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Abstract

Effective urban traffic management is vital for sustainable
city development, relying on intelligent systems with ma-
chine learning tasks such as traffic flow prediction and travel
time estimation. Traditional approaches usually focus on
static road network and trajectory representation learning,
and overlook the dynamic nature of traffic states and trajec-
tories, which is crucial for downstream tasks. To address this
gap, we propose TRACK, a novel framework to bridge traffic
state and trajectory data for dynamic road network and tra-
jectory representation learning. TRACK leverages graph at-
tention networks (GAT) to encode static and spatial road seg-
ment features, and introduces a transformer-based model for
trajectory representation learning. By incorporating transition
probabilities from trajectory data into GAT attention weights,
TRACK captures dynamic spatial features of road segments.
Meanwhile, TRACK designs a traffic transformer encoder to
capture the spatial-temporal dynamics of road segments from
traffic state data. To further enhance dynamic representations,
TRACK proposes a co-attentional transformer encoder and a
trajectory-traffic state matching task. Extensive experiments
on real-life urban traffic datasets demonstrate the superiority
of TRACK over state-of-the-art baselines. Case studies con-
firm TRACK’s ability to capture spatial-temporal dynamics
effectively.

Code — https://github.com/NickHan-cs/TRACK

Introduction
Intelligent urban traffic management, such as traffic flow
prediction (Bai et al. 2020; Wang et al. 2022; Ji et al. 2022a;
Liu et al. 2024), travel time estimation (Wang et al. 2018;
Wu et al. 2019a) and trajectory analysis (Chen et al. 2017;
Ding et al. 2018; Chen et al. 2019), plays a crucial role in en-
suring efficient city functioning and promoting sustainable
development (Wang et al. 2021; Jiang et al. 2023b). In the
realm of intelligent urban traffic management, traffic state
data and trajectory data are two core components that can
encapsulate the macroscopic and microscopic characteris-
tics of cities, respectively, and their representation learning,
i.e., learning generic low-dimensional road segment and tra-
jectory vectors, serve as two fundamental pillars for vari-
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Figure 1: An example of mutual influences between traffic
state data and trajectory data.

ous urban traffic tasks (Chen et al. 2018; Wang et al. 2019a;
Jiang et al. 2023d).

Recently, many efforts have been devoted to modeling
traffic state data (Jiang et al. 2023a; Zou et al. 2024; Yi et al.
2024; Ji et al. 2022b, 2023, 2020) and trajectory data (Yang
et al. 2021; Fu and Lee 2020; Jiang et al. 2023c). However,
existing methods typically model these two types of data in-
dependently, lacking approaches capable of jointly modeling
them. In urban transportation scenarios, traffic state data de-
scribes the dynamic macroscopic characteristics of groups
on the road network, while trajectory data reflects the dy-
namic movement attributes of individuals on the road net-
work. There are spatio-temporal correlations and mutual in-
fluences between traffic state data and trajectory data.

Firstly, traffic states influence individuals’ choices of the
trajectory route. For example, as shown in Figure 1(a), peo-
ple tend to choose the shortest route R1 during non-peak
hours, but it might be a better choice to detour with a more
time-saving route R2 during peak hours (i.e., when the aver-
age traffic speed of R1 is low). Traffic states naturally affect
the travel time of each road segment in a trajectory. Sec-
ondly, individual transitions on the road network are the di-
rect cause of changes in traffic states. As shown in Figure
(b), the traffic flow on segment C consists of the traffic flow
entering from segment A and that entering from segment B.
Therefore, the transition probability from segment A to seg-
ment C varies over different time periods, directly impacting
the traffic states on segment C. Therefore, jointly modeling
traffic state data and trajectory data can enrich the spatio-
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temporal information learned by the model, capturing the
dynamic nature of traffic states and trajectories.

To achieve this, we propose to bridge two prominent
types of dynamic data, i.e., TRAffic state and trajectory,
for dynamiC road networK and trajectory representation
learning (TRACK). Specifically, TRACK encodes the static
and spatial features of road segments with graph atten-
tion networks (GAT) to learn road segment representa-
tions, followed by a trajectory transformer encoder with the
masked trajectory prediction task and the contrastive tra-
jectory learning task to learn trajectory representations. To
capture the dynamic spatial features of road segments, we
incorporate the transition probabilities computed from the
trajectory data into the attention weights of GAT. Mean-
while, to capture the spatial-temporal dynamics of road seg-
ments from traffic state data, we learn a traffic transformer
encoder with the mask state prediction task and the next
state prediction task. More importantly, to capture the inter-
actions of traffic state and trajectory data in characterizing
a road segment’s dynamic features, we model the informa-
tion exchange between different data views by designing a
co-attentional transformer encoder with a novel gravitivity-
based attention mechanism and the trajectory-traffic state
matching task. Finally, we pre-train the whole model with
a joint self-supervised learning loss.

We conduct extensive experiments on two real-life urban
traffic datasets and compare our proposed TRACK method
with several state-of-the-art baselines. Evaluated with two
downstream tasks, TRACK achieves consistently superior
performances over baselines. Case studies also validate that
TRACK can capture the spatial-temporal dynamics of road
segments and trajectories through learned dynamic repre-
sentations.

Preliminaries
In this section, we introduce the mathematical notations used
throughout the paper and formally define our research prob-
lem.

Basic Elements of Urban Traffic
We start by introducing the basic spatial-temporal units of
urban traffic, i.e., a road segment and a time slice.

Definition 1 (Road Segment). A road segment v ∈ V is the
minimum spatial unit in urban traffic scenarios where V is
the set of road segments.

Definition 2 (Time Slice). A time slice t is the minimum
time unit (e.g., an hour) in urban traffic scenarios.

For convenience, we might call segment for short in un-
ambiguous cases. Next, we characterize the spatial, static,
dynamic features of road segments and the trajectory with
the following concepts.

Definition 3 (Road Network). A road network is charac-
terized as a graph G = (V ,A), where V = {v1, · · · , vN}
is a node set of N road segments and A ∈ RN×N is an
adjacency matrix to capture the link information between N
road segments. The road network entails the spatial features
of road segments.

Definition 4 (Static Feature of Road Segment). The static
feature fv ∈ RC1 for a road segment v is a feature vector
with which v is generally associated and does not change
over time after it was built. C1 is the dimension of the fea-
ture vector. For example, C1 = 5 if the features include lon-
gitude, latitude, segment type, length, and speed limit.
Definition 5 (Traffic State Sequence). A traffic state se-
quence St ∈ RT×N×C2 is composed of T consecutive his-
torical traffic states before the time slice t, where St =
(TSt−T , · · · ,TSt−1). TSt denotes a traffic state at the
time slice t. A traffic state TSt ∈ RN×C2 is the statis-
tics (e.g., flow, density, average speed) on N road segments
within the time slice t, where C2 is the dimension of the
statistics. The traffic state sequence involves the dynamic
features of road segments that will change over time.
Definition 6 (Trajectory). A trajectory T = [⟨vi, ti⟩]mi=1 is
a sequence of spatial-temporal points that record the move-
ment behavior of a car or person in the scope of the road
network G, where m is the total number of spatial-temporal
points, vi ∈ V denotes the segment for the i-th visit, and
ti ∈ R denotes the corresponding visit timestamp.

We use FV ∈ RN×C1 to denote the static feature matrix
of N road segments in the road network G. We assume that
there is a set of kD trajectories within the time slice t, de-
noted as a trajectory set Dt = {Tj}kD

j=1, indicating that the
departure timestamp of each trajectory Tj ∈ Dt lies in the
time slice t.

Problem Formulation
We formulate two representation learning tasks in urban traf-
fic scenarios, i.e., Dynamic Road Network Representation
Learning (DRNRL) and Trajectory Representation Learning
(TRL).
Definition 7 (Dynamic Road Network Representation
Learning). Given the road network G, the historical traffic
state sequence St and the trajectory set Dt at the time slice t,
DRNRL aims to derive a generic ds-dimensional represen-
tation hv,t ∈ Rds at the time slice t for each road segment
v ∈ V on the road network.
Definition 8 (Trajectory Representation Learning).
Given the road network G, the historical traffic state se-
quence St and the trajectory set Dt at the time slice t,
TRL aims to derive a generic dt-dimensional representation
lT ∈ Rdt for each trajectory T ∈ Dt.

Traditional representation learning methods on road net-
work (Wu et al. 2020a) usually focus on learning a road seg-
ment’s representation that does not change over time. How-
ever, in great contrast, DRNRL aims to learn dynamic rep-
resentations of road segments by considering the dynamic
features derived from traffic state and trajectory data. We
interchangeably use the terms road network representation
and road segment representation hereinafter. We assume that
the numbers of latent dimensions for DRNRL and TRL are
set to the same value d in our problem, i.e., d = ds = dt.
The learned road segment representation can be applied
to various segment-related downstream tasks such as traf-
fic state prediction and on-demand service prediction. The
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Figure 2: The overall architecture of the TRACK model.

learned trajectory representation can be applied to various
trajectory-related downstream tasks such as travel time esti-
mation and anomalous trajectory detection.

Methodology
In this section, we present the proposed TRACK model. Our
core idea is to incorporate dynamic information from traf-
fic state and trajectory data into road network and trajec-
tory representation learning, and model the information ex-
change between multi-view data to enhance the dynamic
representations. The overall architecture of the proposed
model is shown in Figure 2.

Basic Pipeline of TRL
In this part, we introduce a basic pipeline for TRL, which
first encodes the segments appearing in a trajectory into low-
dimensional vectors and then combines them with the times-
tamp representations to derive the trajectory’s final represen-
tation vector. We train it with the Masked Trajectory Pre-
diction (MTP) task and the Contrastive Trajectory Learning
(CTL) task.

Encoding Road Segment’s Static and Spatial Features.
We aim to project each segment v in the road network G
into a low-dimensional representation vector hG

v ∈ Rd. The
static features of each segment, e.g., length and speed limits,
contain rich semantics of the segment. Moreover, the con-
nectivity of the segments in the road network, i.e., the lo-
cal network structure, also entails the spatial semantics of
a segment. To this end, it is natural to learn the represen-
tation vector of a segment from both its static features and
the local network structure. We adopt a GNN method, i.e.,
a multi-layer Graph Attention Network (GAT)(Velickovic
et al. 2018), to model each segment’s static and spatial fea-
tures as follows:

HTraj = GAT(FV ,A), (1)

where GAT(·, ·) denotes the implementation of a standard-
ized GAT or a GAT optimized with sparse matrix operations,
and HTraj = [hTraj

v ]Nv=1 ∈ RN×d is a matrix form of N
segments’s representations in G.

Encoding Timestamp Information. We introduce a tempo-
ral embedding layer to transform raw timestamps in trajec-
tories into low-dimensional representation vectors. Specifi-
cally, it contains tweekly

i , tdailyi , tposi , tintervali ∈ Rd, which
represent weekly periodic patterns, daily periodic patterns,
position information, time interval information, respectively.

Encoding the Whole Trajectory. The whole trajectory can
be divided into a segment sequence and a time sequence.
Therefore, for the i-th visit, we first feed the segment vi into
the GAT to obtain the segment representation hTraj

vi
. Mean-

while, we feed the time sequence into the temporal embed-
ding layer to obtain tweekly

i , tdailyi , tposi and tintervali . Then,
we derive the overall representation li ∈ Rd for the i-th visit
in a trajectory by as follows:

li = hTraj
vi

+ tweekly
i + tdailyi + tposi + tintervali . (2)

In order to capture the long-range dependencies of visits in
a trajectory and identify the global semantics of the trajec-
tory, we further feed the representation sequence [li]mi=1 into
a transformer encoder (Vaswani et al. 2017) to obtain the
final trajectory representation lT ∈ Rd which can be mathe-
matically defined as follows:

lT = TrajTrans(ph, l1, · · · , lm)[0], (3)

where the function TrajTrans(·) denotes a standard trans-
former encoder or a transformer-like encoder and ph is the
embedding vector of the placeholder.

Masked Trajectory Prediction. The general idea of this
task is to mask the consecutive subsegments of the trajec-
tory and their corresponding timestamps, and to use linear
layers to predict the masked values, i.e., ŷS ∈ R|T |×|V| and
ŷT ∈ R|T |, respectively. The loss functions can be defined
as follows:

LTraj
S = − 1

|MS |
∑

vi∈MS

log
exp(ŷSvi

)∑
vj∈V exp(ŷSvj

)
, (4)

LTraj
T =

1

|MT |
∑

ti∈MT

|ŷTvi
− ti|, (5)

where MS and MT denote the sets of masked road seg-
ments and masked timestamps, respectively.

Contrastive Trajectory Learning. The general idea of this
task is to adopt a contrastive learning strategy to generate
multiple samples of a trajectory from different views and
bring semantically similar samples closer in the represen-
tation space while dispersing dissimilar samples. The loss
function can be defined as follows:

LTraj
con (Ti, Tj) = − log

exp(sim(lTi
, lTj

)/τ)∑2B
k=1 1[k ̸=i] exp(sim(lTi , lTk

)/τ)
,

(6)
where B is the batch size, (Ti, Tj) is a positive pair in the
batch, 1[k ̸=i] ∈ {0, 1} is an indicator function that is equal to
1 if condition k ̸= i is satisfied and τ denotes a temperature
parameter. The overall loss of this task for the batch, i.e.,
LTraj
con , is computed by averaging the losses of all positive

pairs in the batch.
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Modeling Road Segments’ Dynamic Features
In this part, we model the dynamic features of road segments
that can change over time, including the spatial-temporal dy-
namics in trajectories and traffic state sequences.

Encoding Road Segment’s Dynamic Spatial Features
with Trajectory Data. Trajectory data entails some dy-
namic spatial semantics of segments. For example, a large
transition probability between two segments revealed from
the trajectory data may indicate that the two segments are
nearby in the semantic space. Therefore, we replace the stan-
dard GAT in Section Encoding Road Segment’s Static and
Spatial Features with a Trajectory Transition-aware GAT.
Specifically, based on the trajectories, we introduce a time-
aware transition probability pi,j,t for the time slice t to cap-
ture the transition patterns between two segments vi and vj .
pi,j,t considers the historical trajectories that occur period-
ically within the time slice t. To incorporate pi,j,t into the
GAT, we compute a normalized attention weight αi,j,t be-
tween vi and vj as follows:

αi,j,t =
exp(LeakyReLU(ei,j,t))∑

k∈Nvi
exp(LeakyReLU(ei,k,t))

, (7)

ei,j,t = (h′
vi,tW1 + h′

vj ,tW2 + pi,j,tW3)W
⊤
4 , (8)

where W1,W2 ∈ Rd×d′
and W3,W4 ∈ R1×d′

are learn-
able weight parameters, Nvi is the neighborhood set of road
segment vi.

Traffic Data Embedding. The Traffic Data Embedding
layer is designed to convert the traffic state sequence at
time slice t, i.e., St ∈ RT×N×C2 , into an embedding
tensor, i.e., X Traf

t ∈ RT×N×dx . Specifically, we first
project St directly into a dx-dimensional representation ten-
sor, i.e., X raw

t = FC(St) ∈ RT×N×dx , through a fully-
connected feed-forward network FC(·) : RT×N×C2 →
RT×N×dx . Next, we employ three temporal embeddings,
i.e., Xweekly

t ,Xdaily
t ,Xpos

t ∈ RT×dx , to extract the weekly
periodic patterns, daily periodic patterns and position infor-
mation for all T time slices, respectively. To further model
the spatial information of the road network, we also em-
ploy a multi-layer GAT to generate an embedding matrix
XG ∈ RN×dx of the road network. The final embedding
tensor X Traf

t can then be computed as follows:

X Traf
t = X raw

t +Xweekly
t +Xdaily

t +Xpos
t +XG . (9)

Traffic Transformer Encoder. We further feed X Traf
t into

a traffic transformer encoder to model dynamic spatial-
temporal dependencies hidden in traffic state sequences. The
traffic transformer encoder is composed of multiple traf-
fic transformer encoder layers. In each encoder layer, we
first feed X Traf

t into a spatial encoder and a temporal en-
coder, respectively. The spatial encoder takes a geographi-
cal and semantic neighbor-aware GAT layer to capture the
dynamic spatial dependencies of traffic states in each time
slice, whereas the temporal encoder takes a temporal self-
attention layer to capture the dynamic temporal patterns for

different road segments in the traffic state data. Next, we
concatenate the output embedding of the spatial and tempo-
ral encoders to form a fusion representation, which is fur-
ther fed into other components of a transformer encoder,
e.g., Add & Norm layer and Feed Forward layer. At the last
of the traffic transformer encoder, we use a convolutional
layer to transform the output embedding tensor into a matrix
HTraf

t ∈ RN×d, which is the final representation for N
road segments at the time slice t. We summarize the compu-
tation of HTraf

t as follows:

HTraf
t = TrafTrans(X Traf

t ), (10)

where the function TrafTrans(·) : RT×N×dx → RN×d

denotes the whole Traffic Transformer Encoder. Actually,
other feasible spatio-temporal encoders can also replace this
encoder.

Pre-training Traffic Data Embedding and Traffic Trans-
former Encoder via Mask State Prediction and Next
State Prediction. We design two self-supervised tasks to
learn generic segment representations. Specifically, we ran-
domly mask a sequence of historical traffic states for each
segment and use the generated intermediate representations
to predict the masked traffic states, while using the generated
segment representations of the next time slice to predict the
traffic state of the next time slice. Ultimately, the loss LTraf

is obtained by the weighted sum of the losses from two tasks.

Modeling Multi-view Information Exchange

We propose a co-attentional transformer encoder to tackle
the multi-view information exchange between different data
modality, followed by a trajectory-traffic state matching task
to maximize the consistency between segment representa-
tions and trajectory representations.

Co-Attentional Transformer Encoder. In each view, the
key idea for the co-attentional transformer encoder is to
replace the transformer encoder’s multi-head self-attention
module with a GAT layer, as shown in Figure 3, which ag-
gregates the neighborhood nodes’ features from the other
view to form the node’s feature representation in the target
view. Moreover, in the GAT layer, inspired by Newton’s law
of universal gravitation (Simini et al. 2021), we assume that
the influence between two segments decreases with the dis-
tance between them and design a novel way to compute the
attention weight.

Specifically, we take the view of trajectory data to de-
scribe the mechanism of the co-attentional transformer en-
coder, and the co-attentional transformer encoder for the
other view works similarly. We first define a K-minute
reachable neighborhood set for segment vi as Rvi , which
is the set of segments that can reach vi in K minutes. We
use hTraj

vi
∈ Rd to denote the representation vector of seg-

ment vi at the time slice t produced by Trajectory Transition-
aware GAT. To model the influence of information from the
other view over hTraj

vi
, we employ a GAT layer, which de-

fines a normalized attention weight αTraj
i,j between vi and
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Figure 3: Framework of the Co-Attentional Transformer En-
coder and the GAT Operation from the View of Trajectory
Data.

vj ∈ Rvi
as follows:

αTraj
i,j =

exp(LeakyReLU(eTraj
i,j ))∑

k∈Rvi
exp(LeakyReLU(eTraj

i,k ))
, (11)

eTraj
i,j = (hTraj

vi
W5 + hTraf

vj
W6 + deter(vi, vj)W7)W

⊤
8 ,

(12)
where W5,W6 ∈ Rd×d′

and W7,W8 ∈ R1×d′
are learn-

able parameters, the function deter(·) denotes a geograph-
ical distance deterrence function such as Negative Power
Function, and hTraf

vj
denotes the representation vector of

segment vj ∈ Rd at the time slice t produced by the Traf-
fic Transformer Encoder in the other view. The GAT layer
uses the normalized attention weight αTraj

i,j to aggregate the
features of neighboring segments in the other view to obtain
the feature representation of the targeted segment. The rest
of the transformer block proceeds as before.

Trajectory-Traffic State Matching. We design a con-
trastive learning task, i.e., Trajectory-Traffic State Matching,
which maximizes the agreement of a trajectory’s representa-
tion vector and the corresponding road segment sequence’s
representation vector generated from traffic state data. The
core of this task is that the trajectories of the current time
slice correspond to the traffic state of the current time slice,
rather than traffic states of other time slices.

Specifically, for a trajectory T = [⟨vi, ti⟩]mi=1, its repre-
sentation lT can be extracted by the TRL process. In the
meanwhile, a representation matrix RSTraf

T ∈ Rm×d for
the trajectory’s corresponding segment sequence [vi]mi=1 can
be extracted based on the traffic state data as follows:

RSTraf
T = [hTraf

vi,t ]mi=1, (13)

where hTraf
vi,t ∈ Rd denotes the representation vector for

road segment vi at the timestamp t1 (within the time slice
t), and is derived based on HTraf

t as described in Equa-
tion (10). Then, we can obtain the final representation vector
hTraf
T ,t ∈ Rd by average pooling over the first dimension of

the matrix RSTraf
T .

In the contrastive learning process, We define the spatio-
temporal data of Bt time slices Θ as a training batch. For

Dataset #Road Segment #Edge #Trajectory

Xi’an 5,168 12,643 834,560
Chengdu 6,153 15,783 1,262,406

Table 1: Statistics of the Two Datasets.

each trajectory T ∈ Dt within the time slice t ∈ Θ, we
regard (lT ,h

Traf
T ) as a positive pair. To construct negative

pairs, we obtain hTraf
T ,t′ ∈ Rd from other time slices t′ ∈

Θ. Then, a negative pair can be constructed as (lT ,h
Traf
T ,t′ ).

Formally, the loss function of the positive pair (lT ,h
Traf
T ,t )

for the contrastive learning based on NT-Xent is defined as:

dT ,t = exp(sim(lT ,h
Traf
T ,t )/τ), (14)

LMatch(lT ,h
Traf
T ,t ) = − log

dT ,t

dT ,t +
∑

t′∈Θ dT ,t′
, (15)

where τ denotes a temperature parameter. The total loss of
contrastive learning for the batch, i.e., LMatch, is calculated
by averaging the losses of all positive pairs in the batch.

Joint Pre-training for the Whole Model
To facilitate learning spatial-temporal patterns across multi-
source data, we pre-train all modules of the proposed model
in a joint manner, which defines the following loss function:

L = λTrajLTraj + λTrafLTraf + λMatchLMatch, (16)

where λTraj , λTraf , λMatch are three hyper-parameters that
control the influence of each individual loss function over
the proposed model, respectively.

Experiments
Experimental Setup
We utilize two real-world datasets from two cities in China,
i.e., Xi’an and Chengdu, collected from the DiDi GAIA
project in October and November 2018. The statistics for the
two datasets are presented in Table 1. The duration of each
time slice is 30 minutes. We chronologically split the traffic
state data into a training, validation, and testing set with a
ratio of 6:2:2. All experiments are repeated 10 times and the
average results are reported according to Student’s t-test at
the 0.01 significance level. The number of dimension d in
the representation learning is searched over {32, 64, 128}.
The numbers of traffic transformer encoder layers, trajectory
transformer encoder layers and co-attentional transformer
encoder layers are 3, 6 and 2 respectively. More details are
available at the code repository.

We evaluate the learned segment representations and tra-
jectory representations on two downstream tasks, respec-
tively, i.e., Multi-Step Traffic State Prediction (MSTSP) and
Travel Time Estimation (TTE). For the MSTSP task, we
compare TRACK with 7 traffic state prediction methods,
including DCRNN (Li et al. 2018b), GWNET (Wu et al.
2019b), MTGNN (Wu et al. 2020b), TrGNN (Li et al. 2021),
STGODE (Fang et al. 2021), ST-Norm (Deng et al. 2021)
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Multi-Step Traffic State Prediction Travel Time Estimation

Dataset Xi’an Chengdu Dataset Xi’an Chengdu

Models MAE MAPE(%) RMSE MAE MAPE(%) RMSE Models MAE MAPE(%) RMSE MAE MAPE(%) RMSE

DCRNN 1.288 16.38 2.491 1.554 18.21 2.860 traj2vec 1.667 23.44 2.465 1.296 22.16 1.915
GWNET 1.297 15.58 2.334 1.610 18.13 2.707 t2vec 1.663 23.38 2.463 1.296 22.21 1.923
MTGNN 1.222 14.90 2.161 1.470 16.76 2.495 Trembr 1.668 23.76 2.470 1.315 22.63 1.948
TrGNN 1.255 15.89 2.415 1.559 17.68 2.763 PIM 1.692 24.65 2.487 1.322 23.67 1.920

STGODE 1.391 17.34 2.297 1.628 18.76 2.602 Toast 1.720 22.78 2.582 1.331 21.96 1.976
ST-Norm 1.270 15.64 2.276 1.485 17.00 2.593 JCLRNT 1.799 24.91 2.576 1.370 23.95 1.987
SSTBAN 1.175 14.11 2.193 1.454 16.90 2.491 START 1.522 22.26 2.169 1.182 20.02 1.749

TRACK 1.094 13.32 2.141 1.363 15.42 2.471 TRACK 1.426 20.74 1.988 1.143 19.43 1.612

Table 2: Performance Comparsion.

and SSTBAN (Guo et al. 2023). For the TTE task, we com-
pare TRACK with 7 trajectory representation learning meth-
ods, including traj2vec (Yao et al. 2017), t2vec (Li et al.
2018a), Trembr (Fu and Lee 2020), PIM (Yang et al. 2021),
Toast (Chen et al. 2021), JCLRNT (Mao et al. 2022) and
START (Jiang et al. 2023c).

Performance Comparison
Table 2 reports the results for two downstream tasks. The
bold results are the best, and the underlined results are the
second best. It can be seen that our proposed TRACK model
outperforms all baselines on both datasets. This demon-
strates the effectiveness of TRACK in learning effective road
network representations and trajectory representations.

For the MSTSP task, MTGNN and SSTBAN achieve
competitive performance compared to other baselines. This
is because MTGNN proposes an adaptive graph generation
module to reflect realistic spatial correlations while SST-
BAN employs a self-supervised learner and designs a spa-
tial botteleneck attention mechanism to capture global spa-
tial dynamics. In contrast, TRACK achieves better perfor-
mance because it further incorporates transition patterns of
segments based on trajectory data in modeling the spatial-
temporal dynamics. For the TTE task, START consistently
outperforms other baselines for all metrics and datasets. One
important reason is that it captures the temporal dynamics
of trajectories and therefore enables the trajectories passing
through the same route at different time slices may have dif-
ferent representations. However, START only encodes the
timestamp information of trajectories for the periodic pat-
terns of urban traffic, while TRACK also learns the spatial-
temporal dynamics in the short-term traffic states.

Ablation Study
To further investigate the effects of different components
in TRACK, we perform ablation studies with the follow-
ing variants. (1) w/o Traf : this variant eliminates model-
ing of the spatial-temporal dynamics in traffic state se-
quences; (2) w/o Traj: this variant eliminates the process of
trajectory representation learning and modeling of dynamic
spatial features in trajectories; (3) w/o Match: this variant
eliminates the trajectory-traffic state matching task; (4) w/o
TMask: this variant removes the loss LTraj

T of the MTP task,
which means no masking prediction for timestamps; (5) w/o

SMask: this variant removes the loss LTraj
S of the MTP task,

which means no masking prediction for segments; (6) w/o
Contra: this variant removes the loss LTraj

Con of the CTL task.
Figure 4 shows the performance of these variants on the

MSTSP and TTE tasks of the Xi’an dataset. The following
observations can be made. Firstly, the variants w/o Traj and
w/o Traf are consistently inferior to TRACK on both tasks.
This demonstrates that traffic state and trajectory data can
serve as side information of each other to enhance the repre-
sentation learning process of road networks and trajectories.
Specifically, trajectory representations can perceive dynamic
traffic states on the road network, while segment representa-
tions can perceive dynamic dependencies between upstream
and downstream traffic flows. Secondly, TRACK performs
better than w/o Match. This indicates that the Trajectory-
Traffic State Matching task can indeed help to enhance the
representation learning process of the whole model. Third,
the performance of w/o TMask, w/o SMask, and w/o Contra
on both tasks is inferior to TRACK. This indicates that both
MTP and CTL tasks contribute to more accurate represen-
tations of dynamic road networks and trajectories, which in
turn impacts their performance on two downstream tasks.

Case Study
In this section, we conduct two case studies to visualize and
analyze the dynamic segment representations and trajectory
representations, which enhance TRACK’s interpretability.

Case 1: Study on Dynamic Road Segment Representa-
tions. One advantage of the proposed model is to learn dy-
namic road segment representations. We take segments A, B
and C in Figure 5(a) as an example to investigate this type
of representation. The incoming traffic flow of segment A
is composed of the outgoing traffic flow of segments B and
C. We take October 11th as the observation period and set
the window of the time slice as 30 minutes. Then we adopt
t-SNE (Van der Maaten and Hinton 2008) to visualize the
learned segment representations in Figure 5(b), where each
point corresponds to the representation of a segment within
a time slice. We can see that the learned segment represen-
tation indeed changes over time. Moreover, we use SimRa-
tio(A,B) to measure the ratio of the similarity between seg-
ments A and B and the similarity between segments A and
C. We then plot SimRatio(A,B) and the transition probabili-
ties from segment B to A, denoted as TransProb(B→A), over
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Figure 5: Case Study of Dynamic Segment Representations.

time in Figure 5(c). It can be observed that the transition
patterns indeed change over time. More importantly, we can
see that from 16:00 to 23:00 there is a significant decrease
in SimRatio(A,B), which is due to the fact that there were
no trajectories from B to A in that period. This suggests that
the learned segment representations can indeed capture the
dynamic transition patterns between road segments.

Case 2: Study on Dynamic Trajectory Representations.
Another advantage of the proposed model is that with the
information exchange of different views, the learned trajec-
tory representations can also be influenced by the dynam-
ics of traffic states. We take the three routes R1, R2, and
R3 from segment 131 to segment 2768 on November 1st
shown in Figure 6(a) as an example. In Figure 6(b), we visu-
alize trajectory representations of the three routes at different
time slices, which shows that the learned trajectory repre-
sentations of the same route are indeed dynamic over time.
Moreover, compared to R3, R1 and R2 are closer in the tra-
jectory representation space. This can be explained by the
road network’s spatial semantics because R2 has a shorter
detouring path than R3 and is more similar to R1. Mean-
while, the trajectory representation of R1 at the 20th time
slice (i.e., departing at 10:00) is more similar to those of R2

than those of R1 at other time slices. This can be explained
by that there was a sharp decrease in traffic speed on seg-
ment 96 at 10:00 as shown in Figure 6(c), which makes the
semantics of R1 at that time slice resembles the semantics
of detouring in R1. This indicates that trajectory representa-

Figure 6: Case Study of Trajectory Representations.

tion generated by TRACK can indeed perceive the dynamic
traffic states of the road segments visited in the trajectory.

Related Work
Road Network Representation Learning aims to trans-
form the road network into a general low-dimensional repre-
sentation matrix. Since graph representation learning meth-
ods can model the topological structure of the road net-
work (Perozzi, Al-Rfou, and Skiena 2014; Tang et al. 2015;
Grover and Leskovec 2016; Hamilton, Ying, and Leskovec
2017), some existing methods (Wang et al. 2019b; Chen
et al. 2022; Chang et al. 2023) take the spatial correlations
of road segments into account by using graph representa-
tion learning methods. A more recent method (Wu et al.
2020a; Yu et al. 2024) takes the transition patterns into ac-
count when modeling the road networks. In summary, our
proposed method is the first attempt to jointly model the dy-
namics of road segments based on trajectory and traffic state
data.

Trajectory Representation Learning aims to transform
the trajectory into a general low-dimensional representation
vector. Early TRL studies (Yao et al. 2017; Li et al. 2018a)
obtain trajectory representations through the reconstruction
task. Recent TRL methods (Zhu et al. 2022; Yang et al.
2021; Liu et al. 2022; Mao et al. 2022; Yang et al. 2022;
Chen et al. 2021; Lin et al. 2023; Jiang et al. 2023c) pri-
marily first obtain the road network representations and then
derive trajectory representations through sequential models
with self-supervised tasks. The trajectory representation is
assumed to be static in most methods, with only a few en-
coding temporal information in trajectories. For example,
Trembr (Fu and Lee 2020) and START (Jiang et al. 2023c)
reconstructs timestamps during the decoding process. How-
ever, they do not consider the impact of dynamic traffic
states on trajectory representations, which is one of our main
contributions.

Conclusion
We propose TRACK, a novel dynamic road network and tra-
jectory representation learning framework, to jointly model
traffic state data and trajectory data. Extensive experi-
ments on two real-world datasets showcase the performance
of TRACK and provide interpretations of dynamic road
segment and trajectory representations. TRACK offers a
promising way for improving traffic-related tasks, contribut-
ing to more efficient and sustainable urban management.
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