
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VECTOR QUANTIZATION BY DISTRIBUTION MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

The success of autoregressive models largely depends on the effectiveness of vector
quantization, a technique that compresses and discretizes continuous features by
mapping them to the nearest code vectors within a learnable codebook. Two critical
issues in existing vector quantization methods are training instability and codebook
collapse. Training instability arises from the gradient gap during both forward and
backward gradient propagation, especially in the presence of significant quanti-
zation errors, while codebook collapse occurs when only a small subset of code
vectors are utilized during training. A closer examination of these issues reveals
that they are primarily driven by a mismatch between the distributions of the fea-
tures and code vectors, leading to unrepresentative code vectors and significant data
information loss during compression. To address this, we employ the Wasserstein
distance to align these two distributions, achieving near 100% codebook utilization
and significantly reducing the quantization error. Both empirical and theoretical
analyses validate the effectiveness of the proposed approach.

1 INTRODUCTION

Autoregressive models have experienced a resurgence in visual generative models (Razavi et al., 2019;
Esser et al., 2021; Chang et al., 2022; Lee et al., 2022; Tian et al., 2024). This revival is marked by
the superior quality of images generated through autoregressive methods, which have now surpassed
those produced by diffusion-based approaches (Ho et al., 2020; Rombach et al., 2022; Sun et al.,
2024; Tian et al., 2024; Ma et al., 2024). The success of autoregressive visual generative models
hinges on the effectiveness of vector quantization (VQ) (van den Oord et al., 2017), a technique that
compresses and discretizes continuous features by mapping them to the nearest code vectors within a
learnable codebook. However, VQ continues to face two major challenges: training instability and
codebook collapse.

Distributional Mismatch Distributional Match

Figure 1: The symbols · and × represent the
feature and code vectors, respectively. The left
figure illustrates the distributional mismatch
between the feature and code vectors, while
the right figure visualizes their distributional
match.

The first issue arises from the non-differentiability of
VQ, which prevents direct gradient backpropagation
from quantized features to their continuous counterparts
(see more in Section 2.1), thereby hindering model opti-
mization. VQ-VAE (van den Oord et al., 2017) addresses
this challenge using a straightforward approach by em-
ploying the straight-through estimator, which allows
gradients to be copied from quantized to continuous
features. However, this method introduces a significant
gradient gap in both forward and backward gradient
propagation, particularly in the presence of large quan-
tization errors, leading to unstable training (Lee et al.,
2022; Zhu et al., 2024a).

The latter issue occurs when only a small subset of code vectors are updated during optimization,
leaving the majority unused and unoptimized (Zheng & Vedaldi, 2023). Although various methods
have been proposed to tackle this issue, they often fail to fully leverage the expressive capacity
of the codebook due to low utilization of code vectors, particularly when the codebook size is
large (Dhariwal et al., 2020; Takida et al., 2022; Yu et al., 2022; Lee et al., 2022; Zheng & Vedaldi,
2023). Consequently, the effectiveness of VQ is markedly compromised.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this paper, we examine these issues by investigating the distributions of the features and code
vectors. To illustrate the idea, Figure 1 presents two extreme scenarios: the left panel depicts a
significant mismatch between the two distributions, while the right panel shows a match. In the left
panel, all features are mapped to a single codeword, resulting in large quantization errors and minimal
codebook utilization. In contrast, the right panel demonstrates that a distributional match leads to
negligible quantization error and near 100% codebook utilization. This suggests aligning these two
distributions in VQ could potentially address the issues of training instability and codebook collapse.

Contributions To investigate the idea above, we first introduce three principled criteria that a VQ
method should optimize. Guided by this criterion triple, we conduct qualitative and quantitative
analyses, demonstrating that aligning the distributions of the feature and code vectors results in near
100% codebook utilization and minimal quantization error. Additionally, our theoretical analysis
underscores the importance of distribution matching for vector quantization. To achieve this alignment,
we employ the quadratic Wasserstein distance which has a closed-form representation under a
Gaussian hypothesis. Our approach effectively mitigates both training instability and codebook
collapse, thereby enhancing image reconstruction performance in visual generative tasks.

2 UNDERSTANDING DISTRIBUTION MATCHING

This section introduces a novel distributional perspective for VQ and investigates the effects of
distribution matching. We begin with an overview of VQ and then identify three principled criteria.
Utilizing this criterion triple, we conduct qualitative and quantitative analyses. Our empirical
findings demonstrate that distribution matching yields the optimal criterion triple, a conclusion further
supported by our theoretical analysis.

2.1 AN OVERVIEW OF VECTOR QUANTIZATION

The seminar work PixelCNN (van den Oord et al., 2016) achieved autoregressive visual generation
by treating image pixels as sequential tokens. However, this approach involves long token sequences,
resulting in significant time and computational costs, particularly during the sequential generation
of pixels. To reduce these expenses, VQ (van den Oord et al., 2017) was introduced. VQ alleviates
these costs by learning image tokens in much shorter sequences within the latent space.

Vector Quantizer DecoderEncoder

x x̂
3 8 9 1

4 0 5 6

1 3 7 8

4 7 0 2

Forward

Backward

Quantization

Figure 2: An illustration of VQ.

Figure 2 illustrates the classic VQ pro-
cess (van den Oord et al., 2017), which con-
sists of an encoder E(·), a decoder D(·),
and an updatable codebook {ek}Kk=1 ∈
RK×d containing a finite set of code vec-
tors. Here, K represents the size of the
codebook, and d denotes the dimension of
the code vectors. Given an image x ∈
RH×W×3, the goal is to derive a spatial
collection of codeword IDs r ∈ Nh×was
image tokens. This is achieved by passing
the image through the encoder to obtain ze = E(x) ∈ Rh×w×d, followed by a spatial-wise quantizer
Q(·) that maps each spatial feature zij

e to its nearest code vector ek:

rij = argmin
k

∥zij
e − ek∥22. (1)

These tokens are used to retrieve the codebook entries zij
q = Q(zij

e) = erij , which then pass through
the decoder to reconstruct the image as x̂ = D(zq). VQ significantly reduces sequence length during
image tokenization, since h× w (the token length) is much smaller than H ×W . However, despite
its success in high-fidelity image synthesis (van den Oord et al., 2017; Razavi et al., 2019; Esser et al.,
2021), VQ faces two key challenges: training instability and codebook collapse.

Training Instability This issue occurs because during backpropagation, the gradient of zq cannot
flow directly to ze due to the non-differentiable function Q. To optimize the encoder’s network
parameters through backpropagation, VQ-VAE (van den Oord et al., 2017) employs the straight-
through estimator (STE) (Bengio et al., 2013), which copies gradients directly from zq to ze. However,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

this approach carries significant risks—especially when zq and ze are far apart. In these cases, the
gradient gap between the representations can grow substantially, destabilizing the training process.

To address this instability, RQ-VAE (Lee et al., 2022) introduces residual quantization to minimize
the distance between zq and ze, thereby reducing the gradient gap. VAR (Tian et al., 2024) builds on
this approach by implementing residual quantization from a multi-scale perspective. In this paper, we
tackle the training instability challenge from a distributional viewpoint.

Codebook Collapse Codebook collapse occurs when only a small subset of code vectors receives
optimization-useful gradients, while most remain unrepresentative and unupdated (Dhariwal et al.,
2020; Takida et al., 2022; Yu et al., 2022; Lee et al., 2022; Zheng & Vedaldi, 2023). Researchers
have proposed various solutions to this problem, such as improved codebook initialization (Zhu et al.,
2024a), reinitialization strategies (Dhariwal et al., 2020; Williams et al., 2020), and classical clustering
algorithms like k-means (Bradley & Fayyad, 1998) and k-means++(Arthur & Vassilvitskii, 2007) for
codebook optimization (Razavi et al., 2019; Zheng & Vedaldi, 2023). Beyond these deterministic
approaches that select the best-matching token, researchers have also explored stochastic quantization
strategies (Zhang et al., 2023; Ramesh et al., 2021; Takida et al., 2022).

However, these methods still fail to fully utilize the codebook’s expressive power due to low utilization
rates, particularly with large codebook sizes K (Zheng & Vedaldi, 2023; Mentzer et al., 2024). In
this paper, we address this limitation by implementing distribution matching between feature vectors
and code vectors.

2.2 EVALUATION CRITERIA

We assume that all continuous feature vectors1 zi follow a distribution PA, while all code vectors ek
follow a distribution PB

2. We aim to determine the optimal codebook distribution PB for a given
feature distribution PA. Our optimality criteria are based on three key aspects of VQ: quantization
error, codebook utilization, and codebook perplexity.

Given a set of feature vectors {zi}Ni=1 and code vectors {ek}Kk=1, vector quantization involves finding
the nearest, and thus most representative, code vector for each feature vector:

z′
i = argmin

e∈{ek}
∥zi − e∥.

The original feature vector zi is then quantized to z′
i. Below, we introduce three key criteria to

evaluate this process.
Criterion 1 (Quantization Error). The quantization error measures the average distortion introduced
by VQ and is defined as

E({ek}; {zi}) =
1

N

∑
i

∥zi − z′
i∥2.

A smaller E signifies a more accurate quantization of the original feature vectors, resulting in a
smaller gradient gap between zi and z′

i. Consequently, a small value of E suggests that the issue of
training instability can be effectively mitigated.
Criterion 2 (Codebook Utilization Rate). The codebook utilization rate measures the proportion of
code vectors used in VQ and is defined as

U({ek}; {zi}) =
1

N

N∑
i=1

1(ek = z′
i for some i).

A higher value of U reduces the risk of codebook collapse. Ideally, U should reach 100%, indicating
that all code vectors are actively utilized. As discussed in Appendix H.1, U can only measure the
completeness of codebook utilization; it does not suffice to evaluate the degree of codebook collapse.
This motivates us to introduce the codebook perplexity criterion.

1For simplicity. the spatial feature, denoted as zij
e in Section 2.1, is written as zi in Section 2.2.

2For clarity in notation, we use “codebook distribution” to refer to the code vector distribution and “feature
distribution” to refer to the feature vector distribution.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) (1.19, 2%, 3.8) (b) (0.70, 20.8%, 16.5) (c) (0.26, 57.8%, 96.9) (d) (0.05, 100%, 344.9)

(e) (0.36, 93.3%, 63.2) (f) (0.10, 99.8%, 250.5) (g) (0.07, 61.3%, 199.7) (h) (0.08, 45.3%, 151.5)

Figure 3: Qualitative analyses of the criterion triple (E ,U , C): The red and green disks represent the uniform
distributions of feature vectors and code vectors, respectively.

Criterion 3 (Codebook Perplexity). The codebook perplexity measures the uniformity of codebook
utilization in VQ and is defined as

C({ek}; {zi}) = exp(−
K∑

k=1

pk log pk), pk := pk(ek; {zi}) =
1

N

N∑
i=1

1(z′
i = ek).

A higher value of C indicates that code vectors are more uniformly selected in the VQ process. Ideally,
C reaches its maximum at C0 = exp(−

∑K
k=1

1
K log 1

K) when code vectors are completely uniformly
utilized. Therefore, as a complementary measure to Criterion 2, the combination of U and C can
effectively evaluate the degree of codebook collapse.

We refer to (E ,U , C) as the criterion triple. When comparing extreme cases of distributional match
and mismatch shown in Figure 1, we find that distributional matching significantly outperforms
mismatching across all three criteria. Using this criterion triple, we present detailed analyses that
demonstrate the advantages of distribution matching.

2.3 THE EFFECTS OF DISTRIBUTION MATCHING

A Prototypical Study We begin by conducting a simple synthetic experiment to provide intuitive
insights3. Specifically, we assume that the distributions PA and PB are uniform distributions confined
within two distinct disks, as depicted in Figure 3. We then sample a set of feature vectors {zi}Ni=1

uniformly from the red disk, and a set of code vectors {ek}Kk=1 uniformly from the green circle. The
criterion triple (E ,U , C) is then calculated based on the definitions in Criteria 1 to 3.

We examine two cases. The first involves two disks with identical radii but different centers. As
shown in Figures 3(a) to 3(d), when the centers of the disks move closer together, aligning the two
distributions, the criterion triple improves toward optimal values. Specifically, E decreases from 1.19
to 0.05, U rises from 2% to 100%, and C increases from 3.8 to 344.9.

The second case shows two distributions with identical centers but different radii. When the codebook
distribution’s support lies within the feature distribution’s support (as shown in Figures 3(e) and 3(f)),
it results in a notably larger E , slightly lower U , and significantly smaller C compared to the aligned
distributions shown in Figure 3(d). Conversely, when the codebook distribution’s support extends
beyond the feature distribution’s support, E shows a modest increase while both U and C decrease
significantly, as illustrated in Figures 3(g) and 3(h). We provide detailed explanations of these
experimental findings in Appendix H.2.

More Quantitative Analyses To further elucidate the benefits of the distributional matching, we
conduct more quantitative analyses centered around the criterion triple (E ,U , C). We begin by
assuming that the distributions PA and PB are Gaussian4. We generate a set of feature vectors

3The experimental details for all analyses in Section 2.3 are provided in Appendix E.1.
4Alternative distribution choices, such as the uniform distribution discussed in Appendix C, are also possible

for PA and PB .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5
0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(a) E w.r.t. K

0.0 0.5 1.0 1.5 2.0 2.5
5

3

1

1

3

5

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(b) E w.r.t. d

0.0 0.5 1.0 1.5 2.0 2.5
0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(c) E w.r.t. N

1 2 3 4 5 6
0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(d) E w.r.t. K

1 2 3 4 5 6
5

3

1

1

3

5

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(e) E w.r.t. d

1 2 3 4 5 6
0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(f) E w.r.t. N

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(g) U w.r.t. K

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(h) U w.r.t. d

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(i) U w.r.t. N

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(j) U w.r.t. K

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(k) U w.r.t. d

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(l) U w.r.t. N

0.0 0.5 1.0 1.5 2.0 2.5
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(m) C w.r.t. K

0.0 0.5 1.0 1.5 2.0 2.5
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(n) C w.r.t. d

0.0 0.5 1.0 1.5 2.0 2.5
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(o) C w.r.t. N

1 2 3 4 5 6
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(p) C w.r.t. K

1 2 3 4 5 6
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(q) C w.r.t. d

1 2 3 4 5 6
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(r) C w.r.t. N

Figure 4: Quantitative analyses of the criterion triple when PA and PB are Gaussian distributions.

{zi}Ni=1 from N (0m, Im) and a set of code vectors {ek}Kk=1 from N (µ · 1m, Im)5, with µ varying
within {0.0, 0.5, 1.0, 1.5, 2.0, 2.5}. The criterion triple results are presented in Figures 4(a) to 4(c),
Figures 4(g) to 4(i), and Figures 4(m) to 4(o). Across all tested configurations of K, d,N , we
consistently observe that when µ = 0 — indicating identical distributions between PA and PB —
the criterion triple achieves the lowest E , highest U , and largest C. This empirical evidence reinforces
the effectiveness of aligning feature and codebook distributions in VQ.

Additionally, we conduct experiments to investigate the criterion triple by varying the covariance
matrix. We sample a set of feature vectors {zi}Ni=1 from the distribution N (0, Im) and a correspond-
ing set of code vectors {ek}Kk=1 from N (0, σ2Im), where σ is selected from {1, 2, 3, 4, 5, 6}. The
results for the criterion triple are shown in Figures 4(d) to 4(f), Figures 4(j) to 4(l), and Figures 4(p)
to 4(r). When σ = 1, indicating identical distributions between PA and PB , all three evaluation
criteria reach their optimal values: the lowest E , highest U , and largest C across all tested values of
K, d,N . This result corroborates our earlier findings.

2.4 THEORETICAL ANALYSES

In this section, we provide theoretical evidence to support our empirical observations. Let the code
vectors {ek}Kk=1 and feature vectors {zi}Ni=1 be independently and identically drawn from PB and
PA, respectively. We say a codebook {ek}Kk=1 attains full utilization asymptotically with respect
to {zi}Ni=1 if the codebook utilization rate U({ek}Kk=1; {zi}Ni=1) tends to 1 in probability as N
approaches infinity:

U({ek}Kk=1; {zk}Ni=1)
p→ 1, as N → ∞.

For the codebook distribution PB , we say it attains full utilization asymptotically with respect
to PA if, with probability 1, the randomly generated codebook {ek}Kk=1 achieves full utilization
asymptotically.

Additionally, a codebook distribution PB is said to have vanishing quantization error asymptotically
with respect to a domain Ω ⊆ Rd if the quantization error over all data of size N tends to zero in
probability as K approaches infinity:

sup
{zi}⊆Ω

E({ek}Kk=1; {zi}Ni=1)
p→ 0, as K → ∞. (2)

Our first theorem shows that supp(PA) = supp(PB) is sufficient and necessary for the codebook
distribution PB to attain both full utilization and vanishing quantization error asymptotically. For
simplicity, PA is assumed to have a density function fA with bounded support Ω ⊆ Rd.

51m represents the vector of all ones.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 1. Assume Ω = supp(PA) is a bounded open area. The codebook distribution PB attains
full utilization and vanishing quantization error asymptotically if and only if supp(PB) = supp(PA),
where S denotes the closure of the set S.

Theorem 1 establishes the optimal support of the codebook distribution. The boundedness of Ω is
required as we consider the worst case quantization error in equation 2. In real applications, when
PA follows an absolutely continuous distribution over an unbounded domain, then {zi}Ni=1 generated
from PA will be bounded with high probability. Thus, Theorem 1 also provides theoretical insights
for a target distribution PA with an unbounded domain.

Besides the optimal support, we also determine the optimal density of the codebook distribution
by invoking existing results characterizing asymptotic optimal quantizers (Graf & Luschgy, 2000).
Specifically, we consider the case where N approaches to infinity and define the expected quantization
error of a codebook {ek} with respect to PA as

E({ek}Kk=1;PA) = Ez∼PA
min

e∈{ek}
∥z − e∥2.

A codebook {e∗k}Kk=1 is called the set of optimal centers for PA if it achieves the minimal quantization
error:

E({e∗k}Kk=1;PA) = min
{ek}K

k=1

E({ek}Kk=1;PA).

Theorem 2 demonstrates that, under weak regularity conditions, the empirical measure of the optimal
centers for PA converges in distribution to a fixed distribution determined by PA. Notably, we do not
assume a bounded domain in the following theorem.

Theorem 2 (Theorem 7.5, Graf & Luschgy (2000)). Suppose Z ∼ PA is absolutely continuous with
respect to the Lesbegue measure in Rd and E∥Z∥2+δ < ∞ for some δ > 0. Then the empirical
measure of the optimal centers for PA,

1

K

K∑
k=1

δe∗
k
,

converges weakly to a fixed distribution P∗
A, whose density function f∗

A is proportional to f
d/(d+2)
A .

Theorem 2 implies that PB = P∗
A is the optimal codebook distribution in the asymptotic regime as

K approaches infinity. In high-dimensional spaces with large d, this optimal distribution PB = P∗
A

closely approximates PA. This further motivates us to align the codebook distribution PB with the
feature distribution PA.

3 DISTRIBUTION MATCHING VIA WASSERSTEIN DISTANCE

In this section, we propose using the quadratic Wasserstein distance to achieve a distributional match
between PA and PB .

3.1 WASSERSTEIN DISTANCE

We assume a Gaussian hypothesis for the distributions of both the feature and code vectors. For
computational efficiency, we employ the quadratic Wasserstein distance, as defined in Appendix B,
to align these two distributions. Although other statistical distances, such as the Kullback-Leibler
divergence (Kingma & Welling, 2014; Ho et al., 2020), are viable alternatives, they lack simple closed-
form representations, making them computationally expensive. The following lemma provides the
closed-form representation for the quadratic Wasserstein distance between two Gaussian distributions.

Lemma 3 ((Olkin & Pukelsheim, 1982)). The quadratic Wasserstein distance between N (µ1,Σ1)
and N (µ2,Σ2) is √

∥µ1 − µ2∥2 + tr(Σ1) + tr(Σ2)− 2 tr((Σ
1
2
1 Σ2Σ

1
2
1)

1
2). (3)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 4 8 12 16 20
Training Steps (x100)

0

1

2

3

4

5

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

) Wasserstein VQ
VQ EMA
Online Clustering
Vanilla VQ
VQ + Linear (= 2)
VQ + Linear (= 5)

(a) E w.r.t. Steps

0 4 8 12 16 20
Training Steps (x100)

0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

) Wasserstein VQ
VQ EMA
Online Clustering
Vanilla VQ
VQ + Linear (= 2)
VQ + Linear (= 5)

(b) U w.r.t. Steps

0 4 8 12 16 20
Training Steps (x100)

2

4

6

8

10

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

)

Wasserstein VQ
VQ EMA
Online Clustering
Vanilla VQ
VQ + Linear (= 2)
VQ + Linear (= 5)

(c) C w.r.t. Steps

0 4 8 12 16 20
Training Steps (x100)

0

5

10

15

20

25

W
as

se
rs

te
in

 D
is

ta
nc

e
(

) Wasserstein VQ
VQ EMA
Online Clustering
Vanilla VQ
VQ + Linear (= 2)
VQ + Linear (= 5)

(d) LW w.r.t. Steps

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

2.5

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

) Wasserstein VQ
VQ EMA
Online Clustering
Vanilla VQ
VQ + Linear

(e) E w.r.t. µ

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

) Wasserstein VQ
VQ EMA
Online Clustering
Vanilla VQ
VQ + Linear

(f) U w.r.t. µ

0 2 4 6 8
0

2

4

6

8

10

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

)

Wasserstein VQ
VQ EMA
Online Clustering
Vanilla VQ
VQ + Linear

(g) C w.r.t. µ

0 2 4 6 8
0

10

20

30

40

W
as

se
rs

te
in

 D
is

ta
nc

e
(

) Wasserstein VQ
VQ EMA
Online Clustering
Vanilla VQ
VQ + Linear

(h) LW w.r.t. µ

Figure 5: The performance metrics (E ,U , C) for various VQ approaches.

The lemma above indicates that the quadratic Wasserstein distance can be easily computed using
the population means and covariance matrices. In practice, we estimate these population quantities,
µ1, µ2, Σ1, andΣ2, with their sample counterparts: µ̂1, µ̂2, Σ̂1, andΣ̂2. The empirical quadratic
Wasserstein distance is then used as the optimization objective to align the distributions of the feature
and code vectors:

LW =

√
∥µ̂1 − µ̂2∥2 + tr(Σ̂1) + tr(Σ̂2)− 2 tr((Σ̂

1
2
1 Σ̂2Σ̂

1
2
1)

1
2). (4)

A smaller value of LW indicates stronger alignment between the feature distribution PA and the
codeword distribution PB . We refer to the VQ algorithm that employs LW as Wasserstein VQ.

3.2 ADVANTAGES OVER OTHER VQ METHODS

In this section, we compare our proposed Wasserstein VQ with other VQ algorithms in a simple,
atomic experimental setting while examining existing VQ methods from a distributional matching
perspective. Specifically, we fix the feature distributions for all VQ methods to the same Gaussian
distributions by sampling feature vectors zi ∼ N (µ · 1m, Im). While feature distributions are
typically complex and dynamic in practical training scenarios, this simplified setting still yields
valuable insights. We also initialize the codebook distribution as the standard Gaussian distribution
across all VQ methods by generating a set of code vectors {ek}Kk=1 ∼ N (0, Im).

Our baseline includes Vanilla VQ (van den Oord et al., 2017), VQ EMA (which uses exponen-
tial moving average updates and is also known as k-means in VQ-VAE-2) (Razavi et al., 2019),
Online Clustering (which employs k-means++ in CVQ-VAE) (Zheng & Vedaldi, 2023), and
VQ+Linear (which incorporates a linear layer projection for code vectors) (Zhu et al., 2024a;b). In
all VQ algorithms, we treat sampled code vectors as trainable parameters and optimize them using
these algorithms. For detailed experimental specifications, see Appendix E.3.

As illustrated in Figure 5, we evaluate five distinct VQ methods using the criterion triple (E ,U , C). In
Figures 5(a)-5(d), we set µ = 2 except VQ+Linear. Our results show that Vanilla VQ, VQ EMA,
and Online Clustering exhibit poor VQ performance and substantial Wasserstein distance.
This suggests that Vanilla VQ and methods based on k-means and k-means++ are ineffective VQ
strategies, since they fail to align the distributions of features and codebooks.

Conversely, VQ+Linear achieves both superior VQ performance and a significantly reduced Wasser-
stein distance, approaching zero at µ = 2. This demonstrates that VQ+Linear’s exceptional perfor-
mance stems from its successful distribution alignment. However, with a large initial distribution
gap between codebook and features (at µ = 5), VQ+Linear struggles to minimize the distributional
distance, resulting in poor VQ performance. This limitation becomes more apparent when varying
µ from 0 to 8, as depicted in Figures 5(e)-5(h), VQ+Linear becomes ineffective at µ = 4. These
results indicate that VQ+Linear remains heavily dependent on codebook initialization. In com-
parison, our Wasserstein VQ algorithm consistently performs best with relatively large values of µ
(e.g., µ ≥ 4), thanks to its explicit distributional matching regularization that eliminates reliance on
codebook initialization to prevent distributional mismatch.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

… …… …

Multi-Scale VQ

2 3

VQ

Encoder Multi-Scale VQ

…

Multi-Scale Image Token

Decoder

VGG

Patch GAN
1

Figure 6: The architecture integrates an encoder-decoder network with a multi-scale VQ module. Block 1
features the standard VQGAN framework (Esser et al., 2021), which includes reconstruction loss LR, VGG-
based perceptual loss LP , and GAN loss LG. Block 2 implements the multi-scale VQ process with quantization
loss LQ. Block 3 visualizes the VQ process using multi-scale features, incorporating commitment loss LC and
our proposed Wasserstein loss LW .

In summary, even with a fixed feature distribution, methods like Vanilla VQ or those based on k-
means and k-means++ fail to achieve distributional matching, leading to poor VQ performance. While
VQ+Linear can achieve distributional matching with proper codebook initialization, its effectiveness
heavily relies on this initialization. This limitation becomes potentially problematic when the
feature distribution is unknown and changes dynamically during training. In contrast, our proposed
Wasserstein VQ works independently of codebook initialization. Through explicit distributional
matching regularization, it could maintain proper matching even as the feature distribution evolves
dynamically. Notably, although the codebook distribution would be arbitrary during training, our
quadratic Wasserstein distance—based on the Gaussian distribution assumption—effectively aligns
the distributions and achieves the best VQ performance.

4 WASSERSTEIN VQ FOR VISUAL GENERATION

4.1 A PRELIMINARY: VQGAN

In this section, we examine the application of Wasserstein VQ within the framework of VQGAN (Esser
et al., 2021). As illustrated in Block 1 of Figure 6, VQGAN combines several components: an
encoder E(·), a decoder D(·), a quantizer Q(·) with a learnable codebook {ek}Kk=1, a VGG network
P (·) (Simonyan & Zisserman, 2015), and a patch-based discriminator (Isola et al., 2017). As
described earlier in Section 2.1, for an input image x, the encoder processes the image to yield a
spatial feature ze = E(x) ∈ Rh×w×d, where (h,w) denotes the feature resolution. The quantizer
converts ze into a quantized feature zq , from which the decoder reconstructs the image as x̂ = D(zq).
To ensure high perceptual quality in the reconstructed images, the system employs both the VGG
network and the patch-based discriminator (Esser et al., 2021; Johnson et al., 2016). The overall loss
objective can be formulated as follows:

L = ∥x̂− x∥2︸ ︷︷ ︸
LR

+α1 ∥sg(zq)− ze∥︸ ︷︷ ︸
LQ

+α2 ∥sg(ze)− zq∥︸ ︷︷ ︸
LC

+ ∥P (x̂)− P (x)∥2︸ ︷︷ ︸
LP

+LG(x, x̂), (5)

where sg denotes the stop-gradient operation. LR, LQ, LC , LP , and LG represent the reconstruction
loss, quantization loss, commitment loss, VGG-based perceptual loss (Zhang et al., 2018), and GAN
loss (Isola et al., 2017; Lim & Ye, 2017), respectively. α1 and α2 are hyper-parameters.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.2 MULTI-SCALE VECTOR QUANTIZATION

Drawing inspiration from VAR’s coarse-to-fine token map design (Tian et al., 2024), we replace the
vanilla VQ described in Section 2.1 with a multi-scale VQ approach. This modification is shown in
Block 2 of Figure 6. The key difference is that multi-scale VQ employs a series of vanilla VQ steps,
with each step processing feature vectors at increasingly higher resolutions.

To better understand the multi-scale VQ process, suppose we have a set of spatial features {zi}Ti=1
with a resolution of (h,w) in Block 2, where z1 is initialized with ze. For creating coarse-to-fine
image tokens, we extract multi-scale spatial features {gi(zi)}Ti=1 using interpolation functions gi(·)
that reduces their resolutions to a set of smaller resolutions6{(hi, wi)}Ti=1. These spatial features are
processed by the vanilla VQ, yielding multi-scale image tokens {r1, ..., rT } and multi-scale quantized
features {Q(gi(zi))}Ti=1, as described in Block 3. The quantized features are then rescaled to their
original resolutions via another set of interpolation functions ĝi(·), denoted as ẑi = ĝi(Q(gi(zi))).
Next, we take zi+1 = zi − ẑi and perform residual quantization on zi+1 (Lee et al., 2022).

The multi-scale VQ process operates sequentially, not in parallel. Through a multi-step VQ procedure,
it derives the final quantized features zq =

∑T
i=1 ẑi, reducing the quantization error between zq and

ze. Notably, the commitment loss in multi-scale VQ differs from that in VQGAN (Esser et al., 2021)
and can be written as:

LC =

T∑
i=1

∥gi(zi)−Q(gi(zi))∥2. (6)

4.3 THE LEARNING OBJECTIVE

In this section, we focus on integrating our proposed Wasserstein VQ algorithm into the multi-scale
VQ framework. We estimate the population mean and covariance of the multi-scale spatial features
{gi(zi)}Ti=1 and code vectors {ek}Kk=1 by using their sample versions. To align the distributions
between feature vectors and code vectors, we employ the quadratic Wasserstein distance LW as
defined in Equation 4. The overall objective function is:

L = LR + α1LQ + α2LC + α3LW + LP + LG, (7)

where α1, α2 and α3 are hyperparameters.

5 EXPERIMENTS

In this section, we empirically demonstrate the effectiveness of our proposed Wasserstin VQ algorithm
in image reconstruction tasks. We conduct our experiments on the FFHQ (Karras et al., 2018) and
ImageNet-1k (Deng et al., 2009) datasets. The PyTorch code will be made publicly available.

Alternative Methods We evaluated our approach against several alternative methods: DQ-
VAE (Huang et al., 2023a), DF-VQGAN (Ni et al., 2022), DiVAE (Shi et al., 2022), RQVAE (Lee
et al., 2022), VQGAN (Esser et al., 2021), VQGAN-FC (Yu et al., 2022), VQGAN-EMA (Razavi
et al., 2019), VQWAE (Vuong et al., 2023), MQVAE (Huang et al., 2023b), and VQGAN-LC (Zhu
et al., 2024a). For detailed experimental settings, please refer to Appendix F.

Evaluation Metrics Following prior works (Esser et al., 2021; Zhu et al., 2024a), we evaluate image
reconstruction quality using multiple metrics: dataset-level Fréchet inception distance (rFID)(Heusel
et al., 2017), feature-level learned perceptual image patch similarity (LPIPS)(Zhang et al., 2018),
image-level peak signal-to-noise ratio (PSNR), and patch-level structural similarity index (SSIM).

Main Results As shown in Tables 1 and 2, our proposed Wasserstein VQ outperforms all alternative
methods on both datasets, demonstrating superior performance across all evaluation metrics at
identical resolutions. Notably, Wasserstein VQ consistently maintains 100% codebook utilization,
regardless of codebook size. This demonstrates that distributional matching effectively resolves the
issue of codebook collapse.

6See the multi-scale resolution details in Appendix F.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: Reconstruction performance on the ImageNet-1K dataset. The term “Resolution” refers to the
resolution of the spatial feature ze, while “Utilization” represents codebook utilization U . †: The codebook
utilization is computed across the training dataset, ⋆: The codebook utilization is computed across evaluation
dataset. The symbol “-” indicates that no data point is provided.

Method Resolution Codebook Size Utilization (%) ↑ rFID ↓ LPIPS ↓ PSNR ↑ SSIM ↑
DQVAE† (16, 16) 1,024 - 4.08 - - -
DF-VQGAN† (16, 16) 12,288 - 5.16 - - -
DiVAE† (16, 16) 16,384 - 4.07 - - -
RQVAE† (16, 16) 16,384 - 3.20 - - -

VQGAN†
(16, 16) 16,384 3.4 5.96 0.17 23.3 52.4
(16, 16) 50,000 1.1 5.44 0.17 22.5 52.5
(16, 16) 100,000 0.5 5.44 0.17 22.3 52.5

VQGAN-FC†
(16, 16) 16,384 11.2 4.29 0.17 22.8 54.5
(16, 16) 50,000 3.6 4.96 0.15 23.1 54.7
(16, 16) 100,000 1.9 4.65 0.15 22.9 55.1

VQGAN-EMA†
(16, 16) 16,384 83.2 3.41 0.14 23.5 56.6
(16, 16) 50,000 40.2 3.88 0.14 23.2 55.9
(16, 16) 100,000 24.2 3.46 0.13 23.4 56.2

VQGAN-LC†
(16, 16) 16,384 99.9 3.01 0.13 23.2 56.4
(16, 16) 50,000 99.9 2.75 0.13 23.8 58.4
(16, 16) 100,000 99.9 2.62 0.12 23.8 58.9

Wasserstein VQ⋆
(16, 16) 16,384 100.0 2.28 0.12 24.43 63.5
(16, 16) 50,000 100.0 2.07 0.12 24.67 64.4
(16, 16) 100,000 100.0 1.94 0.11 24.76 64.8

Table 2: Reconstruction performance on the FFHQ dataset. The term “Resolution” refers to the resolution
of the spatial feature ze, while “Utilization” represents codebook utilization U . †:The codebook utilization is
computed across the training dataset, ⋆: The codebook utilization is computed across evaluation dataset.

Method Resolution Codebook Size Utilization (%) ↑ rFID ↓ LPIPS ↓ PSNR ↑ SSIM ↑
RQVAE† (16, 16) 2,048 - 7.04 0.13 22.9 67.0
VQWAE† (16, 16) 1,024 - 4.20 0.12 22.5 66.5
MQVAE† (16, 16) 1,024 78.2 4.55 - - -

VQGAN† (16, 16) 16,384 2.3 5.25 0.12 24.4 63.3
VQGAN-FC† (16, 16) 16,384 10.9 4.86 0.11 24.8 64.6
VQGAN-EMA† (16, 16) 16,384 68.2 4.79 0.10 25.4 66.1
VQGAN-LC† (16, 16) 100,000 99.5 3.81 0.08 26.1 69.4

Wasserstein VQ⋆
(16, 16) 16,384 100.0 3.52 0.08 27.07 74.4
(16, 16) 50,000 100.0 3.35 0.08 27.26 74.9
(16, 16) 100,000 100.0 3.18 0.07 27.32 74.9

Ablation Studies As shown in Table 3 in Appendix G, incorporating the Wasserstein distance LW

as an auxiliary loss function (α3 = 0.3) consistently outperforms the VQ algorithm without this term
(α3 = 0.0). The improvement is evident in the reconstructed images’ visual quality, particularly in
the preservation of fine details, as demonstrated in Figure 10 in Appendix G.

6 CONCLUSION

This paper examines vector quantization (VQ) from a distributional perspective. We introduce
three key evaluation criteria and demonstrate empirically that optimal VQ results emerge when the
distributions of continuous feature vectors and code vectors are identical. Our theoretical analysis
confirms this finding, emphasizing the crucial role of distributional alignment in effective VQ.
Based on these insights, we propose using the quadratic Wasserstein distance to achieve alignment,
leveraging its computational efficiency under a Gaussian hypothesis. This approach achieves near-
full codebook utilization while significantly reducing quantization error. Our method successfully
addresses both training instability and codebook collapse, leading to improved downstream image
reconstruction performance. However, due to limited GPU resources, we were unable to conduct
image generation experiments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In ACM-SIAM
Symposium on Discrete Algorithms, 2007.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. ArXiv, 2013.

A. Bhattacharyya. On a measure of divergence between two statistical populations defined by their
probability distributions. Bulletin of the Calcutta Mathematical Society, 1943.

Paul S. Bradley and Usama M. Fayyad. Refining initial points for k-means clustering. In ICML,
1998.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked generative
image transformer. In CVPR, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, K. Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever.
Jukebox: A generative model for music. ArXiv, 2020.

Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image
synthesis. In CVPR, 2021.

Siegfried Graf and Harald Luschgy. Foundations of quantization for probability distributions. Springer
Science & Business Media, 2000.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In NeurIPS, 2017.

Jonathan Ho, Ajay Jain, and P. Abbeel. Denoising diffusion probabilistic models. In NeurIPS, 2020.

Mengqi Huang, Zhendong Mao, Zhuowei Chen, and Yongdong Zhang. Towards accurate image
coding: Improved autoregressive image generation with dynamic vector quantization. In CVPR,
2023a.

Mengqi Huang, Zhendong Mao, Quang Wang, and Yongdong Zhang. Not all image regions matter:
Masked vector quantization for autoregressive image generation. In CVPR, 2023b.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with
conditional adversarial networks. In CVPR, 2017.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In ECCV, 2016.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In CVPR, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2014.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In CVPR, 2022.

Jae Hyun Lim and J. C. Ye. Geometric gan. ArXiv, 2017.

David Lindley and Solomon Kullback. Information theory and statistics. Journal of the American
Statistical Association, 1959.

Xiaoxiao Ma, Mohan Zhou, Tao Liang, Yalong Bai, Tiejun Zhao, H. Chen, and Yi Jin. Star:
Scale-wise text-to-image generation via auto-regressive representations. ArXiv, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Fabian Mentzer, David C. Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar
quantization: Vq-vae made simple. In ICLR, 2024.

Minheng Ni, Chenfei Wu, Haoyang Huang, Daxin Jiang, Wangmeng Zuo, and Nan Duan. Nüwa-lip:
Language-guided image inpainting with defect-free vqgan. In CVPR, 2022.

Ingram Olkin and Friedrich Pukelsheim. The distance between two random vectors with given
dispersion matrices. Linear Algebra and its Applications, 1982.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In ICML, 2021.

Ali Razavi, Aäron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. In NeurIPS, 2019.

Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In CVPR, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In MICCAI, 2015.

Jie Shi, Chenfei Wu, Jian Liang, Xiang Liu, and Nan Duan. Divae: Photorealistic images synthesis
with denoising diffusion decoder. ArXiv, 2022.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. ArXiv, 2024.

Yuhta Takida, Takashi Shibuya, Wei-Hsiang Liao, Chieh-Hsin Lai, Junki Ohmura, Toshimitsu Uesaka,
Naoki Murata, Shusuke Takahashi, Toshiyuki Kumakura, and Yuki Mitsufuji. Sq-vae: Variational
bayes on discrete representation with self-annealed stochastic quantization. In ICML, 2022.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. ArXiv, 2024.

Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In ICML, 2016.

Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning.
In NeurIPS, 2017.

Tung-Long Vuong, Trung-Nghia Le, He Zhao, Chuanxia Zheng, Mehrtash Harandi, Jianfei Cai, and
Dinh Q. Phung. Vector quantized wasserstein auto-encoder. ArXiv, 2023.

Will Williams, Sam Ringer, Tom Ash, John Hughes, David Macleod, and Jamie Dougherty. Hierar-
chical quantized autoencoders. In NeurIPS, 2020.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan.
In ICLR, 2022.

Jiahui Zhang, Fangneng Zhan, Christian Theobalt, and Shijian Lu. Regularized vector quantization
for tokenized image synthesis. In CVPR, 2023.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Chuanxia Zheng and Andrea Vedaldi. Online clustered codebook. In ICCV, 2023.

Lei Zhu, Fangyun Wei, Yanye Lu, and Dong Chen. Scaling the codebook size of vqgan to 100,000
with a utilization rate of 99%. ArXiv, 2024a.

Yongxin Zhu, Bocheng Li, Yifei Xin, and Linli Xu. Addressing representation collapse in vector
quantized models with one linear layer. ArXiv, 2024b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Appendix

Table of Contents
A Optimal Support of The Codebook Distribution 13

B Statistical Distances over Gaussian Distributions 14

C Quantitative Analyses When Codebook Distribution and Feature Distribution are
Unifrom Distributions 15

D Quantization Error Analyses Under the Distribution Matching 15

E The Details of Synthetic Experiments 16
E.1 Experimental Details in Section 2.3 and Appendix C 16
E.2 Experimental Details in Section 3.2 . 16
E.3 Experimental Details in Appendix D . 16

F Image Reconstruction Experimental Details 17

G Ablation Reconstruction Results 17

H Additional Explanations 17
H.1 Explanations on the Criterion 2 and 3 . 17
H.2 Explanations on the Prototypical Study in Section 2.3 18
H.3 Why k-means-Based VQ Methods Fail to Achieve Distributional Matching . . . 18

A OPTIMAL SUPPORT OF THE CODEBOOK DISTRIBUTION

Proof of Theorem 1. First, we assume supp(PB) = supp(PA). Then for any z ∈ supp(PA),
there exist a sequence of points in supp(PB) that converge to z. Let {ek}Kk=1 be K code vectors
independently generated from PB . Then the empirical distribution of {ek}Kk=1 tends to PB as the
size K tends to infinity. Since Ω = supp(PA) is a bounded region, we have the following:

sup
z∈supp(PA)

min
k

∥z − ek∥2 = sup
z∈supp(PB)

min
k

∥z − ek∥2
p→ 0, as K → ∞.

This quantity is an upper bound on the quantization error E({zi}; {ek}). Thus,

sup
{zi}⊆Ω

E
(
{zi}Ni=1; {ek}Kk=1

)
≤ sup

z∈Ω

min
k

∥z − ek∥2
p→ 0, as K → ∞.

This demonstrates that PB has vanishing quantization error asymptotically. Furthermore, for any K
code vectors {ek}Kk=1 independently drawn from PB , we have {ek}Kk=1 ⊆ Ω. Since the empirical
distribution of {zi}Ni=1 tends to PA as the feature sample size N tends to infinity, we can easily show
that for any fixed {ek}Kk=1 ⊆ Ω, the codebook utility rate satisfies

U
(
{zi}Ni=1, {ek}Kk=1

) p→ 1, as N → ∞.

This shows that {ek}Kk=1 attains full utilization asymptotically, and thus PB attains full utilization
asymptotically.

On the other hand, we assume PB attains full utilization and vanishing quantization error asymp-
totically. Then we first claim that supp(PA) ⊆ supp(PB). Since PB has vanishing quantization
error asymptotically, then for any z ∈ supp(PA), there exist a sequence of points in supp(PB) that
converge to z. This implies that supp(PA) ⊆ supp(PB) and thus supp(PA) ⊆ supp(PB).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

To show supp(PB) = supp(PA), it remains to show supp(PB) ⊆ supp(PA). In fact, if
supp(PB) ⊆ supp(PA) does not hold, then there exists an open region R ⊆ supp(PB)−supp(PA)
such that PB(R) > 0 and

min
z∈supp(PA),z′∈R

∥z − z′∥ ≥ ϵ0

for some ϵ0 > 0. Since supp(PA) ⊆ supp(PB), then there exists a sufficiently large K0 such that
the event{

Generating{ek}K0

k=1 i.i.d. from PB s.t. {ek} ⊆ supp(PA), sup
z∈supp(PA)

min
k

∥z − ek∥ < ϵ0

}
(8)

has some positive probability C > 0. Then with a positive probability of at least C · PB(R), we can
pick the first K0 code vectors from Equation (8) and the (K0 + 1)th code vector from R. For any
such codebook of size K0 + 1, we know the (K0 + 1)th code vector will never be used regardless of
the choice of the feature set {zi}. Therefore, the codebook utilization

sup
{zi}

U
(
{ek}K0+1

k=1 ; {zi}
)
≤ K0

K0 + 1
< 1.

This contradicts the property that PB attains full utilization asymptotically. Thus, supp(PB) ⊆
supp(PA) must hold. This concludes the proof.

B STATISTICAL DISTANCES OVER GAUSSIAN DISTRIBUTIONS

We first introduce the definition of Wasserstein distance.

Definition 4. The Wasserstein distance or earth-mover distance with p norm is defined as below:

Wp(Pr,Pg) = (inf
γ∈Π(Pr,Pg)

E(x,y)∼γ

[
∥x− y∥p

]
)1/p . (9)

where Π(Pr,Pg) denotes the set of all joint distributions γ(x, y) whose marginals are Pr and Pg

respectively. Intuitively, when viewing each distribution as a unit amount of earth/soil, the Wasserstein
distance (also known as earth-mover distance) represents the minimum cost of transporting “mass”
from x to y to transform distribution Pr into distribution Pg . When p = 2, this is called the quadratic
Wasserstein distance.

In this paper, we achieve distributional matching using the quadratic Wasserstein distance under Gaus-
sian distribution assumptions. We also examine other statistical distribution distances as potential
loss functions for distributional matching and compare them with the Wasserstein distance. Specif-
ically, we provide the Kullback-Leibler divergence and the Bhattacharyya distance over Gaussian
distributions in Lemma 5 and Lemma 6. Both distances require full-rank covariance matrices, which
makes them unsuitable for distributional matching in practical applications. In contrast, our quadratic
Wasserstein distance-based loss function does not have this limitation.

Lemma 5 (Kullback-Leibler divergence (Lindley & Kullback, 1959)). Suppose two random variables
Z1 ∼ N (µ1,Σ1) and Z2 ∼ N (µ2,Σ2) obey multivariate normal distributions, then Kullback-
Leibler divergence between Z1 and Z2 is:

DKL(Z1,Z2) =
1

2
((µ1 − µ2)

TΣ−1
2 (µ1 − µ2) + tr(Σ−1

2 Σ1 − I) + ln
detΣ2

detΣ1
).

Lemma 6 (Bhattacharyya Distance (Bhattacharyya, 1943)). Suppose two random variables Z1 ∼
N (µ1,Σ1) and Z2 ∼ N (µ2,Σ2) obey multivariate normal distributions, Σ = 1

2 (Σ1 +Σ2), then
bhattacharyya distance between Z1 and Z2 is:

DB(Z1,Z2) =
1

8
(µ1 − µ2)

TΣ−1(µ1 − µ2) +
1

2
ln

detΣ√
detΣ1 detΣ2

.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5
0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(a) E w.r.t. K

0.0 0.5 1.0 1.5 2.0 2.5
5

3

1

1

3

5

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(b) E w.r.t. d

0.0 0.5 1.0 1.5 2.0 2.5
0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(c) E w.r.t. N

1 2 3 4 5 6
0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(d) E w.r.t. K

1 2 3 4 5 6
5

3

1

1

3

5

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(e) E w.r.t. d

1 2 3 4 5 6
0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(f) E w.r.t. N

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(g) U w.r.t. K

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(h) U w.r.t. d

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(i) U w.r.t. N

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(j) U w.r.t. K

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(k) U w.r.t. d

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(l) U w.r.t. N

0.0 0.5 1.0 1.5 2.0 2.5
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(m) C w.r.t. K

0.0 0.5 1.0 1.5 2.0 2.5
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(n) C w.r.t. d

0.0 0.5 1.0 1.5 2.0 2.5
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(o) C w.r.t. N

1 2 3 4 5 6
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(p) C w.r.t. K

1 2 3 4 5 6
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(q) C w.r.t. d

1 2 3 4 5 6
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(r) C w.r.t. N

Figure 7: Quantitative analyses of the criterion triple when PA and PB are uniform distributions.

C QUANTITATIVE ANALYSES WHEN CODEBOOK DISTRIBUTION AND
FEATURE DISTRIBUTION ARE UNIFROM DISTRIBUTIONS

As discussed in Section 2.3, we conclude that the optimal criterion triple is achieved when PA

and PB exhibit identical distributions. This conclusion holds when PA and PB are derived from
other distributions, such as the uniform distribution. As shown in Figure 7, we sample a set of
feature vectors {zi}Ni=1 from the distribution Unif(−1, 1) and a set of code vectors {ek}Kk=1 from
Unif(ν − 1, ν + 1), where ν is selected from the set {0.0, 0.5, 1.0, 1.5, 2.0, 2.5} or from Unif(−ζ, ζ),
with ζ drawn from the set {1, 2, 3, 4, 5, 6}. We observe that when µ = 0 or ζ = 1—indicating
that PA and PB have identical distributions—the performance in terms of the criterion triple is
optimal, achieving the lowerest E , the highest U , and the largest C across all tested values of K, d,N .
Therefore, we conclude that our quantitative analyses are distribution-agnostic and can be generalized
to other distributions.

D QUANTIZATION ERROR ANALYSES UNDER THE DISTRIBUTION MATCHING

As discussed in Section 2.3 and 2.4, the minimum E occurs when the distributions PA and PB

are identical. In this section, we explore other factors influencing E as part of the supplementary
analyses in Section 2.3. We first consider both PA and PB to be Gaussian distributions. As illustrated
in Figure 8, we sample a set of feature vectors {zi}Ni=1 along with a set of code vectors {ek}Kk=1
from the distribution N (µ ∗ 1m, Im), where µ is selected from the set {0.0, 0.5, 1.0, 1.5, 2.0, 2.5},
or from the distribution N (0m, σ2Im), where σ is drawn from the set {1, 2, 3, 4, 5, 6}. From the
Figure 8(a) to 8(f), we observe that E remains constant as µ increases, while it increases as σ increases.
Additionally, we find that the feature size N does not significantly impact E . A larger codebook
size K results in a slight decrease in E , whereas an increase in the codebook dimension d leads to a
markedly larger E . Consequently, the minimum value of E is influenced by the Gaussian covariance
matrix σ2I , the codebook size K, and the feature dimension d. This analysis underscores the nuanced
interplay of these parameters in determining the optimal performance of our model under Gaussian
distributional assumptions.

We can arrive at a nearly identical conclusion when PA and PB are derived from other distributions,
such as the uniform distribution. As shown in Figure 9, we sample a set of feature vectors {zi}Ni=1

along with a set of code vectors {ek}Kk=1 from the distribution Unif(ν− 1, ν+1), where ν is selected
from the set {0.0, 0.5, 1.0, 1.5, 2.0, 2.5}, or from the distribution Unif(−ζ, ζ), with ζ drawn from the
set {1, 2, 3, 4, 5, 6}. Similarly, the minimum value of E is influenced by the ζ, the codebook size K,
and the feature dimension d.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.4

0.8

1.2

1.6

2.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)
K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(a) E w.r.t. K

0.0 0.5 1.0 1.5 2.0 2.5
5

3

1

1

3

5

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(b) E w.r.t. d

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.4

0.8

1.2

1.6

2.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(c) E w.r.t. N

1 2 3 4 5 6
0.0

0.8

1.6

2.4

3.2

4.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(d) E w.r.t. K

1 2 3 4 5 6
5

3

1

1

3

5

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(e) E w.r.t. d

1 2 3 4 5 6
0.0

0.8

1.6

2.4

3.2

4.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(f) E w.r.t. N

Figure 8: Visualization of quantization Error when PA and PB are Gaussian distributions.

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.4

0.8

1.2

1.6

2.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(a) E w.r.t. K

0.0 0.5 1.0 1.5 2.0 2.5
5

3

1

1

3

5

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(b) E w.r.t. d

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.4

0.8

1.2

1.6

2.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(c) E w.r.t. N

1 2 3 4 5 6
0.0

0.8

1.6

2.4

3.2

4.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(d) E w.r.t. K

1 2 3 4 5 6
5

3

1

1

3

5

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(e) E w.r.t. d

1 2 3 4 5 6
0.0

0.8

1.6

2.4

3.2

4.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(f) E w.r.t. N

Figure 9: Visualization of quantization Error when PA and PB are Uniform distributions.

E THE DETAILS OF SYNTHETIC EXPERIMENTS

E.1 EXPERIMENTAL DETAILS IN SECTION 2.3 AND APPENDIX C

Qualitative Analyses As depicted in Figure 3 in Section 2.3, we conduct a qualitative analyses
of the criterion triple. Specifically, we sample a set of feature vectors {zi}Ni=1 from within the red
circle, and a collection of code vectors {ek}Kk=1 from within the green circle, with parameters set
to K = 400, N = 10000 and d = 2 for the calculation of the criterion triple (E ,U , C). For the
visualization, we select 10% of the feature vectors and 90% of the code vectors for plotting.

Quantitative Analyses As illustrate in Figure 4 in Section 2.3, we undertake comprehensive quanti-
tative analyses centered around the criterion triple (E ,U , C). In these analyses, we assume that PA and
PB are Gaussian distributions, from which we sample a set of feature vectors {zi}Ni=1 and a collection
of code vectors {ek}Kk=1. The default parameters are set to N = 200, 000, K = 1024, and d = 32
for all figures unless otherwise specified. For instance, in Figure 4(a), N and d are taken at their
default values, while the K is varied within the set {128, 256, 512, 1024, 2048, 4096, 8192, 16284}.
Additionally, each synthetic experiment is repeated five times, and the average results are reported,
along with the calculation of 95% confidence intervals. In all figures, mean results are represented by
points, while the confidence intervals are shown as shaded areas. Identical parameter settings are
employed when PA and PB are uniform distributions, as illustrated in Figure 7 in Appendix C.

E.2 EXPERIMENTAL DETAILS IN SECTION 3.2

We provide experimental details of Figure 5 in Section 3.2. In our experimental setup, we evaluate
five distinct VQ algorithms using the criterion triple (E ,U , C). All experiments run on a single
NVIDIA A100 GPU, with a codebook size K of 16,384 and dimensionality d of 16 across all
algorithms. Each algorithm trains for 2,000 steps, with 20,000 feature vectors sampled from the
specified Gaussian distribution at each step. For Wasserstein VQ, Vanilla VQ, and VQ + MLP, we
use the SGD optimizer for training. For VQ EMA and Online Clustering, we use classical clustering
algorithms—k-means (Bradley & Fayyad, 1998) and k-means++(Arthur & Vassilvitskii, 2007)—to
update code vectors.

E.3 EXPERIMENTAL DETAILS IN APPENDIX D

For the Figure 8 and 9 in Appendix D, all figures utilize the default parameters as specified in the
quantitative analyses presented in Appendix C when calculating the criterion triple (E ,U , C).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

F IMAGE RECONSTRUCTION EXPERIMENTAL DETAILS

In the image reconstruction task, our proposed Wasserstein VQ adopts the same encoder and decoder
as the original VQGAN (Esser et al., 2021). Input images are processed at a resolution of (256, 256).
The encoder, a U-Net (Ronneberger et al., 2015), downscales the input image by a factor of 16,
yielding a spatial feature ze with the resolution of (16, 16). This spatial feature is quantized while
maintaining the same resolution, then fed into the decoder (also a U-Net) for image reconstruction.
To generate coarse-to-fine image tokens, we extract multi-scale spatial features using an interpolation
function that reduces their resolutions to progressively smaller sizes. We follow the token map design
from VAR (Tian et al., 2024), setting T to 10, with multi-scale spatial feature resolutions of (1, 1),
(2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (8, 8), (10, 10), (13, 13), and (16, 16). For all experiments, we set
α1 = α2 = 0.2 and α3 = 0.3. We employ the Adam optimizer (Kingma & Ba, 2014) with an initial
learning rate of 5e−4, applying a half-cycle cosine decay after a 5-epoch linear warm-up phase. We
train for 20 epochs on ImageNet-1k using 8 Nvidia H20 GPUs, and for 200 epochs on the FFHQ
dataset using 4 Nvidia H20 GPUs.

G ABLATION RECONSTRUCTION RESULTS

To evaluate the effectiveness of our proposed Wasserstein distance LW , we conducted ablation studies.
As shown in Table 3, using the Wasserstein distance LW as an auxiliary loss function (α3 = 0.3)
consistently outperforms the VQ algorithm without it (α3 = 0.0). This improvement also can be
observed in the reconstructed images’ visual quality, especially in the preservation of fine details, as
shown in Figure 10.

Table 3: Ablation studies of the Wasserstein distance on the ImageNet-1K dataset. The term “Utilization” refers
to codebook utilization U , calculated across the evaluation dataset. α3 = 0.3 indicates the incorporation of the
Wasserstein distance in the VQ algorithm, while α3 = 0.0 signifies the exclusion of the Wasserstein distance. ↑
indicates improvements.

Method Codebook Size Utilization (%) ↑ rFID ↓ LPIPS ↓ PSNR ↑ SSIM ↑
α3 = 0.0 16,384 89.3 2.74 0.13 23.97 61.6
α3 = 0.3 16,384 100.0 ↑10.7 2.28 ↑0.46 0.12 ↑0.01 24.43 ↑0.46 63.5 ↑1.9
α3 = 0.0 50,000 73.5 2.48 0.13 24.23 62.6
α3 = 0.3 50,000 100.0 ↑26.5 2.07 ↑0.41 0.12 ↑0.01 24.67 ↑0.44 64.4 ↑1.8
α3 = 0.0 100,000 61.8 2.27 0.12 24.30 62.8
α3 = 0.3 100,000 100.0 ↑38.2 1.94 ↑0.33 0.11 ↑0.01 24.76 ↑0.46 64.8 ↑2.0

Figure 10: Visualization of Reconstructed Images. The first row exhibits the original input images at a resolution
of 256× 256 pixels, the second row shows the reconstruction results from the Wasserstein VQ method, while
the third row presents the outcomes without the incorporation of the Wasserstein distance.

H ADDITIONAL EXPLANATIONS

H.1 EXPLANATIONS ON THE CRITERION 2 AND 3

This section offers visual elucidations for Criterion 2 and 3 that are defined in Section 2.2. As
depicted in the Figure 11(a) and 11(b), the values of U are 50% and 100%, respectively. This
discrepancy arises because, in Figure 11(a) only half of code vectors’ utilization pk exceeds zero

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

e1 e2 e3 e4 e5 e6 e7 e8 e9 e100.0

0.2

0.4

0.6

0.8

1.0

(a) (50%, 4.92)

e1 e2 e3 e4 e5 e6 e7 e8 e9 e100.0

0.2

0.4

0.6

0.8

1.0

(b) (100%, 10.00)

e1 e2 e3 e4 e5 e6 e7 e8 e9 e100.0

0.2

0.4

0.6

0.8

1.0

(c) (100%, 1.02)

e1 e2 e3 e4 e5 e6 e7 e8 e9 e100.0

0.2

0.4

0.6

0.8

1.0

(d) (100%, 4.92)

Figure 11: Visualization of the evaluation criteria (U , C).

(as stipulated by in Criterion 3), whereas in Figure 11(b), the utilization pk of of all code vectors
surpasses zero7. It is clear that U quantifies the completeness of codebook utilization. However, U
remains insufficient to evaluate the degree of codebook collapse, as it fails to address the scenario
depicted in Figure 11(c). Although all code vectors are utilized, the code vector e3 excessively
dominates the codebook utilization, resulting in an extreme imbalance. This imbalanced codebook
utilization can be considered a form of codebook collapse, thereby not aligning with our desired
outcome. This observation motivates the proposal of Criterion 3, which is capable of gauging the
imbalance or uniformity inherent in codebook utilization.

When compared in Figure 11(b) and 11(c), the value of C are 10.00 and 1.02, respectively, demon-
strating that Criterion 3 is capable of distinguishing the imbalance of code vector utilization pk
under conditions where cases share the same U . Additionally, Criterion 3 categorizes Figure 11(c)
as indicative of codebook collapse, as the value C nearly reaches its minimum of 1.0, a result that
resonates with our intuitive interpretation. However, it is essential to note that Criterion 3 alone does
not suffice to evaluate the degree of codebook collapse. When scrutinizing Figure 11(a) and 11(d),
despite the identical C, there exists a stark disparity in U . This observation underscores that the value
of C is inadequate for quantifying the proportion of actively utilized code vectors.

In this paper, we adopt the combination of Criterion 2 and 3 to quantitatively assess the extent of
codebook collapse. A robust mitigation of codebook collapse is indicated solely when both U and C
exhibit substantial values.

H.2 EXPLANATIONS ON THE PROTOTYPICAL STUDY IN SECTION 2.3

This section interprets the experimental findings presented in Figure 3. The VQ process relies on
nearest neighbor search for code vector selection. As evident from Figure 3(a) to 3(d), actively
selected code vectors are predominantly those located in close proximity to or within the feature
distribution, while distant ones remain unselected. This leads to highly uneven code vector utilization
pk, with those closer to the feature distribution being excessively used. This elucidates the significantly
low U and C observed in Figure 3(a). Furthermore, a notable quantization error, e.g., E = 1.19 in
Figure 3(a), arises when the codebook and feature distributions are mismatched, forcing feature
vectors outside the codebook to settle for distant code vectors. Conversely, as the disk centers align,
leading to a closer match between the two distributions, an increased number of code vectors become
actively engaged. Additionally, code vectors are utilized more uniformly, and feature vectors can
select nearer counterparts. This accounts for the improvement of criterion triple values towards
optimality as the distributions align.

Analogously, we can employ nearest neighbor search to interpret the second case. When code vectors
are distributed within the range of feature vectors, as illustrated in Figure 3(e) and Figure 3(f), the
majority of code vectors would be actively utilized, ensuring high U . However, the utilization of
these code vectors is not uniform; code vectors on the periphery of the codebook distribution are
more frequently used, leading to relatively low C. Feature vectors on the periphery will have larger
distances to their nearest code vectors, resulting in higher E . Conversely, when feature vectors fall
within the range of code vectors, as depicted in Figure 3(g) and Figure 3(h), outer code vectors remain
largely unused, leading to a lower U and C. Since only inner code vectors are active, each feature
vector can find a nearby counterpart, maintaining low E .

H.3 WHY K-MEANS-BASED VQ METHODS FAIL TO ACHIEVE DISTRIBUTIONAL MATCHING

7the concept of pk is analogous to that of sub-word frequency over the text corpus in the natural language
processing field.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 12: Visualization of k-
mean assignment step. A green
circle and a blue square represent
the feature and code vectors, respec-
tively.

In this section, we offer visual illustrations to elucidate why
k-means-based VQ methods fall short in achieving distribu-
tional matching. k-means-based VQ algorithm was originally
proposed (van den Oord et al., 2017) and subsequently em-
ployed (Razavi et al., 2019). However, a widely acknowledged
limitation of this approach is the significant issue of codebook col-
lapse, particularly when the codebook size, K, is large (Dhariwal
et al., 2020; Takida et al., 2022; Yu et al., 2022; Lee et al., 2022).

To provide a deeper understanding of this intrinsic issue, we vi-
sually depict the k-means assignment step for VQ in Figure 12.
The k-means algorithm initially partitions the feature space into
Voronoi cells by assigning each feature vector to the nearest code
vector based on Euclidean distance. In this step, nine feature
vectors are assigned to e1, whereas no feature vector is assigned
to e4. Subsequently, these code vectors, acting as the clustering
centers, are updated using an exponential moving average of the assigned feature vectors. This update
mechanism presents a critical challenge: since e4 is never selected, it remains unupdated. In practical
applications, especially when the codebook size K is substantial, a majority of code vectors remain
unutilized and unupdated. This phenomenon highlights the inherent difficulty of k-means-based VQ
methods in learning an effective and representative codebook for distributional matching.

In addition to the explanations provided, we also present empirical evidence demonstrating that
k-means-based VQ methods fail to achieve distributional matching. For detailed insights, please refer
to Section 3.2.

19

	
	Introduction
	Understanding Distribution Matching
	An Overview of Vector Quantization
	Evaluation Criteria
	The Effects of Distribution Matching
	Theoretical Analyses

	Distribution Matching via Wasserstein Distance
	Wasserstein Distance
	Advantages Over Other VQ Methods

	Wasserstein VQ for Visual Generation
	A Preliminary: VQGAN
	Multi-scale Vector Quantization
	The Learning Objective

	Experiments
	Conclusion
	Appendix

	 Appendix
	Optimal Support of The Codebook Distribution
	Statistical Distances over Gaussian Distributions
	Quantitative Analyses When Codebook Distribution and Feature Distribution are Unifrom Distributions
	Quantization Error Analyses Under the Distribution Matching
	The Details of Synthetic Experiments
	Experimental Details in Section 2.3 and Appendix C
	Experimental Details in Section 3.2
	Experimental Details in Appendix D

	Image Reconstruction Experimental Details
	Ablation Reconstruction Results
	Additional Explanations
	Explanations on the Criterion 2 and 3
	Explanations on the Prototypical Study in Section 2.3
	Why k-means-Based VQ Methods Fail to Achieve Distributional Matching

