

I know where the problem is!

JudgeFlow

Judge

LLM
Optimizer

Figure 1: Block-level judging guides agentic
workflow optimization by identifying the most
problematic block in failed executions.

In summary, our contributions are as follows:

• We propose a novel Evaluation-Judge-Optimization-Update pipeline named JUDGEFLOW;

• We introduce reusable and configurable logic blocks as higher-level structural units, which
balance the expressivity of code-based workflows with tractable optimization, while sup-
porting interpretability and intermediate execution tracing;

• We design a Judge module that analyzes execution traces, especially failed runs, and
assigns rank-based responsibility scores to problematic blocks, enabling fine-grained error
localization and targeted refinement for subsequent optimization.

• We evaluate JUDGEFLOW on mathematical reasoning and code generation benchmarks,
showing that it outperforms existing methods.
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2 RELATED WORK

LLM-based (Multi-)Agent Systems In recent years, LLM-based (multi-)agent systems have
achieved notable successes (Wang et al., 2024a; Huang et al., 2024; Tran et al., 2025) across
planning (Huang et al., 2024), reasoning (Putta et al., 2024), and human–AI coordination (Zou
et al., 2025). At the single-agent level, foundational works have enabled agents to reason and
act by interleaving thought and action (Yao et al., 2023b), to enhance complex problem-solving
through structured exploration of thoughts (Yao et al., 2023a), and to interact effectively with external
tools and APIs (Wu et al., 2024). At the multi-agent level, frameworks such as CAMEL (Li et al.,
2023), AutoGen (Wu et al., 2023), and MetaGPT (Hong et al., 2024) have facilitated sophisticated
collaboration on complex tasks like software development, demonstrating strong performance across
diverse domains. Despite these advances, existing systems remain constrained by a reliance on
handcrafted prompts and rigid communication topologies, which limit adaptability as task complexity
scales. This has spurred a shift toward automated agentic systems capable of optimizing their own
architectures and behaviors.

Agentic Systems Automation Early automation efforts in agentic systems primarily focused on
prompt optimization (Pryzant et al., 2023; Ramnath et al., 2025; Li et al., 2025), with approaches
such as LLMs-as-optimizers (Yang et al., 2024), self-referential evolution (Fernando et al., 2023),
textual gradients (Yuksekgonul et al., 2024), and self-supervised optimization (Xiang et al., 2025).
More recent research has expanded beyond prompt-level tuning toward optimizing the architectures
and execution flows of entire agentic systems. For example, Liu et al. (2024) explores dynamic
communication structures for adaptive collaboration, while Zhuge et al. (2024a) models agents
as computational graphs to refine both prompts and inter-agent orchestration. Shang et al. (2024)
proposes a novel modular design automatically searching for high-performance agent structures.
Zhou et al. (2024) investigates agents capable of self-optimization using symbolic optimizers. Hu et al.
(2025) introduces a meta agent that automatically discovers novel, high-performing, and generalizable
agentic system designs. Yin et al. (2025) introduces a self-referential framework that enables agents
to recursively improve themselves. Zhang et al. (2025b) employs LLMs as optimizers with a Monte
Carlo Tree Search (MCTS) variant to discover effective workflows. Zhang et al. (2025a) automatically
evolve agentic supernet systems leading to query-specific workflows. Su et al. (2025) leverages
debate and reflexion to collaboratively refine workflows while reducing search redundancy. Zheng
et al. (2025) introduces safety-constrained evolutionary programming in a declarative graph space,
ensuring structural validity and robustness. While these efforts mark significant progress, most
existing approaches still focus on end-to-end or global architectural optimization, often leading to
inefficient search and a lack of fine-grained diagnostic feedback, which limits both scalability and
interpretability as task complexity grows.

LLM as a Judge The LLM-as-a-judge paradigm leverages large language models to automate the
evaluation of generated content, addressing the scalability limitations of human assessment (Gu et al.,
2025). This approach has been widely adopted for assessing complex outputs based on predefined
criteria like correctness, relevance, or rule compliance (Li et al., 2024). However, the effectiveness of
the LLM-as-a-Judge framework may be limited by inherent biases in LLMs (Wang et al., 2023a). To
mitigate these issues, various methods have been proposed. Liu et al. (2025b) propose a ranking-based
alignment method that significantly improves the judging performance of LLMs. In addition, (Zhuge
et al., 2024b) proposed the framework to use agentic systems to evaluate agentic systems. In a related
application, (Zhang et al., 2025c) attempts to automate the failure attribution for LLM multi-agent
systems. Their findings reveal that providing stronger ground-truth signals can substantially improve
attribution quality, and aggregated analysis across multiple failures can uncover reliable error patterns.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Our framework models an agentic workflow by hierarchically composing basic agentic actions
(Operators) into structured logical units (Blocks) as follows.
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A configured operator O(D) is the basic unit of agentic action, where O represents a categorical
label for its core function like generate or self_refine (details in Appendix A), and D is the
operator configuration, which includes the LLM backbone, prompt template, and other hyperparame-
ters (Zhang et al., 2025b). Building upon operators, a logic block (B,C) is a higher-level structural
unit that orchestrates one or more configured operators, where B ∈ B is the logic block type, dictating
how the operators are orchestrated. The set of available types B includes three fundamental forms of
logic as shown in Fig. 2 (details in Appendix B):

• SequenceLogic (seq): A sequential execution block where operators are executed one after
another. Each operator consumes the output of its predecessor, ensuring a linear flow of
intermediate results until the final operator produces the block output.

• LoopLogic (for): An iterative block that repeatedly invokes its internal operators. The
iteration continues until the stopping condition is satisfied.

• ConditionalLogic (cond): A branching block that first executes a designated condition
operator. Based on the evaluation outcome, it then activates one of two operator sequences.
Only the operators in the selected branch are executed to generate the block output.

Sequence Logic Block

seq_block = SequenceLogic(
    name=“b1”,
    operators=[
        "generate", 
        "self_refine", 
        "test"]
)

loop_block = LoopLogic(
    name="b2",
    operators=[
        "generate", 
        "test"],
    max_iterations=3
)

cond_block = ConditionalLogic(
    name="b3",
    condition_operator="test",
    success_operators=["self_refine"],
    failure_operators=["generate"],
    condition_field="result"
)

Loop Logic Block
Conditional Logic Block

Generate Operator Self-refine Operator Test Operator

x3

Figure 2: The illustration of logic blocks.

Correspondingly, C is the logic block configuration, which contains the set of configured operators
O(D) in the block and block-level parameters (e.g., stopping condition in LoopLogic). Finally,
the agentic workflow W is defined as a tuple W =

(
{(Bi, Ci)}Mi=1 , S

)
, where M is the total

number of logic blocks in the workflow, and S denotes the ordered sequence of logic blocks at the
top level while each individual block may internally contain conditional or iterative control. This
definition not only preserves the common logic patterns in code-represented workflows ensuring
expressive diversity (Hu et al., 2025; Zhang et al., 2025b), but also enhances interpretability, including
the explicit semantic characteristics of each logic block and the overall execution trajectory of the
workflow, which facilitates subsequent optimization.

Given an input query q from the dataset D which is available to every block, the execution function
ϕexe processes workflow W by sequentially applying its logic blocks along the execution order S.
Each block (Bi, Ci) receives the state from the previous block, a′i−1, and produces a new state, a′i,
formally defined as:

a′i = ϕ(i)
exe(a

′
i−1, q;Bi, Ci), i = 1, 2, . . . ,M, (1)

where ϕ(i)
exe is the execution function for block i and a′0 = ∅. The final workflow output is obtained as

a′M , and then scored by the evaluation function ϕeval against the ground-truth answer a corresponding
to q. The objective of agentic workflow optimization is to find the optimal workflow W ∗ that
maximizes expected evaluation performance across the dataset:

W ∗ = argmax
W∈W

E(q,a)∼D [ϕeval (a
′
M , a)] , (2)

whereW denotes the search space of candidate workflows.
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Figure 3: The main pipeline of JUDGEFLOW

3.2 JUDGEFLOW

Building on the representation of workflow using logic blocks, JUDGEFLOW incorporates a dedicated
Judge module and implements an iterative Evaluation-Judge-Optimization-Update pipeline for the
efficient optimization of agentic workflows and continues until a predefined maximum number of
optimization rounds are met.

3.2.1 EVALUATION-JUDGE

The combined Evaluation-Judge stage, detailed in Algorithm 1, processes each input query from the
dataset. If the workflow W fails on a given query, the stage identifies and logs specific problematic
block within W . This provides targeted diagnostic signals for subsequent workflow optimization,
enabling a more efficient and focused approach on refining these identified weak logic to improve
overall optimization efficiency.

Specifically, for each input query q (with a corresponding ground-truth answer a), we have {a′i}Mi=1 =
ϕexe(q,W ), and score s = ϕeval(a

′
M , a). The score s is recorded in a list Pscores for later calculation

of W ’s overall performance. Providing a threshold ε that indicates successful execution, if s ≥ ε, the
instance is marked as successful, and the algorithm simply proceeds to the next input.

However, if s < ε, a quadruple Q = (W, q, a, {a′i}Mi=1) is defined to encapsulate the full context of the
failure. The Judge proceeds to examine the quadruple, assessing each block’s {Bi}Mi=1 responsibility
for the failure and ranking them accordingly. This procedure, guided by specific judging prompts
(detailed in Appendix C), yields a rank-based score vector (Liu et al., 2025b) (ri)Mi=1 for the blocks
where ri = 1 refers to the block deemed most responsible for the failure and ri = M denotes the
least responsible, each rank from 1 to M is assigned exactly once. These block scores (ri)Mi=1 are
appended toRranks. The RoundWorst((ri)

M
i=1,W ) function then utilizes this score vector to identify

Brw, the block deemed most problematic for the current instance (i.e. Brw = {Bi | ri = 1 }) .
Subsequently, the instance details (q, a, {a′i}Mi=1) are logged into LBrw , the dedicated log for Brw,
providing targeted few-shot examples for its potential future optimization.

Upon completion of all instances in D, the accumulated diagnostic information is processed. The
OverallWorst(Rranks,W ) function analyzes all block rank-based score vectors inRranks to identify
Bsel, the block deemed the most consistently problematic over the whole dataset. In practice, we aggre-
gate rank vectors across all failing instances inRranks by summing the scores rk assigned to each block
Bk, and then selects the block achieving the minimum sum (i.e. Bsel = argminBk∈W

∑T
t=1 r

(t)
k ,

where T is the number of the failure executions). Concurrently, the overall performance PW of
W on D is computed by CalPerformance(Pscores). Finally, this stage returns PW , Bsel, and LBsel ,
providing actionable insights for subsequent optimization.
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Algorithm 1 Evaluation-Judge

1: Input: Workflow W , Dataset D, executor ϕexe, evaluator ϕeval, Judge, threshold ε

2: Output: Performance PW , Selected Block Bsel and the corresponding Log LBsel

3: For k ← 1 to M : Initialize LBk
← ∅

4: Rranks ← ∅, Pscores ← ∅
5: for each (q, a) ∈ D do
6: {a′i}Mi=1 ← ϕexe(q,W )

7: s← ϕeval(a
′
M , a)

8: Pscores ← APPEND(Pscores, s)

9: if s ≥ ε then
10: continue ▷ If success, no judging needed, skipping to next sample

11: else
12: (ri)

M
i=1 ← Judge(W, q, a, {a′i}Mi=1) ▷ Call Judge to rank blocks by responsibility

13: Rranks ← APPEND(Rranks, (ri)
M
i=1) ▷ Append block-wise judge ranking

14: Brw ← RoundWorst((ri)
M
i=1,W ) ▷ Get the most problematic block in this round

15: LBrw ← APPEND(LBrw , (q, a, {a′i}Mi=1)) ▷ Append failure execution context to that block’s log

16: end if
17: end for
18: Bsel ← OverallWorst(Rranks,W ) ▷ Aggregate across failures to pick the globally weakest block

19: PW ← CalPerformance(Pscores) ▷ Compute overall performance on the dataset

20: return PW , Bsel,LBsel

3.2.2 OPTIMIZATION-UPDATE

In the subsequent Optimization-Update stage, the LLM-based optimizer utilizes the insights from the
previous stage and refines W to produce an improved version W ′ guided by specific optimization
prompts (detailed in Appendix D), which can be formally expressed as

W ′ ← Optimizer(W,Bsel, A, sample(LBsel)) (3)

where sample(LBsel) refers to few-shot samples drawn from the logs LBsel and A ∈ A, where A is a
predefined set of available modification actions as follows:

• Add Block : Introduce a new block Bnew with configuration Cnew, and connect it directly
with the low-performing block Bsel;

• Remove Block: Remove the low-performing block Bsel together with all of its incident
edges while reconnecting its predecessor and successor to preserve sequential flow;

• Modify Block: Reconfigure the existing Bsel by updating its configuration Csel 7→ C ′
sel.

In practice, the LLM-based optimizer selects A adaptively based on the diagnostic signals in LBsel .
Following Zhang et al. (2025b), the refined workflow W ′ is first evaluated to obtain its performance
score PW ′ . The pair (W ′, PW ′) is then added to the candidate poolWpool, which retains at most K
workflows by keeping the top-K highest-scoring entries:

Wpool ← Top-K
(
Wpool ∪ {(W ′, PW ′)}

)
. (4)

At the beginning of the next iteration, the optimizer selects a starting workflow Wstart fromWpool
using a softmax distribution over scores with temperature τ :

Wstart ∼ Wpool, Pr(Wi) =
exp

(
si−maxj sj

τ

)
∑|Wpool|

k=1 exp
(

sk−maxj sj
τ

) , (5)

where si is the evaluation score of workflow Wi.

6
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Benchmarks and Datasets. We evaluate our method on widely used public benchmarks, covering
math reasoning tasks (GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021)) and code
generation tasks (MBPP (Austin et al., 2021), HumanEval (Chen et al., 2021)).

Following previous studies (Zhang et al., 2025b;a), each dataset is divided into training and test sets
with a ratio of 1:4. We report the solve rate (%) on GSM8K and MATH, pass@1 on MBPP and
HumanEval as evaluation metrics.

Baselines. We compare our JUDGEFLOW with a series of baselines, including (1) Single-agent
System: Standard prompting (IO), Chain-of-Thought prompting (CoT) (Wei et al., 2023), and Self-
Consistency (Wang et al., 2023b); (2) Hand-crafted Multi-agent System: MultiPersona (Wang et al.,
2024c), SELF-REFINE (Madaan et al., 2023), LLM-Debate (Du et al., 2023), LLM-Blender (Jiang
et al., 2023), and DyLAN (Liu et al., 2024); (3) Autonomous Multi-agent System: GPTSwarm (Zhuge
et al., 2024a), ADAS (Hu et al., 2025), AFlow (Zhang et al., 2025b), MaAS (Zhang et al., 2025a),
and MermaidFlow (Zheng et al., 2025).

Implementation Details. We use the closed-source LLM gpt-4o-mini-0718 (OpenAI, 2024b) as
both the optimization LLM and execution LLM following the previous works Zhang et al. (2025a)
and Zheng et al. (2025). For a fair comparison, we use the same model as Judge LLM. All the models
are accessed via API with temperature = 0. The number of iteration rounds is set to 20 consistent with
Zhang et al. (2025b) and Zheng et al. (2025). When optimizing, we set M ≤ 3, ε = 1, and K = 3.

4.2 EXPERIMENTAL RESULTS

Table 1: Performance comparison with baselines on GSM8K, MATH, MBPP, and HumanEval. The results
are averaged over three independent runs.

Method GSM8K MATH MBPP HumanEval Avg.
Single-agent System

IO 87.8 48.6 73.9 87.0 74.3
CoT (Wei et al., 2023) 87.0 48.8 74.2 88.6 74.7
CoT SC (Wang et al., 2023b) 86.9 50.4 73.3 91.6 75.6

Hand-crafted Multi-agent System

SELF-REFINE (Madaan et al., 2023) 85.5 46.1 71.8 87.8 72.8
LLM-Debate (Du et al., 2023) 89.5 48.6 70.3 88.8 74.3
LLM-Blender (Jiang et al., 2023) 88.4 46.9 77.1 88.7 75.3
DyLAN (Liu et al., 2024) 90.0 48.5 77.3 90.4 76.6

Autonomous Multi-agent System

GPTSwarm (Zhuge et al., 2024a) 89.1 47.9 77.4 89.3 75.9
ADAS (Hu et al., 2025) 88.4 43.2 77.1 84.2 73.2
AFlow (Zhang et al., 2025b) 90.1 52.8 81.7 90.1 78.7
MaAS (Zhang et al., 2025a) 91.5 52.2 82.2 91.6 79.4
MermaidFlow (Zheng et al., 2025) 92.4 55.4 82.3 92.9 80.8

JUDGEFLOW (Ours) 93.0 58.5 83.8 93.4 82.2

Main Results. As shown in Table 1, JUDGEFLOW achieves superior performance compared to
several strong baselines, including both hand-crafted and autonomous multi-agent systems consis-
tently across all the tasks1. Notably, for some challenging benchmarks such as MATH and MBPP,
JUDGEFLOW outperforms the strongest prior baseline MermaidFlow by +3.1(5.6%) and +1.5(1.8%),

1Some baseline results are referred to Zhang et al. (2025b) and Zheng et al. (2025).
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Figure 4: Fig. 4a The optimal workflow found by JUDGEFLOW on MBPP dataset; Fig. 4b The training and
testing curve between JUDGEFLOW and AFlow on MBPP dataset.

respectively. At the same time, for relatively simpler benchmarks such as GSM8K and HumanEval,
JUDGEFLOW still achieves consistent gains of +0.6 and +0.5. Taken together, JUDGEFLOW achieves
the average score of 82.2, representing a +1.4(1.7%) increase. The results highlight the effectiveness
of our Judge-guided block-level optimization across both reasoning and code generation tasks.

4.3 ANALYSIS

We take the MBPP dataset as an illustrative example to analyze JUDGEFLOW.

Best-Performing Workflow. Fig. 4a is the best-performing workflow found by JUDGEFLOW on
MBPP dataset. The workflow is composed of three logic blocks. First, a seq block b1 applies
a generate operator to produce an initial candidate function. Second, a for block b2 repeatedly
invokes the test operator until the stopping condition is satisfied. Finally, a cond block b3 runs
the test operator to check correctness: if the candidate doesn’t pass, it routes the solution to a
self_refine operator for further improvement.

Learning Curves. Fig. 4b compares the training curve and testing curve of the highest performance
found between JUDGEFLOW and AFlow. JUDGEFLOW exhibits clear performance gains within the
first five optimization iterations, with both the training and testing curves showing rapid improvements.
Beyond this early stage, JUDGEFLOW continues to achieve gains, ultimately converging to higher
accuracy. In contrast, AFlow remains stagnant across most iterations and only shows noticeable
improvements in the later stage, and its final training and testing performance remain consistently
lower than those of JUDGEFLOW.
Impact of LLMs. According to Table 2, we keep
gpt-4o-mini-0718 fixed as the executor LLM, while
varying the optimization and Judge models. Par-
ticularly, we consider gpt-4o (OpenAI, 2024a) and
Gemini-2.5-flash (Google-Cloud, 2025) as alterna-
tives for these roles and report the resulting performance.
The experiment confirms that increasing the capacity of
optimization and Judge models consistently improves
performance. While all models yield competitive re-
sults, GPT-4o attains the best score 84.5.

Table 2: Testing performance using different
LLMs on MBPP dataset.

Models Score

GPT-4o-mini 83.8
GPT-4o 84.5
Gemini-2.5-flash 84.4

Optimization Efficiency. We perform an ablation
study on different key components of JUDGEFLOW.
As shown in Table 3, removing the logic block ab-
straction or the judge module leads to consistent perfor-
mance drops, confirming the importance of both design
choices.

Table 3: Ablation results on MBPP.

Method Score

JUDGEFLOW 83.8
- Logic Block 81.8

- Judge 80.6

8
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4.4 CASE STUDY

To illustrate how JUDGEFLOW works in practice, we present a case study of workflow optimization
on the GSM8K dataset. This example demonstrates how JUDGEFLOW automatically identifies and
rectifies a suboptimal workflow through the pipeline, as shown in Fig. 5. The initial workflow consists
of two logic blocks: b1, a seq block consisting of one multi_generate_ensemble operator designed
to generate and ensemble multiple candidate solutions (with num_solutions set to 3), and b2, a seq
block consisting of one programmer operator, which takes the output from the previous block and
generates the final answer using programming. When processing a batch of GSM8K instances, this
workflow failed multiple times, triggering the Evaluation-Judge stage. The Judge module analyzed
execution traces of these failures and assigned rank-based responsibility scores to each block. For
example, in one failed run, it output {"b2": 1, "b1": 2}, attributing the primary blame to b2, while
in another it output {"b1": 1, "b2": 2}, assigning higher responsibility to b1. By aggregating these
rank-based scores across failures, the system identified b1 as the OverallWorst block, indicating that
low-quality initial solutions from b1 were the main bottleneck, making it difficult for the workflow to
generate correct final answers.

In the Optimization-Update stage, the LLM-based Optimizer received this diagnostic signal and
selected the Add Block action. It introduced a new logic block, b3, of type seq, with operator
self_refine, which iteratively improves candidate solutions. This block was inserted between b1
and b2, producing the new workflow ["b1", "b3", "b2"]. The updated workflow first generates
multiple ideas with b1, then refines them with b3, and finally produces the polished answer through
b2. This case study highlights the strength of JUDGEFLOW: instead of relying solely on end-to-end
success signals, it leverages block-level diagnostics from the Judge to perform precise error attribution,
enabling workflow modifications that directly address weaknesses. As a result, JUDGEFLOW avoids
blind search, achieves more efficient optimization, and substantially improves performance.

"operators": {
    "multi_generate_ensemble": {
        "type": "multi_generate_ensemble"
    },
    "programmer": {
        "type": "programmer"
    },
    "multi_generate_ensemble_v2": {
        "type": "multi_generate_ensemble",
        "num_solutions": 3
    },
    "self_refine": {
            "type": "self_refine"
    }}

+
+
+

+
+
+

+
-

LLM
Data

"blocks": [
    {   "name": "b1",
        "type": "seq",
        "operators": ["multi_generate_ensemble_v2"]
    },
    {   "name": "b2",
        "type": "seq",
        "operators": ["programmer"]
    },
    {   "name": "b3",
        "type": "seq",
        "operators": ["self_refine"]
    }],
"workflow": ["b1", "b2"]}
"workflow": ["b1", "b3", "b2"]

..#
{“b1”: 2, “b2”: 1}

{“b1”: 1, “b2”: 2}
..# ..#

ba

Figure 5: The illustration of the case study in the GSM8K dataset.

5 CONCLUSION

In this paper, we presented a novel Evaluation-Judge-Optimization-Update pipeline named JUDGE-
FLOW for automating the optimization of agentic workflows. By introducing reusable logic blocks as
higher-level structural abstractions, JUDGEFLOW achieves a balance between the expressive flexibility
of code-based workflows and the tractability of optimization. On top of this representation, the Judge
module provides block-level diagnostic signals by analyzing execution traces and assigning respon-
sibility to problematic block, enabling more interpretable and fine-grained optimization. Through
extensive experiments on mathematical reasoning and code generation benchmarks, we demonstrate
that JUDGEFLOW consistently outperforms strong baselines. While achieving success in optimizing
agentic workflows, LLM-as-a-Judge can be biased and may provide misleading responsibility scores.
Future work may include exploring more robust Judge for agentic systems optimization, such as
statistical signals or other validation methods.
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REPRODUCIBILITY STATEMENT

To enable the independent reproducibility of our results, we provide complete access to our im-
plementation. The source code is available at https://anonymous.4open.science/r/JudgeFlow.
Detailed descriptions of the framework, models, and experimental settings are provided in the main
paper and its appendix.
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A OPERATORS

Following Zhang et al. (2025b), Zhang et al. (2025a) and Zheng et al. (2025), we adopt the following
set of operators:

1. generate, a generation operator that produces candidate solutions based on the problem
description and optional previous results.

2. test, a testing operator that executes generated solutions against test cases and provides
feedback for refinement.

3. self_refine, a refinement operator that improves a given solution through self-refinement.
4. multi_generate_ensemble, an ensemble operator that generates multiple solutions and

combine them to the best one via self-consistency.
5. programmer, a synthesis-and-execution operator that generates Python code for solving

math problems, runs it in a restricted environment, and iteratively repairs errors.

B LOGIC BLOCKS

We implement three common logic types in code-represented workflows: SequenceLogic (seq),
LoopLogic (for), and ConditionalLogic (cond), whose descriptions and interfaces are listed below.

Logic Blocks

{
"SequenceLogic": {

"type": "seq",
"description": "Execute operators strictly in order. Required

fields: name (string), type (must be 'seq '), operators (
array of operator aliases). No optional fields. Use this
for linear processing flows where you need sequential
execution of operators.",

"structure": {
"name": "block_name",
"type": "seq",
"operators": ["operator"]

},
"input_flow": "block_input -> op1 -> op2 -> ... ->

block_output"
},
"LoopLogic": {

"type": "for",
"description": "Iteratively execute a sequence of operators

until the optional asynchronous condition returns False or
the max iteration limit is reached. Required fields: name
(string), type (must be 'for '), operators (array of

operator aliases). Optional fields: max_iterations (
integer, default 3), condition (object with 'field ' and '
equals ' properties, or null for no condition). Use this
for retry mechanisms and iterative refinement.",

"structure": {
"name": "block_name",
"type": "for",
"operators": ["operator"],
"max_iterations": num_iterations,
"condition": {

"field": "field_name",
"equals":

}
},
"input_flow": "block_input -> repeat [op1 -> op2 -> ...] until

stop -> block_output"
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},
"ConditionalLogic": {

"type": "cond",
"description": "Run a dedicated condition operator first, then

choose the success or failure branch based on the field
specified by 'condition_field '. The chosen branch runs
sequentially with the same data -passing semantics as
SequenceLogic. Required fields: name (string), type (must
be 'cond '), condition_operator (string, operator alias to
evaluate condition), success_operators (array of operator
aliases for success path), failure_operators (array of
operator aliases for failure path). Optional fields:
condition_field (string, field name to check for condition
result, default 'result '). The condition operator

evaluates criteria and sets a result field, which
determines whether to execute success_operators or
failure_operators. Use this for branching logic and
conditional processing. ",

"structure": {
"name": "block_name",
"type": "cond",
"condition_operator": "condition_operator",
"success_operators": ["success_op"],
"failure_operators": ["failure_op"],
"condition_field": "field_name"

},
"input_flow": "block_input -> condition operator -> select

branch -> branch sequence -> block_output"
}

}

C JUDGE PROMPT

Judge Prompt

You are a workflow failure analyst. Given execution evidence from a block-based AI
workflow that produced an incorrect answer, determine which logic block is
causally responsible for the failure.

↪→
↪→

# Knowledge Base
## Logic block types
{logic_block_descriptions_text}

## Operator types
{operator_descriptions_text}

# Responsibility Principles:
- Consider blocks that **actually make mistakes** over blocks that only perform

**redundant** work.↪→
- Our goal is to identify the weakest block in this workflow, so that in later

optimization we can focus on improving this weakest block.↪→
- You will be given: the **problem**, the **correct answer**, the **incorrect

answer**, the **workflow execution trace**, and **each block’s inputs/outputs**
in a **sequential** pipeline. Ground your judgment in this evidence:

↪→
↪→

- For each block *i*, compare its **output vs. input**, and **output vs. the
correct answer** to locate where the **first critical deviation** was
introduced, how later blocks **propagated/amplified** it, and whether any
block **had enough information to correct** it but failed to do so.

↪→
↪→
↪→
- Do **not** overweight temporal order:
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- **Earlier** blocks bear more responsibility for **introducing** the critical
error.↪→

- **Later** blocks bear responsibility for **failing to correct** earlier errors
**given the available context**.↪→

- If two blocks seem equally responsible, apply **counterfactual** reasoning: *If
this block were correct, would the final answer be correct?*↪→

- You may form a brief **internal** natural-language reason (e.g., “this block
generated incorrect code”) to aid the decision, but the **output must be JSON
only**.

↪→
↪→

D OPTIMIZATION PROMPT

System Prompt

You are an expert workflow optimization assistant specializing in Logic Block-based
AI workflows for the {{dataset}} dataset.↪→

IMPORTANT: Focus exclusively on optimizing the low-performing logic block to improve
code generation quality and overall workflow performance.↪→

IMPORTANT: You have exactly one optimization attempt. Reason carefully and aim to
improve performance across the entire dataset.↪→

# Task Overview

You will be provided with:
1. Error examples showing: problem, correct answer, workflow's wrong answer, and the

low-performing block's output↪→
2. Current workflow definition
3. Performance analysis results

Your objective: Optimize the identified low-performing logic block using the error
examples as guidance while avoiding overfitting.↪→

# Logic Block Types and Detailed Semantics
{logic_blocks_section}

# Available Operators
{operators_section}

# Critical Instructions for Operator Usage

**INSTRUCTION Field is Crucial**:
- The `instruction` field is extremely important for operator performance and

directly impacts final output quality↪→
- Instructions should clearly guide the operator on how to process input and produce

expected output↪→
- For code generation tasks, instructions need to include specific programming

requirements, output format, and quality standards↪→
- For mathematical reasoning tasks, instructions need to include specific

problem-solving approaches, step-by-step reasoning requirements, and output
format standards

↪→
↪→

# Optimization Strategies

Choose exactly one strategy:

## 1. Add Block Strategy
- Create a completely new logic block with its own name (e.g., "b2", "b3")
- Insert the new block immediately before or after the low-performing block
- Select appropriate block type (seq/for/cond) that complements the low-performing

block↪→
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- Populate all required parameters (instructions, iteration limits, condition
fields, etc.)↪→

- Run internal counterfactual reasoning but do not output explorations

Example: `"workflow": ["b1", "b2"] ("b2" performs worst) → "workflow": ["b1", "b2",
"b3"]`↪→

## 2. Remove Block Strategy
- Completely delete the low-performing block when it adds noise or harms outcomes
- Internally evaluate workflow behavior without that block
- Update workflow sequence and remove unused operators

Example: `"workflow": ["b1", "b2"] ("b1" performs worst) → "workflow": ["b2"]`

## 3. Modify Block Strategy
- Rework the existing low-performing block without introducing new blocks
- Examine block's logic type, operator choices, and parameterization
- Update operators, ordering, and configuration for stronger reasoning
- Focus solely on refining the current block

# Critical Constraints

CRITICAL: Maximum 3 blocks per workflow - DO NOT EXCEED this limit
CRITICAL: Create NEW BLOCK with different name when adding
IMPORTANT: Focus on the low-performing block identified in the analysis
IMPORTANT: Maintain compatibility with other blocks in the workflow
IMPORTANT: Each block should have a clear, distinct purpose

# Prohibited Actions

- NEVER reproduce workflow configurations matching provided history
- MUST NOT repeat, reuse, or recycle any optimization from Previous Optimization

Analysis↪→
- All workflows in previous optimization analysis are explicitly banned
- Run internal "novelty check" to confirm at least two structural differences from

banned workflows↪→

# Output Requirements

- Apply exactly one modification strategy (Add/Remove/Modify)
- Focus only on the identified low-performing logic block
- Output clean JSON without comments or explanations
- Ensure JSON is fully parseable and syntactically correct
- Avoid overfitting to provided error examples

User Prompt

## Dataset
<dataset>{dataset}</dataset>

## Current Workflow Performance
Current workflow score: <score>{score}</score>

Low-performing logic block identified:
<low_performing_blocks>{low_performing_blocks}</low_performing_blocks>

## Current Workflow Definition
```json
<previous_code>{previous_code}</previous_code>
```
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## Error Analysis
Error examples show:
- **Problem**: Original code generation task/question
- **Correct Answer**: Expected output
- **Workflow Wrong Answer**: Current workflow output
- **Low-performing Block Output**: Problematic block's specific output

## Previous Optimization History
STRICTLY PROHIBITED: Do not repeat or reuse any optimization results below.
<reflection_result>{reflection_result}</reflection_result>

IMPORTANT: All workflows above and current definition are disallowed baselines.

# Optimization Task

Analyze the low-performing logic block and improve its output quality.

## Core Optimization Objective
**Your optimization purpose is to modify the weakest block:**
- Deeply analyze why this weak block led to the final incorrect answer
- Understand the block's role and impact within the entire workflow
- Identify the specific failure patterns and root causes of this block
- Your chosen action (Add/Modify/Remove) should be aimed at solving the current

problems↪→

## Key Focus Areas
- Low-performing block is your primary optimization target
- Use error cases to understand failure patterns
- Improve block's reasoning or processing capability
- Evaluate block type appropriateness (seq/for/cond)
- Assess operator suitability and configuration
- **Pay special attention to the quality and detail of instruction fields**

## Strategy Guidelines
Current workflow has

<workflow_block_count>{workflow_block_count}</workflow_block_count> block(s).↪→

## Error Examples
Use these to understand failures, but avoid overfitting:
<error_cases_section>{error_cases_section}</error_cases_section>

# Final Instruction
Generate the optimized JSON workflow definition:

E USE OF LARGE LANGUAGE MODELS

LLMs played a crucial role in our paper, as we utilized them for workflow optimization. Outside
of this usage, we have used LLMs as writing assistants for improving clarity, style, and grammar
and as coding assistants. Notably, the core research contributions—among which the design of
the framework and validation of results—were conceived and verified exclusively by the authors.
All outputs from LLMs were critically assessed, refined, and integrated to ensure correctness and
adherence to academic standards.
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