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Fig. 1: AMES estimates the image-to-image similarity based on local descriptor sets.
Top: 100 (query) vs. 100 (database) descriptors. Bottom: memory-efficient and asym-
metric variant with 100 vs. 30 local descriptors. Circle size reflects descriptor impor-
tance within AMES; descriptors of the common object get higher importance.

Abstract. This work investigates the problem of instance-level image
retrieval re-ranking with the constraint of memory efficiency, ultimately
aiming to limit memory usage to 1KB per image. Departing from the
prevalent focus on performance enhancements, this work prioritizes the
crucial trade-off between performance and memory requirements. The
proposed model uses a transformer-based architecture designed to es-
timate image-to-image similarity by capturing interactions within and
across images based on their local descriptors. A distinctive property of
the model is the capability for asymmetric similarity estimation. Database
images are represented with a smaller number of descriptors compared
to query images, enabling performance improvements without increasing
memory consumption. To ensure adaptability across different applica-
tions, a universal model is introduced that adjusts to a varying num-
ber of local descriptors during the testing phase. Results on standard
benchmarks demonstrate the superiority of our approach over both hand-
crafted and learned models. In particular, compared with current state-
of-the-art methods that overlook their memory footprint, our approach
not only attains superior performance but does so with a significantly
reduced memory footprint. The code and pretrained models are publicly
available at: https://github.com/pavelsuma/ames

https://github.com/pavelsuma/ames
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1 Introduction

Image retrieval approaches typically focus on optimizing performance metrics,
often effectively due to modern representations [1, 5, 13, 40]. Higher-dimensional
representations provide a better estimation of the image-to-image similarity and
result in better retrieval accuracy [32,43]. However, what is typically overlooked
is the memory footprint requirements of storing such representations. Storing
high-dimensional, and usually dense, representations results in a large memory
footprint, making them not applicable for web-scale applications. Therefore, it
becomes important to consider performance alongside the memory footprint.
This work focuses precisely on this dual aspect, which has been underestimated
in the literature. We analyze the trade-off between performance and memory
usage in the realm of instance-level image retrieval. Specifically, we investigate
and improve this trade-off assuming the use of both local and global descriptors,
ideally with both provided by a universal model [8].

Global descriptors offer a convenient way to handle image retrieval in large
databases due to computational and memory benefits. They provide a fast way
to perform retrieval and allow additional speed-up with approximate nearest
neighbor search techniques [4, 25]. At the same time, storing the representation
of database images comes with a low footprint, which is further reduced by di-
mensionality reduction or other compression techniques [19,23,39]. Nevertheless,
despite the high performance achieved in multiple benchmarks due to deep mod-
els, global descriptors have drawbacks. This is especially the case when it comes
to severe background clutter, such as small objects and large occlusions [16].

One way to improve performance is to represent an image with a set of lo-
cal descriptors while using a similarity function to compare two local descriptor
sets. The similarity function can be hand-crafted [41, 59] or include learnable
parts [27,58]. An important aspect of such approaches is that the local descrip-
tors are usually used at a re-ranking stage [36, 58], after a more efficient initial
ranking stage, e.g . retrieval with global descriptors. In this fashion, the high
computational cost of using local descriptors becomes less of a weakness if the
number of images to re-rank is limited. Their large memory footprint, however,
still remains a major drawback.

We explore and optimize the trade-off between retrieval performance and
the memory requirements, especially in a low memory footprint regime such as
1KB per image, to allow scalable solutions. Our methodology targets both major
factors regarding memory, namely operating with a low number of local descrip-
tors and the footprint per descriptor. We design an image-to-image similarity
model that uses transformers to capture within and across image interactions.
The underlined trade-off is optimized in a four-fold way: (i) through asymmetric
similarity estimation where the query image is represented by a higher num-
ber of local descriptors, without affecting the database footprint (Figure 1), (ii)
training the model to operate on binary input vectors learned in an end-to-end
manner, (iii) with a distillation process where the teacher model uses a richer
representation than the student, (iv) by a proper combination of the similarity
given by global and local descriptors during the re-ranking stage.
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The number of local descriptors per database or query image may need to
vary in a practical system to control both the memory and the retrieval speed.
We obtain a universal model, tackling all cases, by varying their number per
image during the training. This approach successfully alleviates the sensitivity
in transformers observed during our experiments, where performance tends to
decline due to discrepancies in the number of input tokens between the training
and testing phases. The list of contributions is outlined below.

– We present the first systematic study that investigates the trade-off between
performance and memory consumption in the context of deep models and
their representations for instance-level image retrieval.

– We introduce AMES, a new similarity estimation architecture and training
strategy inspired by existing techniques, specifically tailored to address our
unique requirements and objectives.

– We reveal the sensitivity of transformers to changes in the number of the
input tokens and develop a universal model that exhibits robustness to such
changes, ensuring stable performance across different operating conditions.

2 Related work

Similarity using global descriptors. Traditional methods in image retrieval
extract global representations by aggregating hand-crafted local features, e.g .
BoW [10,50], Fisher vectors [35,45], VLAD [18], or Triangulation embedding [24],
and compute a simple metric, e.g . cosine similarity, to perform the retrieval. The
memory footprint of these representations is further improved by reducing their
dimensionality with different variants of PCA [19, 39], or product quantization
(PQ) [23]. Since the advance of deep networks, utilizing learned, i.e. not hand-
crafted, descriptors is also a popular choice for image retrieval [1, 31]. Early
work in the field employs neural networks trained for classification and transfers
them to image retrieval by aggregating internal activation maps [5, 40]. More
recent methods directly train a neural network specifically for image retrieval
by optimizing for robust global representations through different metric learning
losses [42,47], sampling of the training data [30,51,54,65], and architectures [52,
53]. In recent work, SuperGlobal [48] descriptors are extracted via a repurposed
architecture of an already trained retrieval model that becomes effective with
appropriate hyper-parameter tuning. In addition to global, some models derive
local descriptors too through separate network branches [8, 55,69].

Similarity with local descriptors. In contrast to aggregating local rep-
resentations into a global one, specific metrics are designed to compare the local
descriptors and estimate the image-to-image similarity. Traditional approaches
follow the BoW paradigm but utilize match kernels to compute the similar-
ity between local features assigned to the same visual words [20, 59]. Hamming
Embedding [20] opts for binary codes to significantly reduce the memory as it
requires indexing additional features. The kernels are combined with weighing to
reduce the burstiness effect [21] or to account for local density in the embedding
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space [2]. ASMK [59] takes a middle route and aggregates only the local fea-
tures belonging to the same visual word. This reduces the memory footprint of
the stored database features, which is further reduced with binarization. These
methods are shown to be outperformed by learnable re-ranking approaches [58]
or improved with appropriate representation learning [63].

Different forms of geometric constraints are shown helpful for image similarity
estimation, e.g . consistency in spatial neighborhoods [50], angles and scales [22],
or in relative spatial ordering [14,68]. Geometric verification through RANSAC-
like [11] procedures is one of the most popular methods to estimate the similarity
of not only hand-crafted local descriptors [36,37] but also local features extracted
from deep networks [8,33,49]. This is a time-consuming re-ranking approach with
an additional memory overhead due to storing local feature geometry.

Recent advancements in deep learning have led to the development of models
that estimate image-to-image similarity based on local descriptors [58,70]. These
models allow for the direct optimization of similarity computation for specific
tasks, enhancing performance. RRT [58] and R2Former [70] improve over spa-
tial verification in performance and processing time but require to store several
hundred full-precision descriptors. CVNet [27] processes cross-scale correlation
between dense feature maps with a 4D convolutional network, requiring even
more memory. The proposed model draws inspiration from the RRT architec-
ture and effectively extends it. To benchmark our model, we directly compare
its performance to RRT, R2Former, and CVNet, demonstrating its superiority
in terms of performance and memory.

Furthermore, our architecture design incorporates ideas from image matching
networks [29,46,57]. These approaches utilize a combination of self-attention and
cross-attention layers to facilitate information exchange within individual images
as well as across the two images. By integrating these concepts, our model allows
for a more effective similarity estimation approach.

Asymmetric similarity is used in prior work to optimize the performance
and memory trade-off by comparing binary to full-precision vectors [17]. This
approach is complementary to our contributions. Recently, a variety of deep
learning methods optimizes the performance vs. query time trade-off using light-
weight query processing [7,56,66] or model ensembling on the database side [67].
Our universal model is able to control query time by operating on a varying
number of query local descriptors.

Transformer sensitivity to token-set size discrepancy. In natural lan-
guage processing (NLP), tasks such as question answering inherently involve sen-
tences of varying lengths during training and testing [61]. Models exhibit some
robustness to such variations unless significantly longer sentences are encoun-
tered during testing [9,44]. Inspired by this observation, we propose to train our
models with a varying number of input tokens. A similar phenomenon is observed
in Flexible Vision Transformers (ViTs) [6] and CAPE [28], where variations in
patch or image size are considered that consequently affect the token-set size.
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3 Method for memory-efficient similarity estimation

We first introduce the task of memory-efficient retrieval and then present the
proposed approach for training an image-to-image similarity model that operates
on two sets of local descriptors as input while keeping the memory footprint low.

3.1 Problem formulation

The objective of image retrieval is to search a database of images X using a
given query image q and retrieve relevant images. In this work, relevance is
defined in terms of depicting the same specific object, focusing on instance-level
retrieval. The image-to-image similarity between the query and an image x ∈ X
is measured by the function s(x, q) ∈ R. Subsequently, the results are sorted to
generate a ranking of the database images.

In contrast to the majority of prior work, which predominantly emphasizes
performance metrics, we argue that the quality of a retrieval approach should be
considered as a composite of both performance and memory footprint. The latter
concerns the memory required to store the representation of image x necessary
for similarity estimation. Memory allocation for the query is less crucial as it is
released at the end of the retrieval process. Consequently, we explore and find
merit in asymmetric setups within this work.

3.2 Preliminaries

A single-vector image representation, referred to as global descriptor, is a memory-
efficient and computationally efficient way of computing similarity. The ℓ2-norma-
lized global descriptors for database image x and query image q are denoted by
x ∈ Rdg and q ∈ Rdg , respectively. Image similarity is then simplified to the dot
product sg(x, q) = x⊤q, also referred to as global similarity.

To enhance retrieval quality, a common approach involves representing each
image with multiple vectors, such as local descriptors. Each database image x
is then represented by Lx D-dimensional vectors in X ∈ RD×Lx , and the query
q by Lq vectors in Q ∈ RD×Lq . Although working with order-less vector sets,
we employ matrix notation for the sake of clarity. Image-to-image similarity is
defined as sl(x, q) = S(X,Q), referred to as local similarity, where S : RD×Lx ×
RD×Lq → R is a similarity function operating on two vector sets. The two sets
do not need to have the same size. While various options exist for designing and
implementing S, the computational complexity is inevitably higher compared
to the global similarity estimation. A practical solution is to estimate global
similarity in an initial ranking stage, and local similarity during re-ranking of the
most similar images according to the first step. However, this approach requires
storing both global and local representations for image x. Depending on the
values of dg, D, Lx, this may quickly become impractical for large databases.
Therefore, maintaining a low memory footprint is crucial.
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Fig. 2: Overview of the AMES model designed for estimating image-to-
image similarity when provided two local descriptor sets, where one set has a smaller
size. Descriptors are processed by projection (f) comprised of binarization (b) and re-
mapping to the real coordinate space (r). During testing, binarization (re-mapping) is
performed offline (online); therefore, we need to store only the binary vectors for the
database images. Descriptors, together with a learnable matching token, form the input
token set for a transformer-based architecture, which, together with a binary classifier,
estimate the similarity. Sequentially, inter-image (self) and intra-image (cross) attention
is performed by standard self-attention blocks alongside appropriate masking.

3.3 Proposed approach - AMES

Given the local descriptor sets X and Q for images x and q, respectively, we
design the image-to-image similarity function S(X,Q) with a transformer-based
network. Together with the training and testing strategy, we refer to the proposed
approach as “Asymmetric and Memory-Efficient Similarity” or AMES.

AMES architecture. We use a transformer-based architecture [62] in a
processing pipeline that interchanges between self-attention and cross-attention
to capture both intra-image and inter-image interactions between local descrip-
tors. As a first step, the representation space undergoes transformation, option-
ally involving dimensionality reduction, through a projection function f : RD →
Rd. This transformation is applied individually to each local descriptor, with the
application to the entire set represented as f(X) and f(Q).

Each local descriptor becomes a transformer token whose input is composed
by concatenation of the projected X and Q, and a matching token t ∈ Rd.
We include this token by following common practice, similar to the classification
token [58,62], initialize it by a random vector, and treat it as a learnable variable.
This plays the role of information aggregation from both images through the
attention mechanism. In summary, the input to AMES consists of K = Lx+Lq+1
tokens and is denoted by

Z0 = [ f(X) f(Q) t ]. (1)

The network consists of N consecutive processing blocks that are identical
in design. Each block i, i ≤ N , comprises two consecutive attention operations
and a feed-forward layer with residual connections. The output of the i-th block

Zi = [ Xi Qi ti ], (2)
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matches the input to (i+1)-th block, while processing by a block is given by

Ẑi = asi+1(Zi;M
s) + Zi (3)

Z̃i = aci+1(Ẑi;M
c) + Ẑi (4)

Zi+1 = hi+1(Z̃i) + Z̃i, (5)

where (3) and (4) correspond to self and cross attention, respectively. In the
former (latter), local descriptors across images (within the same image) do not
attend to each other. Masks Ms,M c ∈ {0, 1}K×K are binary matrices that
allow to perform both operations via masked attention across all input tokens1.
Mask Ms (M c) has zeros for elements across the two images (within the same
image) and ones otherwise. The feed-forward process in (5) is an MLP operating
independently per token. Note that the matching token t is never masked in order
to aggregate information from both images and both operations simultaneously.
We treat the output matching token tN , at the last block, as a representation
of the image pair and pass it to a linear binary classifier represented by vector
w ∈ Rd. The final similarity, with the use of a sigmoid function σ, ranges in
[0, 1] and is given by

S(X,Q) = σ(γt⊤Nw), (6)

where γ is a temperature variable that is set and fixed to 1 during training. The
overall architecture is shown in Figure 2.

Local descriptor footprint. The memory-demanding variant of AMES
implements the projection function f with a linear layer. The output dimension-
ality d controls the memory footprint since f(X) is part of the model input and
is stored for each database image. We refer to it as full-precision (fp) variant.

To reduce the memory footprint, we consider an alternative projection func-
tion that consists of binarization function b mapping local descriptors to the
Hamming space and re-mapping function r projecting binary descriptors back
to the real coordinate space. The projection is given by f = r◦b, with the benefit
of only storing b(X), which is more compact, and applying r during query time
to recover the real-valued vector. This is what we refer to as binary (bin) variant.

Formally, given an arbitrary local descriptor u, the binarization function
b : RD → {−1, 1}d performs dimensionality reduction and vector binarization by
b(u) = sgn (uW ) , where W ∈ RD×d is a matrix of trainable parameters, and sgn
denotes the element-wise sign function, which is not differentiable. Therefore, we
use a smooth approximation [26] given by b(u) = erf (uW/

√
2δ2) , where erf is the

error function, and δ a hyper-parameter that controls the smoothness of the
approximation. During training, we use the smooth variant, allowing gradients
to flow, while during inference, we use sign-based binarization. The re-mapping
function r consists of a linear layer and Layer Normalization [3].

1 Both as
i and ac

i perform attention across all input tokens, but it is the masking
that makes them reduce down to a type of self-attention (within image) and cross-
attention (across image). Super-scripts are there to indicate different learnable pa-
rameters; each block has a different set of learnable parameters.
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AMES testing. We describe the retrieval stage with AMES and the mem-
ory requirements of different variants.

Global-local similarity ensemble: We assume access to both global and local
descriptors but incorporate local similarity only during the re-ranking stage,
where the image-to-image similarity is then expressed as a linear combination of
global and local similarities

s(x, q) = λsg(x, q) + (1− λ)sl(x, q), (7)

referred to as ensemble similarity. Although most prior work [33,49,58] considers
λ = 0, i.e. re-ranking solely with local similarity, the ensemble (7) is shown
to bring benefits in recent work [8, 27]. To effectively perform the similarity
combination, we tune two hyper-parameters, namely λ and temperature γ in
(6) to properly align and balance the two similarity distributions. The tuning is
performed with grid search according to performance on a validation set.

Asymmetric similarity: We differentiate between the number of local descrip-
tors per image used during training and testing by L

train

q , Ltrain

x , and L
test

q , Ltest

x ,
respectively. The footprint scales linearly with L

test

x , whereas a higher number
proves advantageous [58], up to a certain extent, thus establishing the perfor-
mance vs. memory trade-off. Asymmetric similarity estimation, achieved by set-
ting L

test

q > L
test

x , is a viable option that avoids compromising database memory
and demonstrates performance improvements in our experiments.

Varying number of local descriptors: We treat Ltest

q as a hyper-parameter that
increases the model complexity according to the underlined limits of query time,
e.g . per user or environment. Despite L

test

x being fixed for a particular database,
a different system may need to use a different value. Therefore, a universal model
handling different values both for L

test

x and L
test

q is necessary. The training of a
universal model and its challenges are discussed in the following section.

AMES training. We perform supervised training based on labels of image
pairs, optionally combined with a distillation process.

Universal AMES: When there is a mismatch in the local descriptor set size
between the training and testing phases, we observe a performance decline. The
sensitivity is attributed to the attention blocks and is due to the change in the
number of tokens. A naive solution is to separately train a different model for
each size, i.e. many different models trained with L

test

q = L
train

q and L
test

x =

L
train

x . We refer to these models as specific models. Nevertheless, this solution
significantly increases the training complexity and requires maintaining multiple
models for inference of different combinations of (Ltest

x , L
test

q ). Instead, we train
a single model by randomly sampling values for L

train

x and L
train

q per batch and
using a subset of the images’ local descriptors2. This universal model performs
well when tested across different set sizes, even compared to the specific models.

Supervised training: An image pair (x, q) in the training set is associated
with label yxq = 1 if the two images are relevant (matching) or label yxq = 0,
2 The order of the input images does not matter; differentiating between sizes for

image x and q is important for the testing setup, e.g . asymmetry, but not for the
training.
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otherwise. Using the pair labels, we perform label-balanced training with back-
propagation through binary cross-entropy loss, which for a specific pair is given
by Lbce(x, q) = −yxq log sl(x, q) − (1 − yxq) log(1 − sl(x, q)). In our task, this
corresponds to a contrastive loss pushing the similarity of matching pairs to 1
and non-matching to 0. We optimize the parameters of functions asi , a

c
i , hi for

i ∈ {1, ..., N}, along with w, W and matching token t. We find it beneficial to
initialize W of the binarization layer with the result of ITQ [12] trained on a
large set of local descriptors.

Distillation-guided supervised training: We improve the (student) binary
variant of AMES by using an already trained full-precision variant as a teacher.
During this distillation procedure, the teacher receives a large set of local de-
scriptors as input for both images, while the student operates with a varying set
size that is smaller than that of the teacher. At each batch, the student descriptor
set is a subset of the teacher one. The distillation process operates in the latent
representation space and not in the output space of scalar similarities, where the
supervised loss is applied. In particular, it operates right before the classifier,
at the output of the last transformer block. Let Z

(t)
N and Z

(s)
N be those output

matrices for the teacher and the student model, respectively, for the same image
pair, and Z̄

(t)
N a trimmed version of Z(t)

N to contain the tokens that correspond
to those of the student model. Distillation is performed via ℓ2 loss as

Ldis =
1

dK

∥∥∥Z̄(t)
N − Z

(s)
N

∥∥∥
F
, (8)

where ∥·∥F is the Frobenius norm. In that way, the transformer of the student
network is guided to generate similar output tokens as the transformer of the
teacher even though it operates with lower precision local descriptors, i.e. bina-
rized, and only with a subset of the local descriptors. To this end, we optimize
a weighted sum of the two losses as follows L = Lbce + βLdis, where β is a
hyper-parameter that tunes the impact of Ldis.

4 Experiments

4.1 Experimental setup

Datasets and evaluation metrics. We use Google Landmarks dataset v2 [64]
(GLDv2) for training, validation, and testing. From the clean part of the train-
ing set, we randomly select 24K classes with more than 10 images and at most
500 images per class. The final training set contains 754K images, correspond-
ing to roughly half of the clean part. We use the 761K index images as the
database and the 379 public and 750 private query images for validation and
testing, respectively. Performance is evaluated using mean Average Precision at
top-100 images (mAP@100). ROxford [36, 38] and RParis [37, 38] datasets are
used together with the accompanying 1M distractor images. Performance is eval-
uated with mAP. We present results across the medium and hard setups of both
datasets by averaging the four performance values, denoted by ROP+1M.
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Global and local descriptors. AMES is generic and applicable to any type
of local descriptor. For global descriptors, we use CVNet [27] trained on GLDv2
with a ResNet101 [15] backbone, its SuperGlobal (SG) [48] training-free enhance-
ment, and pretrained DINOv2 [34] through its CLS token. For local descriptors,
we extract descriptors from either the CVNet backbone or DINOv2. Unless men-
tioned otherwise, our default choices are the SG global and the CVNet local
descriptors. We do not consider DINOv2 as the default option since ROxford
and RParis are listed among the datasets used for its self-supervised training.
Following prior work [8,60,69], we train a local feature detector in order to select
the L strongest local descriptors per image during testing; see the supplementary
material for more details.

The dimensionality of the global descriptors is equal to dg = 2048 or dg = 768
for CVNet or DINOv2, and d = 128 for the local descriptors. Global descrip-
tors are either full-precision (fp)3 or are compressed with product quantization
(PQ) [23]. PQ is parameterized to work with 1 byte per sub-space, and the
sub-space dimension is set equal to 1, 4, or 8, denoted by PQ1, PQ4, or PQ8,
respectively. Unless otherwise stated, PQ8 is used. The reported memory corre-
sponds to the storage of global and local descriptors for database images. The
storage for the network parameters is not included since it is a constant and a
negligible amount.

AMES training and testing. During mini-batch sampling for the uni-
versal model training, Ltrain

q and L
train

x are randomly sampled in range [10, 400]
and are, therefore, not necessarily equal to each other. We use N = 5 blocks in
AMES for all settings, which has the same number of parameters as RRT for
their default choice of 6 blocks. During testing, we re-rank the top-m images ob-
tained with global similarity. Local descriptor set sizes Ltest

x and L
test

q correspond
to the database images and query, respectively. The main variant used in our
experiments, unless otherwise stated, is the universal model with binary repre-
sentation after distillation, m = 1600, Ltest

q = 600, and varying L
test

x to control
the memory. For each experiment, we train three networks with different seeds
and report average performance.

Existing approaches. Using the same global/local descriptors, we perform
a direct comparison with ASMK [59]4, RRT [58], and R2Former [70]. We use
their official publicly-available implementation and their default model hyper-
parameters. All models are trained within our implementation framework with
varying descriptor set size and the same projection function f at their input for
fair comparison. The same ensemble similarity tuning strategy is used for all
these methods. We compare with the reported results for CVNet [27] with the
same representation network as in our setup. We exclude it from the trade-off
comparison because it performs dense similarity estimation that is unsuitable
for low-memory regimes.

3 Variant (fp) for global and local descriptors: Half-precision floating points are used.
4 ASMK’s memory is based on the effective number of descriptors after aggregation.
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Fig. 3: Performance vs. memory trade-off on ROP+1M (top) and GLDv2 (bot-
tom). All methods use global descriptors with PQ8 for initial ranking and ensemble
similarity to re-rank m = 1600 images. We vary the number of local descriptors L

test
x

for database images, which is shown with text labels, indicatively, for one variant.
Binary/full-precision local descriptors denoted by bin/fp. All methods are trained and
tested by us, within the same implementation framework.

global desc. local desc. re-ranking ROP+1M GLDv2
approach top-m

DELG [8]
n/a n/a n/a ♡ 51.6 24.1
GV [8] DELG [8] 100 ♡ 56.5 24.3
RRT [58] DELG [8] 100 ♡ 57.6 –

CVNet [27]

n/a n/a n/a ♡ 67.6 32.5

CVNet [27]

CVNet re-rank [27] 100 ♡ 73.0 34.9
AMES (fp) 100 ♠ 72.2 35.3
AMES (bin,distill) 100 ♠ 72.0 35.1
CVNet re-rank [27] 400 ♡ 75.6 –
AMES (fp) 400 ♠ 75.8 35.5
AMES (bin,distill) 400 ♠ 75.4 35.1

SG [48]

n/a n/a n/a ♠ 72.9 33.3

CVNet [27] AMES (fp) 1600 ♠ 80.0 35.8
AMES (bin,distill) 1600 ♠ 78.9 35.6

DINOv2 [34] AMES (fp) 1600 ♠ 83.5 38.3
AMES (bin,distill) 1600 ♠ 81.8 37.8

n/a SG re-rank [48] 1600 ♠ 80.5 34.1

CVNet [27] SG re-rank [48] + AMES (fp) 1600 ♠ 82.3 36.0
SG re-rank [48] + AMES (bin,distill) 1600 ♠ 81.9 35.8

DINOv2 [34] SG re-rank [48] + AMES (fp) 1600 ♠ 84.5 38.5
SG re-rank [48] + AMES (bin,distill) 1600 ♠ 83.3 38.0

Table 1: Comparison with the state-of-the-art. Backbone architectures are
ResNet50 for DELG, ResNet101 for CVNet/SG, and ViT-B/14 for DINOv2. Global
descriptors are in full precision. Scores for SG without and with re-ranking are with our
best possible reproduction using the publicly available implementation. ♡: reported in
the literature, ♠: evaluated by us. AMES is used with L

test
x = 600 and L

test
q = 600 local

descriptors for the database and query image, respectively.
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Fig. 4: Universal vs. specific AMES models. Single specific: one model trained
with a fixed number of local descriptors L

train
x (value in brackets) and tested with

varying L
test
x . Many specific: six models in total, trained and tested per number of local

descriptors (L
test
x = L

train
x ). All models are without distillation.

4.2 Results

Performance/memory comparison. Figure 3 shows the performance of the
compared approaches on different memory settings. AMES achieves the best
trade-off; it performs better than all other methods for the same memory or
performs the same for much less memory. The binary variant significantly de-
creases memory over the full-precision variant at the cost of a small performance
drop. On top of that, our distillation consistently recovers most of this perfor-
mance loss. ASMK provides small improvements and does not benefit from more
descriptors. We outperform R2Former and RRT in all cases.

State-of-the-art (SoA) comparison. Reported results of SoA methods
are shown in Table 1. AMES achieves SoA performance when combined with
either CVNet or SuperGlobal as global descriptors and using the same value m
as the competing approaches. In the direct comparison with CVNet re-ranking,
we outperform it with a clear margin while our per-image memory footprint is
significantly lower, i.e. 301KB and ∼1400KB for AMES (fp) and CVNet, respec-
tively. Note that CVNet requires the full dense feature map representation. Our
binary variant achieves very competitive performance requiring only ∼10KB,
further optimizing performance-memory trade-off. In addition, AMES improves
performance over the query expansion re-ranking approach of SuperGlobal [48]
(AMES applied after SG re-rank), highlighting that SG re-rank is complemen-
tary in nature to AMES. In contrast, CVNet re-ranking does not improve over
SG re-ranking (cf. Shao et al . [48]).

Universal vs. specific models. In Figure 4, we demonstrate performance
for varying number of local descriptors per database image Ltest

x used during test-
ing. Specific models are trained with fixed L

train

x and either tested for Ltest

x = L
train

x

(many specific) or tested for varying L
test

x (single specific). Our universal model
achieves about the same performance as each of the many specific models, even
though those are tested for the number of local descriptors they are trained
with. Single specific variants demonstrate notable sensitivity to the discrepancy
between L

test

x and L
train

x .
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architecture L
test
x L

test
q bin dis global ROP+1M GLDv2 mem.

AMES 50 50 – – full 75.9 34.4 20.5
AMES 50 600 – – full 76.7 34.8 20.5
AMES 50 600 ✓ – full 75.6 34.3 8.8
AMES 50 600 ✓ ✓ full 76.5 34.6 8.8
AMES 50 600 ✓ ✓ PQ8 76.4 34.7 1.0

Table 2: Impact of AMES components on performance and memory/image (KB).

L
test
x L

test
q ROP+1M GLDv2

50 600 75.5 34.3
50 74.8 34.0

20 600 74.4 33.9
20 73.6 33.5

10 600 73.9 33.7
10 73.2 33.4

global-PQ8 72.8 33.3

Table 3: Impact of asymmetry on per-
formance. Experiment with varying num-
ber of descriptors L

test
q (query) and L

test
x

(database) during testing. Global similar-
ity performance is shown for reference.

mem. global L
test
x ROP+1M GLDv2

3KB
PQ1 64 76.9 34.8
PQ4 160 77.8 35.2
PQ8 176 78.0 35.3

2KB
PQ1 0 72.8 33.3
PQ4 96 77.4 35.1
PQ8 112 77.4 35.2

1KB PQ4 32 75.9 34.3
PQ8 48 76.4 34.6

Table 4: Performance of AMES for
small memory footprint per image
using various global-local descriptor com-
binations. Global descriptor quantization
and the number of local descriptors vary.

Ablation study. Table 2 reports performance and memory for an abla-
tion study. Asymmetric similarity is beneficial, while binarization slightly com-
promises the performance but provides large benefits in memory requirements.
Distillation improves performance without compromising memory. Compressing
the global descriptor with PQ8 saves memory with negligible performance loss.

Impact of asymmetry. Table 3 reports the results for symmetric (Ltest

x =
L

test

q ) and asymmetric (Ltest

x <L
test

q ) similarity. The number of descriptors varies
only on the query side and remains fixed on the database side. Increasing Lq

brings a significant performance increase in all cases. Figure 1 shows the impor-
tance of local descriptors based on the dot product similarity of the respective
tokens and the matching token at the output of the N -th transformer block.
In the asymmetric setting, only a few descriptors that correspond to the query
landmark are present, to which our model correctly assigns high importance.

Small memory footprints. Table 4 shows results for different combina-
tions of local/global descriptors to achieve a target memory per image. Observe
that it is worth compromising the precision of the global descriptor as an ex-
change for a larger number of additional local descriptors (PQ1/64 is worse than
PQ8/176 at 3KB, and PQ4/32 is worse than PQ8/48 at 1KB).

CVNet vs. DINOv2 for global and local descriptors. In Figure 5, we
show performance for four different combinations of global and local descrip-
tors. CVNet, and consequently SG, are the outcome of task-specific training,
while DINOv2 is a foundational model. Observe how SG is noticeably better as
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Fig. 5: AMES with different backbones for global and local representation
on ROP+1M (left) and GLDv2 (right).

101 102

74

76

78

80

20
50

100 200 400
600

time per batch of image pair (ms)

m
A

P

R2F RRT AMES (L
test
x =50) AMES (L

test
x =600)

Fig. 6: Performance vs. time on ROP+1M for varying L
test
q (shown in text labels)

and two values of L
test
x (R2Former and RRT use L

test
x = 50) using batches of 70 pairs.

Global similarity takes 0.03 ms. All three models use standard PyTorch modules.

a global descriptor, while DINOv2 as a local descriptor. Their combination, i.e.
SG global with DINOv2 local, is the winning entry of Table 1.

Inference speed and GPU memory complexity. Inference time is re-
ported in Fig 6, showing how L

test

q and L
test

x impact latency and that AMES
provides a better trade-off. Regarding GPU memory, the maximum batch size
during testing on an 80GB GPU with L

test

q = 600 and L
test

x = 50 is 6.1k, 4.3k,
and 5.2k pairs for RRT, R2Former, and AMES, respectively.

5 Conclusions

This work highlights the practical importance of keeping the memory require-
ments in retrieval low and provides an experimental benchmark to allow future
comparisons. We propose a new image-to-image similarity model that optimizes
the performance vs. memory trade-off in the best way compared to existing ap-
proaches. The comparisons are performed in a direct and fair way based on the
same representation backbone and using the same implementation framework
whenever possible. We anticipate local similarity will be a key ingredient for
tasks at a scale much larger than the current largest databases.
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