# CURVATURE ENHANCED MANIFOLD SAMPLING

#### Anonymous authors

Paper under double-blind review

#### ABSTRACT

Over-parameterized deep learning models, characterized by their large number of parameters, have demonstrated remarkable performance in various tasks. Despite the potential risk of overfitting, these models often generalize well to unseen data due to effective regularization techniques, with data augmentation being one of the most prominent methods. This strategy has proven effective in classification tasks, where label-preserving transformations are applicable. However, the application of data augmentation in regression problems remains underexplored. Recently, a new *manifold learning* approach for sampling synthetic data has been introduced, and it can be viewed as utilizing a first-order approximation of the data manifold. In this work, we propose to extend this direction by providing the fundamental theory and practical tools for approximating and sampling general data manifolds. Further, we introduce the curvature enhanced manifold sampling (CEMS) data augmentation method for regression. CEMS is based on a second-order encoding of the manifold, facilitating sampling and reconstruction of new points. Through extensive evaluations on multiple datasets and in comparison to several state-ofthe-art approaches, we demonstrate that CEMS is superior in in-distribution and out-of-distribution tasks, while incurring only a mild computational overhead.

025 026 027

000

001 002 003

004

006 007

008 009

010

011

012

013

014

015

016

017

018

019

021

## 1 INTRODUCTION

028 Deep neural networks have demonstrated remarkable performance across a wide range of applica-029 tions in various fields (Krizhevsky et al., 2012; Long et al., 2015; Mnih et al., 2015; Noh et al., 2015; Vinyals et al., 2015; He et al., 2016; Nam & Han, 2016; Wu et al., 2016). Despite their success, these 031 models are often significantly over-parameterized, meaning they possess more parameters than the 032 number of training examples. As a result, deep neural networks are prone to overfitting, whereby 033 they "memorize" the training set rather than learning generalizable patterns, thus compromising 034 their performance on unseen data. Regularization techniques are crucial to address this issue, as they modify the learning process to prevent overfitting by reducing the variance and increasing the bias of the underlying model (Goodfellow, 2016). Classical regularization methods, such as weight decay, dropout (Srivastava et al., 2014), and normalization techniques like Batch Normalization (Ioffe & 037 Szegedy, 2015) and Layer Normalization (Ba et al., 2016), have been effective in many scenarios. In addition to these methods, recent research has explored the potential of data augmentation (DA) as a form of regularization. In this paper, we focus on the problem of regularizing regression models 040 via data augmentation. That is, we explore how to artificially expand the train set (DA) for models 041 that predict continuous values (regressors) to improve generalization and robustness. 042

Early work in modern computer vision revealed the effectiveness of basic image transformations 043 such as translation and rotation (Krizhevsky et al., 2012), promoting data augmentation to become 044 one of the key components in designing generalizable learning models (Shorten & Khoshgoftaar, 2019). In particular, classification tasks, whose goal is to predict a discrete label, benefited notably 046 from the rapid development of DA (Simonyan & Zisserman, 2015; DeVries, 2017; Zhang et al., 047 2018; Zhong et al., 2020). The discrete and categorical nature of classification labels makes it eas-048 ier to define label-preserving transformations and apply interpolations without compromising data integrity. In contrast, regression tasks, where the outputs are continuous, face unique challenges in ensuring that transformations produce valid input-output pairs and that interpolations maintain the 051 underlying functional relationships. While certain regression challenges have adopted standard data augmentation approaches successfully (Redmon et al., 2016), existing DA methods are generally 052 less effective for regression problems (Yao et al., 2022). For this reason, developing data augmentation tools for general regression problems is an emerging field of interest with a relatively small number of available effective techniques. One of the recent state-of-the-art (SOTA) works intro duced FOMA, a data-driven and domain-independent approach based on the theory and practice of
 manifold learning (Kaufman & Azencot, 2024). Our work is also inspired by manifold learning,
 where we consider DA as a *manifold approximation and sampling* challenge.

058 Manifold learning is fundamental to modern machine learning primarily through the *manifold hy*pothesis (Belkin & Niyogi, 2003; Goodfellow, 2016), where complex and high-dimensional data 060 is assumed to lie close or on an associated low-dimensional manifold. Multiple works leveraged 061 the relation between data and manifolds (Zhu et al., 2018; Ansuini et al., 2019), and particularly, 062 FOMA (Kaufman & Azencot, 2024) can be viewed as a method for generating new examples by 063 sampling from the tangent space of the data manifold, approximated using the training distribution. 064 The tangent space at a point is a linear approximation of the manifold at that point (Lee, 2012), and thus, FOMA is a first-order approach. However, while first-order approximations work well for 065 relatively simple or well-behaved data, they often fall short when dealing with complex, curved real-066 world data. We demonstrate this effect in Fig. 1B-C, where first-order approximations of points with 067 high curvature fail to capture the structure of the manifold. While it is natural to consider higher-068 order approximations for improving FOMA, their computational burden may be too limiting. In this 069 work, we advocate that *second-order* manifold representations offer a compelling trade-off between effectiveness and compute requirements for data augmentation for regression problems. 071

We propose the curvature enhanced manifold sampling (CEMS) approach, which generates new 072 examples by drawing from a second-order representation of the data manifold. Particularly, CEMS 073 randomly generates points in the tangent space of the manifold, whereas FOMA is different as 074 it scales down the orthogonal complement of the tangent space which captures how the manifold 075 deviates from the linear approximation. FOMA and CEMS are data-driven and domain-independent, 076 i.e., their samples are based on the underlying data distribution, whose domain can be arbitrary, e.g., 077 time series, tabular, images, and other data forms. The inclusion of curvature information allows CEMS to better capture the intrinsic geometry of the data manifold, as it accounts for the non-079 linearities and complex structures that first-order methods might miss. In general, second-order methods are infeasible in modern machine learning due to computational costs incurred by high-081 dimensional vectors. Nevertheless, our analysis shows that CEMS is governed by the intrinsic dimension d of the manifold, and its value is much smaller than the data dimension D, i.e.,  $d \ll D$ . We extensively evaluate CEMS and show it is competitive in comparison to SOTA data augmentation 083 approaches on in-distribution and out-of-distribution tasks. The contributions of our work can be 084 summarized as follows: 085

- 1. We consider data augmentation for regression as a manifold learning problem, extending and generalizing prior approaches through providing the foundational theory and practice.
- 2. We introduce CEMS, a novel fully-differentiable, data-driven and domain-independent data augmentation technique that is based on a second-order approximation of the data manifold.
- 3. Across nine datasets, featuring numerous large-scale, real-world in-distribution and out-ofdistribution tasks, we demonstrate that CEMS performs competitively or even surpasses other augmentation strategies.
- 094 095 096

097

090

092

## 2 RELATED WORK

098 The theoretical foundation for data augmentation (DA) is related to the study of Empirical Risk Min-099 imization (ERM) (Vapnik, 1991) vs. Vicinal Risk Minimization (VRM) (Chapelle et al., 2000). In 100 VRM, one considers an extended distribution to train on, in comparison to ERM, where the train dis-101 tribution is used. Data augmentation is a common approach for extending data distributions through 102 creating artificial samples. With the increased dependence of deep models on large volumes of 103 data, DA has become a cornerstone in enhancing the performance and generalization of neural net-104 works (DeVries, 2017; Chen et al., 2020b; Feng et al., 2021; Yang et al., 2022). Early work focused 105 on domain-dependent augmentations for image, audio, and natural language data (Krizhevsky et al., 2012; He et al., 2016; Huang et al., 2017; Kobayashi, 2018; Park et al., 2019; Zhong et al., 2020). 106 Later, automatic augmentation tools have been proposed (Cubuk et al., 2019; Lim et al., 2019), in-107 cluding domain-dependent search spaces for transformations. Still, adapting these methods to new

119

120

121

122 123 124

125

126

137



Figure 1: We demonstrate the effect of sampling from a one-dimensional manifold embedded in a two-dimensional space. A) The original data representing a sine wave where the color of each point represents the curvature at that point (brighter means higher curvature). B) Sampling using FOMA.C) Sampling using a first-order approximation. D) Sampling using CEMS (our approach).

data domains remains a challenge. This has sparked interest in developing domain-independent approaches that make minimal assumptions about the data domain, and it is the focus our research.

127 DA for Classification. Zhang et al. (2018) introduced mixup, a well-known domain-independent 128 DA method that convexly combines pairs of input samples and their one-hot label representations 129 during training. Following their work, a plethora of mixup-based techniques have been suggested 130 such as manifold mixup (Verma et al., 2019) which extends the idea of mixing examples to the latent 131 space. CutMix (Yun et al., 2019) implants a random rectangular region of the input into another and many others (Guo et al., 2019; Hendrycks et al., 2020; Berthelot et al., 2019; Greenewald et al., 132 2023; Lim et al., 2022). Recently, Erichson et al. (2024) extended the work (Lim et al., 2022) via 133 stable training and further noise injections. While the family of mixup techniques have been shown 134 to consistently improve classification learning systems (Cao et al., 2022), its efficacy is inconsistent 135 on regression tasks (Yao et al., 2022). 136

DA for Regression. Unfortunately, there has been considerably less focus on developing data 138 augmentation methods for regression tasks in comparison to the classification setting. Due to the 139 simplicity and effectiveness of mixup-based tools in classification, a growing body of literature is 140 drawn to adapting and extending the mixing process for regression. For instance, RegMix (Hwang 141 & Whang, 2021) learns the optimal number of nearest neighbors to mix per sample. C-mixup (Yao 142 et al., 2022) employs a Gaussian kernel to create a sampling probability distribution for each sample, 143 taking label distances into account, and selecting samples for mixing according to this distribution. 144 Anchor Data Augmentation (Schneider et al., 2023) clusters data points and adjusts the original 145 points either towards or away from the cluster centroids. R-Mixup (Kan et al., 2023) focuses on enhancing model performance specifically for biological networks, whereas RC-Mixup (Hwang 146 et al., 2024) extends C-mixup to be more robust against noise. Perhaps closest to our work is the 147 recent FOMA method (Kaufman & Azencot, 2024) that does not rely on mixing samples, but rather, 148 it samples from a first-order approximation of the data manifold. Still, to the best of our knowledge, 149 our work is first in suggesting fundamental manifold learning theory and tools for DA, accompanied 150 by an effective second-order augmentation technique. 151

152 **Manifold Learning.** Manifold learning has been a fundamental research area in machine learning, 153 aiming to discover the intrinsic low-dimensional structure of high-dimensional data. While early 154 work focused on dimensionality reduction of points and preserving their geometric features (Tenen-155 baum et al., 2000; Roweis & Saul, 2000; Belkin & Niyogi, 2003; Weinberger & Saul, 2004; Zhang 156 & Zha, 2005; Coifman & Lafon, 2006), modern approaches also considered regularization (Ma 157 et al., 2018; Zhu et al., 2018), explainable artificial intelligence (Ansuini et al., 2019; Kaufman 158 & Azencot, 2023), and autoencoding (Chen et al., 2020a), among other applications. Recent ad-159 vancements in manifold learning have enhanced anomaly detection and out-of-distribution (OOD) recognition. (Li et al., 2024) leveraged submanifold geometry, estimating tangent spaces and curva-160 tures to define in-distribution regions for OOD detection. Gao et al. (2022) proposed a hyperbolic 161 feature augmentation method, using the Poincaré ball model for distribution estimation and infinite

162 sampling, improving few-shot learning performance. Humayun et al. (2022) proposed MaGNET, 163 a framework that enables uniform sampling on data manifolds derived from generative adversarial 164 networks providing a retraining-free solution for data augmentation. Similarly, Chadebec & Allas-165 sonnière (2021) introduced a geometry-aware variational autoencoder that leverages second-order 166 Runge-Kutta schemes for effective data generation in low-sample-size scenarios. Extending these ideas, Cui et al. (2023) presented a trajectory-aware principal manifold framework for image gener-167 ation and data augmentation, which aligns sampled data with learned projection indices to improve 168 representation and synthesis quality. 169

170 171

172

#### 3 BACKGROUND

173 3.1 MANIFOLD LEARNING 174

A manifold  $\mathcal{M} \subset \mathbb{R}^d$  is a mathematical structure that locally resembles an Euclidean space near each of its points (Lee, 2012). A ubiquitous assumption in machine learning states that high-dimensional point clouds  $Z \subset \mathbb{R}^D$  satisfy the manifold hypothesis. Namely, the data Z lie on a manifold  $\mathcal{M}$ whose intrinsic dimension d is significantly lower than the extrinsic dimension of the ambient space D, i.e.,  $d \ll D$  (Goodfellow, 2016). Manifold learning is a field in machine learning that develops theory and tools for analyzing and processing high-dimensional data under the lens of geometric manifolds.

181 182 183

#### 3.2 CURVATURE-AWARE MANIFOLD LEARNING

Our curvature enhanced manifold sampling (CEMS) data augmentation method is based on a second-order approximation of the data manifold. There are several existing practical approaches for parameterizing a manifold given a collection of data points  $Z = \{z^1, z^2, \dots, z^N\} \subset \mathbb{R}^D$ . Here, we focus on the curvature-aware manifold learning (CAML) algorithm (Li, 2018), since it scales to high-dimensional problems, it is numerically stable, and it is easy to code. Below, we include the necessary details for describing our approach, and we refer the reader to (Lee, 2012; 2018; Li, 2018) for additional details on Riemannian geometry and its realization in machine learning.

Following our discussion above, we assume Z satisfies the manifold hypothesis. Formally, it means that there exists an embedding map  $f : \mathcal{M} \to \mathbb{R}^D$  such that

193 194

$$z^{i} = f(u^{i}), \quad i = 1, \dots, N$$
, (1)

where  $U = \{u^1, u^2, \dots, u^N\} \subset \mathbb{R}^d$  are low-dimensional representations of Z. In practice, CAML parameterizes f by projecting  $z \in Z$  to its tangent and normal spaces at  $u \in \mathcal{M}$ , where the tangent space is obtained by a linear transformation and the normal space is provided via a second-order local approximation. Specifically, given a point  $z \in Z$ , we find close points  $N_z = \{z_j\}_{j=1}^k$ , forming the neighborhood of z. Next, we construct an orthonormal basis  $B_u := [B_{\mathcal{T}_u}, B_{\mathcal{N}_u}]$  for the tangent space  $\mathcal{T}_u \mathcal{M}$  and the normal space  $\mathcal{N}_u \mathcal{M}$  at u. We then project  $N_z$  and z onto  $B_{\mathcal{T}_u}$  and  $B_{\mathcal{N}_u}$ , yielding  $U_z = \{u_j\}_{j=1}^k$ , u and  $G_z = \{g_j\}_{j=1}^k$ , g respectively. To allow arbitrary sampling from  $\mathcal{M}$ , we assume that g is a map from the tangent space to the normal space, i.e.,  $g : \mathcal{T}_u \mathcal{M} \to \mathcal{N}_u \mathcal{M}$ . The second-order Taylor expansion of g around a point  $u \in \mathcal{M}$  is given by

$$g(u_j) = g(u) + (u_j - u)^T \nabla g(u) + \frac{1}{2} (u_j - u)^T H(u) (u_j - u) + \mathcal{O}(|u_j|_2^2) , \qquad (2)$$

where the linear (gradient) and quadratic (Hessian) terms are unknown. To compute  $\nabla g(u)$  and H(u), one needs to collect the linear coefficients and constants arising from Eq. 2 into matrices  $\Psi$  and G, respectively, solve a linear system of equations (Eq. 9), and extract the numerical estimates of the gradient and Hessian. Finally, we can map the pair (u, g) back into its original space  $z \in Z$  by computing  $z := f(u) = B_u[u, g(u)]$ . See also App. A for additional details.

210 211 212

213

204

205 206

207

208

209

#### 4 CURVATURE ENHANCED MANIFOLD SAMPLING

We assume to be given a regression training set  $\mathcal{D} := \{(x^i, y^i)\}_{i=1}^N$ , where  $x^i$  is the data sample and  $y^i$  is its corresponding prediction, and we denote by  $z^i = [x^i, y^i] \in \mathbb{R}^D$  the concatenation



Figure 2: CEMS forms the neighborhood for every point z (left), computes a basis  $B_{\mathcal{T}_u}$  for the tangent space via SVD (middle) while obtaining an estimate for the embedding map f, samples a new point  $\eta$  close to u (right), and un-projects it back to  $\mathbb{R}^D$  using f.

230 of  $x^i, y^i$ . During training, given a mini-batch  $Z = \{z^{i1}, \cdots z^{ib}\}$ , where b is the batch size, we 231 perform the following procedure for each  $z \in Z$  to create a new sample  $\tilde{z}$ , omitting the superscript 232 i to simplify notation. To account for the discrepancies in scale between X and Y, we normalize Y to the range [0, 1]. Our curvature enhanced manifold sampling (CEMS) augmentation approach 233 consists of four main steps: 1) Extract a neighborhood  $N_z$  from  $\mathcal{D}$  for every point z; 2) Construct 234 a basis  $B_u := [B_{\mathcal{T}_u}, B_{\mathcal{N}_u}]$  for the tangent space  $\mathcal{T}_u \mathcal{M}$  and the normal space  $\mathcal{N}_u \mathcal{M}$  and project 235 the neighborhood onto it; 3) Form and solve the linear system of equations in Eq. 9 to obtain the 236 parameterization g; 4) Sample a new point from  $\mathcal{T}_{u}$ , evaluate its g via Eq. 2, and un-project it onto 237 the ambient space using f. Below, we detail how we perform each step, and we motivate our design 238 choices. Pseudo-code and illustration of CEMS are given in Alg. 1 and Fig. 2. 239

240 **Neighborhood extraction.** The approach we consider in this work is *local* in the sense that we rep-241 resent the manifold structure in the vicinity of a specific point  $z \in \mathcal{D}$  or within its neighborhood  $N_z$ . 242 High-quality approximations of local properties of the manifold  $\nabla g(u)$  and H(u) depend directly on 243 the proximity of the elements in  $N_z$  to z. A straightforward approach to extracting  $N_z$  is to compute 244 the k-nearest neighbors (kNN) (Cover & Hart, 1967) of z. Specifically, we construct neighborhoods 245 in the joint input-output space  $\mathcal{X} \times \mathcal{Y}$  to align with the manifold hypothesis, preserving the local 246 continuity of the data and avoiding the artificial separations introduced by clustering-based methods. 247 For each point  $z_i \in \mathcal{Z}$ ,  $N_{z_i}$  is defined as the k closest points in feature space, which ensures the local geometry is captured reliably while minimizing diversity within the neighborhoods. Furthermore, 248 our reliance on the local-Euclidean prior assumes that the manifold is sufficiently smooth at small 249 scales, justifying the validity of linear approximations such as those employed by our method. This 250 assumption underpins the extraction of neighborhood sets and their utility in manifold analysis, as 251 it guarantees that the neighborhoods respect the underlying manifold structure. 252

253 Our analysis below and in Sec. B shows that the computational complexity of CEMS is governed by singular value decomposition (SVD) calculations, required for basis construction. To reduce 254 runtime,  $\mathcal{D}$  can be pre-processed, storing  $\nabla g(u)$  and H(u) for every z := f(u) on the disk, as 255 these properties remain unchanged during training. While this pre-computation reduces runtime 256 significantly, it incurs high memory complexity,  $\mathcal{O}(2d(D-d))$ , and the choice of neighbors is fixed 257 during training. To address these limitations, we use the same neighborhood for all points in  $N_z$ , 258 re-using neighborhoods and basis computations for every  $z_i \in N_z$ . This improves efficiency, though 259 at the cost of accuracy, since every  $z_j \in N_z$  is assumed to share the same neighborhood. Finally, 260 the batch size determines the number of neighbors for each point, providing a balance between 261 computational efficiency and accuracy.

262

226

227

228 229

**Basis construction and projection.** To find an orthonormal basis for the tangent space  $\mathcal{T}_u \mathcal{M}$  and the normal space  $\mathcal{N}_u \mathcal{M}$ , we follow standard approaches (Singer & Wu, 2012; Li, 2018) that utilize the singular value decomposition (SVD). Specifically, we compute SVD on the centered points  $\{z_j - z\}_{j=1}^k = USV^T$ , while keeping our pipeline to be fully differentiable (Ionescu et al., 2015). Importantly, SVD is calculated once for every batch, as discussed above. The first *d* columns of *U* determine the basis for the tangent space, i.e.,  $B_{\mathcal{T}_u} := U[:, 1:d]$  and the last D - d columns determine the basis for the normal space  $B_{\mathcal{N}_u} := U[:, d + 1:D]$  such that  $B_u := [B_{\mathcal{T}_u}, B_{\mathcal{N}_u}]$  is the concatenation of the bases. While the intrinsic dimension *d* can be viewed as a hyper-parameter 276 277 278

284

290 291

310

of CEMS, we estimate it in practice using a robust estimator (Facco et al., 2017). The centered neighbors  $z_j - z$  are projected to the tangent space and the normal space via  $u_j := B_{\mathcal{T}_u}^T \cdot (z_j - z)$ ,  $g(u_j) := B_{\mathcal{N}_u}^T \cdot (z_j - z)$ , respectively, where  $A^T$  is the transposed matrix of A, and  $A \cdot v$  is a matrix-vector multiplication. Centering the points around z map the point u to the zero vector, and thus, Eq. 2 is transformed to the following approximation:

$$g(u_j) = u_j^T \nabla g(u) + \frac{1}{2} u_j^T H(u) u_j .$$
(3)

**Linear system of equations.** Under the change of basis  $B_u$ , we form the matrices  $\Psi$  and G as described in App. A, containing  $\{u_j\}_{j=1}^k$  and  $\{g(u_j)\}_{j=1}^k$ , respectively. We then solve Eq. 9 via differentiable least squares, and we obtain an estimation of  $\nabla g(u)$  and H(u), allowing to map new points in the vicinity of u by computing g. Note that while  $N_z$  and  $B_u$  are shared across the batch, the linear solve is still computed separately per point.

**Sampling and un-projecting.** To generate new examples using the above machinery, we need to sample a point  $\eta \in \mathbb{R}^d$  from the neighborhood of u, and un-project it to the ambient space  $\mathbb{R}^D$ (through the parameterization g and map f). While various sophisticated sampling techniques could be devised, we opted for a simple sampler with a single hyperparameter. In practice, we draw  $\eta \sim \mathcal{N}(0, \sigma I_d)$ . To un-project  $\eta$  back to the original space, we compute

$$z_{\eta} := f(\eta) = B_u \cdot [\eta, g(\eta)] + z .$$

$$\tag{4}$$

Adaptation to batches. For completeness, we also describe briefly the adaptation of CEMS to the 292 training setting where we utilize mini-batches. As mentioned above, given z and its neighborhood 293  $N_z$ , we re-use the same neighborhood and subsequent basis computations for every  $z_i \in N_z$ . This 294 adaptation requires a small modification to the method. 1) We include the point  $z := z_0$  in the 295 neighborhood  $N_z = \{z_j\}_{j=0}^k$ . 2) We find an orthonormal basis  $B_u$  that spans  $N_z - \mu$ , where 296  $\mu$  is the mean of  $N_z$ . 3) After projecting to the coordinates of  $B_u$ , we get  $U_z = \{u_j\}_{j=0}^k$  and 297  $G_z = \{g_j\}_{j=0}^k$ . For every point  $u_j$ , we gather a set of close points and their embeddings via 298 g. 4) In contrast to the point-wise basis estimation, where u served as the origin (zero vector), 299 in the batch-wise computation we need to account for  $u_j$  and  $g(u_j)$  in Eq. 2. While steps 5-7 300 in Alg. 1 remain unchanged, at step 8 we sample a point  $\eta$  near  $u_l$ :  $\eta \sim \mathcal{N}(u_l, \sigma I_d)$ . Step 9 changes to  $g(\eta_l) = g(u_l) + (\eta_l - u_l)^T \nabla g + \frac{1}{2}(\eta_l - u_l)^T H(\eta_l - u_l)$  and step 10 changes to  $z_{\eta_l} := f(\eta_l) = B_u \cdot [\eta_l, g(\eta_l)] + \mu_{N_z}$ . A full description of the algorithm appears in Alg. 2. 301 302 303

**Complexity analysis.** There are two computationally demanding calculations used by CEMS, SVD and least squares. Given a data mini-batch  $Z \in \mathbb{R}^{b \times D}$ , where *b* is the batch size. Then, SVD requires  $\mathcal{O}(\min(bD^2, Db^2))$  operations, whereas the solution of under-determined least squares costs  $\mathcal{O}(b^2d^2)$ . Using the manifold hypothesis, we assume that  $d \ll D$  therefore  $d \in \mathcal{O}(D^2)$  and thus, the overall time complexity of CEMS is given by  $\mathcal{O}(b^2D)$  which is proportional to the mabient dimension *D*. See also App. B for a more detailed analysis.

311 Algorithm 1 Curvature Enhanced Manifold Sampling (CEMS<sub>p</sub>) 312 **Require:** Training data  $Z = \{z^i = [x^i, y^i]\}_{i=1}^N$ . A sample  $z \in Z$ 313 1: Find K-nearest neighbors  $N_z$  of z 314 2: Find an orthonormal basis  $B_u$  that spans  $N_z - z$ 315 3: Project every  $z_j - z$  to the local orthonormal coordinates: 316  $u_j = \dot{B}_{\mathcal{T}_u}^T \cdot (z_j - z), g_j = B_{N_u}^T \cdot (z_j - z)$ Construct G and  $\Psi$  as in Eq. 9 4: 317 5: 318 6: Solve  $\Psi A = G$ 319 Extract  $\nabla q(z)$  and H(z) from A 7: 320 Sample noise  $\eta \sim \mathcal{N}(0, \sigma I_d)$ 8: 321 9: Calculate  $g(\eta) = \eta^T \nabla g + \frac{1}{2} \eta^T H \eta$ 322 10: Un-project  $\eta$  back to the original coordinates,  $z_{\eta} := f(\eta) = B_u \cdot [\eta, g(\eta)] + z$ 323 11: return  $z_{\eta}$ 

324 **Memory analysis.** The memory requirements of CEMS are primarily dictated by the compu-325 tation of the SVD. Notably, the SVD is computed independently for each batch rather than for 326 the entire dataset. In our PyTorch implementation, we leverage the economy/reduced SVD vari-327 ant, which significantly reduces memory usage compared to the full SVD. For a batch matrix of 328 size  $b \times D$  (where b is the batch size and D is the ambient dimension), the space complexity is  $O(bD + \min(b, D)(b + D))$ . This is substantially more efficient than the full SVD, which requires 329  $O(bD + b^2 + D^2)$  memory. In practice, CEMS is particularly effective in scenarios where the batch 330 size b is much smaller than the ambient dimension D (common in deep learning), resulting in a 331 memory complexity that is approximately proportional to D. 332

333

**Comparison with FOMA.** FOMA (Kaufman & Azencot, 2024) can be interpreted as a special 334 case of CEMS. Specifically, we can describe FOMA using our notations as follows: given a sample 335 z and its neighborhood  $N_z$ , FOMA constructs a basis  $B_u := [B_{\mathcal{T}_u}, B_{\mathcal{N}_u}]$  for the tangent space 336  $\mathcal{T}_u \mathcal{M}$  and the normal space  $\mathcal{N}_u \mathcal{M}$  and projects the neighborhood onto it, yielding  $U_z = \{u_j\}_{j=1}^k$ 337 and  $G_z = \{g_j\}_{j=1}^k$ , respectively. Rather than estimating the gradient  $\nabla g(u_j)$  and Hessian  $H(u_j)$  at 338 each point  $u_i \in U_z$  and then sampling using the Taylor expansion as performed in CEMS, FOMA 339 generates new samples by scaling down  $G_z$ . That is, for each  $z_i \in N_z$ , the corresponding  $\tilde{g}_i = \lambda g_i$ 340 is scaled where  $\lambda \in (0, 1)$ . To complete the sampling process, every  $u_j$  is un-projected back to the original coordinates by computing  $\tilde{z} := f(u_j) = B_u \cdot [u_j, \lambda g(u_j)]$ . Therefore, FOMA does not 341 342 use the embedding map g as detailed in Eq. 2, but it samples random points instead. Unfortunately, 343 this sampling technique may yield new points that are not on the data manifold, especially on highly 344 curved locations, as is also illustrated in Fig. 1.

#### 4.1 APPROXIMATION ERROR BOUNDS

In what follows, we provide a theoretical justification for the sampling error of CEMS in comparison to first-order approaches. Let  $f : \mathbb{R}^d \to \mathbb{R}^D$  be a twice-differentiable function, we can express the Taylor expansion around a point  $u_0$  up to first and second order as follows,

$$f^{(1)}(u) = f(u_0) + \nabla f(u_0)^T (u - u_0) , \qquad (5)$$

352 353 354

355

356

361

362

364

366 367

368 369

370

345 346

347

348

349

350 351

$$f^{(2)}(u) = f(u_0) + \nabla f(u_0)^T (u - u_0) + \frac{1}{2} (u - u_0)^T H_f(u_0) (u - u_0) .$$
(6)

Under standard smoothness assumptions, the approximation errors can be bounded as follows:

**Theorem 4.1** (Error Bounds). (Fowkes et al., 2013) For a twice-differentiable function f with Lipschitz continuous Hessian in a neighborhood of  $u_0$ , we have that

$$\|f(u) - f^{(1)}(u)\| \le \frac{M}{2} \|u - u_0\|^2, \quad \|f(u) - f^{(2)}(u)\| \le \frac{L}{6} \|u - u_0\|^3, \tag{7}$$

where M bounds the spectral norm of  $H_f(u)$  and L is the Lipschitz constant of  $H_f(u)$  in the neighborhood of  $u_0$ .

The second-order error decreases as  $O(||u - u_0||^3)$  compared to  $O(||u - u_0||^2)$  for first-order methods. This faster convergence rate ensures more accurate sampling in the vicinity of training points.

#### 5 EXPERIMENTS

5.1 SINE EXAMPLE

Real-world data is often complex and curved, exhibiting intricate patterns that cannot be adequately
captured by linear or simplistic models. By employing higher-order approximations of the manifold,
we can generate samples that align with the true nature of real-world data. In Fig. 1, we demonstrate
a toy sine example, highlighting the differences between first-order and second-order approaches.
Specifically, we generated a two-dimensional point cloud of a sine wave whose intrinsic dimension
is one (Fig. 1, left). Then, we sampled points from this distribution using mini-batches from the train
set and various data augmentation techniques. The first-order method, FOMA (Kaufman & Azencot,
2024), struggles to adhere to the curvature of the manifold in highly-curved points, as can be seen

|            | Air   | Airfoil |       | NO2    |       | Exchange-Rate |                    | Electricity |  |
|------------|-------|---------|-------|--------|-------|---------------|--------------------|-------------|--|
|            | RMSE  | MAPE    | RMSE  | MAPE   | RMSE  | MAPE          | RMSE               | MAPE        |  |
| ERM        | 2.901 | 1.753   | 0.537 | 13.615 | 0.024 | 2.423         | 0.058              | 13.861      |  |
| Mixup      | 3.730 | 2.327   | 0.528 | 13.534 | 0.024 | 2.441         | 0.058              | 14.306      |  |
| Mani Mixup | 3.063 | 1.842   | 0.522 | 13.382 | 0.024 | 2.475         | $\overline{0.058}$ | 14.556      |  |
| C-Mixup    | 2.717 | 1.610   | 0.509 | 12.998 | 0.020 | 2.041         | 0.057              | 13.372      |  |
| ADA        | 2.360 | 1.373   | 0.515 | 13.128 | 0.021 | 2.116         | 0.059              | 13.464      |  |
| FOMA       | 1.471 | 0.816   | 0.512 | 12.894 | 0.013 | 1.262         | 0.058              | 14.614      |  |

0.507

Table 1: Comparison of in-distribution generalization tasks. Values in bold indicate the best results, 379

392 393 394

391

396 397

399

CEMS

378

in Fig. 1, middle left. Similarly, restricting CEMS to a first-order approximation presents a similar behavior (Fig. 1, middle right). Finally, our second-order CEMS method samples the manifold well, even near high curvature areas (Fig. 1, right).

12.807

0.014

1.293

0.058

13.353

5.2 IN-DISTRIBUTION GENERALIZATION

1.455

0.809

400 In what follows, we consider the in-distribution benchmark that was introduced in (Yao et al., 2022). 401 This benchmark evaluates the performance of various data augmentation techniques in the setting 402 of training on a train set and its augmentations, while testing on a test set that was sampled from the same distribution as the train set. Thus, a strong performance in this benchmark implies that 403 the underlying DA method mimics the train distribution well. Below, we compare CEMS to other 404 recent state-of-the-art (SOTA) approaches, while using the same datasets that were studied in (Yao 405 et al., 2022) and closely replicating their experimental setup. 406

407

**Datasets.** We evaluate in-distribution generalization using four datasets. Two of these are tabular 408 datasets: Airfoil Self-Noise (Airfoil) (Brooks et al., 2014), containing aerodynamic and acoustic 409 measurements of airfoil blade sections, and NO2 (Aldrin, 2004), which predicts air pollution levels 410 at specific locations. We also use two time series datasets: Exchange-Rate and Electricity (Lai et al., 411 2018), where Exchange-Rate includes daily exchange rates of several currencies and Electricity con-412 tains measurements of electric power consumption in private households. For a detailed description 413 of these datasets, see App. G.

414 415

**Experimental Settings.** We perform a comparative analysis between our method, CEMS, and 416 several established baseline approaches, including the standard empirical risk minimization (ERM) 417 training, Mixup (Zhang et al., 2018), Manifold-Mixup (Verma et al., 2019), C-Mixup (Yao et al., 418 2022), Anchor Data Augmentation (ADA) (Schneider et al., 2023), and FOMA (Kaufman & Azen-419 cot, 2024). The neural networks we trained are the same as considered in (Yao et al., 2022), where a 420 fully connected three layer model was used for tabular datasets, and an LST-Attn (Lai et al., 2018) is 421 utilized for time series data. The evaluation metrics include the root mean square error (RMSE) and 422 mean absolute percentage error (MAPE). Additional details on experimental settings and hyperpa-423 rameters are available in App. F.

424

**Results.** We present the in-distribution generalization benchmark results in Tab. 1. The results of 426 all previous methods are reported as they appear in the corresponding original papers. Lower values 427 are preferred either in RMSE or in MAPE. Boldface and underline denote the best and second best 428 approaches, respectively. Remarkably, across all datasets and metrics, CEMS attains the best or second best error measures. In particular, CEMS outperforms other data augmentation strategies on 429 Airfoil and NO2 while being comparable with FOMA on Electricity and Exchange-Rate. We also 430 note that when CEMS is second best, its result is relatively close to the best result. We present the 431 full results including standard deviation measures in App. H.

## 432 5.3 OUT-OF-DISTRIBUTION

433 434 435

436

437

438

To extend our in-distribution evaluation, we also consider an out-of-distribution benchmark, as was proposed in (Yao et al., 2022). Unlike the in-distribution case, here the test set is sampled from a distribution different from that of the train set. Therefore, excelling in this scenario provides valuable information regarding the generalization capabilities of data augmentation tools. In what follows, we perform a comparison between CEMS and several SOTA methods, while using the same datasets that were studied in (Yao et al., 2022) and closely replicating their experimental setup.

439 440 441

**Datasets.** We leverage five datasets to evaluate the performance of out-of-distribution robustness. 442 1) RCFashionMNIST (RCF) (Yao et al., 2022) is a synthetic variation of Fashion-MNIST, designed 443 to model sub-population distribution shifts, with the aim of predicting the rotation angle for each 444 object. 2) Communities and Crime (Crime) (Redmond, 2009) is a tabular dataset focused on pre-445 dicting the total number of violent crimes per 100,000 population, aiming to create a model that 446 generalizes to states not included in the training data. 3) SkillCraft1 Master Table (SkillCraft) (Blair 447 et al., 2013) is a tabular dataset designed to predict the average latency in milliseconds from the 448 onset of perception-action cycles to the first action where "LeagueIndex" is considered as domain 449 information. 4) Drug-Target Interactions (DTI) (Huang et al., 2021) seeks to predict drug-target in-450 teractions that are out-of-distribution, using the year as domain data. 5) PovertyMap (Poverty) (Koh 451 et al., 2021) is a satellite image regression dataset created to estimate asset wealth in countries that were not part of the training set. For more details about the datasets, please refer to App. G. 452

453 454

Experimental Settings. Similar to Sec. 5.2, we consider the same baseline DA approaches. For metrics, we report the RMSE (where lower values are preferable) for RCF, Crimes, and SkillCraft. In addition, we use *R* (where higher values are preferable) as the evaluation metric for Poverty and DTI, as was originally proposed in their corresponding papers Koh et al. (2021); Huang et al. (2021). For a fair comparison, we follow the methodology in (Yao et al., 2022), and we train a ResNet-18 on the RCF and Poverty datasets, three-layer fully connected networks on Crimes and SkillCraft, and DeepDTA Öztürk et al. (2018) on DTI. We provide further details on hyperparameters and experiments in App. F.

462 463

464 **Results.** We detail our out-of-distribution benchmark results in Tab. 2. Similarly to the in-465 distribution setting, the error measures of previous SOTA approaches were taken from the related original papers. We include both the average (Avg.) and worst domain performance metrics. Lower 466 values are preferred in RMSE, and higher values are opted for R. We denote in bold and underline 467 the best and second best results, respectively. Our results indicate that CEMS attains strong perfor-468 mance measures, achieving the best results in 6/9 tests. Further, the rest of the error measures of 469 CEMS are either second best or very close to the second best. We particularly note the SkillCraft test 470 where CEMS improves the second best results by a relative 1% and 8% for the average and worst 471 metrics. The relative improvement is computed via  $e_{\rm rel} \cdot 100$ , where  $e_{\rm rel} = (e - e_{\rm CEMS})/e$ , with 472  $e_{\text{CEMS}}$  and e denoting the errors of CEMS and the second best approach, respectively. We present 473 the full results including standard deviation measures in App. H.

474 475 476

477

5.4 ABLATION: BASIS COMPUTATION PER POINT VS. PER NEIGHBORHOOD

478 As mentioned in Sec. 4, given a data point z, we construct a neighborhood  $N_z$  which can be used 479 to 1) sample a point  $\tilde{z}$  near z 2) sample points  $\tilde{N}_z$  near  $N_z$ . The first option requires estimating a 480 basis for the tangent space for each point in the dataset, whereas the second option estimates a single 481 basis for the the entire batch of points  $N_z$ . In practice, the first option requires significantly more 482 SVD calculations, determined by the batch size b. For large datasets, using the first option becomes 483 very time consuming. In Tab. 3, we compare between Option 1 (CEMS<sub>p</sub>), where p stands for point and Option 2 (CEMS), considering specifically the smaller datasets. Based on these results, we find 484 that  $CEMS_{p}$  achieves error measures similar to CEMS. However, the computational complexity of 485  $CEMS_p$  is much higher, and thus we advocate the batch-wise computation as suggested in CEMS.

| 487 | Table 2: Comparison of out-of-distribution robustness. Bold values indicate the best results, while |
|-----|-----------------------------------------------------------------------------------------------------|
| 488 | underlined values represent the second best. We present the average RMSE across domains as well     |
| 489 | as the "worst within-domain" RMSE from three different seeds. For the DTI and Poverty datasets,     |
| 490 | we provide the average $R$ and the "worst within-domain" $R$ . Complete results, including standard |
| /01 | deviation, can be found in App H.                                                                   |
| 431 |                                                                                                     |

|           | RCF (RMSE) | (RMSE) Crimes (RMSE) |                    | SkillCraft (RMSE) |                    | DTI(R) |                  | Poverty $(R)$ |                  |
|-----------|------------|----------------------|--------------------|-------------------|--------------------|--------|------------------|---------------|------------------|
|           | Avg. ↓     | Avg.↓                | Worst $\downarrow$ | Avg. $\downarrow$ | Worst $\downarrow$ | Avg. ↑ | Worst $\uparrow$ | Avg. ↑        | Worst $\uparrow$ |
| ERM       | 0.164      | 0.136                | 0.170              | 6.147             | 7.906              | 0.483  | 0.439            | 0.80          | 0.50             |
| Mixup     | 0.159      | 0.134                | 0.168              | 6.460             | 9.834              | 0.459  | 0.424            | 0.81          | 0.46             |
| ManiMixup | 0.157      | 0.128                | <u>0.155</u>       | 5.908             | 9.264              | 0.474  | 0.431            | -             | -                |
| C-Mixup   | 0.146      | 0.123                | 0.146              | 5.201             | 7.362              | 0.498  | 0.458            | 0.81          | 0.53             |
| ADA       | 0.175      | 0.130                | 0.156              | 5.301             | <u>6.877</u>       | 0.493  | 0.448            | 0.79          | 0.52             |
| FOMA      | 0.159      | 0.128                | 0.158              | -                 | -                  | 0.503  | <u>0.459</u>     | 0.78          | 0.49             |
| CEMS      | 0.146      | 0.128                | 0.159              | 5.142             | 6.322              | 5.11   | 0.465            | 0.81          | 0.50             |

Table 3: Ablation results for estimating the basis per point in the neighborhood (CEMS<sub>p</sub>) vs. estimating it once and re-using the basis for every point  $N_z$  (CEMS).

|                           | Airfoil               |                       | NO2                   |                         | Crimes (RMSE)         |                       | SkillCraft (RMSE)     |                       |
|---------------------------|-----------------------|-----------------------|-----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                           | RMSE                  | MAPE                  | RMSE                  | MAPE                    | Avg. $\downarrow$     | Worst $\downarrow$    | Avg.↓                 | Worst $\downarrow$    |
| CEMS <sub>p</sub><br>CEMS | 1.462<br><b>1.455</b> | <b>0.783</b><br>0.809 | <b>0.503</b><br>0.507 | <b>12.759</b><br>12.807 | 0.130<br><b>0.128</b> | <b>0.157</b><br>0.159 | <b>5.026</b><br>5.142 | 8.063<br><b>6.322</b> |

#### 6 CONCLUSIONS

This work introduces CEMS, a novel data augmentation method tailored specifically for regression problems, framed within the context of manifold learning. By leveraging second-order manifold approximations, CEMS captures the underlying curvature and structure of the data more accurately than previous first-order methods. Our extensive evaluation across nine diverse benchmark datasets, spanning both in-distribution and out-of-distribution tasks, shows that CEMS achieves competitive performance compared to SOTA techniques, often surpassing them in challenging settings. The main contributions of this work are threefold: (1) extend the view of DA for regression as a man-ifold learning problem, thereby providing a principled foundation and practical tools; (2) propos-ing CEMS, a fully differentiable, data-driven, and domain-independent second-order augmentation method; and (3) empirically validating CEMS across a variety of regression scenarios, showing its potential to serve as a robust and effective regularization technique for models predicting continu-ous values. Our results suggest that higher-order manifold sampling approaches hold promise for improving the generalization of regression models, especially in scenarios with limited data. 

One limitation of CEMS is that the linear system in Eq. 9 is might be underdetermined for data sets with a large intrinsic dimension d. In practice, the number of neighbors has to be  $\mathcal{O}(d^2)$ , for an overdetermined system. Our implementation sets the number of neighbors to be a constant size and thus it is independent of d. While this requirement is reasonable for low d values, it can become expensive for large d. This can be resolved by regularizing the linear system via, e.g., ridge regression. Another limitation is related to the SVD computation, where CEMS needs at least dcolumns. This may require a full SVD calculation, demanding  $\mathcal{O}(bD^2)$  memory, where b is the batch size and D is the extrinsic dimension, which may be impractical for datasets with many features. A potential solution is to consider a different intrinsic dimension d, such that d < d. In future work, we plan to investigate these ideas, and, in addition, we plan to explore extensions of CEMS to include adaptive strategies for dynamically selecting the appropriate order of approximation based on local data properties. By pushing the boundaries of data augmentation for regression, we hope to pave the way for more robust and versatile learning systems capable of tackling complex, real-world prediction tasks. 

# 540 REFERENCES

548

554

562

563

564 565

566 567

568

569

570

571

575

576

577

586

592

- 542 Magne Aldrin. CMU statlib dataset. http://lib.stat.cmu.edu/datasets/, 2004.
- Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of data representations in deep neural networks. *Advances in Neural Information Processing Systems*, 32, 2019.
- 547 J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. In *NIPS*, 2016.
- 549 Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. *Neural computation*, 15(6):1373–1396, 2003.
- David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A
   Raffel. MixMatch: A holistic approach to semi-supervised learning. *Advances in Neural Infor- mation Processing Systems*, 32, 2019.
- Mark Blair, Joe Thompson, Andrew Henrey, and Bill Chen. Skillcraft1 master table dataset. UCI
   Machine Learning Repository, 2013.
- Thomas Brooks, D. Pope, and Michael Marcolini. Airfoil Self-Noise. UCI Machine Learning Repository, 2014.
- Chengtai Cao, Fan Zhou, Yurou Dai, and Jianping Wang. A survey of mix-based data augmentation:
   Taxonomy, methods, applications, and explainability. *arXiv preprint arXiv:2212.10888*, 2022.
  - C Chadebec and S Allassonnière. Data generation in low sample size setting using manifold sampling and a geometry-aware vae. *CoRR*, 2021.
  - Olivier Chapelle, Jason Weston, Léon Bottou, and Vladimir Vapnik. Vicinal risk minimization. Advances in neural information processing systems, 13, 2000.
  - Nutan Chen, Alexej Klushyn, Francesco Ferroni, Justin Bayer, and Patrick van der Smagt. Learning flat latent manifolds with VAEs. In *Proceedings of the 37th International Conference on Machine Learning, ICML*, volume 119 of *Proceedings of Machine Learning Research*, pp. 1587–1596. PMLR, 2020a.
- Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
   contrastive learning of visual representations. In *International conference on machine learning*,
   pp. 1597–1607. PMLR, 2020b.
  - R. R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Harmonic Analysis, 21: 5–30, July 2006.
- Thomas Cover and Peter Hart. Nearest neighbor pattern classification. *IEEE transactions on infor- mation theory*, 13(1):21–27, 1967.
- Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. AutoAugment: Learning augmentation strategies from data. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 113–123, 2019.
- EH Cui, B Li, Y Li, WK Wong, and D Wang. Trajectory-aware principal manifold framework for
   data augmentation and image generation. *arXiv preprint arXiv:2310.07801*, 2023.
- Terrance DeVries. Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552, 2017.
- Benjamin Erichson, Soon Hoe Lim, Winnie Xu, Francisco Utrera, Ziang Cao, and Michael Ma honey. NoisyMix: Boosting model robustness to common corruptions. In *International Confer- ence on Artificial Intelligence and Statistics*, pp. 4033–4041. PMLR, 2024.
- 593 Elena Facco, Maria d'Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic dimension of datasets by a minimal neighborhood information. *Scientific reports*, 7(1):12140, 2017.

| 594<br>595<br>596<br>597 | Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko Mitamura, and Eduard H. Hovy. A survey of data augmentation approaches for NLP. In <i>Findings of the Association for Computational Linguistics: ACL/IJCNLP</i> , volume ACL/IJCNLP 2021 of <i>Findings of ACL</i> , pp. 968–988. Association for Computational Linguistics, 2021.       |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 598<br>599<br>600<br>601 | Jaroslav M Fowkes, Nicholas IM Gould, and Chris L Farmer. A branch and bound algorithm for the global optimization of hessian lipschitz continuous functions. <i>Journal of Global Optimization</i> , 56:1791–1815, 2013.                                                                                                                                                  |
| 602<br>603<br>604        | Zhi Gao, Yuwei Wu, Yunde Jia, and Mehrtash Harandi. Hyperbolic feature augmentation via distribution estimation and infinite sampling on manifolds. <i>Advances in neural information processing systems</i> , 35:34421–34435, 2022.                                                                                                                                       |
| 605<br>606               | Ian Goodfellow. Deep learning, 2016.                                                                                                                                                                                                                                                                                                                                       |
| 607<br>608               | Kristjan H. Greenewald, Anming Gu, Mikhail Yurochkin, Justin Solomon, and Edward Chien. k-<br>Mixup regularization for deep learning via optimal transport. <i>Trans. Mach. Learn. Res.</i> , 2023.                                                                                                                                                                        |
| 609<br>610<br>611<br>612 | Hongyu Guo, Yongyi Mao, and Richong Zhang. Mixup as locally linear out-of-manifold regulariza-<br>tion. In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , volume 33, pp. 3714–3722, 2019.                                                                                                                                                          |
| 613                      | K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.                                                                                                                                                                                                                                                                          |
| 614<br>615<br>616<br>617 | Dan Hendrycks, Norman Mu, Ekin Dogus Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-<br>narayanan. AugMix: A simple data processing method to improve robustness and uncertainty. In<br>8th International Conference on Learning Representations, ICLR, 2020.                                                                                                       |
| 618<br>619<br>620        | Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional networks. In <i>Proceedings of the IEEE conference on computer vision and pattern recognition</i> , pp. 4700–4708, 2017.                                                                                                                                           |
| 621<br>622<br>623<br>624 | Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W. Co-<br>ley, Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics data commons: Machine learning<br>datasets and tasks for drug discovery and development. In <i>Proceedings of the Neural Information</i><br><i>Processing Systems Track on Datasets and Benchmarks 1</i> , 2021. |
| 625<br>626<br>627<br>628 | Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Magnet: Uniform sampling from deep generative network manifolds without retraining. In <i>The International Conference on Learning Representations (ICLR)</i> 2022, 2022.                                                                                                                                 |
| 629<br>630               | Seong-Hyeon Hwang and Steven Euijong Whang. Regmix: Data mixing augmentation for regression. <i>arXiv preprint arXiv:2106.03374</i> , 2021.                                                                                                                                                                                                                                |
| 631<br>632<br>633<br>634 | Seong-Hyeon Hwang, Minsu Kim, and Steven Euijong Whang. RC-Mixup: A data augmentation strategy against noisy data for regression tasks. In <i>Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining</i> , pp. 1155–1165, 2024.                                                                                                              |
| 635<br>636               | S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In <i>ICML</i> , 2015.                                                                                                                                                                                                                              |
| 637<br>638<br>639<br>640 | Catalin Ionescu, Orestis Vantzos, and Cristian Sminchisescu. Matrix backpropagation for deep networks with structured layers. In <i>Proceedings of the IEEE international conference on computer vision</i> , pp. 2965–2973, 2015.                                                                                                                                         |
| 641<br>642<br>643        | Xuan Kan, Zimu Li, Hejie Cui, Yue Yu, Ran Xu, Shaojun Yu, Zilong Zhang, Ying Guo, and Carl Yang. R-mixup: Riemannian mixup for biological networks. In <i>Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining</i> , pp. 1073–1085, 2023.                                                                                                  |
| 644<br>645<br>646        | Ilya Kaufman and Omri Azencot. Data representations' study of latent image manifolds. In <i>Inter-</i><br><i>national Conference on Machine Learning</i> , pp. 15928–15945. PMLR, 2023.                                                                                                                                                                                    |
| 0.47                     | Ilva Kaufman and Omri Azencot. First order manifold data augmentation for regression learning                                                                                                                                                                                                                                                                              |

647 Ilya Kaufman and Omri Azencot. First-order manifold data augmentation for regression learning. In *Forty-first International Conference on Machine Learning, ICML*, 2024. 648 Sosuke Kobayashi. Contextual augmentation: Data augmentation by words with paradigmatic rela-649 tions. In Proceedings of the 2018 Conference of the North American Chapter of the Association 650 for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 651 452-457, 2018. 652 Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-653 subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A 654 benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning, 655 pp. 5637–5664. PMLR, 2021. 656 657 A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. 658 659 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term 660 temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference 661 on research & development in information retrieval, pp. 95–104, 2018. 662 John M Lee. Smooth manifolds. Springer, 2012. 663 664 John M Lee. Introduction to Riemannian manifolds, volume 2. Springer, 2018. 665 666 Xuhui Li, Zhen Fang, Yonggang Zhang, Ning Ma, Jiajun Bu, Bo Han, and Haishuai Wang. Charac-667 terizing submanifold region for out-of-distribution detection. *IEEE Transactions on Knowledge* and Data Engineering, 2024. 668 669 Yangyang Li. Curvature-aware manifold learning. Pattern Recognition, 83:273-286, 2018. 670 671 Soon Hoe Lim, N. Benjamin Erichson, Francisco Utrera, Winnie Xu, and Michael W. Mahoney. Noisy feature mixup. In The Tenth International Conference on Learning Representations, ICLR, 672 2022. 673 674 Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast AutoAugment. 675 Advances in neural information processing systems, 32, 2019. 676 J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In 677 CVPR, 2015. 678 679 Xingjun Ma, Yisen Wang, Michael E Houle, Shuo Zhou, Sarah Erfani, Shutao Xia, Sudanthi Wijew-680 ickrema, and James Bailey. Dimensionality-driven learning with noisy labels. In International 681 Conference on Machine Learning, pp. 3355–3364. PMLR, 2018. 682 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-683 mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen, 684 Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-685 stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. 686 nature, 518:529-533, 2015. 687 688 H. Nam and B. Han. Learning multi-domain convolutional neural networks for visual tracking. In 689 CVPR, 2016. 690 H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In ICCV, 691 2015. 692 693 Hakime Öztürk, Arzucan Özgür, and Elif Ozkirimli. DeepDTA: deep drug-target binding affinity prediction. Bioinformatics, 34(17):i821-i829, 2018. 694 Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D. Cubuk, and 696 Quoc V. Le. SpecAugment: A simple data augmentation method for automatic speech recogni-697 tion. In 20th Annual Conference of the International Speech Communication Association, Inter-698 speech, pp. 2613-2617. ISCA, 2019. 699 Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look once: 700 Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern 701 Recognition, CVPR, pp. 779-788, 2016.

| 702                      | Michael Redmond. Communities and Crime. UCI Machine Learning Repository, 2009.                                                                                                                                                                                                           |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 703                      | S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science,                                                                                                                                                                                          |
| 705                      | 290(5500):2323–2326, 2000.                                                                                                                                                                                                                                                               |
| 706                      | Nora Schneider, Shirin Goshtasbpour, and Fernando Perez-Cruz. Anchor data augmentation. In                                                                                                                                                                                               |
| 707                      | Thirty-seventh Conference on Neural Information Processing Systems, 2023.                                                                                                                                                                                                                |
| 709                      | Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.                                                                                                                                                                                          |
| 710                      | Journal of big data, 6(1):1–48, 2019.                                                                                                                                                                                                                                                    |
| 711<br>712               | Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In <i>3rd International Conference on Learning Representations, ICLR</i> , 2015.                                                                                                |
| 713<br>714               | Amit Singer and H-T Wu. Vector diffusion maps and the connection laplacian. <i>Communications on pure and applied mathematics</i> , 65(8):1067–1144, 2012.                                                                                                                               |
| 715                      | Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.                                                                                                                                                                                           |
| 717                      | Dropout: a simple way to prevent neural networks from overfitting. <i>The journal of machine learning research</i> , 15(1):1929–1958, 2014.                                                                                                                                              |
| 719<br>720               | J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear dimensionality reduction. <i>Science</i> , 290(5500):2319–2323, 2000.                                                                                                                             |
| 721<br>722               | Vladimir Vapnik. Principles of risk minimization for learning theory. Advances in neural informa-<br>tion processing systems, 4, 1991.                                                                                                                                                   |
| 723                      | Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Joannis Mitliagkas, David Lopez-                                                                                                                                                                                               |
| 724                      | Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states.                                                                                                                                                                                           |
| 726                      | In International Conference on Machine Learning (ICML), 2019.                                                                                                                                                                                                                            |
| 727<br>728               | O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In <i>CVPR</i> , 2015.                                                                                                                                                                  |
| 729                      | K. Weinberger and L. Saul. Unsupervised learning of image manifolds by semidefinite program-                                                                                                                                                                                             |
| 730<br>731               | ming. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), volume 2, pp. 988–995, 2004.                                                                                                                                                |
| 732<br>733<br>734<br>735 | Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, et al. Google's neural machine translation system: Bridging the gap between human and machine translation. <i>arXiv preprint arXiv:1609.08144</i> , 2016.                        |
| 736<br>737               | Suorong Yang, Weikang Xiao, Mengchen Zhang, Suhan Guo, Jian Zhao, and Furao Shen. Image data augmentation for deep learning: A survey. <i>arXiv preprint arXiv:2204.08610</i> , 2022.                                                                                                    |
| 738<br>739<br>740        | Huaxiu Yao, Yiping Wang, Linjun Zhang, James Zou, and Chelsea Finn. C-mixup: Improving generalization in regression. In <i>Proceeding of the Thirty-Sixth Conference on Neural Information Processing Systems</i> , 2022.                                                                |
| 741<br>742<br>743<br>744 | Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In <i>Proceedings of the IEEE/CVF international conference on computer vision</i> , pp. 6023–6032, 2019. |
| 745                      | Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond em-                                                                                                                                                                                                   |
| 746                      | pirical risk minimization. In 6th International Conference on Learning Representations, ICLR,                                                                                                                                                                                            |
| 747                      | 2018.                                                                                                                                                                                                                                                                                    |
| 748<br>749               | Z. Zhang and H. Zha. Principal manifolds and nonlinear dimension reduction via local tangent space alignment. <i>SIAM Journal on Scientific Computing</i> , 26(1):313–338, 2005.                                                                                                         |
| 750<br>751<br>752<br>753 | Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmen-<br>tation. In <i>Proceedings of the AAAI conference on artificial intelligence</i> , volume 34, pp. 13001–<br>13008, 2020.                                                                   |
| 754<br>755               | Wei Zhu, Qiang Qiu, Jiaji Huang, Robert Calderbank, Guillermo Sapiro, and Ingrid Daubechies. LDMNet: Low dimensional manifold regularized neural networks. In <i>Proceedings of the IEEE conference on computer vision and pattern recognition</i> , pp. 2743–2751, 2018.                |

#### A CURVATURE-AWARE MANIFOLD LEARNING

Given a train set  $Z = \{z^1, \dots, z^N\}$ , we parameterize the data manifold around a point  $z \in Z$  that we map to u = 0, resulting in the following truncated Maclaurin series for a nearby point  $u_j$ :

$$g^{\alpha}(u_j) = u_j^T \nabla g^{\alpha} + \frac{1}{2} u_j^T H^{\alpha} u_j + \mathcal{O}(|u_j|_2^3) , \quad \alpha = 1, \dots, D - d .$$
 (8)

763 In order to estimate the gradient and Hessian of the embedding mapping  $g^{\alpha}$ , we build a set of linear 764 equations that solves Eq. 8. Particularly, we approximate  $g^{\alpha}$  by solving the system  $G = \Psi X$ , where X holds the unknown elements of the gradients  $\nabla g^{\alpha}$  and the Hessians  $H^{\alpha}$ , for every  $\alpha$ . We define 765  $g^{\alpha} = [g^{\alpha}(u_1), \cdots, g^{\alpha}(u_k)]^T \in \mathbb{R}^k$ , where  $u_j$  are points in the neighborhood of z := f(u), and 766  $G = [g^1, \dots, g^{D-d}]$ . The point u and points  $\{u_i\}$  are associated with the train set Z under a natural 767 orthogonal transformation. The local natural orthogonal coordinates are a set of coordinates that are 768 defined at a specific point u of the manifold. They are constructed by finding a basis for the tangent 769 space and normal space at a point u by applying principal component analysis on the neighborhood 770  $N_z = \{z_j\}_{j=1}^k$ . Namely, the first d coordinates (associated with the most significant modes, i.e., 771 largest singular values) represent the tangent space, and the rest represent the normal space. Then, 772 we define  $\Psi = [\Psi_1, \dots, \Psi_k]$ , stacking  $\Psi_i$  in rows, where  $\Psi_i$  is given via 773

$$\Psi_j = \left[u_j^1, \cdots, u_j^d, \left(u_j^1\right)^2, \cdots, \left(u_j^d\right)^2, \left(u_j^1 \times u_j^2\right), \cdots, \left(u_j^{d-1} \times u_j^d\right)\right],$$

and

774 775 776

777 778

779 780

781

785 786

787

756

758

759

760 761 762

$$X^{\alpha} = \left[\nabla g^{\alpha 1}, \cdots, \nabla g^{\alpha d}, H^{1,1}, \cdots, H^{d,d}, H^{1,2}, \cdots, H^{\alpha d-1,d}\right]^{T},$$

with  $X = [X^1, \cdots, X^{D-d}]$ . The set of linear equations

$$G = \Psi X , \qquad (9)$$

is solved by using the least square estimation given  $X = \Psi^{\dagger}G$ . In practice, we estimate only the upper triangular part of  $H^{\alpha}$  since it is a symmetric matrix. We refer the reader for a more comprehensive and detailed treatment in (Li, 2018).

#### B COMPUTATIONAL COST

**General analysis of** *n***-th order embedding maps:** To estimate the *n*-th order Taylor approximation of the embedding g, we need to find all the partial derivatives up to and including order n. The gradient  $\nabla$  vector is composed of d first-order partial derivatives, the Hessian matrix is composed of  $d^2$  second-order partial derivatives. Third-order and higher partial derivatives are represented using mathematical objects called tensors. In general, the number of partial derivatives of a multi-input function grows exponentially with the order.

The order *n* of the partial derivatives determines the number of unknowns *X* and the size of the matrix  $\Psi$  which used to solve Eq. 9 via least squares. The number of columns in the matrix  $\Psi$  is  $\sum_{i=1}^{n} d^{i} = \mathcal{O}(d^{n})$ , and thus, the dimensions of the matrix  $\Psi$  are  $k \times d^{n}$ . It is preferred to solve an over-determined set of equations such that the number of neighbors  $k > d^{n}$ , which is memory and computationally expensive. For small values of *d* and *n* it is feasible to solve Eq. 9 in a run time complexity of  $\mathcal{O}(kd^{2n})$ . For larger values of *n*, it becomes extremely computationally and memory expensive to achieve  $k \ge d^{n}$ , therefore, we can assume that  $k < d^{n}$ .

There are two computationally expensive operations used to estimate the *n*-th order approximation of the manifold, SVD and least squares. The matrix on which we perform SVD is of shape  $N_z \in \mathbb{R}^{k \times D}$  where *k* represents the number of neighbors and *D* is the extrinsic dimension. Thus, the run time complexity of the SVD operation per batch is  $\mathcal{O}(\min(k^2D, kD^2))$ . The complexity of least squares is determined by the dimensions of the matrix  $\Psi \in \mathbb{R}^{k \times \mathcal{O}(d^n)}$  resulting in  $\mathcal{O}(kd^{2n})$ . If we wish to solve an over-determined system of equations, we need to set  $k > d^n$  e.g.,  $k = 2d^n$  resulting in a run time of  $\mathcal{O}(\min(d^{2n}D, d^nD^2))$  for SVD and  $\mathcal{O}(d^nd^{2n}) = \mathcal{O}(d^{3n})$  for least squares.

- 808
- **Computational analysis of CEMS.** Given a batch of data  $A \in \mathbb{R}^{b \times D}$  where b is the batch size and D is the ambient dimension, our analysis considers the point-wise and batch-wise settings.

In the point-wise case, we construct a matrix  $N_a \in \mathbb{R}^{b \times D}$  for every sample  $a \in \mathbb{R}^D$  in the batch, containing its b closest neighbors, where the number of neighbors is fixed as the batch size. This practical choice decouples the computational complexity from the intrinsic dimension d. On each matrix  $N_a$ , we perform SVD at the complexity of  $\mathcal{O}(\min(bD^2, Db^2))$ . We then solve the set of b equations with  $l = d \times (d+1)/2$  variables (representing the unknowns in the gradient  $\nabla$  and Hessian (H) at a complexity of  $\mathcal{O}(b \times l^2) = \mathcal{O}(b \times d^4)$ . In practice, the batch size is small and constant which leads to an underdetermined system that can be solved used Ridgr-Regreession at a complexity of  $\mathcal{O}(b^2 \times l) = \mathcal{O}(b^2 \times d^2)$ . The total complexity per point is therefore  $\mathcal{O}(\min(bD^2, Db^2)) + \mathcal{O}(b^2 \times d^2)$ . Since the batch size b is usually smaller than the ambient dimension D, the total complexity can be revised as  $\mathcal{O}(b^2(D+d^2))$ . Under the manifold hypothesis, we assume that  $d \ll D$  and thus  $d \in \mathcal{O}(D^2)$ , resulting in the following complexity  $\mathcal{O}(b^2D)$  for a single point and  $\mathcal{O}(b^3D)$  for the entire batch. Our analysis reveals that under our assumptions, the complexity is proportional to the ambient dimension D. 

In the batch-wise setting, the entire batch  $A \in \mathbb{R}^{b \times D}$  is processed collectively. We compute the SVD of A at a complexity of  $\mathcal{O}(\min(bD^2, Db^2))$ . The subsequent step involves solving b equations with  $l = d \times (d+1)/2$  variables at a complexity of  $\mathcal{O}(b \times l^2)$ . As in the point-wise case The total computational complexity of CEMS for the batch-wise setting for a single batch is  $\mathcal{O}(b^2D)$ 

Run time comparison In Table 4, we compare the total run time of the training process in seconds to provide an estimate for the empirical computational cost of CEMS and competing methods. The results are obtained with a single RTX3090 GPU. For each data set, all the methods were estimated using the same parameters (e.g., batch size, number of epochs) for a fair comparison. It is evident from the results that the empirical run time of CEMS is o par with competing methods and does not require a large overhead.

Table 4: Training times comparison (in seconds).

|         | AIRFOIL | NO2  | RCF  | DTI  |
|---------|---------|------|------|------|
| ERM     | 3.84    | 1.01 | 172  | 653  |
| C-MIXUP | 11.64   | 2.04 | 1700 | 1064 |
| ADA     | 8.72    | 3.22 | 465  | 3519 |
| FOMA    | 7.11    | 1.85 | 364  | 1095 |
| CEMS    |         | 3.04 | 445  | 1317 |

#### 

С

# In our framework, for any data point $(x, y) \in \mathcal{X} \times \mathcal{Y}$ , we seek to generate training samples that lie near the manifold $\mathcal{M}$ , which represents the true data distribution $\mathcal{P}$ . Since directly sampling from $\mathcal{M}$ is impossible without knowing its structure, we instead approximate it locally using the tangent

To construct this tangent plane approximation, we require a neighborhood set  $N_z$  around z. We compute the tangent plane using Singular Value Decomposition (SVD) on these neighboring points. The accuracy of this approximation heavily depends on how close the points in  $N_z$  are to z.

To implement this approach, we explored three distinct batch construction methods:

1. Random batch selection (random)

**BATCH SELECTION** 

plane  $\mathcal{T}(x, y)$  at point (x, y).

| Dataset       | Airfoil↓ | $\mid$ NO2 $\downarrow$ $\mid$ | SkillCraft↓  | RCF↓         | DTI↑         |
|---------------|----------|--------------------------------|--------------|--------------|--------------|
| CEMS - knn    | 1.455    | 0.507                          | 5.142        | <b>0.146</b> | <b>0.511</b> |
| CEMS - knnp   | 1.441    | <b>0.506</b>                   | <b>4.941</b> | 0.173        | 0.509        |
| CEMS - random | 1.435    | <b>0.506</b>                   | 5.155        | 0.162        | 0.491        |

Table 5: Results for different batch selection methods CEMS.

2. k-Nearest Neighbors batch selection (knn), where points are grouped based on their Euclidean distances in Z

866

864

867 868 3. k-Nearest Neighbors Probability batch selection (knnp), where points are sampled with probabilities inversely proportional to their distance from the original point, ensuring closer points have higher sampling probabilities

870 Our hypothesis was that both proximity-based and probability-based batch selection methods would 871 generate samples closer to the data manifold, thereby improving model performance. We first trained 872 models using the proximity-based batch selection method and selected the best-performing model 873 based on the validation set. Using the optimal parameters found from this model, we then trained 874 two additional models using random batch selection and knnp methods for fair comparison. The 875 experimental results, presented in Table 5, demonstrate the relative performance of these three ap-876 proaches under identical parameter settings. The results reveal interesting patterns across different 877 batch selection methods. While no single method dominates across all datasets, each approach 878 shows strengths in specific scenarios. The knnp method demonstrates superior performance on the 879 SkillCraft dataset and matches the best performance on NO2. The knn approach excels in both RCF 880 and DTI datasets, showing particular strength in structured data scenarios. Interestingly, random batch selection remains competitive, achieving the best performance on Airfoil and matching the 881 best result on NO2. These results suggest that the effectiveness of batch selection methods may be 882 dataset-dependent, highlighting the importance of considering data characteristics when choosing a 883 batch selection strategy. 884

- 004
- 885

887

#### C.1 NEIGHBORHOOD CONSTRUCTION

The validity of CEMS relies on three key theoretical foundations. First, our neighborhood construc tion approach balances computational efficiency with geometric fidelity by sharing neighborhoods
 across points in close proximity. While this might appear to reduce sampling diversity, it actually
 preserves manifold structure because points that are close in the normalized input-output space typ ically share similar geometric properties. The shared neighborhood assumption is particularly valid
 because we normalize both input X and output Y features to the same range, ensuring that proximity
 in the combined space meaningfully reflects similarity in both domains.

The reliability of our construction is maintained even in regions of high output diversity through our careful treatment of the input-output space. For a point  $z_i = [x_i, y_i]$ , its neighborhood  $\mathcal{N}_z$  is constructed considering distances in both input and output spaces simultaneously, naturally limiting the diversity of outputs within each neighborhood. This approach ensures that points sharing a neighborhood basis have similar geometric properties, maintaining the validity of our second-order approximation.

901 The stochastic nature of mini-batch training provides an additional beneficial property for CEMS. 902 As different batches are sampled each epoch, the method naturally explores varying neighborhoods 903 and their associated tangent spaces. This dynamic sampling process enables CEMS to build a com-904 prehensive representation of the manifold's local geometry, adapting to variations in data density 905 across different regions. The continuous exploration of diverse local structures throughout training 906 enhances the method's ability to capture the full geometric complexity of the underlying manifold.

907 The local-Euclidean structure of CEMS is supported by two complementary mechanisms. First, the 908 second-order approximation naturally captures local curvature through the Hessian term, enabling accurate representation of nonlinear geometries. Second, our stochastic batch sampling strategy 909 ensures exposure to different neighborhoods and tangent spaces throughout training. The projec-910 tion of points onto the tangent space at  $\mu$  (the neighborhood mean) maintains validity through the 911 second-order terms in our Taylor expansion, which account for the primary nonlinearities within 912 each neighborhood. This approach is particularly robust because the neighborhood size adapts with 913 the batch size, preserving accurate local approximations even in regions of high curvature. 914

The empirical success of this construction is demonstrated in our ablation studies (Table 3), where we compare point-wise basis computation ( $CEMS_p$ ) with our more efficient shared neighborhood approach (CEMS). The comparable performance across multiple datasets validates our theoretical assumptions about the effectiveness of shared geometric information within local neighborhoods.

# 918 C.2 LOCAL VS. GLOBAL SAMPLING

It is important to note that CEMS focuses on local sampling within neighborhoods where the second-order approximation is valid. While alternative approaches based on geodesics can enable global sampling along the manifold, they typically incur significantly higher computational costs. Our local approach strikes a balance between sampling accuracy and computational efficiency, making it particularly well-suited for data augmentation during training.

The theoretical guarantees provided by Theorem 4.1 hold within the neighborhood where our Taylor approximations are valid. This aligns with the manifold hypothesis, which posits that real data typically lies on or near a lower-dimensional manifold with locally Euclidean structure (Goodfellow, 2016; Belkin & Niyogi, 2003). By focusing on accurate local sampling, CEMS can effectively augment the training data while maintaining the essential geometric structure of the underlying manifold.

931 932

933

950 951 952

953

954

955 956

957 958

959 960

961

962

963

964

965

966

967 968 969

970 971

#### D GEOMETRIC PROPERTIES EFFECT ON CEMS

934 To evaluate the impact of curvature on CEMS for regression tasks, we generated a synthetic dataset 935 where features lie on a manifold of constant scalar curvature. The manifold is defined as a hypersphere with a constant scalar curvature. Data points are sampled uniformly on the hypersphere using 936 normalized random directions and embedded into a higher-dimensional ambient space through a de-937 terministic projection matrix to preserve the manifold structure. The regression target Y is computed 938 as a non-linear function of the intrinsic coordinates,  $Y = \sin(\sum X_{\text{intrinsic}})$ , introducing a smooth de-939 pendency on the features. The features and targets are normalized to lie within the range [0, 1] using 940 min-max scaling. This setup enables the systematic study of the effects of curvature of CEMS on 941 regression model performance. In Fig. 3 the graph illustrate the relative improvement in RMSE be-942 tween the CEMS and baseline ERM for regression tasks across varying scalar curvatures of the data 943 manifold. The graph plots relative improvement against scalar curvature, highlighting that CEMS 944 provides minimal advantage for nearly flat manifolds with low curvature but exhibits increasing 945 improvement as the curvature grows. At higher curvatures (e.g., 16–64), CEMS demonstrates sub-946 stantial gains, reflecting its ability to exploit geometric information in highly curved spaces. The 947 hyperparameters of CEMS were not fine-tuned for this experiment and remained consistent across all intrinsic dimensions and curvature values. This likely explains why, in some cases, CEMS does 948 not achieve better performance than ERM. 949



Figure 3: Illustration of the relative improvement in RMSE of CEMS over ERM. The graph demonstrates the effect of curvature, indicating minimal gains for nearly flat manifolds but substantial improvements for highly curved manifolds. These results emphasize the influence of data geometry on the performance of CEMS relative to ERM.

#### E ADAPTATION TO BATCHES

Below we provide the algorithm for the batched version:

| Alg | orithm 2 Curvature Enhanced Manifold Sampling (CEMS-batch)                                                |
|-----|-----------------------------------------------------------------------------------------------------------|
| Rec | uire: Training data $Z = \{z^i = [x^i, y^i]\}_{i=1}^N$ . A sample $z \in Z$                               |
| 1:  | Find K-nearest neighbors $N_z = \{z_i\}_{i=1}^k \cup \{z = z_0\}$ of z                                    |
| 2:  | Find an orthonormal basis $B_u$ that spans $N_z - \mu_{N_z}$                                              |
| 3:  | Project every $z_j - \mu_{N_z}$ to the local orthonormal coordinates:                                     |
| 4:  | $u_{i} = B_{T}^{T} \cdot (z_{i} - \mu_{N_{x}}), q_{i} = B_{N}^{T} \cdot (z_{i} - \mu_{N_{x}})$            |
| 5:  | For each $l = 1,, k$ construct:                                                                           |
| 6:  | $U_{z}^{l} = \{u_{i} - u_{l}\}_{i \neq l}^{k}$ and $G_{z}^{l} = \{g_{i} - g_{l}\}_{i \neq l}^{k}$         |
| 7:  | Construct G and $\Psi$ as in Eq. 9                                                                        |
| 8:  | Solve $\Psi A = G$                                                                                        |
| 9:  | Extract $\nabla g(z)$ and $H(z)$ from A                                                                   |
| 10: | Sample a point $\eta$ near $u_l$ : $\eta \sim \mathcal{N}(u_l, \sigma I_d)$                               |
| 11: | Calculate $q(\eta_l) = q(u_l) + (\eta_l - u_l)^T \nabla q + \frac{1}{2} (\eta_l - u_l)^T H(\eta_l - u_l)$ |
| 12: | Un-project $\eta_l$ back to the original coordinates:                                                     |
| 13: | $z_{\eta_l} := f(\eta_l) = B_u \cdot [\eta_l, g(\eta_l)] + \mu_{N_z}$                                     |
| 14: | return $z_n = \{z_n\}_{l=1}^k$                                                                            |
|     |                                                                                                           |

988 989 990

991

992

993

994

995

996

997 998 999

1000

1001

1002

1003

1004 1005

1007 1008

1009 1010

## F HYPERPARAMETERS

We present the hyperparameters for each dataset in Table 6. In our main results, we apply our method to the input space or the latent space, and we report the configuration with the best performance. All hyperparameters were selected through cross-validation and evaluated on the validation set. Some hyperparameters, such as architecture and optimizer, are not included in the tables since they remained unchanged and were used as specified in previous works Yao et al. (2022); Schneider et al. (2023).

Airfoil NO2 Exchange-Rate Electricity RCF Crimes SkillCraft DTI Dataset PovertyMap  $1e^{-3}$  $1e^{-3}$  $1e^{-3}$  $1e^{-3}$  $1e^{-4}$  $1e^{-3}$  $5e^{-3}$ Learning rate  $5e^{-}$  $1e^{-4}$ 32 32 32 32 Batch size 16 32 64 16 16 Input/Manifold manifold input input manifold manifold manifold input input input 700 200 100 <u></u>50 Epochs 100 100 50 100 60  $1\mathrm{e}^{-3}$ 0.01  $1e^{-3}$  $1e^{-}$ 0.2 0.1 03 0.2 0.1  $\sigma$ 

Table 6: Hyperparameter choices for the experiments using CEMS.

## G DATASET DESCRIPTION

This section provides detailed descriptions of the datasets used in our experiments.

Airfoil Self-Noise (Brooks et al., 2014). This dataset contains aerodynamic and acoustic test data for various NACA 0012 airfoils, recorded at different wind tunnel speeds and angles of attack. Each data point includes five features: frequency, angle of attack, chord length, free-stream velocity, and suction side displacement thickness, with the label representing the scaled sound pressure level. Input features are normalized using min-max normalization. The dataset is divided into 1003 training examples, 300 validation examples, and 200 test examples as noted in Hwang & Whang (2021).

1017
1018
1018
1018
1019
1019
1019
1019
1019
1019
1019
1019
1019
1019
1019
1019
1020
1020
1021
1021
1021
1021
1022
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021
1021</l

- 1024
- **Exchange-Rate (Lai et al., 2018).** This time series dataset includes daily exchange rates for eight countries (Australia, Britain, Canada, Switzerland, China, Japan, New Zealand, and Singapore) from

10261990 to 2016, totaling 7,588 observations with daily frequency. A sliding window size of 168 days1027is applied, resulting in an input dimension of  $168 \times 8$  and a label dimension of  $1 \times 8$  data points.1028The dataset is partitioned into training (60%), validation (20%), and test (20%) sets in chronological1029order as described in Lai et al. (2018).

**Electricity (Lai et al., 2018).** This dataset contains hourly electricity consumption data from 321 clients, recorded every 15 minutes from 2012 to 2014, totaling 26,304 observations. A sliding window size of 168 is used, resulting in an input dimension of  $168 \times 321$  and a label dimension of  $1 \times 321$ . The dataset is divided into training, validation, and test sets following a methodology similar to that used for the Exchange-Rate dataset.

**RCF (Yao et al., 2022).** The RCF-MNIST (Rotated-Colored-Fashion) dataset features images with specific color and rotation attributes. Images are colored using RGB vectors based on the rotation angle  $g \in [0, 1]$ . In the training set, 80% of images are colored with [g, 0, 1 - g], and 20% with [1 - g, 0, g], creating a spurious correlation between color and label.

PovertyMap (Koh et al., 2021). Part of the WILDS benchmark (Koh et al., 2021), this dataset consists of satellite images from 23 African countries used to predict village-level asset wealth. Each input is a 224 × 22 multispectral LandSat image with 8 channels, and the label is the real-valued asset wealth index. The dataset is divided into 5 cross-validation folds with disjoint countries to facilitate the out-of-distribution setting, following the methodology in Koh et al. (2021).

1047 Crime (Redmond, 2009). The Communities And Crimes dataset merges socio-economic data
1048 from the 1990 US Census, law enforcement data from the 1990 US LEMAS survey, and crime data
1049 from the 1995 FBI UCR. It includes 122 attributes related to crime, such as median family income
1050 and percentage of officers in drug units. The target is the per capita violent crime rate. Numeric
1051 features are normalized to a range of 0.00 to 1.00, and missing values are imputed. The dataset is
1052 divided into training (1,390), validation (231), and test (373) sets, with 31, 6, and 9 disjoint domains,
1053 respectively.

SkillCraft (Blair et al., 2013). The SkillCraft dataset from UCI consists of video game telemetry data from real-time strategy (RTS) games, focusing on player expertise development. Each input includes 17 player-related parameters, such as cognition-action-cycle variables and hotkey usage, while the label is the action latency. Missing data are filled by mean padding. The dataset is divided into training (1,878), validation (806), and test (711) sets with 4, 1, and 3 disjoint domains, respectively.

**DTI (Huang et al., 2021).** The Drug-Target Interactions dataset aims to predict the binding activity score between small molecules and target proteins. Input features include one-hot vectors for drugs and target proteins, and the output is the binding activity score. Training and validation data are from 2013 to 2018, while the test data spans 2019 to 2020. The "Year" attribute serves as domain information.

1066

1030

1046

# 1067 H RESULTS WITH STANDARD DEVIATION

In Table 7 we report the full results of in-distribution generalization and in Table 8 we report the full results of out-of-distribution robustness.

- 1071 1072
- 1073
- 1074
- 1075
- 1076
- 1077
- 1079

CEMS

| 1082         | seeds. |                       |                                                                   |                                                                                                        |                                           |                                             |
|--------------|--------|-----------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------|
| 1083         |        |                       | Air                                                               | foil                                                                                                   | Ν                                         | 02                                          |
| 1084         |        |                       | RMSE                                                              | MAPE                                                                                                   | RMSE                                      | MAPE                                        |
| 1085         |        | ERM                   | $2.901 \pm 0.067$                                                 | $1.753 \pm 0.078$                                                                                      | $0.537 \pm 0.005$                         | $13.615 \pm 0.165$                          |
| 1086         |        | Mixup                 | $3.730\pm0.190$                                                   | $2.327\pm0.159$                                                                                        | $0.528 \pm 0.005$                         | $13.534\pm0.125$                            |
| 1087         |        | Mani Mixup<br>C-Mixup | $3.063 \pm 0.113$<br>$2.717 \pm 0.067$                            | $\frac{1.842 \pm 0.114}{1.610 \pm 0.085}$                                                              | $0.522 \pm 0.008$<br>$0.509 \pm 0.006$    | $13.357 \pm 0.214 \\ 12.998 \pm 0.271$      |
| 1089         |        | ADA                   | $2.360 \pm 0.133$                                                 | $1.373 \pm 0.056$                                                                                      | $\frac{0.505 \pm 0.000}{0.515 \pm 0.007}$ | $13.128 \pm 0.147$                          |
| 1090         |        | FOMA<br>CFMS          | $\frac{1.4/1 \pm 0.047}{1.455 \pm 0.119}$                         | $\frac{0.816 \pm 0.008}{0.809 \pm 0.050}$                                                              | $0.512 \pm 0.008$ $0.507 \pm 0.003$       | $\frac{12.894 \pm 0.217}{12.807 \pm 0.044}$ |
| 1092<br>1093 |        |                       |                                                                   | 0.000 ± 0.000                                                                                          |                                           |                                             |
| 1094         |        |                       | Exchan                                                            | ge-Rate                                                                                                | Elec                                      | tricity                                     |
| 1095         |        |                       | RMSE                                                              | MAPE                                                                                                   | RMSE                                      | MAPE                                        |
| 1096<br>1097 |        | ERM                   | $0.023 \pm 0.003$                                                 | $2.423 \pm 0.365$                                                                                      | $\frac{0.058 \pm 0.001}{0.058 \pm 0.001}$ | $13.861 \pm 0.152$                          |
| 1098         |        | Mixup<br>Mani Mixup   | $\begin{array}{c} 0.023 \pm 0.002 \\ 0.024 \pm 0.004 \end{array}$ | $2.441 \pm 0.286$<br>$2.475 \pm 0.346$                                                                 | $\frac{0.058 \pm 0.000}{0.058 \pm 0.000}$ | $14.306 \pm 0.048 \\ 14.556 \pm 0.057$      |
| 1099<br>1100 |        | C-Mixup<br>ADA        | $0.020 \pm 0.001$<br>$0.021 \pm 0.006$                            | $2.041 \pm 0.134$<br>$2.116 \pm 0.689$                                                                 | $0.057 \pm 0.001$<br>0.059 ± 0.001        | $\frac{13.372 \pm 0.106}{13.464 \pm 0.296}$ |
| 1101         |        | FOMA                  | $0.013 \pm 0.000$                                                 | $\begin{array}{c} \textbf{1.262} \pm \textbf{0.0037} \\ \textbf{1.262} \pm \textbf{0.037} \end{array}$ | $\underline{0.058 \pm 0.000}$             | $14.653 \pm 0.166$                          |
| 1102         |        | CEMC                  | $0.014 \pm 0.001$                                                 | 1.0(0 + 0.0(2                                                                                          | 0.050 + 0.000                             | 12 252 1 0 215                              |

 $0.014 \pm 0.001$ 

1081Table 7: Full results for in-distribution generalization. Standard deviations are calculated over 31082seeds.

Table 8: Full results for out-of-distribution robustness. Standard deviations are derived from a 5-folddata split in PovertyMap and or calculated over 3 seeds for other datasets.

 $1.269 \pm 0.062$ 

 $0.058\pm0.000$ 

 $\textbf{13.353} \pm \textbf{0.217}$ 

|           | RCF (RMSE)                                   | Crimes                                       | (RMSE)                                       | SkillCraf                           | t (RMSE)                            |
|-----------|----------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------|-------------------------------------|
|           | Avg.↓                                        | Avg.↓                                        | Worst $\downarrow$                           | Avg.↓                               | Worst ↓                             |
| ERM       | $0.164 \pm 0.007$                            | $0.136\pm0.006$                              | $0.170\pm0.007$                              | $6.147 \pm 0.407$                   | $7.906 \pm 0.322$                   |
| Mixup     | $0.159\pm0.005$                              | $0.134\pm0.003$                              | $0.168\pm0.017$                              | $6.461\pm0.426$                     | $9.834 \pm 0.942$                   |
| ManiMixup | $0.157\pm0.021$                              | $0.128\pm0.003$                              | $0.155\pm0.009$                              | $5.908 \pm 0.344$                   | $9.264 \pm 1.012$                   |
| C-Mixup   | $\overline{\textbf{0.146}\pm\textbf{0.005}}$ | $\overline{\textbf{0.123}\pm\textbf{0.000}}$ | $\overline{\textbf{0.146}\pm\textbf{0.002}}$ | $5.201\pm0.059$                     | $7.362\pm0.244$                     |
| ADA       | $0.163\pm0.014$                              | $0.130\pm0.003$                              | $0.156\pm0.007$                              | $\overline{5.301\pm0.182}$          | $6.877 \pm 1.267$                   |
| FOMA      | $0.159\pm0.010$                              | $\underline{0.128 \pm 0.004}$                | $0.158\pm0.002$                              | -                                   | -                                   |
| CEMS      | $\textbf{0.146} \pm \textbf{0.002}$          | $\underline{0.128 \pm 0.001}$                | $0.159\pm0.004$                              | $\textbf{5.142} \pm \textbf{0.143}$ | $\textbf{6.322} \pm \textbf{0.191}$ |

|           | DTI                                 | (R)                                 | Pover                                      | ty ( <i>R</i> )                   |
|-----------|-------------------------------------|-------------------------------------|--------------------------------------------|-----------------------------------|
|           | Avg. ↑                              | Worst ↑                             | Avg. ↑                                     | Worst ↑                           |
| ERM       | $0.483 \pm 0.008$                   | $0.439 \pm 0.016$                   | $0.80\pm0.04$                              | $0.50\pm0.07$                     |
| Mixup     | $0.459\pm0.013$                     | $0.424\pm0.003$                     | $\overline{\textbf{0.81}\pm\textbf{0.04}}$ | $0.46\pm0.03$                     |
| ManiMixup | $0.474\pm0.004$                     | $0.431\pm0.009$                     | -                                          | -                                 |
| C-Mixup   | $0.498 \pm 0.008$                   | $0.458 \pm 0.004$                   | $\textbf{0.81} \pm \textbf{0.03}$          | $\textbf{0.53} \pm \textbf{0.07}$ |
| ADA       | $0.493\pm0.010$                     | $0.448 \pm 0.009$                   | $0.79\pm0.03$                              | $0.52\pm0.06$                     |
| FOMA      | $\underline{0.503 \pm 0.008}$       | $\underline{0.459 \pm 0.010}$       | $0.77\pm0.03$                              | $\overline{0.49\pm0.05}$          |
| CEMS      | $\textbf{5.110} \pm \textbf{0.005}$ | $\textbf{0.465} \pm \textbf{0.004}$ | $\textbf{0.81} \pm \textbf{0.05}$          | $0.50\pm0.07$                     |