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Abstract. Knowledge Graph construction is typically a task within
larger workflows, with a tight coupling between the abstract workflow
and its execution. Mapping languages increase interoperability and re-
producibility of the mapping process, however, this should be extended
over the entire Knowledge Graph construction workflow. In this pa-
per, we introduce an interoperable and reproducible solution for defin-
ing Knowledge Graph construction workflows leveraging Semantic Web
technologies. We describe how a data flow workflow can be described
interoperable (i.e., independent from the underlying technology stack)
and reproducible (i.e., with detailed provenance) by composing semantic
abstract function descriptions; and how such a semantic workflow can be
automatically executed across technology stacks. We demonstrate that
composing functions using the Function Ontology allows for functional
descriptions of entire workflows, automatically executable using a Func-
tion Ontology Handler implementation. The semantic descriptions allow
for interoperable workflows, the alignment with P-PLAN and PROV-O
allows for reproducibility, and the mapping to concrete implementations
allows for automatic execution.

1 Introduction

Knowledge Graph (KG) construction – i.e., RDF graph construction – involves
computational tasks on data, and is typically a task within larger (business or
scientific) workflows. The construction of a KG itself can also be considered
an overarching and more complex task that is composed of smaller tasks, e.g.,
extracting data from a database, mapping it to RDF, and publishing it using a
web API (i.e., Extract-Transform-Load or ETL). Such a process – i.e., a set of
tasks that can be automated – can be facilitated using a workflow system.

When a tight coupling between the abstract workflow and its execution ex-
ists, interoperability diminishes and composing tasks into a workflow introduces
challenges to connect tools that implement a task. Similar issues arise when inte-
grating a KG construction task into a larger workflow. For example, connecting a
mapping implemented in JAVA and a web API tool implemented in JavaScript.
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Mapping languages increase interoperability and reproducibility of the map-
ping process, however, this should be extended to the entire KG construction
workflow. The lack of interoperability inhibits use of different tools for a task,
making it harder to adapt to changing requirements and constraints. For exam-
ple, Tool A might initially suffice for the RDF-generation task given the size of
the source data. Later on, the data size might become unmanageable for Tool
A. Tool B is available that can handle larger data sets, however, the lack of
interoperability prevents the flexibility in switching from one tool to the other.

In this paper, we represent tasks within a workflow through the composition
of implementation-independent semantic function descriptions. By providing in-
teroperability between tasks and the tools that execute them, users can focus on
the overarching task for which the workflow was created, for example, managing
the KG construction life cycle using different mapping processors that generate
RDF, and different endpoints on which the RDF is published.

Section 2 presents related work. In Section 3, we show how interoperability
between tasks and tools within a workflow can be achieved through the com-
position of declarative function descriptions. We showcase this in Section 4 by
leveraging the Function Ontology (FnO) [7] to obtain a data flow workflow that
is decoupled from the tools that are used, therefore, illustrating the flexibility in
choosing the technology to be used for each task. In Section 5, we demonstrate
the resulting workflow composition in FnO. We conclude in Section 6 and give
additional pointers for future work.

2 Related work

In this section, we discuss existing RDF graph construction workflows, and work-
flow systems’ interoperability and reproducibility characteristics.

Compared to scripting, using a mapping language improves interoperability
of the KG construction process [6]. Mapping languages can provide features to
cover many steps within the KG construction process, i.e., not only specify how
to map to RDF, but also how to extract data from different data sources [8],
and how to publish using various methods [16]. Even when mapping languages
provide enough features to be deemed end-to-end, executing a KG construction
exists within a wider context, e.g., being part of a Knowledge Graph Lifecycle [4],
or as a collection of subtasks to allow for optimization [13]. As such, even though
KG construction rules can be described interoperably using, e.g., a mapping
language, its position within the wider and narrower tasks makes it interpretable
as being (a part of) a workflow.

Flexible workflows are needed, as requirements and constraints are subject to
change. Thus, interoperability is essential for tasks designed in one system to be
used by another [14]. The state of the art puts forward following characteristics
for interoperability: 1) declarative paradigm, 2) separation of description and
implementation, and 3) standardized language.

Statements within an imperative paradigm are exact instructions of what
needs to be done and inherently define the control flow: the exact order in which a
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program must be executed. An imperative paradigm is suitable for processes that
are unlikely to change, however, a declarative approach is recommended
when workflows resemble processes with changing requirements and constraints
that require them to be executed in different ways. Declarative paradigms can
be used to represent data flow, i.e., the data dependencies between tasks, and
are more robust to change as they describe what needs to be done, instead of
how [1].

Interoperability diminishes when there is a tight coupling between tasks and
implementations [12], e.g., when using ad hoc approaches. Thus, the separation
of description and implementation is crucial to interoperability [15].

The use of standards is essential to achieve interoperability in heteroge-
neous environments. Several workflow specifications exist, and can be divided
into two parts. On the hand, there are executable specifications, such as the
Common Workflow Language (CWL), and on the other hand, descriptive specifi-
cations, such as P-PLAN, and Open Provenance Model for Workflows (OPMW).
CWL allows for describing a computational workflow and the command-line tools
used for executing its tasks [3], with a tight coupling between tasks and imple-
mentations. P-PLAN extends the W3C standard PROV. It allows for describing
workflow steps and link them to execution traces, and was applied in projects
that focus on interoperability [10] and reproducibility [11]. OPMW is an exten-
sion of P-PLAN [10]: a simple interchange format for representing workflows at
different levels of granularity (ie. abstract model, instances, executions). These
specifications are either focused on being executable or descriptive. To the best
of our knowledge, however, no specification exists that supports both.

The Function Ontology (FnO) [7] presents a similar approach towards inter-
operable data transformations using Semantic Web technologies. An implementation-
independent function description allows for a decoupled architecture that sepa-
rates the definition from its execution, and the inputs and outputs of a function
are explicitly described. Furthermore, a recent update to FnO includes compo-
sition: compose a new function from other functions.

Reproducibility is another key characteristic within workflows, as it requires
the tasks to be described in sufficient detail so that it can be reproduced in dif-
ferent environments [11]. In order to be reproducible by other scientists, prove-
nance information including the execution details is required [2].

3 Method and Implementation

In this paper we put forward our approach towards interoperable and repro-
ducible workflows through implementation-independent and declarative descrip-
tions, allowing the flexibility of tasks being implemented by different tools. We
discussed several existing description languages for defining workflows. The com-
plexity of the language increases with the constructs that are supported. How-
ever, it appears that simplicity often pays greater dividends when considering
interoperability. In that regard, we decided to look for lightweight – yet flexible
and interoperable – solutions.
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The previous section shows that to have interoperable and reproducible work-
flow, we need a declarative paradigm that separates description from implemen-
tation in a standardized language, and allows for generating provenance infor-
mation for individual tasks. In this section we elaborate on the decisions that
were made to accommodate for these characteristics.

We represent a workflow as a composition of tasks, and a task as a function
which can have zero or more inputs and zero or more outputs. Being uniquely
identifiable and unambiguously defined increases the reusability of tasks across
workflows, as they are universally discoverable and linkable [7].

We make the simplification that tasks can only be executed sequentially
and currently do not consider control flow constructs other than a sequence.
The data flow between tasks within a composition is represented by input and
output mappings between functions. Such a composition mapping describes how
an input or output of one function is linked to the input or output of another
function. For example, within a KG construction workflow this is needed to
connect the output of an RDF generation task to the input of the subsequent
publishing task.

We consider the Function Ontology (FnO) as a model to describe functions
and function compositions to represent tasks and workflows. Its simple model
aligns with our goal without preventing us to add additional complexity such
as mapping to concrete implementations and composition of functions. Both
additions are part of the Function Ontology specification1.

The addition of composition to the FnO specification allows us to align func-
tion compositions with workflows as defined in P-PLAN [9], complementary to
the existing alignment between FnO and PROV-O [5]. Several related works
used or extended P-PLAN and led to the creation of several applications. Con-
sequently, by aligning with P-PLAN we benefit from existing work that provides
interoperability with several prominent workflow systems [10]. We use FnO be-
cause it allows for linking functions to actual implementations, hence, providing
sufficient detail to be directly executed.

Therefore, by mapping the workflows defined as function compositions, to
workflow descriptions in P-PLAN, we can benefit from those applications, such as
the workflow mining, browsing, and provenance visualization solutions discussed
in [10]

The following shows how FnO and P-PLAN align, and Listing 1.1 shows how
construct P-PLAN descriptions from FnO compositions:

– fno:Execution is-a p-plan:Step

– fnoc:Composition is-a p-plan:Plan

– fno:Parameter is-a p-plan:Variable

– fno:Output is-a p-plan:Variable

– fno:expects is-a p-plan:isInputVarOf

– fno:returns is-a p-plan:isOutputVarOf

1 https://w3id.org/function/spec/
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1 PREFIX p-plan: <http://purl.org/net/p-plan#>
2 PREFIX fnoc: <https://w3id.org/function/vocabulary/composition#>
3 PREFIX fno: <https://w3id.org/function/ontology#>
4 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
5
6 CONSTRUCT {
7 ?s a p-plan:Plan .
8 ?exX a p-plan:Step ; p-plan:isStepOfPlan ?s .
9 ?exY a p-plan:Step ; p-plan:isStepOfPlan ?s ; p-plan:isPrecededBy ?exX .

10 }
11 WHERE {
12 ?s rdf:type fnoc:Composition ;
13 fnoc:composedOf [ fnoc:mapFrom [ fnoc:constituentFunction ?fx ;
14 fnoc:functionOutput ?fxOut ] ;
15 fnoc:mapTo [ fnoc:constituentFunction ?fy ;
16 fnoc:functionParameter ?fyParameter ] ] .
17 ?exX fno:executes ?fx .
18 ?exY fno:executes ?fy .
19 }

Listing 1.1. Pseudo-SPARQL query for constructing the precedence relations in P-
PLAN from the CompositionMappings in FnO.

4 Use case

In this section we discuss POSH (Predictive Optimized Supply Chain): a moti-
vating use case showcasing the need for an interoperable KG construction work-
flow.

POSH is an imec.icon research project in which methods and software solu-
tions are researched that leverage data to optimize integrated procurement and
inventory management strategies. A data integration and quality framework is
deemed necessary to increase the accuracy and reliability of supply chain data
that has been collected from heterogeneous data sources (suppliers, customers,
service providers, etc.). Within POSH, we developed a semantically-enhanced
knowledge integration framework that uses various data repositories and exter-
nal (meta)data to provide a clear overview of the current state of the supply
chain and the necessary inputs for the prediction, optimization and decision
support methods.

To this end, a KG is generated from the heterogeneous supply chain data and
consequently exposed through a triple store endpoint. This enables our partners
to take advantage of running queries against a uniform data model without
being burdened with heterogeneous sources from which it constitutes, and fo-
cus on the designing algorithms for optimizing the supply chain. However, not
all data was made available from the start but rather added progressively, and
the requirements together with the mappings rules that satisfy them changed
in parallel. Hence, the KG generation tasks need to be executed iteratively to
incorporate the changes, which can become time-consuming when done man-
ually. To iteratively accommodate for changing requirements and constraints,
an implementation-independent workflow system was needed. Within POSH,
we applied our method to provide workflow system flexibly enough to adapt to
different technology stacks.
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5 Demonstration

In this section we demonstrate a working example of an ETL workflow compris-
ing two tasks: i) generating RDF; and ii) publishing the generated RDF. Due to
space restrictions only excerpts of the descriptions are shown.

First, we define the task of generating RDF as a function that takes the URI
to a mapping, and the URI to which the result should be written. We make use
of the RML mapping language to have an interoperable RDF generation step.
Secondly, we define the publishing task as a function which takes the URI to
the generated RDF data as input parameter and outputs a URI to the endpoint
through which it is published. These descriptions are shown in Listing 1.2.

1 @prefix fno: <https://w3id.org/function/ontology#> .
2 @prefix fns: <http://example.com/functions#> .
3
4 fns:generateRDF a fno:Function ;
5 fno:expects ( fns:fpathMappingParameter ) ; fno:returns ( fns:returnOutput ) .
6
7 fns:publish a fno:Function ;
8 fno:expects ( fns:inputRDFParameter ) ; fno:returns ( fns:returnOutput ) .

Listing 1.2. Task descriptions in FnO

We describe an overarching ETL task as the composition of these two func-
tions, illustrated in Listing 1.3. We define how the data flows between the com-
posed functions using fnoc:CompositionMapping. fnoc:Composition links the
output of the first task to the second task by means of a fnoc:CompositionMapping.
Note that, using composition, we are able to describe the workflow at multiple
levels of abstraction. In analogy with an ETL workflow, for example, the highest
level of abstraction represents the three Extract, Transform, and Load tasks.
The second level can contain more specific, yet abstract, tasks that are required
to fulfill each of the three Extract, Transform, and Load tasks. Depending on the
complexity of each task, it can be described further in a lower level of abstraction.

1 @prefix fno: <https://w3id.org/function/ontology#> .
2 @prefix fnoc: <https://w3id.org/function/vocabulary/composition#> .
3 @prefix fns: <http://example.com/functions#> .
4
5 fns:ETL a fno:Function ;
6 fno:expects ( fns:fpathMappingParameter fns:fpathOutputParameter ) ; fno:returns ( fns:returnOutput ) .
7
8 fns:ETLComposition a fnoc:Composition ;
9 fnoc:composedOf

10 [ fnoc:mapFrom [ fnoc:constituentFunction fns:ETL ;
11 fnoc:functionParameter fns:fpathMappingParameter ] ;
12 fnoc:mapTo [ fnoc:constituentFunction fns:generateRDF ;
13 fnoc:functionParameter fns:fpathMappingParameter ] ] ,
14 [ fnoc:mapFrom [ fnoc:constituentFunction fns:ETL ;
15 fnoc:functionParameter fns:fpathOutputParameter ] ;
16 fnoc:mapTo [ fnoc:constituentFunction fns:generateRDF ;
17 fnoc:functionParameter fns:fpathOutputParameter ] ] ,
18 [ fnoc:mapFrom [ fnoc:constituentFunction fns:generateRDF ;
19 fnoc:functionOutput fns:returnOutput ] ;
20 fnoc:mapTo [ fnoc:constituentFunction fns:publish ;
21 fnoc:functionParameter fns:inputRDFParameter ] ] ,
22 [ fnoc:mapFrom [ fnoc:constituentFunction fns:publish ;
23 fnoc:functionOutput fns:returnOutput ] ;
24 fnoc:mapTo [ fnoc:constituentFunction fns:ETL ;
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25 fnoc:functionOutput fns:returnOutput ] ] .

Listing 1.3. ETL Workflow description using FnO composition

We created a proof-of-concept Function Handler that automatically executes
these descriptions using different implementations, available at https://github.
com/FnOio/function-handler-js/tree/kgc-etl. Furthermore, we provide tests2 in
which we verify the execution sequence of a function composition, and demon-
strate the interoperability through function compositions that resemble a KG
construction workflow in which the RDF-generation task can be implemented
by different tools.

6 Conclusion

Declarative function descriptions, and compositions thereof, allow us to define
workflows that are decoupled from the execution environment. The explicit se-
mantics allow for the unambiguous definition of inputs, outputs and implemen-
tations. Hence, allowing for automatically determine the functions that can be
used to execute a task. Alignment with PROV allows for a reproducible workflow
as both tasks and execution details are provided, which enables to exactly de-
termine which functions were applied throughout the execution of the workflow.

Defining a workflow through compositions allows for different levels of ab-
stractions. When rapid prototyping is required, only high-level tasks can be
described. As requirements become more concrete, a high-level task can be de-
scribed in greater detail as a composition of more fine-grained tasks.

These various levels of abstraction also allows for various levels of provenance
information and thus various levels of reproducibility. For example, at one end
of the spectrum, a function can be implemented by a command-line tool: no
provenance information is available about the transformations that have been
applied to produce the output. At the other end of the spectrum, a task can
be described as a (nested) composition of fine-grained functions: provenance
information is available up to the level of atomic functions.

For future work, we can see a mapping language as a way to describe compo-
sitions of transformation tasks. By representing, e.g., a Triples Map in RML as
a composition of data and schema transformation tasks, we can provide insights
in what a mapping does, and in what order. These insights could help to provide
optimization strategies to such kind of engines.
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