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Abstract

To foster trust in machine learning models, explanations must be faithful and
stable for consistent insights. Existing relevant works rely on the ℓp distance for
stability assessment, which diverges from human perception. Besides, existing
adversarial training (AT) associated with intensive computations may lead to an
arms race. To address these challenges, we introduce a novel metric to assess
the stability of top-k salient features. We introduce R2ET which trains for stable
explanation by efficient and effective regularizer, and analyze R2ET by multi-
objective optimization to prove numerical and statistical stability of explanations.
Moreover, theoretical connections between R2ET and certified robustness justify
R2ET’s stability in all attacks. Extensive experiments across various data modalities
and model architectures show that R2ET achieves superior stability against stealthy
attacks, and generalizes effectively across different explanation methods. The code
can be found at https://github.com/ccha005/R2ET.

1 Introduction

Deep neural networks have proven their strengths in many real-world applications, and their ex-
plainability is a fundamental requirement for humans’ trust [25, 62]. Explanations usually attribute
predictions to human-understandable basic elements, such as input features and patterns under net-
work neurons [35]. Given the inherent limitations of human cognition [69], only the most relevant
top-k features are presented to the end-users [89]. Among many existing explanation methods,
gradient-based methods [55, 24] are widely adopted due to their inexpensive computation and intu-
itive interpretation. However, the gradients can be significantly manipulated with neglected changes
in the input [16, 23]. The susceptibility of explanations compromises their integrity as trustworthy
evidence when explanations are legally mandated [25], such as credit risk assessments [4].

Challenges. As shown in Fig. 1, novel explanation methods [75, 77] and training methods [13, 17, 88]
are proposed to promote the robustness of explanations. We focus on training methods since novel
explanation methods require extra inference (explanation) time and may fail the sanity check [1].
Existing works [17, 88, 13, 16] study the explanation stability (robustness) through ℓp distance.
However, as shown in the right part of Fig. 1, a perturbed explanation with a small ℓp distance to the
original can exhibit notably different top salient features. Therefore, relying on ℓp distance as a metric
for optimizing the explanation stability fails to attain desired robustness, indicating the necessity for
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Figure 1: Left: Green ( 1⃝): Model training. Yellow ( 2⃝- 4⃝): Explanation generation for a target input. Red
( 5⃝- 6⃝): Adversarial attacks against the explanation by manipulating the input. Right: Two examples of the
saliency maps (explanations) show that smaller ℓp distances do not imply similar top salient features. I(x′′) has
a smaller ℓ2 distance from the original explanation I(x), but manipulates the explanation more significantly (by
top-k metric) shown in blue dashed boxes. Statistically, I(x′) has a 67% top-3 overlap in the tabular case, and
36% top-50 overlap in the image, compared with I(x′)’s 100% and 92% top-k overlap, respectively.

a novel ranking-based distance metric. Second, unlike robustness of prediction and ℓp distance based
explanation, analyses of robustness on ranking-based explanations are challenging due to multiple
objectives (feature pairs), which are dependent since features are from the same model. Finally,
adversarial training (AT) [86, 74] has been adopted for robust explanations, yet it potentially leads to
an attack-defense arms race. AT conditions models on adversarial samples, which intrinsically rely on
the objectives of the employed attacks. When defenders resist well against specific attacks, attackers
will escalate attack intensity, which iteratively compels defenders to defend against fiercer attacks.
Besides that, AT is time-intensive due to the search for adversarial samples per training iteration.

Contributions. We center our contributions around a novel metric called “ranking explanation
thickness” that precisely measures the robustness of the top-k salient features. Based on the bounds of
thickness, we propose R2ET, a training method, for robust explanations by an effective and efficient
regularizer. More importantly, R2ET comes with a theoretically certified guarantee of robustness to
obstruct all attacks (Prop. 4.5), avoiding the arms race. Besides certified robustness, we theoretically
prove that R2ET shares the same goal with AT but avoids intensive computation (Prop. 4.6), and the
connection between R2ET with constrained optimization (Prop. 4.7). We also analyze the problem
by multi-objective optimization to prove explanations’ numerical and statistical stability in Sec. 5.

Results. We experimentally demonstrate that: i) Prior ℓp norm attack cannot manipulate explanations
as effectively as ranking-based attacks. R2ET achieves more ranking robustness than state-of-the-
art methods; ii) Strong evidence indicates a substantial correlation between explanation thickness
and robustness; iii) R2ET proves its generalizability by showing its superiority across diverse data
modalities, model structures, and explanation methods such as concept-based and saliency map-based.

2 Related Work

Robust Explanations. Gradient-based methods are widely used due to their simplicity and efficiency
[55], while they lack robustness against small perturbations [23]. Adversarial training (AT) is used
to improve the explanation robustness [13, 74]. Alternatively, some works propose replacing ReLU
function with softplus [17], training with weight decay [16], and incorporating gradient- and Hessian-
related terms as regularizers [17, 88, 91]. Besides, some works propose post-hoc explanation methods,
such as SmoothGrad [75]. More relevant works are discussed in Appendix C.

Ranking robustness in IR. Ranking robustness in information retrieval (IR) is well-studied [106,
26, 104]. Ranking manipulations in IR and explanations are different since 1) In IR, the goal is
to distort the ranking of candidates by manipulating one candidate or the query. We manipulate
input to swap any pairs of salient and non-salient features. 2) Ranking in IR is based on the model
predictions. However, explanations rely on gradients, and studying their robustness requires second
or higher-order derivatives, necessitating an efficient regularizer to bypass intensive computations.

3 Preliminaries

Saliency map explanations. Let a classification model with parameters w be f(x,w) : Rn →
[0, 1]C , and fc(x,w) is the probability of class c for the input x. Denote a saliency map explanation
[1] for x concerning class c as I(x, c; f) = ∇xfc(x,w). Since f is fixed for explanations, we omit
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w and fix c to the predicted class. We denote I(x, c; f) by I(x), and the i-th feature’s importance
score, e.g., the i-th entry of I(x), by Ii(x). The theoretical analysis following will mainly based on
saliency explanations, and more explanation methods, such as Grad× Inp, SmoothGrad [75], and IG
[77], are studied in Sec. 6 and Appendix A.1.2.

Threat model. The adversary solves the following problem to find the optimal perturbation δ∗ to
distort the explanations without changing the predictions [17]:

δ∗ = argmax
δ:∥δ∥2≤ϵ

Dist(I(x), I(x+ δ)), s.t. argmax
c

fc(x) = argmax
c

fc(x+ δ). (1)

δ is the perturbation whose ℓ2 norm is not larger than a given budget ϵ. Dist(·, ·) evaluates how
different the two explanations are. We tackle constraints by constrained optimization (see B.2.3) and
will not explicitly show the constraints.

4 Explanation Robustness via Thickness

We first present the rationale and formal definition of thickness in Sec. 4.1, then propose R2ET
algorithm to promote the thickness grounded on theoretical analyses in Sec. 4.2. All omitted proofs
and more theoretical discussions are provided in Appendix A.

4.1 Ranking explanation thickness

Quantify the gap. Given a model f and the associated original explanation I(x) with respect to
an input x ∈ Rn, we denote the gap between the i-th and j-th features’ importance by h(x, i, j) =
Ii(x)− Ij(x). Clearly, h(x, i, j) > 0 if and only if the i-th feature has a more positive contribution
to the prediction than the j-th feature. The magnitude of h reflects the disparity in their contributions.
Although the feature importance order varies across different x, for notation brevity, we label the
features in a descending order such that h(x, i, j) > 0, ∀i < j, holds for any original input x. This
assumption will not affect the following analysis.

Pairwise thickness. The adversary in Eq. (1) searches for a perturbed input x′ to flip the ranking
between features i and j so that h(x′, i, j) < 0 for some i < j. A simple evaluation metric, such as
θ = 1[h(x′, i, j) ≥ 0], can only indicate if the ranking flips at x′, failing to quantify the extent of
disarray. Moreover, it is greatly impacted by the choice of x′. Conversely, the explanation thickness
is defined by the expected gap of the relative ranking of the feature pair (i, j) in a neighborhood of x.
Definition 4.1 (Pairwise ranking thickness). Given a model f , an input x ∈ X and a distribution D
of perturbed input x′ ∼ D, the pairwise ranking thickness of the pair of features (i, j) is

Θ(f,x,D, i, j) def
= Ex′∼D

[∫ 1

0

h(x(t), i, j)dt

]
, where x(t) = (1− t)x+ tx′, t ∈ [0, 1]. (2)

The integration computes the average gap between two features from x to x′. The expectation over
x′ ∼ D makes an overall estimation. For example, x′ can be from a Uniform distribution [88] or
the adversarial samples local to x [97]. The relevant work [97] proposes the boundary thickness to
evaluate a model’s prediction robustness by the distance between two level sets.

Top-k thickness. Existing works in general robust ranking [105] propose maintaining the ranking
between every two entities (features). However, as shown in Fig. 1, only the top-k important features
in I(x) attract human perception the most, and will be delivered to end-users. Thus, we focus on the
relative ranking between a top-k salient feature and any other non-salient one.
Definition 4.2 (Top-k ranking thickness). Given a model f , an input x ∈ X , and a distribution D of
x′ ∼ D, the ranking thickness of the top-k features is

Θ(f,x,D, k)
def
=

1

k(n− k)

k∑
i=1

n∑
j=k+1

Θ(f,x,D, i, j). (3)

Variants and discussions. We consider and discuss the following three major variants of thickness.

• One variant of thickness in Eq. (2) is in a probability version:

ΘPr(f,x,D, i, j)
def
= Ex′∼D

[∫ 1

0

1[h(x(t), i, j) ≥ 0]dt

]
.
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However, the inherent non-differentiability of the indicator function hinders effective analysis and
optimization of thickness. One may replace it with a sigmoid to alleviate the non-differentiability
issue. Yet, the use of a sigmoid can potentially lead to vanishing gradient problems.

• By considering the relative positions of the top-k features, one can define an average precision@k

like thickness Θap
def
= 1

K

∑K
k=1 Θ(f,x,D, k), or a discounted cumulative gain [33] like thickness

Θdcg
def
=

∑k
i=1

∑n
j=k+1

Θ(f,x,D,i,j)
log(j−i+1) . Other variants for specific properties or purposes can be

derived similarly, and we will study these variants deeply in future work.
• Many non-salient features are less likely to be confused with the top-k salient features (see Fig.

8), and treating them equally may complicate optimization. Thus, one may approximate the top-k
thickness by k′ pairs of features

∑k′

i=1 h(x, k−i, k+i), which selects k′ distinct pairs with minimal
h(x, i, j). We include the case when k′ = k denoted with the suffix “-mm” in the experiments.

4.2 R2ET: Training for robust ranking explanations

We will theoretically (in Sec. 5) and experimentally (in Sec. 6) demonstrate that maximizing the
ranking explanation thickness in Eq. (3) can make attacks more difficult and thus the explanation
more robust. Thus, a straightforward way is to add Θ(f,x,D, k) as a regularizer during training:

min
w
L = Ex [Lcls(f,x)− λΘ(f,x,D, k)] , (4)

where Lcls is the classification loss. However, direct optimization of Θ requires M1 ×M2 × 2
backward propagations per training sample. M1 is the number of x′ sampled from D; M2 is the
number of interpolations x(t) between x and x′; and evaluating the gradient of h(x, i, j) requires
at least 2 backward propagations [59]. In response, we consider the bounds of Θ in Prop. 4.4, and
propose R2ET which requires only 2 backward propagations each time.
Definition 4.3 (Locally Lipschitz continuity). A function f is L-locally Lipschitz continuous if
∥f(x)− f(x′)∥2 ≤ L∥x− x′∥2 holds for all x′ ∈ B2(x, ϵ) = {x′ ∈ Rn : ∥x− x′∥2 ≤ ϵ}.
Proposition 4.4. (Bounds of thickness) Given an L-locally Lipschitz model f , for some L > 0,
pairwise ranking thickness Θ(f,x,D, i, j) is bounded by

h(x, i, j)− ϵ ∗ 1
2
∥Hi(x)−Hj(x)∥2 ≤ Θ(f,x,D, i, j) ≤ h(x, i, j) + ϵ ∗ (Li + Lj), (5)

where Hi(x) is the derivative of Ii(x) with respect to x, and Li = maxx′∈B2(x,ϵ) ∥Hi(x
′)∥2.

Noticing lim∥H(x)∥2→0 Θ(f,x,D, i, j) = h(x, i, j), the objective of the proposed R2ET, Robust
Ranking Explanation via Thickness, is to maximize the gap and minimize Hessian norm:

min
w
L = Ex

Lcls − λ1

k∑
i=1

n∑
j=k+1

h(x, i, j) + λ2∥H(x)∥2

 , (6)

where λ1, λ2 ≥ 0. R2ET with λ1 = 0 recovers Hessian norm minimization for smooth curvature
[17]. The difference between R2ET in Eq. (6) and vanilla model are two regularizers. h(x, i, j) =
Ii(x)− Ij(x) can be calculated by one time backward propagation over I(x), and the summations
are done by assigning different weights to Ii(x), e.g., (n − k) for i <= k, and −k for i > k.
∥H(x)∥2 is estimated by the finite difference (calculating the difference of the gradient of I(x) and
I(x+ δ)), which costs two times backward propagation [52]. Thus, R2ET is at an extra cost of 2
times backward propagation. For comparison, AT (in PGD-style) searches the adversarial samples by
M2 (being 40 in [13, 70]) iterations for each training sample in every training epoch.

We connect R2ET to three established robustness paradigms, including certified robustness, AT,
and constrained optimization. Intuitively, three methods assess robustness from the adversary’s
perspective by identifying the worst-case samples and restricting model responses to these cases.
Conversely, R2ET is defender-oriented, which preserves models’ behavior stably by imposing
restrictions on the rate of change, avoiding costly adversarial sample searches.

Connection to certified robustness. Prop. 4.5 delineates the minimal budget required for a successful
attack. The defense strategy of maximizing the budget can effectively mitigate the arms race by
obstructing all attacks. The strategy essentially aligns with R2ET, but is empirically less stable and
harder to converge due to the second-order term in the denominator. The proof is based on [28].
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Proposition 4.5. For all δ with ∥δ∥2 ≤ min{i,j}
h(x,i,j)

maxx′ ∥Hi(x′)−Hj(x′)∥2
, it holds 1[h(x, i, j) > 0]

= 1[h(x+ δ, i, j) > 0] for all (i, j) pair, that is all the feature rankings do not change.

Connection to adversarial training (AT). Prop. 4.6 implies that R2ET shares the same goal as AT
but employs regularizers to avoid costly computations. The proof in Appendix A.3 is based on [94].

Proposition 4.6. The optimization problem in Eq. (6) is equivalent to the following min-max problem:

min
w

max
(δ1,k+1,...,δk,n)∈M

Ex

Lcls −
k∑

i=1

n∑
j=k+1

h(x+ δi,j , i, j)

 , (7)

where δi,j ∈ Rn is a perturbation to x targeting at the (i, j) pair of features.M is the feasible set of
perturbations where each δi,j is independent of each other, with ∥

∑
i,j δi,j∥ ≤ ϵ.

Connection to constrained optimization. Prop. 4.7 shows that R2ET aims to keep the feature in the
“correct” positions, e.g., liIi ≥ Gi, for the local vicinity of original inputs, thus promoting robustness.
First, Eq. (6) can be considered a Lagrange function for the constrained problem in Eq. (8):

min
w

Ex [Lcls + λ2∥H(x)∥2] , s.t. liIi(x) ≥ Gi, ∀i ∈ {1, . . . , n}, (8)

where Gi ≥ 0 is a predefined margin. li = (n− k) for i ≤ k, and li = −k otherwise, which labels
features at the top as positive and those at the bottom as negative. The proof is based on [34].

Proposition 4.7. The optimization problem in Eq. (8) is equivalent to the following problem:

min
w

Ex [Lcls] s.t. min
δi:∥δi∥2≤ϵ

liIi(x+ δi) ≥ Gi, ∀i ∈ {1, . . . , n}. (9)

5 Analyses of numerical and statistical robustness

Numerical stability of explanations. Different from prior work, we characterize the worst-case
complexity of explanation robustness using iterative numerical algorithm for constrained multi-
objective optimization. Threat model. The attacker aims to swap the ranking of any pair of a salient
feature i and a non-salient feature j, so that the gap h(x, i, j) < 0, while does not change the input x
and the predictions f(x) significantly for stealthiness. We assume that the attacker has access to the
parameters and architecture of the model f to conduct gradient-based white-box attacks.

Optimization problem for the attack. Each h(x, i, j) can be treated as an objective function for
the attacker, who however does not know which objective is the easiest to attack. Furthermore,
attacking one objective can make another easier or harder to attack due to their dependency on the
same model f and the input x. As a result, an attack against a specific target feature pair does not
reveal the true robustness of the feature ranking. We quantify the hardness of a successful attack
(equivalently, explanation robustness) by an upper bound on the number of iterations for the attacker
to flip the first (unknown) feature pair. The longer it takes to flip the first pair, the more robust the
explanations of f(x) are. Formally, for any given initial input x(0) ((p) in the superscript means the
p-th attacking iteration), the attacker needs to iteratively manipulate x to reduce the gaps h(x, i, j)
for all i ∈ {1, . . . , k} and j ∈ {k + 1, . . . , n} packed in a vector objective function:

MOO-Attack(x, ϵ): min
x

[h1(x), . . . , hm(x)], s.t. ∥f(x)− f(x(0))∥ ≤ ϵ, (10)

where hℓ(x)
def
= h(x, i, j), with ℓ = 1, . . . ,m indexing the m pairs of (i, j).

Comments: (i) The scalar function
∑

i

∑
j h(x, i, j) is unsuitable for theoretical analyses, since

there can be no pair of features flipped at a stationary point of the sum. Simultaneously minimizing
multiple objectives identifies when the first pair of features is flipped and gives a pessimistic bound
for defenders (and an optimistic bound for attackers). (ii) We could adopt the Pareto criticality for
convergence analysis [21], but a Pareto critical point indicates that no critical direction (moving in
which does not violate the constraint) leads to a joint descent in all objectives, rather than that an
objective function hℓ has been sufficiently minimized. (iii) Different from the unconstrained case
in [19], we constrain the amount of changes in x and f(x).
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We propose a trust-region method, Algorithm 1, to solve MOO-Attack (A.4 for more details). First,
we define the merit function ϕℓ that combines the ℓ-th objective and the constraint in Eq. (10):

ϕℓ(x, t)
def
= ∥f(x)∥+ |hℓ(x)− t|. (11)

As an approximating model for the trust-region method, the linearization of ϕ(x, t) is

lϕℓ
(x, t,d) = ∥f(x) + J(x)⊤d∥+ |hℓ(x) + gℓ(x)

⊤d− t|,
where J(x) is the Jacobian of f at x and gℓ(x) is the gradient of hℓ. The maximal reduction in
lϕℓ

(x, t, 0) within a radius of ∆ > 0 is

χℓ(x, t)
def
= lϕℓ

(x, t, 0)− min
d:∥d∥≤∆

lϕℓ
(x, t,d). (12)

x is called a critical (approximately critical) point of ϕℓ when χℓ(x, t) = 0 (or ≤ ϵ).

Algorithm 1 Attacking a pair of features

1: Input: target model f , input x, explanation I(x), trust-region method parameters 0 < γ, η < 1.
2: Set k = 1, x(p) = x, t

(p)
ℓ = ∥f(x(p))∥+ hℓ(x

(p))− ϵ(p).
3: while min1≤ℓ≤m χℓ(x

(p), t(p)) ≥ ϵ do
4: Solve TR-MOO(x(p),∆(p)) to obtain a joint descent direction d(p) for all lϕℓ

.
5: Update ρ

(p)
ℓ using d(p) for each ℓ = 1, . . . ,m.

6: if minℓ ρ
(p)
ℓ > η then

7: Update t
(p+1)
ℓ and x(p+1).

8: else
9: Update ∆(p+1) = γ∆(p).

10: end if
11: end while

The core of Algorithm 1 is TR-MOO(x,∆), whose optimal solution provides a descent direction d
for all linearized merit functions lϕℓ

(not hℓ or ϕℓ):

TR-MOO(x,∆)

{
minα,d α

s.t. lϕℓ
(x, t,d) ≤ α,∀1 ≤ ℓ ≤ m,

∥d∥ ≤ ∆.

where α is the minimal amount of descent and ∆ is the current radius of search for d.

Different from the local convergence results [20], we provide a global rate of convergence for
Algorithm 1 to justify thickness maximization in Theorem 5.1. Specifically, it implies that increasing
gaps between salient and non-salient features tend to result in larger hup−hlow, which makes it harder
for attackers to alter the rankings, leading to stronger explanation robustness.
Theorem 5.1. Suppose that f(x) and hℓ(x) are continuously differentiable and hℓ is bounded. Then

Algorithm 1 generates an ϵ-first-order critical point for problem Eq. (10) in at most
⌈
(hup − hlow)

κ
ϵ2

⌉
iterations, where κ is a constant independent of ϵ but depending on γ and η in Algorithm 1, hup

def
=

maxℓ{maxx h1(x), . . . ,maxx hm(x)}, and hlow
def
= minℓ{minx h1(x), . . . ,minx hm(x)}.

Statistical stability of explanations. We use McDairmid’s inequality for dependent random vari-
ables and the covering number of the space F of saliency maps I in Theorem 5.2. The theorem
justifies maximizing the gap by showing a bound on how likely a model can rank some non-salient
features higher than some salient features due to perturbation to x. Specifically, for a consistent
empirical risk level Remp

0,1,u, a larger gap corresponds to a larger u, which leads to a smaller covering
number N (F , ϵu

8 ). It indicates a reduced probability of high true risk Rtrue
0,1 , thereby implying more

explanations robustness against perturbations. Importantly, this insight is universal regardless of the
approach to achieving the larger gaps. See Appendix A.5 for relevant definitions and details.
Theorem 5.2. Given model f , input x, surrogate loss ϕu, and a constant ϵ > 0, for arbitrary saliency
map I ∈ F and any distribution D surrounding x that preserves the salient features in x,

Pr
{
Rtrue

0,1(I,x) ≥ Remp
0,1,u(I,x) + ϵ

}
≤ exp

(
−2mϵ2

χ

)
N

(
F , ϵu

8

)
,
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Table 1: P@k (shown in percentage) of different models (rows) under ERAttack / MSE attack. k = 8 for
the first three dataset, and k = 50 for the rest. Bold (and underlines) highlight the winner (and runner-up),
† indicates the significant superiority between R2ET winner and non-R2ET winner (pairwise t-test at a 5%
significance level). ∗ Est-H has about 4% lower clean AUC than others on BP. Exact-H and SSR only apply to
tabular datasets, since computing the exact Hessian and its eigenvalues is extremely expensive.

Method Adult Bank COMPAS MNIST CIFAR-10 ROCT ADHD BP

# of features 28 18 16 28*28 32*32 771*514 6555 3240

Vanilla 87.6 / 87.7 83.0 / 94.0 84.2 / 99.7 59.0 / 64.0 66.5 / 68.3 71.9 / 77.7 45.5 / 81.1 69.4 / 88.9
WD 91.7 / 91.8 82.4 / 85.9 87.7 / 99.4 59.1 / 64.8 64.2 / 65.6 77.2 / 68.9 47.6 / 79.4 69.4 / 88.6
SP 97.4 / 97.5 95.4 / 95.5 99.5† / 100.0 62.9 / 66.9 67.2 / 71.9 73.9 / 69.5 42.5 / 81.3 68.7 / 90.1

Est-H 87.1 / 87.2 78.4 / 81.8 82.6 / 97.7 85.2 / 90.2 77.1 / 78.7 78.9 / 78.0† 58.2 / 83.7 (75.0 / 91.4)∗

Exact-H 89.6 / 89.7 81.9 / 85.6 77.2 / 96.0 - / - - / - - / - - / - - / -
SSR 91.2 / 92.6 76.3 / 84.5 82.1 / 97.2 - / - - / - - / - - / - - / -
AT 68.4 / 91.4 80.0 / 88.4 84.2 / 90.5 56.0 / 63.9 61.6 / 66.8 78.0 / 72.9 59.4 / 81.0 72.0 / 89.0

R2ET\H 97.5 / 97.7 100.0† / 100.0† 91.0 / 99.2 82.8 / 89.7 67.3 / 72.2 79.4 / 70.9 60.7 / 86.8 70.9 / 89.5
R2ET-mm\H 93.5 / 93.6 95.8 / 98.2 95.3 / 97.2 81.6 / 89.7 77.7 / 79.4† 77.3 / 60.2 64.2 / 88.8 72.4 / 91.0

R2ET 92.1 / 92.7 80.4 / 90.5 92.0 / 99.9 85.7 / 90.8 75.0 / 77.4 79.3 / 70.9 71.6† / 91.3† 71.5 / 89.9
R2ET-mm 87.8 / 87.9 75.1 / 85.4 82.1 / 98.4 85.3 / 91.4† 78.0† / 79.1 79.1 / 68.3 58.8 / 87.5 73.8† / 91.1†

where N is the covering number of the space F with radius ϵu
8 [102]. χ is the chromatic number of

a dependency graph of all pairs of salient and non-salient features [81] for McDairmid’s inequality.

6 Experiments

This section experimentally validates the proposed defense strategies, R2ET, from various aspects,
and Appendix B provides more details and results. For a fair comparison, R2ET operates without any
prior knowledge of the “true” feature ranking. At each training iteration, R2ET aims to preserve the
feature ranking determined in the immediately preceding iteration.

Datasets. We adopt DNNs for three tabular datasets: Bank [53], Adult, and COMPAS [54], and
two image datasets, CIFAR-10 [36] and ROCT [22]. ROCT consists of real-world medical images
having 771x514 pixels on average, making it comparable in scale to CelebA (178x218), ImageNet
(469x387), and MS COCO (640x480). Besides, dual-input Siamese networks [48] are adopted on
MNIST [40] and two graph datasets, BP [48] and ADHD [49].

Evaluation metrics. Precision@k (P@k) [88] is used to quantify the similarity between explanations
before and after attacks. We adopt three faithfulness metrics [72, 15] in Appendix B.2.6 to show that
explanations from R2ET are faithful.

All the models have comparable prediction performance. Specifically, the vanilla models achieve
AUC of 0.87, 0.64, 0.83, 0.99, 0.87, 0.82, 0.69, and 0.76 on Adult, Bank, COMPAS, MNIST, CIFAR-
10, ROCT, BP, and ADHD, respectively. Correspondingly, all other models reported only when their
AUC is no less than 0.86, 0.63, 0.83, 0.99, 0.86, 0.82, 0.67, and 0.74, respectively.

Explanation methods. Gradient (Grad for short) is used as the explanation method if not specified.
We also share findings when adopting robust explanation method, e.g., SmoothGrad (SG) [75] and
Integrated Gradient (IG) [77], and concept-based explanation methods (on ROCT datasets).

6.1 Compared methods

We conduct two attacks in the PGD manner [50]: Explanation Ranking attack (ERAttack) and
MSE attack. ERAttack minimizes

∑k
i=1

∑n
j=k+1 h(x

′, i, j) to manipulate the ranking of features
in explanation I(x), and MSE attack maximizes the MSE (i.e., ℓ2 distance) between I(x) and I(x′).
The proposed defense strategy R2ET is compared with the following baselines.

• Vanilla: provides the basic ReLU model trained without weight decay or any regularizer term.
• Curvature smoothing based methods: Weight decay (WD) [17] implicitly binds Hessian norm

by weight decay during training, and Softplus (SP) [16, 17] replaces ReLU with Softplus(x; ρ) =
1
ρ ln(1 + eρx). Est-H [17] and Exact-H consider the estimated (by the finite difference [52]) and
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Table 2: P@k of models under ERAttack when adopting Grad / SG / IG as the explanation method.
Method Adult Bank COMPAS MNIST ADHD BP

Vanilla 87.6 / 94.0 / 71.8 83.0 / 90.0 / 88.1 84.2 / 92.9 / 94.7 59.0 / 67.9 / 82.8 45.5 / 39.0 / 56.9 69.4 / 59.6 / 60.8
WD 91.7 / 97.3 / 55.5 82.4 / 91.3 / 85.7 87.7 / 97.4 / 99.1 59.1 / 68.3 / 83.0 47.6 / 42.3 / 57.2 69.4 / 61.8 / 63.9
SP 97.4 / 95.3 / 63.9 95.4 / 96.7 / 99.9 99.5 / 100.0 / 100.0 62.9 / 69.0 / 85.4 42.5 / 36.9 / 54.9 68.7 / 58.6 / 60.5

Est-H 87.1 / 93.1 / 61.5 78.4 / 87.3 / 82.4 82.6 / 89.9 / 89.9 85.2 / 87.9 / 89.5 58.2 / 48.9 / 54.7 (75.0 / 63.0 / 58.5)
AT 68.4 / 76.6 / 60.0 80.0 / 85.9 / 82.6 84.2 / 85.9 / 82.4 56.0 / 61.5 / 79.3 59.4 / 41.2 / 43.0 72.0 / 56.7 / 54.4

R2ET\H 97.5 / 97.5 / 57.3 100.0 / 100.0 / 100.0 91.0 / 96.6 / 93.6 82.8 / 87.1 / 89.0 60.7 / 56.9 / 61.9 70.9 / 64.2 / 66.0
R2ET-mm\H 93.5 / 97.4 / 55.9 95.8 / 97.0 / 96.3 95.3 / 99.1 / 95.5 81.6 / 86.8 / 88.7 64.2 / 59.5 / 61.9 72.4 / 65.5 / 64.1

R2ET 92.1 / 99.3 / 54.0 80.4 / 88.9 / 84.4 92.0 / 99.7 / 100.0 85.7 / 88.5 / 90.4 71.6 / 67.2 / 65.8 71.5 / 64.0 / 65.0
R2ET-mm 87.8 / 98.6 / 54.2 75.1 / 85.1 / 80.3 82.1 / 93.5 / 99.5 85.3 / 88.3 / 90.1 58.8 / 50.1 / 51.4 73.8 / 65.6 / 63.9

exact Hessian norm as the regularizer, respectively. SSR [88] sets the largest eigenvalue of the
Hessian matrix as the regularizer.

• Adversarial Training (AT) [31, 92]: finds f by minf Lcls(f ;x + δ∗, y), where δ∗ =

argmaxδ −
∑k

i=1

∑n
j=k+1 h(x+ δ, i, j).

• Variants of R2ET: R2ET-mm selects multiple (k) distinct i, j with minimal h(x, i, j) as discussed
in Sec. 4.1. R2ET\H and R2ET-mm\H are the ablation variants of R2ET and R2ET-mm,
respectively, without optimizing the Hessian-related term in Eq. (6) (λ2 = 0). Est-H can be
considered an ablation variant of R2ET (λ1 = 0).

6.2 Overall robustness results

Attackability of ranking-based explanation. Table 1 reports the explanation robustness of different
models against ERAttack and MSE attacks on all datasets. More than 50% of models achieve at least
90% P@k against MSE attacks, concluding that MSE attack cannot effectively alter the rankings of
salient features, even without extra defense (row Vanilla). The ineffective attack method can give a
false (over-optimistic) impression of explanation robustness. In contrast, ERAttack can displace more
salient features from the top-k positions for most models and datasets, leading to significantly lower
P@k values than MSE attack. Intuitively, R2ET performs better against attacks since the attackers
(by either MSE attack or ERAttack) are supposed to keep the predictions unchanged. R2ET maintains
consistency between model explanations and predictions, which ensures that significant manipulation
in the top salient features leads to a detectable change in the model’s predictions.

Effectiveness of R2ET against ERAttacks. We evaluate the effectiveness of different defense
strategies against ERAttack, and similar conclusions can be made with MSE attacks case. (1)
The best (highest) top-k of R2ET and its variants across most datasets indicate their superiority in
preserving the top salient features. (2) It is counter-intuitive that R2ET\H , as an ablation version of
R2ET, outperforms R2ET on Adult and Bank. The reason is that R2ET\H has the highest thickness
on these datasets (see Table 3 in Sec. 6.3). (3) Overall, the curvature smoothing-based baselines
without considering the gaps among feature importance perform unstably and usually badly across
datasets. Their inferior performance is exactly consistent with the discussion in Sec 4.2. Specifically,
solely minimizing Hessian-related terms may marginally contribute to the ranking robustness. (4) We
do not compare with many AT baselines [74, 70] but Fast-AT [92], which provides a fairer basis for
comparing with R2ET and baselines since they require similar training time and resources. However,
AT suffers from unstable robust performance and cannot perform well on most datasets.

Apply R2ET to other explanation methods. We demonstrate the efficacy and generalizability of
R2ET by adopting the concept-based explanation method, SG and IG, respectively.

Concept-based explanation shows the neurons’ maximal activations in a specific model layer. We
concentrate on the 512 neurons in the penultimate layer of a ResNet [27] on ROCT. To this end, the
most stimulated neurons must be stable under perturbations. We define Ii as the activation map of
the i-th penultimate neuron, and derive the objective analogous to Eq. (6). Empirical results in Table
1 (col ROCT) illustrate that R2ET and its variants, again, perform best against ERAttack.

Table 2 reports the results of models trained using Grad but evaluated by SG and IG. The following
conclusions can be drawn: (1) Compared to Grad, SG and IG generally promote explanation
robustness. Notably, regardless of the explanation method used, R2ET and its variants consistently
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achieve the highest P@k. (2) Applying Grad to R2ETs usually results in greater robustness than
adopting SG/IG to baselines. For example in MNIST, R2ET with Grad attains a P@k of 85%, while
applying SG to the baselines (except Est-H) fails to exceed a P@k of 70%. (3) R2ET can generalize
and transfer the robustness to explanation methods divergent from those utilized during training.

6.3 Understanding thickness and attackability

Assessing model vulnerability: critical role of thickness. As discussed in Section 5, the number of
attack iterations required to reach the first successful flip between salient and non-salient features
characterizes the ranking explanation robustness. In Fig. 2, each dot in subplots represents an
individual sample x. The left subplot demonstrates a high correlation between the sample’s thickness
and the attacker’s required iterations to manipulate the rankings. This high correlation signifies that
samples with greater thickness demand a larger attack budget for a successful manipulation, thereby
justifying thickness as a more precise metric of explanation ranking robustness.

To understand why R2ET does not always outperform other models, Table 3 juxtaposes P@k with
dataset-level thickness, defined as the average thickness of all samples across a dataset. Notably, the
model exhibiting optimal explanation robustness (P@k) consistently displays the greatest thickness,
irrespective of the method employed, aligning with Theorem 5.2.

Optimal Method Selection. Thickness has proven its efficacy as an indicator for evaluating ex-
planation ranking robustness, rendering it an apt criterion for method selection. Table 1 indicates
a more straightforward way to pick a model: deploy R2ET\H (and R2ET-mm\H ) for datasets with
a limited feature set, and R2ET (and R2ET-mm) for datasets for datasets with more features. This
is because distinguishing salient and non-salient features is easier in datasets with fewer features.
Conversely, maintaining such distinctions becomes more complex and potentially less efficient as
the feature count increases, where reducing the Hessian norm is advantageous, as it complicates the
manipulation of feature magnitude.
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Figure 2: The number of iterations to first flip versus
sample-level thickness (left) and Hessian norm (right)
for R2ET on COMPAS. Each dot represents an indi-
vidual sample x.

Table 3: P@k under ERAttack / model-level
thickness. Refer to Table 5 for more results.

Method Adult COMPAS BP

SP 97.4 / 0.9983 99.5 / 0.9999 68.7 / 0.9300
Est-H 87.1 / 0.9875 82.6 / 0.9557 75.0 / 0.93563

R2ET\H 97.5 / 0.9989 91.0 / 0.9727 70.9 / 0.9271
R2ET 92.1 / 0.9970 92.0 / 0.9865 71.5 / 0.9296

R2ET-mm 87.8 / 0.9943 82.1 / 0.9544 73.8 / 0.93561

6.4 Case study: saliency maps visualization

For visual evaluation, Fig. 3 displays models’ saliency maps on the ideal testbeds, MNIST and
CIFAR-10. On MNIST, Vanilla and WD perform poorly, where about 50% of the top 50 important
pixels fell out of top positions under attack. Even worse, the salient pixels identified by Vanilla and
WD fail to highlight the digit’s spatial patterns (e.g., pixels covering the digits). In contrast, R2ET and
R2ET-mm maintain over 90% of salient features encoding the digits’ recognizable spatial patterns on
the top. Similar trends are observed in CIFAR-10, exemplified by the ship. Vanilla and WD exhibit
inferior P@k scores, whereas R2ET and R2ET-mm achieve around 90% P@k. Interestingly, all
four models identify the front hull of the ship as the significant region for the predictions. However,
ERAttack manipulates the explanations of Vanilla and WD to include another region, the wheelhouse,
while the critical explanation regions of R2ET and R2ET-mm under attacks remain unaffected. The
wheelhouse could be a reason for the ship class, but the inconsistency in explanations due to subtle
perturbations raises confusion and mistrust. Fig. 5 provides more results concerning all models.

7 Conclusion

We proposed “explanation ranking thickness” to measure the robustness of the top-ranked salient
features to align with human cognitive capability. We theoretically disclosed the connection between
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Vanilla WD R2ET R2ET-mm
ori. pert. ori. pert. ori. pert. ori. pert.

Original
Input

Figure 3: Explanations of original (ori.) and perturbed (pert.) images against ERAttack from MNIST (class
digit 3, k=50) and CIFAR-10 (class ship, k=100). The top k salient pixels are highlighted, and darker colors
indicate higher importance. P@k is reported within each subplot.

thickness and a min-max optimization problem, and a global convergence rate of a constrained
multi-objective attacking algorithm against the thickness. The theory leads to an efficient training
algorithm R2ET. On 8 datasets (vectors, images, and graphs), we compared 7 state-of-the-art baselines
and 3 variants of R2ET, and consistently confirmed that explanation ranking thickness is a strong
indicator of the stability of the salient features. However, R2ET is based on the surrogate loss of
thickness, rather than exact thickness, which prevents it from outperforming others all the time.
Besides, the theoretical analysis and discussions are based on gradient-based explanation methods. In
the future, we plan to further apply R2ET to a broader spectrum of explanation methods. We also
plan to investigate scenarios involving highly variable and noisy data and further adjust R2ET to
ensure robustness and reliability in more diverse and challenging environments. This paper goals to
advance the field of Machine Learning. There are many potential societal consequences of our work,
none of which we feel are negative and must be specifically highlighted here.
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Appendix A provides theoretical proofs for the propositions and lemmas. Appendix B reports exper-
imental settings and results. Appendix C shows relevant works concerning explanation robustness,
ranking robustness, and top-k intersection.

A Proofs

Proofs concerning Prop. 4.4, 4.5, and 4.6 are in A.1, A.2 and A.3, respectively. As the supplementary
of Sec. 5, theoretical analyses on numerical and statistical robustness are in A.4 and A.5, respectively.

A.1 Bounds of Ranking Explanation Thickness

A.1.1 Bounds of Pairwise Thickness

We denote x as the target sample, ∥δ∥2 ≤ ϵ as the perturbation, x′ = x+ δ as the perturbed input,
and x(t) = (1 − t)x + tx′, t ∈ [0, 1]. Here, I(x) is not specifically defined as ∇xf(x), but an
arbitrary explanation method.

Proposition A.1. [Bounds of ranking explanation thickness] Given a L-locally Lipschitz model
f(x), for some L ≥ ∥x−x∗∥2·maxi Li

2 where x∗ = argmaxx′∈B2(x,ϵ)
∥I(x)−I(x′)∥2

∥x−x′∥ , the ranking
explanation thickness for the (i, j) feature pair of a target x is bounded by

h(x, i, j)− ϵ ∗ 1
2
∥∇xIi(x)−∇xIj(x)∥2 ≤ Ex′

[∫ 1

0

h(x(t), i, j)dt

]
≤ h(x, i, j) + ϵ ∗ (Li + Lj),

where Hi(x) is the i-th column of Hessian matrix of f with respect to the input x, and Li =
maxx′∈B2(x,ϵ) ∥∇xIi(x′)∥2.

Lower bound.

Proof. We start from the definition of ranking thickness between (i, j)-th features of x in Eq. (2).∫ 1

0

h(x(t), i, j)dt

=

∫ 1

0

Ii(x+ tδ)− Ij(x+ tδ)dt

≈
∫ 1

0

Ii(x) + tδ⊤∇xIi(x)− Ij(x)− tδ⊤∇xIj(x)dt

=Ii(x)− Ij(x) +
δ⊤

2
∇xIi(x)−

δ⊤

2
∇xIj(x)

≥Ii(x)− Ij(x)− ϵ ∗ 1
2
∥∇xIi(x)−∇xIj(x)∥2,

(13)

We approximate the gradient at intermediate point x+ tδ by the Taylor Expansion on line-3. Then the
minimum is found with δ∗ = argmin∥δ∥≤ϵ

1
2δ

⊤ (∇xIi(x)−∇xIj(x)) = −ϵ ∇xIi(x)−∇xIj(x)
∥∇xIi(x)−∇xIj(x)∥

on line-5.

Upper bound. We introduce two lemmas from [57] and [88] before the proof.

Lemma A.2. If a function f : Rn → R is L-locally Lipschitz within Bp(x, ϵ), such that |f(x) −
f(x′)| ≤ L∥x− x′∥p, ∀x′ ∈ Bp(x, ϵ) = {x′ : ∥x′ − x∥p ≤ ϵ}, then

L = max
x′∈Bp(x,ϵ)

∥∇x′f(x′)∥q, (14)

where 1
p + 1

q = 1, 1 ≤ p, q ≤ ∞.

Lemma A.3. If a function f(x) is L-locally Lipschitz continuous in B2(x, ϵ), then I(x) is K-locally
Lipschitz as well, where K ≤ 2L

∥x−x∗∥ and x∗ = argmaxx′∈B2(x,ϵ)
∥I(x)−I(x′)∥2

∥x−x′∥2
.
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Proof. Given an L-locally Lipschitz f(x), Lemma A.3 further indicates that Ii(x) : Rn → R is
locally Lipschitz as well. By adopting p = q = 2 on Lemma A.2, the Lipschitz constant is specified
by Li = maxx′∈B2(x,ϵ) ∥∇x′Ii(x′)∥2. Formally,

|Ii(x)− Ii(x′)| ≤ ∥I(x)− I(x′)∥2 ≤ Li∥x− x′∥2.

∫ 1

0

h(x(t), i, j)dt

=h(x′
0, i, j)

=(Ii(x′
0)− Ii(x))− (Ij(x′

0)− Ij(x)) + (Ii(x)− Ij(x))
≤|Ii(x′

0)− Ii(x)|+ |Ij(x′
0)− Ij(x)|+ (Ii(x)− Ij(x))

≤Li∥x′
0 − x∥2 + Lj∥x′

0 − x∥2 + (Ii(x)− Ij(x))
≤ϵ ∗ (Li + Lj) + (Ii(x)− Ij(x)).

(15)

Based on first mean value theorem, there exists x′
0 within the line segment x and x′ such that

h(x′
0, i, j) =

∫ 1

0
h(x(t), i, j)dt on line-2. The Lipschitz constant L of f satisfies L ≥ ∥x−x∗∥

2 ∗
maxi Li =

∥x−x∗∥
2 ∗maxi maxx′∈B2(x,ϵ) ∥∇xIi(x′)∥2.

A.1.2 Instantiation

Notice that the inequality in Eq. (13) holds for arbitrary explanation methods. Here, we consider
different explanation methods (Grad, Grad× Inp, SG, and IG) to specify I(x) and corresponding
bounds. We leave DeepLIFT [73] and LRP [6] to further study, and we do not consider Grad-CAM
[71] and Guided Backpropagation [76] since they are designed only for specific networks.

Grad. When adopting Grad as explanation method, where I(x) = ∇f(x) and∇xI(x) = H(x), it
recovers Prop. 4.4.

(∇f(x))i−(∇f(x))j−ϵ∗
1

2
∥Hi(x)−Hj(x)∥2 ≤ Θ(f,x,D, i, j) ≤ h(x, i, j)+ϵ∗(Li+Lj), (16)

where H(x) is the Hessian matrix, and specifically Li = maxx′∈B2(x,ϵ) ∥Hi(x
′)∥2.

SmoothGrad. When adopting SmoothGrad, where I(x) = 1
M

∑
m∇f(x + βm) and βm ∼

N (0, σ2I), we have ∇xI(x) = 1
M

∑
m H(x + βm). We derive the lower bounds analogy to the

derivations on Eq. (13):

∫ 1

0

h(x(t), i, j)dt

=
1

M

∑
m

∫ 1

0

(∇f(x+ tδ + βm))i − (∇f(x+ tδ + βm))jdt

≥ 1

M

∑
m

(
(∇f(x))i − (∇f(x))j − ϵ ∗ 1

2
∗ ∥Hi(x)−Hj(x)∥2 + βT

m(Hi(x)−Hj(x))

)
=(∇f(x))i − (∇f(x))j − ϵ ∗ 1

2
∗ ∥Hi(x)−Hj(x)∥2 + (

1

M

∑
m

βm)T (Hi(x)−Hj(x)) .

(17)

Note: when M is large enough, 1
M

∑
m βm → 0 since βm is drawn from N (0, σ2I).
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Grad × Inp. When adopting Grad × Inp, where I(x) = ∇f(x) ⊙ x, we have ∇xI(x) =
diag((∇f)1, . . . , (∇f)n) +H(x). The lower bounds derived from Eq. (13) can be further specified:

Ii(x)− Ij(x)− ϵ ∗ 1
2
∥∇xIi(x)−∇xIj(x)∥2

=Ii(x)− Ij(x)− ϵ ∗ 1
2
∥Hi(x)−Hj(x) + [0, . . . , (∇f)i, . . . ,−(∇f)j , . . . , 0] ∥2

≥Ii(x)− Ij(x)− ϵ ∗ 1
2
(∥Hi(x)−Hj(x)∥2 + ∥ [0, . . . , (∇f)i, . . . ,−(∇f)j , . . . , 0] ∥2)

=Ii(x)− Ij(x)− ϵ ∗ 1
2

√
(∇f)2i + (∇f)2j − ϵ ∗ 1

2
∥Hi(x)−Hj(x)∥2

≥(∇f(x))ixi − (∇f(x))jxj −
ϵ

2
(∇f(x))i −

ϵ

2
(∇f(x))j − ϵ ∗ 1

2
∥Hi(x)−Hj(x)∥2

=(∇f(x))i
(
xi −

ϵ

2

)
− (∇f(x))j

(
xj +

ϵ

2

)
− ϵ ∗ 1

2
∥Hi(x)−Hj(x)∥2

≈(∇f(x))ixi − (∇f(x))jxj − ϵ ∗ 1
2
∥Hi(x)−Hj(x)∥2.

(18)

Note: xi is the i-th feature of the input x, and ϵ ≪ xi since the perturbation is supposed to be
neglectable.

Integrated Grad. When adopting Integrated Grad, I(x) = (x−x0)⊙
∫ 1

α=0
∇f(x0+α(x−x0))dα.

By setting x0 = 0, we have I(x) = x⊙
∫ 1

α=0
∇f(αx)dα. Similar to the Grad × Inp case, the lower

bound of IG can be derived:

Ii(x)− Ij(x)− ϵ ∗ 1
2
∥∇xIi(x)−∇xIj(x)∥2

≥
∫ 1

α=0

(∇f(αx))ixi − (∇f(αx))jxj − ϵ ∗ 1
2
∥Hi(αx)−Hj(αx)∥2dα

=
1

2

(
(∇f(x))ixi − (∇f(x))jxj − ϵ ∗ 1

2
∥Hi(x)−Hj(x)∥2

)
.

(19)

A.1.3 Generalization to Top-k Thickness

Since the inequalities in Eq. (13) and (15) hold for any choice of x′ ∈ B2(x, ϵ) with a specific ϵ.
Thus,

h(x, i, j)− ϵ ∗ 1
2
∥∇xIi(x)−∇xIj(x)∥2 ≤ Ex′

[∫ 1

0

h(x(t), i, j)dt

]
≤ h(x, i, j) + ϵ ∗ (Li + Lj).

Furthermore, the bounds of the top-k ranking thickness hold for any choice of comparison pairs:∑
i,j

[
h(x, i, j)− ϵ ∗ 1

2
∥∇xIi(x)−∇xIj(x)∥2

]
≤ Ex′

∑
i,j

∫ 1

0

h(x(t), i, j)dt

 ≤∑
i,j

[h(x, i, j) + ϵ ∗ (Li + Lj)] .

(20)

Instantiation for the top-k thickness can be derived similarly to those in A.1.2.

A.2 Connection between R2ET and Certified Robustness

Proposition A.4. For all δ with ∥δ∥2 ≤ min{i,j}
h(x,i,j)

maxx′ ∥Hi(x′)−Hj(x′)∥2
, it holds 1[h(x, i, j) > 0]

= 1[h(x+ δ, i, j) > 0] for all (i, j) pair, that is all the feature rankings do not change.

Proof. The proof is adapted from the work [28]. We consider the minimal budget required to achieve
h(x + δ, i, j) < 0, e.g., Ii(x + δ) − Ij(x + δ) < 0, given h(x, i, j) > 0. The same proof can be
done for h(x, i, j) < 0. Based on the calculus, it holds that

Ii(x+ δ) = Ii(x) +
∫ 1

0

⟨Hi(x+ tδ), δ⟩dt,

Ij(x+ δ) = Ij(x) +
∫ 1

0

⟨Hj(x+ tδ), δ⟩dt.
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To achieve Ii(x+ δ)− Ij(x+ δ) < 0,(
Ii(x) +

∫ 1

0

⟨Hi(x+ tδ), δ⟩dt
)
−
(
Ij(x) +

∫ 1

0

⟨Hj(x+ tδ), δ⟩dt
)

< 0,

which implies that

Ii(x)− Ij(x) <
∫ 1

0

⟨Hj(x+ tδ), δ⟩dt−
∫ 1

0

⟨Hi(x+ tδ), δ⟩dt.

Based on the Hölder’s inequality,

Ii(x)− Ij(x) < ∥δ∥2
∫ 1

0

∥Hi(x+ tδ)−Hj(x+ tδ)∥2dt,

Thus, the minimal budget required to flip the ranking between the feature pair (i, j) is

∥δ∥2 >
Ii(x)− Ij(x)∫ 1

0
∥Hi(x+ tδ)−Hj(x+ tδ)∥2dt

,

>
Ii(x)− Ij(x)

maxx′∈B2(x′,ϵ) ∥Hi(x′)−Hj(x′)∥2
.

Thus, the minimal budget required to flip any ranking is min{i,j}
h(x,i,j)

maxx′ ∥Hi(x′)−Hj(x′)∥2
.

A.3 Connection between AT and R2ET

Following Sec. 3, given a model f : Rn → [0, 1]C and an input x, I(x, c; f) = ∇xfc(x) is the
explanation and Ii(x) is the score for the i-th feature. We assume that I(x) is sorted and top-k ones
are salient features. The proof is based on the prior work [94].

The objective of Adversarial Training (AT) for training a model by a min-max game in Sec. 4.2 is:

min
w

max
(δ1,k+1,...,δk,n)∈M

Lcls −
k∑

i=1

n∑
j=k+1

h(x+ δi,j , i, j). (21)

We explicitly show the weight of each Ii, which is li = (n− k) if i ≤ k, and li = −k, otherwise,
and rewrite AT’s goal:

min
w

max
(δ1,...,δn)∈M

Lcls −
n∑

i=1

liIi(x+ δi), (22)

or

max
w

min
(δ1,...,δn)∈M

−Lcls +

n∑
i=1

liIi(x+ δi), (23)

where δi is specific to the i-th feature of input x.

We will prove the equivalence between R2ET in Eq. (6) and AT in Eq. (21) by proving that

min
(δ1,...,δn)∈M

n∑
i=1

liIi(x+ δi) (24)

is equivalent to

ν =

n∑
i=1

liIi(x)− ϵmax
t

lt∥Ht(x)∥2. (25)

Proof. Given an ϵ norm ballM0
def
= {δ ∈ Rn : ∥δ∥ ≤ ϵ}, we consider a perturbation setM where

perturbations on each feature are independent, but the aggregation of perturbations is controlled.
Formally,M satisfiesM− ⊆M ⊆M+, where

M− def
= ∪ni=1M−

i , whereM−
i

def
= {(δ1, . . . , δn)|δi ∈M0; δt ̸=i = 0};

M+ def
= {(α1δ1, . . . , αnδn)|

n∑
i=1

αi = 1;αi ≥ 0, δi ∈M0, i = 1, . . . , n}.

19



M− ⊆M ⊆M+ naturally implies that

min
(δ1,...,δn)∈M+

n∑
i=1

liIi(x+ δi) ≤ min
(δ1,...,δn)∈M

n∑
i=1

liIi(x+ δi) ≤ min
(δ1,...,δn)∈M−

n∑
i=1

liIi(x+ δi).

(26)

We will prove that ν is not smaller than the rightmost term and not larger than the leftmost term in
Eq. (26).

To prove ν ≥ min(δ1,...,δn)∈M−
∑n

i=1 liIi(x+ δi).

min
(δ1,...,δn)∈M−

n∑
i=1

liIi(x+ δi)

≤ min
(δ1,...,δn)∈M−

i

n∑
i=1

liIi(x+ δi)

=

n∑
i=1

liIi(x) +
n∑

i=1

min
(δ1,...,δn)∈M−

i

liHi(x)
⊤δi

=

n∑
i=1

liIi(x) + min
t∈{1,...,n}

min
δt∈M0

ltHt(x)
⊤δt

=

n∑
i=1

liIi(x)− ϵ max
t∈{1,...,n}

lt∥Ht(x)∥2.

The inequality on line-2 holds sinceM−
i ⊆M−. The equality on line-4 holds due to the definition

ofM−
i , where only one δt of (δ1, . . . , δn) is fromM0 and the rest are all zeros. The equality on

line-5 holds by picking δt = −ϵ Ht(x)
∥Ht(x)∥ .

To prove ν ≤ min(δ1,...,δn)∈M+

∑n
i=1 liIi(x+ δi).

min
(δ1,...,δn)∈M+

n∑
i=1

liIi(x+ δi)

= min∑
i αi=1,αi≥0,δ̂i∈M0

n∑
i=1

liαiIi(x+ δ̂i)

=

n∑
i=1

liIi(x) + min∑
i αi=1,αi≥0

n∑
i=1

αi min
δ̂i∈M0

liHi(x)
⊤δi

=

n∑
i=1

liIi(x) + min
t∈{1,...,n}

min
δ̂t∈M0

ltHt(x)
⊤δt

=

n∑
i=1

liIi(x)− ϵ max
t∈{1,...,n}

lt∥Ht(x)∥2.

A.4 A multi-objective attacking algorithm and its analysis

We present an algorithm that will terminate in finite iterations, and flip the first pair of salient and
non-salient features, or claim a failed attack. The algorithm is based on a trust-region method designed
for single non-convex but smooth objective with nonlinear and non-convex equality constraints [9].

Let the output vector f(x) = [f1(x), . . . , fC(x)]. Given n features and top-k salient features, there
are m = k × (n − k) objectives that can be indexed by subscripts ℓ so that the objective vector
becomes [h1(x), . . . , hℓ(x), . . . , hm(x)]. Let ∥∥ be a convex norm with Lipschitz constant 1.
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Algorithm 2 Attacking a pair of features

Input: initial input x, target model f , current explanation I(x), tolerance ϵ > 0, trust-region
method parameters 1 > η > 0 and 1 > γ > 0.
Set k = 1, x(p) = x, t(p)ℓ = ∥f(x(p))∥+ hℓ(x

(p))− ϵ(p) for each objective hℓ.
while min1≤ℓ≤m χℓ(x

(p), t(p)) ≥ ϵ do
Solve TR-MOO(x(p),∆(p)) to obtain a joint descent direction d(p) for all linearized merit
functions lϕℓ

.

ρ
(p)
ℓ = ϕℓ(x

(p),t(p))−ϕℓ(x
(p)+d(p),t(p))

lϕℓ
(x(p),t

(p)
ℓ ,0)−lϕℓ

(x(p),t
(p)
ℓ ,d(p))

for each ℓ = 1, . . . ,m.

if minℓ ρ
(p)
ℓ > η then

x(p+1) = x(p) + d(p).
∆(p+1) = ∆(p).
if hℓ(x

(p)) ≥ t
(p)
ℓ then

t
(p+1)
ℓ = t

(p)
ℓ − ϕℓ(x

(p), t
(p)
ℓ ) + ϕℓ(x

(p+1), t
(p)
ℓ ).

else
t
(p+1)
ℓ = 2hℓ(x

(p+1))− t(p) − ϕℓ(x
(p), t

(p)
ℓ ) + ϕℓ(x

(p+1), t
(p)
ℓ ).

end if
else
x(p+1) = x(p).
∆(p+1) = γ∆(p).
t
(p+1)
ℓ = t

(p)
ℓ for ℓ = 1, . . . ,m.

end if
end while

Since we are working with numerical algorithms, an approximately feasible set will be appropriate.
Define the following constrained MOO problem

min
x

[h1(x), . . . , hℓ(x), . . . , hm(x)],

s.t. ∥f(x)− f(x(0))∥ ≤ ϵf ,

∥x− x(0)∥2 ≤ ϵx

(27)

In the sequel, the two constraints can be combined such that

∥f̃(x)− f̃(x(0))∥ ≤ ϵ, (28)

for some ϵ > 0, with f̃(x) = [f(x),x]. Therefore, we let f denote f̃ to simplify the notation. Define
the domain

C1
def
= {x : ∥f(x)− f(x(0))∥ ≤ ϵ}. (29)

Assumption A.1: The constraint function f(x) is continuously differentiable on the domain Rn, and
the objective functions hℓ, ℓ = 1, . . . ,m, are continuously differentiable in the set

C2
def
= C1 + B(0, δ∆(1)), (30)

where δ > 1 is a constant, ∆(1) is the initial radius argument for the trust-region method for multi-
objective optimization TR-MOO(x,∆) to be defined below, and B(0, δ∆(1)) is an open ball centered
at 0 of radius δ∆(1).

Assumption A.2: The objective functions hℓ, ℓ = 1, . . . ,m are bounded in the set C1. Specifically,

hlow
def
= min

ℓ
{min

x
h1(x), . . . ,min

x
hm(x)}, (31)

hup
def
= max

ℓ
{max

x
h1(x), . . . ,max

x
hm(x)}. (32)

We give an attacking algorithm MOO-attack that can either find the first feature pair to flip in an
explanation, or claim that it is impossible to flip any feature pair. The superscript (p), p = 1, 2, . . .
indicates the number of iterations.
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The attacking algorithm may not be able to flip any pair of features when min1≤ℓ≤m χℓ(x
(p), t(p)) <

ϵ, but there can be other objective functions that still have χℓ(x
(p), t(p)) ≥ ϵ and there is a

chance to flip the corresponding pairs of features. We will remove any objective function hℓ with
χℓ(x

(p), t(p)) < ϵ and return to the while loop to try to flip other pairs of features. If all objective
functions are removed at the end, the attacker fails to attack the explanation.

We adapt the theoretical results from [9] to the above multi-objective optimization algorithm to show
a global convergence rate for the attacker.

Lemma A.5. Suppose that assumption A.1 holds. If x(p) ∈ C1, then for each linearized merit
function lϕℓ

lϕℓ
(x(p), t

(p)
ℓ , 0)− lϕℓ

(x(p), t
(p)
ℓ ,d(p)) ≥ min(∆(p), 1)χℓ(x

(p), t(p)). (33)

Lemma A.5 shows sufficient descent in the linearized merit functions in the direction d(p). The proof
can be found in Lemma 2.1 in [9].
Lemma A.6. Suppose that assumption A.1 holds. In each iteration for k ≥ 1 in Algorithm 1, the
following properties hold:

hℓ(x
(p))− t

(p)
ℓ > 0, ℓ = 1, . . . ,m, (34)

ϕℓ(x
(p), tk) = ϵ, ℓ = 1, . . . ,m, (35)

|hℓ(x
(p))− t

(p)
ℓ | ≤ ϵ, ℓ = 1, . . . ,m, (36)

∥f(x(p))∥ ≤ ϵ. (37)

Lemma A.6 shows that from iteration to iteration during the loop in Algorithm 1, the invariants will
be maintained. The proof can be obtained by applying Lemma 2.2 in [9] to each of the objective
functions independently.

The last inequality indicates that during the attack, the manipulated input x(p) remains in the
approximate feasible set C1 and that the prediction by f is not changed. This is important to make the
attack stealthy. The second last inequality shows that each objective hℓ will chase the corresponding
target t(p)ℓ over the iterations, so that if t(p)ℓ can be shown to be decreasing sufficiently fast, we can
show the convergence of hℓ. Note that different targets t(p)ℓ will move at different speeds, as they are
updated independently in the algorithm. Also, a target is not guaranteed to be reduced below zero for
hℓ to become negative and the ℓ-th pair of features will be flipped.

Lemma A.7. Suppose that assumptions A.1 and A.2 hold. Then with minℓ χℓ(x
(p), t(p)) ≥ ϵ and

∆(p) ≤ min
ℓ

(1− η)ϵ

Lgℓ +
1
2LJ

, (38)

the condition minℓ ρ
(p)
ℓ > η in Algorithm 1 will hold true and ∆(p+1) = ∆(p). Furthermore, with

minℓ χℓ(x
(p), t(p)) ≥ ϵ, we have, for all p ≥ 1,

∆(p) ≥ min
(
∆(1),min

ℓ

(1− η)γ

Lgℓ +
1
2LJ

)
ϵ. (39)

Lemma A.7 shows that when the radius ∆(p) used in TR-MOO(x(p), ∆(p)) is small enough, the
radius won’t be further reduced. Together with Lemma A.5, the linearized merit functions are reduced
sufficiently per iteration. The proof is a modification to the proof of Lemma 3.2 in [9], with the
derivation done for each of the objective functions hℓ to guarantee sufficient descent in all merit
functions. An interesting observation is that the search radius ∆(p) is restricted by the objective that
has the most rapid change in its gradient gℓ (characterized by Lgℓ ). If all objectives are smooth (with
small Lgℓ), the search radius can be larger and the reduction in the merit functions is larger. The
second inequality of the above lemma says that the search radius will have a lower bound across all
iterations.
Lemma A.8. There are at most O(⌈| log(ϵ)|⌉) number of times that ∆(p) will be reduced by the
factor of γ.
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Lemma A.8 characterizes the times to reduce the search radius. It is because, starting from ∆(1), once
∆(p) falls below minℓ

(1−η)ϵ

Lgℓ
+ 1

2LJ
at iteration p, there will be no more reduction in future iterations.

Lemma A.9. Suppose that assumptions A.1 and A.2 hold. Whenever x(p) is updated in Algorithm 1,
for each objective function hℓ, both the reductions ϕℓ(x

(p), t
(p)
ℓ , 0)−ϕℓ(x

(p), t
(p)
ℓ ,d(p)) and t(p)ℓ −t

(p)
ℓ

are at least

min
(
∆(1),min

ℓ

(1− η)γ

Lgℓ +
1
2LJ

)
ϵ2η. (40)

Lemma A.9 shows a sufficient reduction in the merit functions and the targets. The proof is to use the
condition that ρ(p)ℓ > η for all ℓ = 1, . . . ,m, Eq. (33), the condition that min1≤ℓ≤m χℓ(x

(p), t(p)) ≥
ϵ, and Eq. (39).

Lastly, we present the main global convergence results.
Theorem A.10. Suppose assumptions A.1-A.2 hold. Then Algorithm 2 generates an ϵ−first-order
critical point for problem Eq. (27) in at most⌈

(hup − hlow)
κ

ϵ2

⌉
(41)

iterations of the while loop in the algorithm, where κ is a constant independent of ϵ but depending on
γ, η, Lhℓ

, and LJ .

The proof hinge on the following inequality

hlow ≤ hℓ(x
(p)) (42)

≤ t
(p)
ℓ + ϵ (43)

≤ t
(1)
ℓ − ipκ2ϵ

2 + ϵ (44)

≤ hℓ(x
(1))− ipκ2ϵ

2 + ϵ (45)

≤ hup − ipκ2ϵ
2 + ϵ (46)

where ip is the number of iterations between 1 and p where minℓ ρ
(p′)
ℓ > η, 1 ≤ p ≤ p′, is true.

κ2 = min
(
∆(1),min

ℓ

(1− η)γ

Lgℓ +
1
2LJ

)
η. (47)

Therefore,

ip ≤
⌈hup − hlow + ϵ

κ2ϵ2

⌉
. (48)

Since O(⌈| log(ϵ)|⌉) grows slower than 1/ϵ2, the overall number of iterations is in the order of⌈
(hup − hlow)

κ
ϵ2

⌉
.

A.5 Statistical robustness

We will use tools for generalization error analysis on any single input x to prove that with a high
probability, the empirical error of ranking salient features of x for a fixed model f is not too far away
from the true error of ranking the same set of salient features, with respect to random sampling of x
from an arbitrary distribution D on a support set around x where the salient features are preserved.

Roadmap: We first adopt the McDairmid’s inequality for dependent variables to show a concentration
inequality for ranking errors of a fixed feature ranking function based on the salient score function
I(x). Then we will adopt the standard covering number argument as in [2, 68] to prove uniform
convergence that depends on the margin in the empirical ranking loss, therefore justifying the
maximization of the gap/thickness between the scores of salient and non-salient features in R2ET.

Basic definitions. Given I and x, define the true and empirical 0-1 risks

Rtrue
0,1(I,x) = Ex′∼D

 1

m

k∑
i=1

n∑
j=1

1[Ii(x′) < Ij(x′)]

 , (49)
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Remp
0,1 (I,x) =

1

m

k∑
i=1

n∑
j=1

1[Ii(x) < Ij(x)]. (50)

To relate the risks to the thickness, consider the loss ϕu(z), u > 0, which is similar to the hinge loss

ϕu(z) =


1 z < 0,

1− z/u 0 ≤ z < u,

0 z ≥ u.

(51)

Based on ϕu, we define the surrogate true and empirical risks

Rtrue
ϕ,u(I,x) = Ex′∼D

 1

m

k∑
i=1

n∑
j=1

ϕu(Ii(x′)− Ij(x′))

 , (52)

Remp
ϕ,u(I,x) =

1

m

k∑
i=1

n∑
j=1

ϕu(Ii(x)− Ij(x)). (53)

Lastly, an upper bound of ϕu(z) can be defined as a large-margin 0-1 loss: if z ≥ u, the loss is 0, and
otherwise, the loss is 1. The corresponding empirical risk Remp

0,1,u(I,x) = 1
m

∑k
i=1

∑n
j=1 1[Ii(x) <

Ij(x) + u] counts how many pairs of salient and non-salient features that are the salient feature is u
less salient than the non-salient feature according to I.

Generalization bound of Remp
ϕ,u(I,x) for a specific I. As we randomly sample x′ from D, the

terms Ii(x′) and the associated 0-1 and ϕu losses. The typical McDiarmid’s inequality bounds
the probability of a function of multiple independent random variables from the expectation of the
function. The elements in Remp

ϕ,u are not independent. The saliency scores of different features are
dependent since they are function of the same model f , the input x, and the mechanism that calculate
the gradients for I. In [81], the authors generalized the inequality to dependent variables, and we
adopt their conclusion as follows:
Lemma A.11. Given prediction model f , saliency map I, input x, distribution D surrounding x,
surrogate loss ϕu, and a constant ϵ > 0, we have

Prx′∼D

{
Rtrue

ϕ,u(I,x) ≥ Remp
ϕ,u(I,x) + ϵ

}
≤ 2 exp

(
−2mϵ2

χ

)
, (54)

where χ is the chromatic number of the dependency graph of the pairs of random variables (Ii, Ij)
for any 1 ≤ i ≤ k and k + 1 ≤ j ≤ n.

Comments:

• The above dependency graph describes when two pairs of random variables (Ii, Ij) (regarded as a
random vector) and (Ii′ , Ij′) (regarded as another random vector) are dependent. In particular, the
two nodes (Ii, Ij) and (Ii′ , Ij′) are linked if they are dependent. This graph depends on I , x, and
D and is in general unknown.

• The chromatic number of the dependency graph is upper-bounded by 1 plus the maximum degree
of nodes on the dependency graph, which is 1+m. In the worst case, the bounds in Eq. (54)
approximates 2 exp(−2ϵ2) as m becomes sufficiently large.

Uniform convergence of the class of saliency score functions. Since R2ET searches the optimal I
function from a class F of such functions given f , I, x, and D, u > 0, with the preference over I
that has a large gap u so that Ii(x) > Ij(x) + u for salient feature i and non-salient feature j.
Theorem A.12. Given prediction model f , input x, surrogate loss ϕu, and a constant ϵ > 0, for
arbitrary saliency map I ∈ F and any distribution D surrounding x that preserves the salient
features in x, we have

Prx′∼D
{
Rtrue

0,1(I,x) ≥ Remp
0,1,u(I,x) + ϵ

}
≤ 2N (F , ϵu

8
) exp

(
−2mϵ2

χ

)
, (55)

where N (F , ϵu
8 ) is the covering number of the functional space F with radius ϵu

8 [102].
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Comments:

• The proof is standard and a similar proof can be found in [68].
• With a larger u > 0, the empirical risk Remp

0,1,u(I,x) will increase as more pairs of salient and
non-salient features will not have their saliency score larger than this gap. On the other hand, the
covering number N (F , ϵu

8 ) will decrease as u increases as a larger radius can cover more I ∈ F .
This represents a model selection problem.

• Last but not least important, with a larger gap u that R2ET can optimize I, with a random
perturbation of x to x′ that has the same saliency features, the true risk (representing how bad the
true explanations can be perturbed) will be low.

B Details of Experiments

We provide detailed experimental settings in B.1, and comprehensive results in B.2. Specifically,
correlation exploration (B.2.1), case study (B.2.2), constrained optimizations (B.2.3), ablation studies
(B.2.5), accuracy and explanation robustness trade-off (B.2.4), more explanation methods (??), and
faithfulness evaluations (B.2.6).

B.1 Experimental Settings

B.1.1 Datasets and Target Model Structure

Tabular data. Three tabular datasets are included: Adult, Bank [53] and COMPAS [54]. We divide
each tabular dataset into training, validation, and test portions at a ratio of 70 : 15 : 15, respectively.
We follow [11] to binarize and map the original inputs mixing with strings and numbers to 28-dim,
18-dim, and 16-dim feature spaces, respectively.

Image data. We adopt ResNet18 [27] for CIFAR-10 [36]. As for MNIST [40], we adopt an SN,
where the embedding model is a classic CNN, consisting of two convolutional layers with 3*3 kernels
followed by max-pooling and three fully-connected layers. Then We use cosine similarity as the
similarity metric, and classifier is a single-layer linear model taking the outputs from the embedding
models as inputs. To construct pairing samples, we randomly sample 2400 pairs of images with
digits 3 and 8 from training images as the training set, and 300 and 600 pairs from test images as the
validation and test sets, respectively.

Graph data. We apply SNs to two graph datasets, BP [48] and ADHD [49], where each brain
network comprises 82 and 116 nodes, respectively. We pair any two training graphs as the training
set. To simulate real medical diagnosis (by comparing a new sample with those in the database), each
validation (testing) pair consists of a training graph and a validation (test) graph. The embedding
model consists of a two-layer GCN, where the first layer maps inputs to a 256-dimension hidden
space following ReLU, and then maps to a 128-dimension embedding space. Then it adopts a mean
pooling to aggregate node features to graph-level one. The cosine similarity is used to measure the
similarity between two embeddings. The classifier is a single-layer linear model taking the outputs
from the corresponding embedding models as inputs.

B.1.2 Methodology of Training Target Models

We train all the models from scratch, except that ResNet is retrained from the Vanilla model. The
model with a relatively high cAUC and the highest P@k on the validation set will be adopted as the
outstanding model for further evaluation. Specifically, We choose the last model with cAUC higher
than a threshold on the validation set. Then the outstanding model is the one with the highest P@k
out of these high cAUC models on the validation set.

Details of training by R2ET. While incorporating a priori information could enhance R2ET’s
performance, we do not furnish the model with such information to ensure a fair comparison among
training methods. 1) Training from scratch: The model incrementally develops an understanding
of feature importance. At the t-th training iteration, it aims to preserve the feature ranking from
the (t-1) iteration. This iterative refinement stabilizes the model’s perception of feature importance
without any predefined ranking knowledge. 2) Training from a Vanilla Model: We leverage
the established model’s feature ranking as a baseline. Given that the vanilla model has achieved
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Description Values
Tabular MNIST CIFAR-10 Graphs

base model architecture∗ 2-layer MLP SN with CNN ResNet SN with 2-layer GCN
hidden dimension 32 3*3 kernel [27] 256

k number of features 8 100 100 50
k′ for R2ET-mm 8 100 100 20

maximal training epochs 300 100 10 (retrain) 10
learning rate 10−2 10−3 10−2 10−4

early stopping 30 N/A N/A N/A
maximal attack iteration 1000 100 100 100
perturbation per iteration 10−3 10−2 5 ∗ 10−2 10−2

κ for Est-H {10−6, 10−5, . . . , 10−2}
ρ for SP {0.5, 1, 5, 10, 100}

weight-decay for WD {5 ∗ 10−5, 5 ∗ 10−4, 5 ∗ 10−3, 10−2, 5 ∗ 10−2}
λ for single regularization methods {0.01, 0.1, 1, 5, 10, 100}

Table 4: (Hyper)-parameters used in experiments. ∗ “SN” means Siamese Networks for dual input.

satisfactory performance (AUC), its explanation ranking is a reliable reference. The goal of R2ET is
to maintain this inherited feature ranking during retraining.

Selections of hyperparamters and parameters. Table 4 shows the default (hyper)-parameters
adopted in the experiments. Attacks are conducted in a PGD-style [50], and the infinity norm of the
perturbations in each iteration is restricted to no more than 5 for images and 0.2 for graphs. For R2ET,
λ1 and λ2 are selected as the same as the best λ for R2ET\H and est-H, respectively. Alternatively,
we simply set λ1 = λ2 = λ, and λ can be drawn from {0.01, 0.1, 1, 5, 10, 100}.

When adopting SmoothGrad (SG) [75] as explanation method, where ISG(x) =
1
M

∑M
m I(x+ βm)

and βm ∼ N (0, σ2I), M is set 50 for all datasets, and σ2 = 0.5, 25.52, 0.01 for tabular, images, and
graphs, respectively. When adopting Integrated Gradients (IG) [77], where IIG(x) = (x− x0)⊙∫ 1

α=0
∇xf(x

0 + α(x − x0))dα. In practice, we set x0 = 0, and approximate the integration by
interpolating 100 samples between x0 and x.

Running environment. We mainly conduct experiments for three tabular data and CIFAR-10 on the
following two machines. Both come with a 16-core Intel Xeon processor and four TITAN X GPUs.
One installs 16.04.3 Ubuntu with 3.8.8 Python and 1.7.1 PyTorch, and the other installs 18.04.6
Ubuntu with 3.7.6 Python and 1.8.1 PyTorch. The MNIST and graph datasets are run on a machine
with two 10-core Intel Xeon processors and five GeForce RTX 2080 Ti GPUs, which installs 18.04.3
Ubuntu with 3.9.5 Python and 1.9.1 PyTorch.

B.1.3 Saliency Maps of Target Models

We use the absolute gradient values as the explanation for tabular datasets. For MNIST, we use the
normalized absolute gradient values as the explanations. For CIFAR-10, the sum of the absolute
gradient values is used as the explanation. For graph data, we use element-wise multiplication of the
gradient and the input as the explanation [1].

B.1.4 Evaluation Metrics

We adopt precision@k to evaluate the explanation robustness by quantifying the similarity between
I(x) and I(x′); AUCs and sensitivity to evaluate the model’s classification performance (see B.2.3
and B.2.4); and DFFOT, COMP, and SUFF to evaluate the explanation faithfulness (see B.2.6).

• Precision@k (P@k). It is widely used to evaluate the robustness of explanations [23]. Formally,

P@k(I(x), I(x′)) =
|I(x)[k] ∩ I(x′)[k]|

k
,

where I(x)[k] is the set of the k most important features of the explanation I(x). | · | counts the
number of elements.
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• Clean AUC (cAUC) and adversarial AUC (aAUC). Besides robust explanations, the model
needs robust predictions. Thus, we adopt cAUC and aAUC to measure the model’s classification
performance before and after the attack, respectively.

• Sensitivity (Sen). Since attacks can be detected by checking the consistency of predictions [93],
Sen measures the ratio at which classification results change after an attack for models.

• Decision Flip - Fraction of Tokens (DFFOT) [72] measures the minimum fraction of important
features to be removed to flip the prediction. A lower DFFOT indicates a more faithful explanation.

DFFOT = min
k

k

n
, s.t. argmax

c
fc(x) ̸= argmax

c
fc(x[\k]),

where n is the number of features, and x[\k] is the perturbed input whose top-k important features
are removed.

• Comprehensiveness (COMP) [15] measures the changes of predictions before and after removing
the most important features. A higher COMP means a more faithful explanation.

COMP =
1

∥K∥
∑
k∈K

|fc(x)− fc(x[\k])|,

where K is {1, . . . , n} for tabular data, and {1% ∗ n, 5% ∗ n, 10% ∗ n, 20% ∗ n, 50% ∗ n} for
images and graphs. The same setting of K is adopted for SUFF.

• Sufficiency (SUFF) [15] measures the change of predictions if only the important tokens are
preserved. A lower SUFF means a more faithful explanation.

SUFF =
1

∥K∥
∑
k∈K

|fc(x)− fc(x[k])|,

where x[k] is the perturbed input with only top-k important features.

B.1.5 Introduction to Siamese Network

An SN predicts whether two samples, xs and xt, are from the same class. The SN uses a network to
embed each input, respectively, and measures their similarity by a similarity function. The prediction
for class 1 (two samples from the same class), Pr(y = 1|xs,xt), is

fSN
1 (xs,xt;w) = sim(emb(xs;w0), emb(xt;w0);w1), (56)

and fSN
0 = 1− fSN

1 for class 0. sim(·, ·;w1) is a similarity function, such as the cosine similarity,
and emb(·;w0) is an embedding network, such as GNN. w = {w0,w1} is the SN’s parameter set.
The ground truth used in SN is yst = 1[ys = yt], where ys is the label of xs.

To predict a single input, one can further train a classifier fCL based on the embedding part of the
SN. For example, fCL(x) = cls(emb(x;w′

0);w2), where w′
0 can be the same as or retrained from

w0 in Eq. (56), and cls(·;w2) is a classifier such as a linear model with the parameter set w2.

B.2 Additional Experimental Results

B.2.1 Settings for Correlation Experiments and More Results

We explore the correlation between the manipulation epochs, thickness, and Hessian norm concerning
different models on various datasets. Specifically, as shown in Fig. 4, we consider different datasets
and methods, such as Vanilla, est-H, and R2ET. Since images and graphs have more features than the
three tabular datasets, almost all adversarial samples will swap feature pairs under the first epoch of
attack. Alternatively, we set the manipulation epoch metric for graph and image datasets to record
the first epoch where P@k drops below 0.8. We do not plot the results on Bank, where R2ET
achieves 100% P@k. Fig. 4 presents the correlations between manipulation epochs and the other
four metrics. Besides thickness measured by adversarial samples and Hessian norm as used in Sec.
6.3, we additionally show the thickness measured by either the average or minimal of a few Gaussian
samples to mimic random noise [106]. Although the thickness evaluated by Gaussian distribution is
not specific to adversarial attacks, the corresponding correlations are much higher than between the
manipulation epoch and Hessian norm.

The dataset-level thickness is defined as the average thickness over all the samples. Table 5 reports
P@k and dataset-level thickness. Clearly, the models with high P@k performance usually have a
relatively large thickness as well, and vice versa.
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Figure 4: We show the correlation between the manipulation epoch and other metrics, including
thickness evaluated by adversarial samples, Hessian norm, and thickness evaluated by (mean and
min of) Gaussian samples for different models in various datasets. From top to bottom: Vanilla,
est-H models on Adult, respectively. R2ET models on Adult, COMPAS, MNIST, ADHD, and BP,
respectively.
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Table 5: P@k (shown in percentage) of different robust models (rows) under ERAttack and the values of
dataset-level thickness.

Method Adult Bank COMPAS MNIST ADHD BP

Vanilla 87.6 / 0.9889 83.0 / 0.9692 84.2 / 0.9533 59.0 / 0.9725 45.5 / 0.9261 69.4 / 0.9282
WD 91.7 / 0.9960 82.4 / 0.9568 87.7 / 0.9769 59.1 / 0.9732 47.6 / 0.9343 69.4 / 0.9298
SP 97.4 / 0.9983 95.4 / 0.9978 99.5 / 0.9999 62.9 / 0.9771 42.5 / 0.9316 68.7 / 0.9300

Est-H 87.1 / 0.9875 78.4 / 0.9583 82.6 / 0.9557 85.2 / 0.9948 58.2 / 0.9578 75.0 / 0.9356
Exact-H 89.6 / 0.9932 81.9 / 0.9521 77.2 / 0.9382 - / - - / - - / -

SSR 91.2 / 0.9934 76.3 / 0.9370 82.1 / 0.9549 - / - - / - - / -
AT 68.4 / 0.9372 80.0 / 0.9473 84.2 / 0.9168 56.0 / 0.9639 59.4 / 0.9597 72.0 / 0.9342

R2ET\H 97.5 / 0.9989 100.0 / 1.0000 91.0 / 0.9727 82.8 / 0.9949 60.7 / 0.9588 70.9 / 0.9271
R2ET-mm\H 93.5 / 0.9963 95.8 / 0.9874 95.3 / 0.9906 81.6 / 0.9942 64.2 / 0.9622 72.4 / 0.9342

R2ET 92.1 / 0.9970 80.4 / 0.9344 92.0 / 0.9865 85.7 / 0.9949 71.6 / 0.9731 71.5 / 0.9296
R2ET-mm 87.8 / 0.9943 75.1 / 0.9102 82.1 / 0.9544 85.3 / 0.9948 58.8 / 0.9588 73.8 / 0.9356

B.2.2 More Results for Case Study

Fig. 5 shows the saliency maps for case studies concerning all the baselines and R2ETs.

B.2.3 Constrained Optimization for Attacks

We show the general form of adversarial attacks by a constrained optimization framework for
explanations in Sec. 3. Since defenders can catch adversarial attacks if there are any changes in
predictions, the attackers must keep all S predictions unchanged during the attacks, where S = 3
for SNs and S = 1 for DNNs. We denote the primary objective in Eq. (1) manipulating the
explanations as g0, and constraints for small prediction changes (measured by KL-divergence) as
gs, 1 ≤ s ≤ S. Naturally, we construct a Lagrangian function with the non-negative multiplier
γ = [γ0, γ1, . . . , γS ] ∈ RS+1

+ :

L(x,γ) = γ0g0(x) +

S∑
s=1

γsgs(x). (57)

Some previous works manually set γ as a hyperparameter by experience [16], dismissing the relatives
among gs. Instead, we care about the unsatisfied constraints with higher weights by uplifting γs with
larger gs. Thus, we adopt the following methods to update both primal variables x and dual variables
γ [66, 11]:

• Gradient descent ascent (GDA) solves the nonconvex-concave minimax problems [43] by

x← x− ηx
∂L
∂x , γ ← γ + ηγ

∂L
∂γ , (58)

where ηx and ηγ are the learning rates. Notice that ∂L(x,γ)
∂γs

= gs,∀s ∈ {1, . . . , S}, and γ0 is

passively updated by the normalization
∑S

s=0 γs = 1 at the end of each iteration.
• Hedge is an incarnation of Multiplicative Weights algorithm that updates γ using exponential

factors [5]. In each iteration, we normalize γ such that
∑S

s=0 γs = 1, and then update γ by

γ ← γ ⊙ expηHedge[g0,g1,...,gS ], (59)

where ηHedge is the learning rate, ⊙ is the element-wise multiplication, and exp is exponential
operation.

• Another way to update weights γ is to solve a quadratic programming (QP) problem

max
γ
−1

2
∥

S∑
s=0

γs∇gs(x)∥2, s.t.
S∑

s=0

γs = 1, γs ≥ 0,∀s ∈ {0, . . . , S}. (60)

We also include unconstrained attack without any constraints, and no update that fixes the weights
to γ = 1

S+11.
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Figure 5: Saliency maps concerning the original image pair and the image pair perturbed under
ERAttack for all methods. The red pixels are the top 50 important features in saliency maps, with
darker colors meaning more important.
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Scatter plots in Fig. 6 show different constrained attack methods in terms of P@k and sensitivity.
The attacker looks for lower sensitivity and P@k: lower sensitivity means that the constraints are
better satisfied, and lower P@k means that more top-k important features in the explanation are
distorted. The asterisks highlight the attack methods having the smallest P@k and no more than 2%
sensitivity. These attack methods are used to evaluate the defense strategies in Table 1. We do not use
constrained attacks on three tabular datasets and MNIST because their sensitivity is 0%. Besides,
Table 6 shows that the difference between cAUC and aAUC for all methods is no more than 0.01,
indicating the success of the selected constrained attack to retain the predictions.
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Figure 6: Performance of different constrained ERAttack and MSE attacks on BP and ADHD for
Vanilla. Points in different colors represent different constraint attack methods, and the same color
represents the same method with different step sizes. The red line implies the Pareto front, and the
asterisk marks the selected attack method.

Table 6: cAUC/aAUC of SNs trained by different methods under ERAttack and MSE attack on
ADHD and BP.

Method ADHD(ERAttack) BP(ERAttack) ADHD(MSE attack) BP(MSE attack)

Vanilla 0.7663 / 0.7729 0.6812 / 0.6920 0.7663 / 0.7659 0.6744 / 0.6776
WD 0.7513 / 0.7582 0.6739 / 0.6726 0.7508 / 0.7542 0.6753 / 0.6722
SP 0.7443 / 0.7358 0.6767 / 0.6817 0.7395 / 0.7375 0.6706 / 0.6763

Est-H 0.7619 / 0.7643 0.6576 / 0.6594 0.7618 / 0.7633 0.6572 / 0.6558
AT 0.7325 / 0.7277 0.6405 / 0.6347 0.7649 / 0.7659 0.6728 / 0.6773

R2ET\H 0.7090 / 0.7153 0.6697 / 0.6732 0.7061 0.7058 0.6665 / 0.6700
R2ET-mm\H 0.7099 / 0.7008 0.6711 / 0.6720 0.7020 / 0.7014 0.6642 / 0.6654

R2ET 0.7169 / 0.6973 0.6833 / 0.6839 0.7049 / 0.7104 0.6738 / 0.6780
R2ET-mm 0.7590 / 0.7633 0.6892 / 0.6957 0.7583 / 0.7580 0.6841 / 0.6852

B.2.4 Trade-off between Accuracy and Explanation Robustness

A good defensive strategy should be both robust and accurate. Authors in [78] find the trade-off
between prediction robustness and prediction performance. We explore the trade-off between the
explanation robustness (P@k) and prediction performance (cAUC/aAUC). A defender looks for a
higher P@k and AUCs. In Fig. 7, at least one R2ET and its variants are on the Pareto front on all
datasets, demonstrating that R2ET and its variants are more advantageous in the trade-off between
robustness and accuracy. Furthermore, on MNIST, compared with other methods on the Pareto front,
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R2ET variants on the Pareto front sacrifice less AUC (less than 2%) but gain significant improvements
on P@k (20% ∼ 40%). On BP, Est-H improves P@k by 0.01 but loses about 4% AUC. R2ET on
ADHD with both high AUC and the highest P@k indicates the possibility that a model can be precise
and explanation-robust at the same time.
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Figure 7: Trade-off between explanation robustness (P@k) and prediction performance (cAUC/aAUC)
on MNIST, BP and ADHD. The red lines imply the Pareto front, and the triangles present R2ET and
its variants.

B.2.5 Sensitivity Analysis

Table 7: P@k (shown in percentage) of models trained by different methods under ERAttack. Three
numbers on tabular datasets present the results when k is 2, 5, and 8, respectively. k is set to 10, 30,
and 50 on the rest datasets, respectively.

Method Adult Bank COMPAS MNIST ADHD BP

Vanilla 79.3 / 81.9 / 87.6 97.9 / 81.4 / 83.0 66.1 / 78.1 / 84.2 51.6 / 56.7 / 59.4 39.4 / 43.2 / 45.3 63.8 / 67.3 / 68.7
WD 100.0 / 99.8 / 91.7 97.2 / 92.5 / 82.4 100.0 / 88.1 / 87.7 51.6 / 56.6 / 59.9 41.0 / 46.3 / 48.6 63.6 / 68.0 / 68.8
SP 100.0 / 100.0 / 97.4 100.0 / 99.4 / 95.4 100.0 / 100.0 / 99.5 54.9 / 60.5 / 63.1 39.4 / 42.7 / 44.7 63.9 / 66.9 / 67.9

Est-H 100.0 / 92.9 / 87.1 86.9 / 83.9 / 78.4 99.9 / 83.9 / 82.6 80.2 / 82.9 / 84.5 53.3 / 56.4 / 57.1 70.8 / 74.8 / 74.3
Exact-H 100.0 / 92.3 / 89.6 92.9 / 89.1 / 81.9 79.9 / 79.3 / 77.2 - / - / - - / - / - - / - / -

SSR 100.0 / 92.9 / 91.2 87.0 / 85.8 / 76.3 87.4 / 87.1 / 82.1 - / - / - - / - / - - / - / -

R2ET\H 100.0 / 98.5 / 97.5 100.0 / 96.0 / 100.0 84.0 / 98.1 / 91.9 77.6 / 80.7 / 82.3 59.3 / 62.6 / 63.1 64.5 / 69.3 / 71.4
R2ET-mm\H 100.0 / 99.8 / 93.5 99.2 / 94.8 / 95.8 100.0 / 83.7 / 95.3 76.5 / 80.0 / 81.9 57.2 / 62.3 / 64.3 67.6 / 71.5 / 73.1

R2ET 100.0 / 93.2 / 92.1 100.0 / 91.8 / 80.4 79.4 / 88.8 / 92.0 81.4 / 84.1 / 85.3 70.7 / 74.1 / 73.8 66.1 / 70.5 / 72.2
R2ET-mm 100.0 / 99.7 / 87.8 98.6 / 92.2 / 75.1 89.0 / 89.0 / 82.1 80.6 / 83.5 / 84.9 55.3 / 58.5 / 60.1 69.4 / 74.2 / 75.1

In this section, we consider the impacts of three hyperparameters or settings.

Impacts of k. Table 7 shows that R2ET and its variants stay at the top compared with other baselines
for various k. Besides, we further explore the more fundamental reasons why models perform
differently for various k. As mentioned in Eq. (5), the gaps of gradients of original inputs positively
contribute to the thickness. In Fig. 8, we sort the gradients of Vanilla models in descending order
where their gaps can be inferred. Vanilla achieves about 100% P@k when k = 2 on Adult and Bank,
indicating that even ERAttack cannot effectively manipulate the ranking in such scenarios. The
reason is that the top 2 features are much more significant than the rest as shown in Fig. 8. However,
there is a narrow margin between the top 2 and top 3 features on COMPAS, and attackers can easily
flip their relative rankings, thus Vanilla’s P@k reduces to around 2/3. On MNIST, BP and ADHD,
Vanilla models’ P@k increases as k grows. It seems that models are more efficient against ERAttack
with larger k. However, the absolute number of success manipulations for top-k features increases for
larger k. Take Vanilla on MNIST as an example, ERAttack distorts the model’s 5 features when k=10,
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Figure 8: We order the features based on the Vanilla model’s gradient magnitude with respect to each
original input on different datasets. Notice that these figures would differ for various models.
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Figure 9: Sensitivity analysis on the number of selected pairs. R2ET\H and R2ET-mm\H are
examined in Bank dataset.

and about 40% ∗ 50=20 features when k=50. Since ERAttack uses the same budget for different k, it
becomes harder for ERAttack to manipulate more features simultaneously (for larger k). However, it
indeed kicks off more features from the top positions due to narrower margins on the long tail.

Impacts of the number of selected pairs k′. As discussed in Sec. 4.2, fewer (k′) compared
feature pairs for R2ET and its variants alleviate optimization issues. Specifically, R2ET takes∑k−1

i=k−k′+1 h(x, i, k) +
∑k+k′+1

j=k+1 h(x, k, j) as objective. Since R2ET\H and R2ET-mm\H are the
two best variants in tabular datasets, we conduct a sensitivity analysis of these two methods on
Bank. We set k = 8, and change k′ from 1 to k. Fig. 9 indicates that R2ET\H and R2ET-mm\H
perform much better when k′ > 4 than those with k′ ≤ 4. Apparently, when more pairs of features
are taken into consideration, R2ET and its variants have a more comprehensive view of feature
rankings to maintain the rankings better. Besides that, R2ET\H and R2ET-mm\H outperform almost
all baselines, except for SP, for all k′.

Impacts of pretrain / retrain. Lastly, we explore how good these methods are when applying them
in the retrain schema, and each model is retrained from the Vanilla model for at most 10 epochs.
Since the Vanilla model has already converged and reached a good AUC, we assume that the Vanilla
model’s explanation ranking is an excellent reference. Thus these robust methods try to maintain
the Vanilla model’s rankings. The retraining will be terminated if P@k between Vanilla and retrain
models’ rankings significantly drops, or the retrain model’s cAUC drops a lot. Table 8 presents the
results for comparing two training schemas. Since SP changes the models’ structure (activation
function), we do not consider it here. Instead, we add one more baseline, CL [28], because retraining
demands much fewer training epochs, thus its time complexity is acceptable. More details for CL
can be found in Sec. 4.2. Besides that, none of retrain models by Exact-H and SSR can maintain
Vanilla model’s explanation rankings and cAUC at the same time in Bank dataset, and thus both are
not applicable.
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Table 8: P@k (shown in percentage) of models trained by different methods under ERAttack (k = 8).
Two numbers indicate the performance of models being trained from scratch or retrained from
Vanilla models.

Method Adult Bank COMPAS

Vanilla 87.6 / 87.6 83.0 / 83.0 84.2 / 84.2
WD 91.7 / 88.3 82.4 / 82.1 87.7 / 82.7
CL - / 93.1 - / 100.0 - / 87.1

Est-H 87.1 / 92.1 78.4 / 85.2 82.6 / 85.1
Exact-H 89.6 / 88.7 81.9 / - 77.2 / 87.0

SSR 91.2 / 88.7 76.3 / - 82.1 / 86.1

R2ET\H 97.5 / 100.0 100.0 / 100.0 91.9 / 97.8
R2ET-mm\H 93.5 / 100.0 95.8 / 98.3 95.3 / 95.6

R2ET 92.1 / 92.6 80.4 / 86.2 92.0 / 85.1
R2ET-mm 87.8 / 91.6 75.1 / 86.2 82.1 / 87.4

B.2.6 Faithfulness of explanations on different models

We report the faithfulness of explanations evaluated by three widely used metrics, DFFOT, COMP
and SUFF, in Table 9.

Table 9: Faithfulness of explanations evaluated by DFFOT (↓) / COMP (↑) / SUFF (↓).

Method Adult Bank COMPAS MNIST ADHD BP

Vanilla 0.24 / 0.43 / 0.18 0.23 / 0.14 / 0.04 0.17 / 0.37 / 0.14 0.37 / 0.16 / 0.23 0.51 / 0.05 / 0.28 0.40 / 0.06 / 0.29
WD 0.45 / 0.47 / 0.23 0.36 / 0.27 / 0.07 0.29 / 0.41 / 0.18 0.37 / 0.16 / 0.22 0.49 / 0.06 / 0.27 0.35 / 0.05 / 0.33
SP 0.43 / 0.47 / 0.25 0.35 / 0.31 / 0.07 0.29 / 0.45 / 0.18 0.38 / 0.15 / 0.22 0.30 / 0.10 / 0.34 0.38 / 0.06 / 0.30

Est-H 0.44 / 0.44 / 0.24 0.18 / 0.21 / 0.06 0.27 / 0.42 / 0.17 0.23 / 0.24 / 0.18 0.59 / 0.04 / 0.26 0.45 / 0.05 / 0.24
Exact-H 0.43 / 0.46 / 0.23 0.19 / 0.14 / 0.04 0.30 / 0.40 / 0.18 - / - / - - / - / - - / - / -

SSR 0.54 / 0.39 / 0.21 0.46 / 0.04 / 0.01 0.32 / 0.43 / 0.18 - / - / - - / - / - - / - / -
AT 0.16 / 0.14 / 0.08 0.19 / 0.10 / 0.03 0.24 / 0.10 / 0.07 0.40 / 0.12 / 0.28 0.35 / 0.10 / 0.26 0.46 / 0.06 / 0.25

R2ET\H 0.13 / 0.50 / 0.14 0.34 / 0.32 / 0.10 0.17 / 0.40 / 0.17 0.23 / 0.22 / 0.19 0.38 / 0.13 / 0.37 0.43 / 0.07 / 0.29
R2ET-mm\H 0.42 / 0.47 / 0.22 0.34 / 0.41 / 0.14 0.25 / 0.42 / 0.17 0.25 / 0.22 / 0.21 0.37 / 0.17 / 0.37 0.42 / 0.07 / 0.29

R2ET 0.32 / 0.46 / 0.19 0.11 / 0.24 / 0.07 0.27 / 0.39 / 0.17 0.18 / 0.26 / 0.23 0.48 / 0.12 / 0.26 0.42 / 0.07 / 0.29
R2ET-mm 0.38 / 0.48 / 0.20 0.12 / 0.21 / 0.08 0.28 / 0.44 / 0.15 0.19 / 0.26 / 0.22 0.50 / 0.04 / 0.25 0.45 / 0.05 / 0.29

C Related Work

Explainable machine learning and explanation robustness. Recent post-hoc explanation methods
for deep networks can be categorized into gradient-based [103, 71, 7, 75, 77, 73, 100, 98, 35],
surrogate model based [64, 30, 82], Shapley values [47, 12, 45, 99, 3], and causality [58, 10, 56].
The gradient-based methods are widely used in practice due to their simplicity and efficiency
[55], while they are found to lack robustness against small perturbations [23, 29]. Some works
[13, 74, 32, 83, 70, 80] propose to improve the explanation robustness by time-consuming adversarial
training (AT). To bypass the high time complexity of AT, some works propose replacing ReLU
function with softplus [17], training with weight decay [16], and incorporating gradient- and Hessian-
related terms as regularizers [17, 88, 91]. Some works propose new explanation methods, rather than
training methods, to enhance explanation robustness [46, 44, 11, 51, 65, 75]. Besides, many works
[50, 79, 87, 52, 67, 63, 97, 28, 96, 14, 78, 90, 101, 18] for improving adversarial robustness focus
on prediction robustness, instead of explanation robustness, and thus are different from our work.
The work [97] proposes the prediction thickness by measuring the distance between two decision
boundaries, while our explanation thickness qualifies the expected gaps between two features’
importance. Furthermore, the explanation thickness is inherently more complicated to optimize due
to the nature of gradient-based explanations being defined as first-order derivative relevant terms.

Ranking robustness in IR. Ranking robustness in information retrieval (IR) concerning noise
[106] and adversarial attacks [26, 104, 105, 42, 85] is well-studied. Ranking manipulations in
IR and explanations are different because 1) In IR, authors either manipulate the position of one
candidate [104, 26], or manipulate a query to distort the ranking of candidates [104, 105, 42]. We

34



manipulate input to swap any pairs of salient and non-salient features. 2) Ranking in IR is based on
the model predictions. However, explanations are defined by gradient or its variants, and studying
their robustness requires second or higher-order derivatives, and it motivates us to design an efficient
regularizer to bypass costly computations.

Top-k intersection. Top-k intersection is widely used to evaluate explanation robustness [13, 88,
74, 32, 83, 70, 23]. However, most existing works study the explanation robustness through ℓp
norm [13, 16, 17, 88], cosine similarity [83, 84], Pearson correlation [32], Kendall tau [83], or
KL-divergence [70]. These correlation metrics measure the explanation similarity using all features,
and a high similarity can have entirely different top salient features. To optimize the top-k intersection
in classification tasks, some works propose various surrogate losses based on the upper bounds of
top-k intersection [2, 37, 38, 39, 8, 95, 60]. The upper bounds hold for predictions whose gaps are
not larger than one, while it is not always true for gradient-based explanations with unbounded values,
which prevents adopting similar methods to explanation tasks.

Distributional shift. The distributional shifts [61, 41] and our work are distinct concerning the
“perturbation budget” between the original and perturbed inputs: In contrast, the distributional shifts
ensure reasonable predictions (and explanations) for out-of-distribution samples, where a substantial
deviation from the in-distribution samples is expected, naturally leading to different explanations
and rankings. The input perturbations are intentionally neglectable in ours, and other adversarial
robustness works, for stealthiness.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction outline the primary contributions, which include
the thickness metric (in Sec. 4.1) and a corresponding training method R2ET (in Sec. 4.2),
alongside their theoretical analyses (in Sec. 5) and experimental results (in Sec. 6).

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The only noticed limitation of the work is discussed in Sec. 7.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The complete proofs for the theoretical analyses are provided in Appendix A.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the information needed to reproduce all the experimental results are
disclosed in Appendix B.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is public at https://github.com/ccha005/R2ET.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The relevant information is disclosed in appendix B.1.2.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Main result in Table 1 includes the statistical significance tests.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The relevant information is disclosed in appendix B.1.2.
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9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original papers for the datasets are cited properly.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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