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ABSTRACT

Attribution methods compute importance scores for input features to explain
model predictions. However, assessing the faithfulness of these methods remains
challenging due to the absence of attribution ground truth to model predictions.
In this work, we first identify a set of fidelity criteria that reliable benchmarks
for attribution methods are expected to fulfill, thereby facilitating a systematic
assessment of attribution benchmarks. Next, we introduce a Backdoor-based eX-
plainable AI benchmark (BackX) that adheres to the desired fidelity criteria. We
theoretically establish the superiority of our approach over the existing bench-
marks for well-founded attribution evaluation. With extensive analysis, we further
establish a standardized evaluation setup that mitigates confounding factors such
as post-processing techniques and explained predictions, thereby ensuring a fair
and consistent benchmarking. This setup is ultimately employed for a compre-
hensive comparison of existing methods using BackX. Finally, our analysis also
offers insights into defending against neural Trojans by utilizing the attributions.

1 INTRODUCTION

Deep learning models have made remarkable strides across diverse domains (He et al., 2016; Good-
fellow et al., 2014; Ren et al., 2015) owing to their capacity to learn intricate representations. How-
ever, the extensive parameter scale that contributes to their success also renders these models less
interpretable for their decisions, limiting their applicability in high-stake tasks (Gade et al., 2019;
Tjoa & Guan, 2020; Ali et al., 2023). In an effort to provide explanations for model predictions, at-
tribution methods (Simonyan et al., 2014; Shrikumar et al., 2017; Sundararajan et al., 2017) ascribe
importance scores, referred to as attributions, to the input features. Despite their widespread adop-
tion, reliably evaluating the faithfulness of attribution methods remains an open problem due to the
lack of high-fidelity benchmarks. Consequently, the evaluation often relies on surrogate strategies
such as feature removal and input perturbations (Bach et al., 2015; Samek et al., 2016; Petsiuk et al.,
2018; Rong et al., 2022). However, these approaches often induce input distribution shift (Hooker
et al., 2019), undermining the fidelity of the evaluation by unintentionally altering the input distri-
bution. Conversely, efforts have also been made to conjure attribution ground truth by leveraging
training annotations (Zhang et al., 2018; Rao et al., 2022). However, these benchmarks still en-
counter challenges in rigorously delineating the attribution ground truth.

In this paper, we first provide a set of clear fidelity criteria that eXplainable Artificial Intelligence
(XAI) benchmarks should adhere to. We argue that these benchmarks should ensure fidelity to both
the explained model and the input, thereby satisfying both functional mapping invariance and in-
put distribution invariance. Moreover, we stress that attribution benchmarks should offer verifiable
ground truth for attributions and sensitive metrics for evaluation, which we refer to as attribution
verifiability and metric sensitivity, respectively. Our foundational criteria not only set a standard for
benchmarking but also facilitate a clear assessment of the existing XAI benchmarks. We then pro-
pose a new XAI benchmark (BackX) for attribution methods based on backdoor neural Trojans (Gu
et al., 2019) that render a model sensitive to a specific trigger pattern to control their predictions.
We propose to leverage this explicit control to systematically establish ground truth attributions.
Through a theoretical analysis, we establish a superior fidelity of our BackX.

To maintain benchmark fidelity, attribution evaluation must also deal with other confounding factors
related to post-processing techniques and the explained model’s predictions used for the explana-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

tion. Different choices in this regard eventually yield distinct attribution explanations (Smilkov
et al., 2017; Wang & Wang, 2022; Yang et al., 2023b). There is currently a lack of effort in pursu-
ing a standardized setup for attribution estimation. Through our well-founded BackX benchmark,
we reveal distinct properties of attribution methods using different setup choices, guiding us to a
standardized setup across different attribution methods. To the best of our knowledge, our work is
the first to suggest a fair setup for existing attribution methods. Using the identified setup, we even-
tually assess a range of attribution methods using various trigger controls under diverse Trojaning
techniques across both vision and language domains. A by-product of this comprehensive analysis
is unearthing insights for defense against neural Trojans using attributions. In summary, this article
contributes along the following three key aspects.

1. It systematically analyzes the attribution benchmark fidelity to identify key criteria for providing
reliable foundations for the evaluation of attribution benchmarks.

2. It proposes a backdoor-based XAI benchmark (BackX) for attribution methods. BackX leverages
controllable attributions through model manipulation, fulfilling the identified fidelity criteria.

3. It establishes a standardized setup for a fair assessment of attribution methods. Extensive bench-
marking is conducted across both visual and textual domains, uncovering distinct method behav-
iors and offering guidance for backdoor defense via attribution methods

2 ON BENCHMARK FIDELITY

Let us consider an input sample x ∈ Rn with its label y ∈ Rc from a dataset D. A classifier
denoted as f : Rn → Rc is parameterized by θ. To explain the model’s prediction f(x; θ), an
attribution explaining tool ϕ : Rc → Rn is used to generate an attribution map M , specifically
M = ϕ(f(x; θ)). An XAI benchmark intends to faithfully evaluate the reliability of the explanation
M . For a quick reference, we also provide a summary of the notations used in App. A.1.

In this section, we first put forth a set of criteria that a reliable explanation benchmark should adhere
to. We then compare existing benchmarks on the proposed criteria. While the following sections
discuss major related works, a more systematic overview is presented in App. A.2.

2.1 FIDELITY CRITERIA

Functional Mapping Invariance. Given a model f to be explained, e.g., Fig. 1(a), functional
mapping invariance requires that the attribution benchmarking process does not cause a functional
mapping shift to the model, see Fig. 1(b). Suppose a perturbation ζ is imposed on the model f
for benchmarking, resulting in f(x; θ + ζ) ̸= f(x; θ). This can lead to divergent explanations
ϕ(f(x; θ + ζ)), depending on ζ; which undermines the benchmarking reliability. Thus, functional
mapping invariance is crucial for upholding the benchmark fidelity to the explained model.

Input Distribution Invariance. Input distribution invariance mandates the constancy of the input
dataset distribution PD in benchmarking. Assuming ξ represents perturbations on the input samples
that leads to input distribution shift (i.e., PD ̸= Pξ(D)) - see Fig. 1(c). This shift causes a variation
of explanations for the original distribution D to the perturbed distribution ξ(D). As a result, input
distribution shift can lead to divergent benchmarking results of explanations, obscuring the true
cause of misalignment between the explanations and the model’s predictions. Thus, maintaining
input distribution invariance is crucial for ensuring the benchmark’s fidelity to the explained samples.

Attribution Verifiability. Attribution verifiability requires that the correctness of estimated attribu-
tions can be precisely validated. As illustrated in Fig. 1(d), the ground-truth attributions M∗ for a
given input data point can be derived from the normal vector decomposed along the horizontal and
vertical axes, such that M∗ = M∗

X +M∗
Y . The availability of the ground truth M∗ enables precise

verification of estimated attributions M = MX + MY . Therefore, the benchmark must provide
verifiable ground truth attributions M∗ to ensure its fidelity to the evaluated attributions.

Metric Sensitivity. Metric sensitivity requires that the metric used by the benchmark exhibits sen-
sitivity to the attribution change. Fig. 1(e) shows examples of both sensitive and insensitive metrics.
Given the estimated attribution M with its ground truth M∗, an insensitive metric, such as the area
enclosed by the normal vectors and their components, yields identical results for both M∗ and M .
This insensitivity fails to accurately quantify the attribution changes. In contrast, the difference of
vector components between the estimated attribution M and the ground truth M∗, denoted by ∆MX
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Figure 1: Illustration of fidelity criteria. For explaining (a) the model, a faithful XAI benchmark
should avoid (b) Functional Mapping Shift, and (c) Input Distribution Shift, while ensuring (d)
Attribution Verifiability, and (e) Metric Sensitivity. See § 2.1 for explanations.

and ∆MY , serves as a reliable metric. Therefore, the metric used in the benchmark must be sensitive
to attribution changes to ensure its fidelity to the evaluation process.

2.2 FIDELITY COMPARISON Table 1: Fidelity criterion fulfillment of XAI benchmarks.

Fidelity Criteria Explainable AI Benchmarks

MoRF, LeRF; Ins.& Del. Game

ROAR; DiffROAR

ROAD; DiffID

Sensitivity-n; SENSMAX , INFD

Model & label randomization

Pointing Game; DiFull & DiPart

Neural Trojan

Null Feature; CLEVR-XAI

Our BackX Benchmark

Funct. Mapping Inv.  #   # G#    
Input Dist. Inv. #  G# G#   G#  G#
Attr. Verifiability # # # G# G# G# G# G#  
Metric Sensitivity     G# G# G# G#  

Desirability Score 2 2 2.5 3 2 2.5 2.5 3.0 3.5

 = Strong (1); G# = Weak (0.5); # = No fulfillment (0).

In Tab. 1, we present a comparative
analysis of different benchmarks with
regards to their fidelity criteria assur-
ance. We refer to App. A.4 for the de-
tails of the ratings provided in the ta-
ble. The attribution benchmarks that
rely on input perturbations, such as
MoRF, LeRF (Samek et al., 2016),
and Ins.&Del. Games (Petsiuk et al.,
2018), fail to ensure input distri-
bution invariance. ROAR (Hooker
et al., 2019) and DiffROAR (Shah
et al., 2021) retrain models on per-
turbed input samples to maintain in-
put distribution invariance. How-
ever, they introduce shifts in func-
tional mapping, thereby compromising functional mapping invariance. Efforts by ROAD (Rong
et al., 2022) and DiffID (Yang et al., 2023a) to address functional mapping shifts fall short in fully
ensuring input distribution invariance. Existing sanity checks (Adebayo et al., 2018; Ancona et al.,
2018; Yeh et al., 2019) also test the fidelity of attribution methods under model and input variations.
Overall, perturbation-based attribution benchmarks and sanity checks in columns 1-5 of Tab. 1 strug-
gle to simultaneously ensure invariance to both functional mapping and input distribution.

In Tab. 1, it is evident that a full guarantee of attribution verifiability presents a significant challenge.
In an effort to establish attribution ground truth for verifiability, Pointing Game (Zhang et al., 2018),
DiFull & DiPart (Rao et al., 2022) employ training annotations as attribution ground truth. Lin et al.
(2021) use neural Trojan for providing attribution ground truth. CLEVR-XAI (Arras et al., 2022)
generates synthetic images to provide controlled evaluations. However, these benchmarks fail to
provide fully verifiable attributions. The challenge of offering attribution ground truth also adds
complexity to upholding metric sensitivity within such benchmarks. Overall, our benchmark, dis-
cussed in the forthcoming section, stands out for its higher fidelity compared to existing techniques.

3 BACKX BENCHMARK

In this section, we commence by illustrating the pipeline of our BackX benchmark and then we
introduce a set of metrics crafted to evaluate the capabilities of attribution methods. Finally, we
provide a discussion on the assurance of benchmark fidelity criteria in the BackX benchmark.

3.1 BENCHMARK FRAMEWORK

In Fig. 2, we present an illustration of our BackX benchmark pipeline. Given a clean training set D,
we generate a poisoned training set D̃ by incorporating a trigger v into certain portions of the clean
samples and modifying the true label y with the poisoned target label ỹ. This poisoned training set is
then used to transform a benign model f into a Trojaned model f̃ in Step 1 of Fig. 2. The Trojaned
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Figure 2: The pipeline of BackX. Step 1 embeds a backdoor into a benign model by retraining it on a
poisoned set. Step 2 uses the Trojaned model to generate predictions. Step 3 explains the predictions
via attribution methods. Step 4 recovers a sample from a poisoned sample by replacing its pixels
from a clean sample, as guided by the attribution mask. Step 5 assesses attribution methods.

model is employed to generate predictions f̃(x) and f̃(x̃) of clean and poisoned samples x and x̃,
as shown in Step 2 of Fig. 2. Then, an attribution method ϕ explains the output prediction f̃ỹ(x̃) for
class ỹ, producing an attribution map M - Step 3 of Fig. 2. Subsequently, a mask S(k) ∈ {0, 1}n
is computed, identifying the top k% most important input features (e.g., input pixels) as specified
by the attribution map. The mask is then utilized to remove the poisoned portion of the sample to
construct a recovered sample x̂, see Step 4 of Fig. 2. Specifically, a clean patch is extracted from the
clean image using the mask. The recovered sample is constructed by replacing the corresponding
pixels in the poisoned sample with the extracted patch. Mathematically, x̂ = x̃⊙(1−S(k))+x⊙S(k).
The recovered sample x̂ estimated from a faithful attribution method is expected to be an accurate
transformation of the poisoned sample x̃ to its clean counterpart x. Thus, attributions ϕ(f̃(x)) for
the predictions on the clean samples serve as the attribution ground truth for the recovered sample.
Driven by the attainability of ground truth, we benchmark attribution methods using the backdoored
model, as illustrated in Step 5 of Fig. 2.

In BackX, we comprehensively incorporate both visible and invisible trigger patterns for Trojaned
models through Blend (Chen et al., 2019) and ISSBA (Li et al., 2021). For the complete control,
we enhance the Blend attack with a watermark trigger to ensure poisoned samples align with the
original distribution, focusing the Trojaned model solely on the trigger region. The watermark
trigger follows the formula v(α) = α · v + (1− α) · x⊙ S∗, where α ∈ [0, 1] is the visibility of the
trigger, and S∗ ∈ {0, 1}n is the mask of trigger v. ISSBA attack is utilized to generate input-specific
invisible triggers. Further details on the Trojaned models used in our experiments are in App. A.7.

3.2 EVALUATION METRICS

In this part, we define metrics specifically tailored to our backdoor-based evaluation for BackX.

Attack Success Rate. Attack Success Rate (ASR) is a prevalent metric in backdoor attacks (Turner
et al., 2019; Guo et al., 2022). It records the success of target prediction label ỹ for the input
samples with true label y when the trigger is embedded in the input samples. In our context, the
ASR is formally defined as

ASR = E
(x,y)∼D

I[ŷ = ỹ|y ̸= ỹ], ŷ = argmax
i

f̃i(x̂). (1)

Here, the ASR is computed as an expectation over samples drawn from a dataset D through a boolean
function I[·]. In our benchmark, we leverage ASR to evaluate the ability of attribution methods to
successfully identify the trigger with the recovered sample x̂.

Trigger Recall. We then assess the localization capability of attribution methods. Trigger Recall
(TR) is introduced to evaluate the ability of an attribution method to locate the embedded triggers.
TR computes an expectation over poisoned samples x̃ by evaluating the alignment between its trigger
mask S∗

x̃ and the attribution mask S
(k)
x̃,ỹ of target class ỹ as

TR = E
(x,y)∼D

S
(k)
x̃,ỹ ∩ S∗

x̃ / S
∗
x̃, y ̸= ỹ, (2)

where S
(k)
x̃,ỹ, S

∗
x̃ ∈ {0, 1}n, and k ∈ [0, 1] is the fraction of the most important features identified.
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Logit Fractional Change. We further quantify the impact of attribution on model prediction confi-
dence by measuring the logit fractional change of target class ỹ as ∆fỹ(x̂). This measure quantifies
the extent to which the attribution method can help reduce the confidence of the target class ỹ when
recovery is made by replacing the features identified as trigger features by attributions. We simi-
larly denote the logit fractional change of the output for the true label y as ∆fy(x̂). This serves to
quantify the extent to which the attribution method can help restore the confidence in the class y.
Concretely, the logit fractional change through the backdoored model f̃ are defined as

∆f̃ỹ(x̂)=
f̃ỹ(x̂)−f̃ỹ(x)

f̃ỹ(x̃)− f̃ỹ(x)
, ∆f̃y(x̂)=

f̃y(x̂)−f̃y(x̃)

f̃y(x)− f̃y(x̃)
. (3)

To direct the metric’s focus solely on the attribution of introduced trigger features, we further sub-
tract f̃ỹ(x) and f̃y(x̃) from predictions on x̂ and their corresponding reference predictions f̃ỹ(x̃)

and f̃y(x) to eliminate the potential class information from x and x̃. We further combine these two
metrics to simultaneously assess the capability to restore predictive confidence in the clean class and
to reduce the confidence of the poisoned class as E(x,y)∼D||∆f̃y(x̂)||2 + ||1−∆f̃ỹ(x̂))||2.

3.3 BENCHMARK FIDELITY EXAMINATION

In this part, we closely examine how BackX guarantees the fidelity criteria defined in Sec. 2.1.

Functional Mapping Invariance & Metric Sensitivity. The BackX framework inherently ensures
Functional Mapping Invariance by consistently employing a fixed Trojaned model f̃ throughout the
benchmarking process, without introducing any perturbation ζ to the model parameters θ. In addi-
tion, the proposed three metrics are designed to independently and precisely assess each component
of the estimated attribution set ϕi(x)

n
i=1, thereby guaranteeing Metric Sensitivity.

Input Distribution Invariance. To rigorously assess this criterion, we present Proposition 1 below.
Proposition 1. Let f be a model that assigns the label y to any input x and to all inputs x̄ within
an ϵ-ball under metric Ω, i.e., f(x̄) = f(x) whenever Ω(x, x̄) ≤ ϵ. Suppose a Trojaned input is
given by x̃ = x + v, where Ω(x, x̃) ≤ ϵ̃ and f(x̃) ̸= f(x) due to the trigger v. Assume x̂ is a
reconstruction of x from x̃ such that Ω(x, x̂) ≤ ϵ̃. If ϵ̃ ≤ ϵ, then x̂ lies within the ϵ-ball of x, and
thus f(x̂) = f(x).

The proof of Proposition 1 is in App. A.3. It describes when the input undergoes slight changes due
to neural Trojans, the restored sample x̂ remains within a permissible boundary, ensuring it stays
within the original distribution, provided the shift ϵ̃ is sufficiently small compared to ϵ.

Given the stealthy nature of neuron backdoors, the constraint ϵ̃ is negligibly small for well-trained
models (Szegedy et al., 2013), which implies Ω(x, x̂) ≤ Ω(x, x̄). This suggests that ϵ̃ ≤ ϵ, ensuring
that the reconstructed sample x̂ remains largely within the original data distribution. Whereas we
acknowledge that BackX cannot perfectly eliminate the influence of input distribution shift, the Input
Distribution Invariance is only subtly disturbed and remains effectively bounded by ϵ throughout
benchmarking.

Attribution Verifiability. BackX focuses on benchmarking using recovered samples, which may
unintentionally reveal information about the attribution mask used in recovery (Rong et al., 2022),
thereby compromising attribution ground truth fidelity. To ensure Attribution Verifiability, it is cru-
cial to rigorously assess information leakage from the recovery samples.

We commence by examining the entropy of a singular variable x, quantifying the amount of infor-
mation as H(x) = −

∑
xi∈x P (xi)logP (xi). The classification performance is correlated with the

mutual information I(x; c) between the input x and a class c. Attribution methods benchmarked
using a masked sample x̂ quantify the mutual information I(x̂; c). Assuming the attribution mask
S operates as a patch that directly removes features from the input sample, this process inevitably
allows the leakage of class-related information into the masked sample x̂, leading to a leakage of
I(S; c). The leakage leads to unfaithful evaluations by introducing class information from S in x̂,
i.e., I(x̂; c) ̸= I(c; x̂|S). To ensure benchmarking fidelity, the leaked features from S should be
eliminated, i.e., I(S; c) ≈ 0. The below proposition formalizes this relation.
Proposition 2. By minimizing the mutual information I(S; c) between the mask S and a class c, the
leaked information from the attribution mask S to the masked sample x̂ can be alleviated, resulting
in enhanced fidelity of the evaluation results, following I(c; x̂) ≈ I(c; x̂|S).
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The proof of the proposition is provided in App. A.3. In contrast to the existing benchmarks using
feature removal, our benchmark recovers the features of the poisoned sample with those of the clean
sample through the mask. The recovered features which are part of the clean sample x do not contain
additional information related to the target class ỹ. As a result, the leaked information from S to
class ỹ is negligible, if any. Thus, the evaluation process within our benchmark provides assurance
of Attribution Verifiability. In App. A.5, further fidelity examination of Attribution Verifiability for
the used models and metrics is provided.

Thus, we theoretically show that it is not the mere existence of neural Trojans that yields bench-
marking fidelity, but that BackX’s tailored strategies with tighter theoretical guarantees establish
the backdoor-based route as a definitive pathway to fidelity. A further discussion is provided in
App. A.13. Moreover, we formally establish that BackX offers the desired level of assurance for
fulfilling the essential fidelity criteria, which is not achieved by the prior benchmarking techniques.

4 STANDARDIZED ATTRIBUTION EVALUATION

Having established the foundations of a reliable benchmark for attribution methods, we further an-
alyze the existing attribution techniques for their transparent benchmarking. Currently, a diverse
range of attribution methods is available in the literature. It has been demonstrated that their eval-
uation results are significantly influenced by two common confounding factors, (1) post-processing
techniques of attributions (Smilkov et al., 2017; Yang et al., 2023b) and (2) explained model outputs
in attribution estimation (Wang & Wang, 2022). However, to the best of our knowledge, no existing
contribution explores a consistent evaluation paradigm for the different attribution methods. Our
empirical analysis below is aimed at establishing a fair paradigm for consistent benchmarking.

To achieve our goal, we analyze diverse attribution methods including Grad-CAM (GCAM) (Sel-
varaju et al., 2017), FullGrad (Srinivas & Fleuret, 2019), Input Gradients (Grad) (Simonyan et al.,
2014), Guided GCAM (GGCAM) (Selvaraju et al., 2017), SmoothGrad (SG) (Smilkov et al., 2017),
Integrated Gradients (IG) (Sundararajan et al., 2017), IG-Uniform (Sturmfels et al., 2020), AGI (Pan
et al., 2021), and LPI (Yang et al., 2023a). We categorize these techniques into three groups based
on their distinct methodologies, namely; CAM-based methods (GCAM and FullGrad), gradient-
based methods (Grad, GGCAM and SG), and integration-based methods (IG, IG-Uni, AGI and
LPI). Further discussion and results on attribution methods such as LRP, LIME, and others (Ribeiro
et al., 2016; Shrikumar et al., 2017; Novello et al., 2022) are presented in App.A.6 and App.A.10.2.

4.1 POST-PROCESSING CHOICE

It is currently prevalent to use any of the absolute or original attribution scores to explain model
predictions, despite the fact that these two choices yield distinct explanations. This begs for an en-
quiry into the right choice between the original and absolute values for benchmarking. In Fig. 3, we
analyze the attack success rate and trigger recall for the two post-processing choices under BackX
while fixing the image recovery equal to the trigger ratio. To facilitate comparison, we calculate
the differences in benchmarking results between absolute and original values of attributions. The
analysis is performed for CIFAR-10 (Krizhevsky et al., 2009), GTSRB (Houben et al., 2013) and
ImageNet (Russakovsky et al., 2015) datasets. For CAM-based methods, GCAM maintains con-
sistent results across the datasets and our metrics. FullGrad’s integration of gradients from biases
leads to fluctuations among the datasets. In contrast, all three gradient-based methods consistently
rely on taking absolute attribution values across all the datasets for improved performance. One
plausible explanation behind the insensitivity of gradient-based methods to the sign of attributions
lies in their focus on capturing the magnitude of each feature’s influence on the model output using
input gradients, irrespective of the direction of change in the feature’s value.

On the other hand, integration-based methods have a slightly more stable performance across data
sets. Their reliance on absolute attribution scores decreases as the mean value of the image pixels
decreases. This can be attributed to the fact that these techniques accumulate gradients from a refer-
ence input. Images with lower mean pixel values tend to reduce the undesired gradient fluctuations
due to their natural proximity to the reference. We draw the following observation from our analysis.

Observation 1. Basic CAM-based methods remain insensitive to post-processing techniques.
Gradient-based methods consistently depend on computing absolute attributions, whereas this re-
liance decreases in integration-based methods with a reduction in the mean pixel value.
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ImageNet ImageNetGTSRB GTSRBCIFAR-10 CIFAR-10

(a) Attack success rate difference (b) Trigger recall difference

(Pixel mean: 0.449) (Pixel mean: 0.473) (Pixel mean: 0.319) 

Figure 3: The performance comparison of CAM-based, gradient-based and integrated-based attri-
bution methods on CIFAR-10, GTSRB and ImageNet using BackX benchmark. (a) Difference in
Attack Success Rate between benchmarking absolute values (abs.) and original values (org.) of
attributions is calculated. (b) Trigger Recall difference with and without taking absolute values.

(Class num.: 43) (Class num.: 10) (Class num: 1000)

(b) Trigger recall difference(a) Attack success rate difference 

ImageNet ImageNetGTSRB GTSRBCIFAR-10 CIFAR-10

Figure 4: The performance comparison of attribution methods for output choice. (a) Difference
between attack success rate when attributions are computed for softmax probabilities (prob.) and
logits. (b) Trigger recall difference using softmax probabilities and logits.

Based on our observation, we use absolute attributions for gradient-based methods in the subsequent
experiments. CAM- and integration-based methods use original attributions to ensure their axioms.

4.2 OUTPUT CHOICE

In general, contemporary attribution methods lack a clear distinction between using model logits
and softmax probabilities as the model output for computing the attributions (Wang & Wang, 2022).
This can compromise benchmarking transparency. In Fig. 4, we compare the ASR and TR on BackX
benchmark when attributions use output logits and probabilities on CIFAR-10, GTSRB, and Ima-
geNet. Following the conventions from Fig. 3, we report the differences between the values. The
results demonstrate that CAM-based methods tend to rely on explaining probabilities to achieve bet-
ter performance, whereas integration-based methods prefer explaining output logits. Gradient-based
methods exhibit a significant fluctuation between explaining logits and probabilities. In addition,
explaining logits leads to stronger localization capabilities in both gradient-based and integration-
based attribution methods, as shown in Fig. 4(b). However, it is worth noting that the attribution dif-
ferences between the choices of logits and probabilities become narrower as the number of classes
increases. We make the following observation from the experiments.

Observation 2. CAM-based methods rely on output probabilities to gather distinctive class infor-
mation to construct accurate activation maps. In contrast to output probabilities, explaining logits
enables attributions to preserve unnormalized original activations for a class, leading to enhanced
localization capability. However, the disparity of attributions between explaining logits and proba-
bilities ultimately diminishes as the number of classes increases.

Guided by this, we use CAM-based methods to explain output probabilities, while we use gradient-
based and integration-based attribution methods to explain logits in our subsequent experiments.

In App. A.8, we further investigate alternative contrastive outputs(Wang & Wang, 2022) and recal-
ibrated attributions (Yang et al., 2023b), offering additional insights. In summary, our experimental
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CIFAR-10 GTSRBImageNet CIFAR-10 GTSRB

(a) Attack success rate under Blend Attack (b) Attack success rate under ISSBA Attack

Figure 5: Benchmarking of attribution methods using the attack success rate metric. Lower is better.

CIFAR-10 GTSRBImageNet CIFAR-10 GTSRB

(a) Fractional logit change under Blend Attack (b) Fractional logit change under ISSBA Attack

Figure 6: Comparison of fractional logit change using (a) Blend attack and (b) ISSBA attack. Bub-
ble size is scaled by overall performance. Bubbles near the top-left indicate better results.

results show that different setups yield distinctive performances for the same attribution method.
This implies that the performance of these methods is susceptible to misinterpretation. We offer a
standardized setup for consistent and fair benchmarking. To the best of our knowledge, there has
been no prior research addressing the need for a standardized consistent setup. We advocate for the
adoption of a unified configuration, which is imperative for the advancement of attribution methods.

5 BENCHMARKING

In this section, we conduct an extensive benchmarking of the attribution methods under BackX.
CIFAR-10 GTSRBImageNet

Figure 7: Benchmarking of attribution methods under Blend at-
tack using trigger recall metric. Higher is better.

In Fig. 5(a), we provide results
for Trojaned ResNet-18 mod-
els using the Blend attack with
trigger visibility of 0.5. We
employ nine attribution meth-
ods with varying image recov-
ery rates across three datasets:
ImageNet, CIFAR-10 and GT-
SRB. The corresponding trigger
recall, as the image recovery rate increases, is reported in Fig. 7. Experimental results reveal that
integration-based methods and gradient-based methods generally outperform CAM-based methods.
Integration-based methods achieve superior performance on GTSRB, while gradient-based methods
outperform others on CIFAR-10. Importantly, integration-based methods exhibit higher stability
across different datasets. It is observed that GGCAM significantly enhances CAM across all datasets
with element-wise estimated attributions by incorporating Grad. Moreover, attribution methods es-
timated from perturbed inputs with steep slope curves, such as SG and AGI, demonstrate the best
performance in locating important features. However, AGI’s random class selection for calculating
adversarial examples undermines its stability.

Figure 5(b) shows the attack success rate on a Trojaned model through ISSBA attack (Li et al.,
2021) on CIFAR-10 and GTSRB. Due to input-specific triggers demonstrating weak attack capa-
bilities on larger-scale input samples, as they can be easily recovered by random attributions, we
have excluded ImageNet from our experiments. Fine-grained integration-based and gradient-based
methods can achieve outstanding performance for detecting invisible triggers. CAM-based methods,
which fail to capture element-wise triggers, still manage to achieve competitive results compared to
the integration-based and gradient-based methods.

In Fig. 6, we compare the fractional logit change for both the Blend and ISSBA attacks. The experi-
mental results show the fractional change in logit output of both the true class y and the target class ỹ
to create a bubble chart. A faithful attribution method is expected to reduce the output of target class
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CIFAR-10ImageNet CIFAR-10 GTSRB GTSRB

(a) Trigger recall change with trigger visibility (b) Trigger recall change with poisoning rate

Figure 8: Results of trigger recall changes with (a) trigger visibility and (b) poisoning rate. Mean
curves over various methods are highlighted. Higher trigger recall values correspond to an increased
capacity to defend against backdoor attacks.

ỹ while recovering the output of true class y. The markers representing different attribution methods
are scaled by the corresponding performance. In this metric, integration-based methods exhibit both
high performance and consistency. Additionally, compared to recovering the output of the true class
y, all attribution methods are effective at decreasing the output of the target class ỹ. Notably, CAM-
based attribution methods can achieve competitive results in recovering the output of y compared to
ỹ. The results indicate that the attribution methods tend to perturb the target class rather than fully
recover it. More results on fractional probability change and attribution visualizations are provided
in App. A.10. We make the following observation based on the overall results.

Observation 3. Gradient-based attribution methods tend to achieve better results, while integration-
based methods exhibit more stability across different datasets. As compared to recovering the origi-
nal class y, all attribution methods are better at reducing the misclassification to target ỹ.

More results on model architectures and model depths are provided in App. A.10.3. Beyond the
vision domain, we extend BackX to language models, demonstrating its generality across modalities.
Comprehensive benchmarking results on textual attribution are presented in App. A.11.

6 BACKDOOR DEFENSE WITH ATTRIBUTIONS

Here, we investigate the potential of the analyzed attribution methods for defending against backdoor
attacks. In Fig. 8(a), we assess the change in attribution performance, measured by trigger recall,
across varying trigger visibility. Counter to general intuition, we observe that attribution methods do
not lead to better trigger localization with higher trigger visibility. This unanticipated behavior can
be attributed to the fact that learning a robust feature, such as a clear trigger, does not demand fine-
grained tuning of the model weights to attract its attention. In other words, better trigger visibility
actually leads to a relatively easier adversarial learning objective. Hence, trigger visibility fails to
show a positive correlation with trigger recall through attribution. Figure 8(b) also reports the change
in trigger recall as the poisoning rate varies. Interestingly, the poisoning rate also has only a limited
effect on the performance of attribution methods. Based on our experiments, we make the following
observation to provide guidance of defending against backdoor attacks by attributions.

Observation 4. Counterintuitively, higher trigger visibility does not render improved defensibility,
as highly visible triggers can steer predictions without requiring deep integration into the model’s
reasoning process. Attribution methods maintain stable performance across poisoning rates, show-
ing consistent feature learning modes for the same trigger pattern under varying attack scales.

Additional results on the resilience of attribution methods against various neural Trojans are in
App. A.12, offering further insights into the effectiveness of attributions under diverse attacks.

7 CONCLUSION

To establish a reliable benchmark for XAI in attributions, we devised a set of fidelity criteria for eval-
uating attribution benchmarks, facilitating a thorough comparison of existing benchmarks. Subse-
quently, a backdoor-based evaluation framework (BackX) is developed, which underwent theoretical
validation to ensure a superior level of fidelity criteria. Leveraging this fidelity benchmark, our study
systematically explored various attribution methods, revealing their distinctive properties. This sys-
tematic exploration enabled a standardized setup for attribution estimation, mitigating confounding
factors in benchmarking. BackX employs this setup to conduct comprehensive benchmarking of
attributions, highlighting both their strengths and weaknesses. Furthermore, we provided insights
into the defensibility of attributions against neural Trojans under varying attack settings.
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ETHICS STATEMENT

This work contributes to the reliability and safety of AI systems by proposing a benchmark that rig-
orously evaluates the fidelity of attribution methods using controlled backdoor injections. Reliable
attribution is essential for building trust, supporting accountability, and enabling safe deployment in
sensitive domains such as healthcare and finance. By providing a principled way to reject unfaithful
explanations, BackX helps prevent misleading interpretations of model behavior. While the use of
backdoor techniques could raise dual-use concerns, our framework is strictly intended for controlled
evaluation and does not facilitate malicious use. We believe this work offers a positive step toward
more trustworthy and interpretable machine learning systems.

REPRODUCIBILITY STATEMENT

We provide the complete experimental setup in App. A.7, including trigger patterns, model config-
urations, hyperparameters, and software/platform details. Extended analyses and ablations are in
Apps. A.8–A.12. Formal proofs are provided in App. A.3. These sections contain the details needed
to reproduce our results.
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A.1 NOTATION

In Table 2, we provide a summary of the notations used in the paper, along with their corresponding
definitions.

Table 2: The used notations and the corresponding definition.

Notation Definition
x, x̃ ∈ Rn Input clean sample and poisoned sample within a n-dimensional input space
y, ỹ ∈ Rc True label and target label within a c-dimensional output space

f, f̃ Clean benign model and Trojaned model
f(x), p(x) Output logits and output probabilities

ϕ Attribution method
M,M∗ Estimated attributions and attribution ground truth

ζ Perturbation operator for model
ξ Perturbation operator for input

D, D̃ Training set and poisoned training set
PD Input distribution
S(k) Attribution mask indicating k% most important elements

S∗ ∈ {0, 1}n Attribution binary mask of a trigger pattern
x̂ Recovery sample
x′ Reference input

∇xf(x) Input gradients of output logits
v Trigger pattern
α Trigger visibility
I(·) Bool function
H(·) Entropy of a variable
I(·) Mutual information between variables
Ak

i,j (i-th,j-th) element of activations in k-th layer
wc

k activation weight of c-th class in k-th layer
Ψ Interpolated operator

A.2 RELATED WORK

To explain model predictions, attribution methods assign importance scores to input features. De-
convnet (Zeiler & Fergus, 2014) and GBP (Springenberg et al., 2015) utilize deconvolution tech-
nique to compute feature importance. CAM (Zhou et al., 2016) and GradCAM (Selvaraju et al.,
2017) calculate class activation maps for locating class-specific input features. Compared to CAM-
based methods, InputGrad (Simonyan et al., 2014) calculates gradients with respect to the input for
model explanation. SmoothGrad (Smilkov et al., 2017) aggregates input gradients across input sam-
ples with Gaussian noise, leading to a notable enhancement in localization ability. FullGrad (Srinivas
& Fleuret, 2019) further integrates gradients from model biases, satisfying additional axioms. To
guarantee more axioms, Sundararajan et al. (2017) accumulate gradients from a reference to the
input. To improve reference reliability, IG-SG (Smilkov et al., 2017), IG-SQ (Hooker et al., 2019)
and IG-Uniform (Sturmfels et al., 2020) employ perturbed inputs as references. EG (Erion et al.,
2021) employ training samples as references to maintain the distribution invariance. Pan et al. (2021)
calculated class-specific adversarial samples as the reference. Yang et al. (2023b) recalibrated attri-
butions with valid references. Wang & Wang (2022) explained a contrastive output for distinctive
attributions, leading to class-contrastive attributions. Instead of explaining the model’s output,

Numerous explanation methods also have given rise to a multitude of XAI benchmarks. LeRF and
MoRF (Samek et al., 2016) are extended from pixel flipping (Bach et al., 2015), which perturbs
input samples to test attributions. Similarly, insertion and deletion games (Petsiuk et al., 2018) of-
fer a benchmark for evaluating attributions of a single input sample. ROAR (Hooker et al., 2019)
and DiffROAR (Shah et al., 2021) were proposed to retrain models on the perturbed images, ensur-
ing models are learned within the distribution. ROAD (Rong et al., 2022) and DiffID (Yang et al.,
2023a) offer ways to mitigate input distribution shift without costly model retraining. On the other
hand, sensitivity-n (Ancona et al., 2018), SENSMAX and INFD (Yeh et al., 2019) focus on testing
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the fidelity of attributions by perturbing the input. Adebayo et al. (2018) randomized the model
parameters and training labels to test the sanity of attributions. Other efforts have also been made
to provide ground truth for the estimated attributions. DiFull, DiPart (Rao et al., 2022) and Pointing
Game (Zhang et al., 2018) employ training annotations for evaluation. Khakzar et al. (2022) used
model-optimized features for attribution ground truth. Lin et al. (2021) benchmarked explaining
tools through analyzing the detection of visible triggers in input for Trojanned models. Addition-
ally, Arras et al. (2022) employed the controlled VQA framework to generate synthetic images for
benchmarking.

A.3 PROOF

In this section, we provide the proof of Proposition 1 and Proposition 2.

Proof of Proposition 1. Let f be a benign model that correctly classifies input x as label y, and
maintains this prediction for all inputs x̄ within an ϵ-ball centered at x under the distance metric Ω.
Formally, this assumption is expressed as

∀x̄ ∈ Rn, Ω(x, x̄) ≤ ϵ =⇒ f(x̄) = f(x), (4)

where Ω(x, x̄) quantifies the distance between x and x̄.

Consider a Trojaned input x̃ = x+ v, where v denotes the injected trigger pattern. We assume that
the Trojan perturbation satisfies Ω(x, x̃) ≤ ϵ̃, and that f(x̃) ̸= f(x) due to the adversarial effect of
the trigger. Let x̂ denote a reconstructed version of the original input x from the Trojaned input x̃,
such that the reconstruction error is no greater than the perturbation itself, i.e., Ω(x, x̂) ≤ Ω(x, x̃).
Under the condition that ϵ̃ ≤ ϵ, it satisfies

Ω(x, x̂) ≤ ϵ̃ ≤ ϵ, (5)

which implies that x̂ lies within the ϵ-ball centered at x. By the assumption in Eq. equation 4, it then
holds that f(x̂) = f(x).

Therefore, if the reconstruction error is bounded by the perturbation magnitude ϵ̃ and ϵ̃ ≤ ϵ, the
reconstruction process yields a sample x̂ that remains within the model’s trusted prediction region.
In this case, x̂ preserves the original classification, effectively restoring the model’s behavior on
Trojaned inputs.

Proof of Proposition 2. Given a recovery image x̂, the performance of attribution methods for a tar-
get class c evaluated in our BackX benchmark can be represented as I(x̂; c). We follow the derivation
on the multi-information as Vergara & Estévez (Vergara & Estévez, 2014), Rong et al. (Rong et al.,
2022). Assume an attribution mask S, the multi-information I(x̂; c;M) can be represented as

I(c; x̂|S) = I(c; x̂|S)− I(x̂; c), (6)

I(x̂; c;S) = I(c;S|x̂)− I(S; c). (7)

By equating Equation 6 and Equation 7, we can derive

I(x̂; c) = I(c; x̂|S) + I(S; c)− I(c;S|x̂), (8)

where I(c; x̂|S) represents the target we aim to estimate, representing the mutual information be-
tween the recovery input x̂ and a class c for a given mask S. I(S; c) represents the mutual in-
formation between S and c, which we aim to eliminate. The last term I(c;S|x̂) indicates mutual
information between S and c given x̂, compensating for I(S; c).

Minimizing the mutual information I(S; c) between the mask and the class label leads to the approx-
imation that I(S; c) approaches I(c;S|x̂), specifically I(S; c) ≈ I(c;S|x̂). Thus, this mitigation
of the leaked information I(S; c) from the mask S leads to an improvement in the reliability of the
evaluation results for I(x̂; c), specifically I(x̂; c) ≈ I(c; x̂|S).
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A.4 BENCHMARK FIDELITY DISCUSSION

In Tab. 1, we present a comparative analysis of different benchmarks with regard to their fidelity
criteria assurance. Below, we discuss the details of the ratings provided in the table following three
categories of the methods based on their underlying techniques.

Input Perturbation-based Methods. Since attribution maps are expected to highlight im-
portant input features, attribution benchmarks, including MoRF, LeRF (Samek et al., 2016),
Ins.&Del. Games (Petsiuk et al., 2018), DiffID (Yang et al., 2023a) and ROAD (Rong et al., 2022),
assess attribution methods by iteratively replacing pixels with zero or noise pixels. However, the
input change causes an input distribution shift (Hooker et al., 2019), compromising the reliability
of evaluation outcomes. To ensure input distribution invariance, ROAR (Hooker et al., 2019) and
DiffROAR (Shah et al., 2021) retrain the model using perturbed input samples to incorporate the
perturbed input samples within the training distribution. However, retraining models violate the
criterion of functional mapping invariance. Thus, input perturbation-based attribution benchmarks
shown in columns 1-3 of Tab. 1 struggle to ensure invariance to input distribution and the explained
model.

Sanity and Sensitivity Checks. Sanity and sensitivity checks are originally proposed to test the
fidelity of attribution methods for the explained input samples and models. Benchmarks such as
sensitivity-n (Ancona et al., 2018), SENSMAX, and INFD (Yeh et al., 2019) aim to assess the sen-
sitivity of attribution methods under input perturbations. While these benchmarks provide valuable
assessment targets, these targets are unachievable by attribution methods in practice, resulting only
in a partial guarantee of attribution verifiability. Adebayo et al. (Adebayo et al., 2018) random-
ized model parameters and training labels to test the sanity of attributions. However, this sanity
check can lead to a functional mapping shift. Similar to the input perturbation-based techniques,
sanity and sensitivity checks in columns 4-5 of Tab. 1 rely on input or model perturbations, making
it challenging to simultaneously satisfy both input distribution invariance and functional mapping
invariance.

Benchmark with Attribution Ground Truth. Other attribution benchmarks have made efforts to
establish attribution ground truth for assessing attribution methods. Pointing Game (Zhang et al.,
2018), DiFull & DiPart (Rao et al., 2022) utilize training annotations as attribution ground truth.
However, training annotations only offer partial ground truth information for attributions. Khakzar
et al. (Khakzar et al., 2022) calculated Null Feature without class information through model opti-
mization as the ground truth for attributions. However, there remains a notable absence of evidence
substantiating the relationship between the features generated by model optimization and their corre-
sponding attributions. CLEVR-XAI (Arras et al., 2022) employs a visual question-answering frame-
work to generate synthetic images to provide controlled evaluations of generated objects. However,
the presence of shadows from these objects compromises the strict confinement of attribution to the
objects’ physical areas. Lin et al. (Lin et al., 2021) employ neural Trojan for providing attribution
ground truth, but their benchmark fails to guarantee that the model prediction change is solely at-
tributable to Trojaned features. In addition to the partial guarantee of attribution verifiability, these
attribution benchmarks evaluate the ratio between the defined ground truth region and the region
with high attributions, compromising sensitivity in their evaluation metrics for attributions. From
Tab. 1, it is evident that a full guarantee of attribution verifiability presents a significant challenge.

A.5 FIDELITY EXAMINATION OF ATTRIBUTION VERIFIABILITY

To guarantee attribution verifiability, we carefully devise techniques for both backdoor and metric
design to ensure that the prediction changes are fully attributed to the trigger features. During
backdooring the model, we maintain low loss for both poisoned and clean samples while ensuring
that trigger features substantially alter the prediction accuracy on poisoned samples, achieving up to
100% success as shown in Tabs. 3-5 of Supp. A.7.2.

Although the exclusivity of the trigger in the backdoored model helps the fidelity of the proposed
metrics, logit and probability fractional change require a further careful design to ensure correct
attribution ground truth. Consider the logit fractional change metric ∆f̃y(x̂) defined in Eq. 3 that
examines the extent to which the logit of the recovered sample x̂ can be restored from a poisoned
sample x̃ for the clean class y. It should be noted that the poisoned sample always contains class
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information corresponding to the class y. Consequently, directly computing the fractional change in
output logits, i.e., f̃y(x̂)/f̃y(x), may compromise the reliability of benchmarking results, given the
intrinsic information of y. To address this concern, we eliminate this potential class information by
subtracting the predictive confidence f̃y(x̃) on samples of the class y from the metrics, thus ensuring
a reliable assessment.

A.6 ATTRIBUTION METHODS AND CATEGORIES

In our experiments, nine attribution methods are benchmarked including GCAM (Selvaraju et al.,
2017), FullGrad (Srinivas & Fleuret, 2019), Grad (Simonyan et al., 2014), GGCAM (Selvaraju
et al., 2017), SG (Smilkov et al., 2017), IG (Sundararajan et al., 2017), IG-Uniform (Sturmfels
et al., 2020), AGI (Pan et al., 2021), and LPI (Yang et al., 2023a). We categorize these methods into
three groups; namely CAM-based, gradient-based, and integration-based methods, based on their
distinct underlying explanation processes, as explained below.

CAM-based Methods. Zhou et al. (Zhou et al., 2016) proposed a class activation mapping (CAM)
technique to localize the class-specific features of input samples. Assuming a feature map Ak of
the k-th convolutional layer before a softmax layer, CAM-based attribution methods M c

CAM (e.g.,
GCAM) calculate a weighted combination of activation maps Ak for a class c as

M c
CAM(x) = Ψ(ReLU(

∑
k

wc
kA

k)), (9)

where wc
k = avg(

∑
i

∑
j ∂fc(x)/∂A

k
i,j) indicates the activation weight by applying a global av-

erage pooling on the activation map Ak, and Ψ indicates an interpolation operator to estimate an
attribution map with the same scale as x from a down-sampled activation map. In our experiments,
we test two CAM-based attribution methods including GCAM and FullGrad. In contrast to CAM,
GCAM avoid the use of additional structures enabling a generalized applications. FullGrad further
integrates gradients of model biases to ensure the completeness axiom(Sundararajan et al., 2017).
Since FullGrad retains a similar process of utilizing an interpolated activation map, we categorize
it alongside GCAM as a CAM-based method. Although other CAM-based attribution methods also
exist (Jiang et al., 2021; Muhammad & Yeasin, 2020), we test two representative ones in our exper-
iments to cover this category.

Gradient-based Methods. Gradient-based attribution methods, such as Grad (Simonyan et al.,
2014), employ a first-order Taylor expansion to approximate the non-linear model: fc(x) ≈ w⊺ ∗
x+ b. Thus, the attribution of an input sample x for a class c, can be computed using the gradients
with respect to the input as

M c
Grad.(x) = ∂fc(x)/∂x. (10)

In contrast with CAM-based attribution methods, gradient-based methods are capable of estimating
attribution values at the element level for each input feature, eliminating the need for interpolation
operators. In our experiment, we categorize GGCAM alongside Grad and SG as gradient-based
attribution methods. The GGCAM leverages Grad to guide GCAM in performing element-wise
attribution estimation.

Integration-based Methods. Compared to gradient-based attribution methods, integration-based
attribution methods integrate input gradients from a reference input x′ to the feature x along an
integral path. Taking IG as an example, the attribution of an input feature xi for a class c can be
estimated as

M c
i Integr.(x, x

′) = (xi − x′
i)×

∫ 1

α=0

∂fc(x̃)

∂x̃i

∣∣∣∣
x̃=x′+α(x−x′)

dα, (11)

where α indicates a linear integration path from the reference input x′ to the input x, and x′ is
typically set as a zero vector in IG. Different integration-based attribution methods (IG-Uni, IG-
SG (Smilkov et al., 2017), AGI, and LPI) are proposed to redefine the reference and the integral path.
As these methods share the approach of estimating integrals to offer explanations, we categorize
these methods as integration-based attribution methods. Due to their distinct theoretical guarantees
in using different references (Sundararajan et al., 2017; Yang et al., 2023a), we benchmark four
integration-based attribution methods including IG, IG-Uni, AGI and LPI.
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Figure 9: Illustrations of input samples, trigger patterns and poisoned samples. The top arrow
depicts fixed trigger patterns and corresponding poisoned samples with triggers in varying visibility
(α) used in the Blend attack. The bottom arrow illustrates invisible input-specific trigger patterns
and corresponding poisoned samples generated using the ISSBA attack.

Other Methods. A variety of attribution methods also have been proposed for providing explana-
tions through feature perturbation or removal (e.g., LIME (Ribeiro et al., 2016), SHAP (Lundberg
& Lee, 2017), occlusion (Zeiler & Fergus, 2014), and mask (Fong & Vedaldi, 2017)). However,
these perturbation-based methods are revealed to exhibit unreliabilities (Shrikumar et al., 2017; Sun-
dararajan et al., 2017), as well as entailing a significant computational cost (Ancona et al., 2018).
Therefore, we exclusively evaluate the propagation-based attribution methods. On the other hand, a
few attribution methods, e.g., LRP (Binder et al., 2016) and DeepLift (Shrikumar et al., 2017), fail
to satisfy basic axioms like completeness and implementation invariance. Hence, these methods are
not included in our evaluation.

Overall, we benchmark two CAM-based methods (GCAM and FullGrad), three gradient-based
methods (Grad, GGCAM and SG), and four integration-based methods (IG, IG-Uni, AGI and LPI).

A.7 EXPERIMENTAL SETUP

In this section, we present a comprehensive experimental setup and hyperparameter choice for Tro-
janed models and benchmarked attribution methods, as well as details of the used experimental
software and platform.

A.7.1 TRIGGER PATTERNS AND POISONED SAMPLES

Related Works of Neural Trojans. Backdoors alter a model’s predictions by making it sensitive to
certain trigger patterns. This framework is relevant because we leverage backdoors in our BackX.
Gu et al. (Gu et al., 2019) introduced BadNet which mislabels and stamps triggers to poison the
training samples. Blended attack (Chen et al., 2019), ISSBA (Li et al., 2021) and WaNet (Nguyen
& Tran, 2021) are proposed to generate more stealthy sample-specific triggers, achieving invisible
poisoning. Adap-Blend (Qi et al., 2022) further enhances the stealthiness of attack in the latent
space. Due to the clear attribution of backdoor triggers in the models trained to achieve it, we
leverage neural backdoors to circumvent the lack of ground truth in attribution evaluation. Given
the wide applications of attribution methods in backdoor defense (Huang et al., 2019; Chou et al.,
2020), we provide guidance for defense against backdoor attacks using attributions as part of this
study.

Neural Trojan Setup for BackX. In our BackX benchmark, we incorporate both visible and invisi-
ble trigger patterns to provide a comprehensive evaluation, which allows us to thoroughly assess the
capability of attribution methods in detecting both fixed visible patterns and input-specific invisible
triggers. Figure 9 provides examples of the trigger patterns utilized in our experiments and the cor-
responding poisoned samples. In the Blend attack (Chen et al., 2019), we utilize fixed visible trigger
patterns, consistent with Qi et al. (Qi et al., 2022). In addition, we employ a pre-trained encoder
network to generate input-specific invisible trigger patterns in the ISSBA attack (Li et al., 2021).
The trigger patterns used in these attacks are depicted in the middle column of Figure 9. Given a
set of input samples, as shown in the first column of Figure 9, the resulting poisoned samples are
presented in the last column of Figure 9.
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Table 3: Comparison of accuracy among various ResNet-18 models Trojaned through Blend attack
with triggers of varying visibility on CIFAR-10. The accuracy of the benign model (N/A) is also
reported.

Test set Trigger visibility (α)

N/A 0.1 0.3 0.5 0.7 0.9 1.0
Poisoned 0.008 0.993 0.999 1.000 1.000 1.000 1.000
Clean 0.943 0.936 0.933 0.928 0.935 0.937 0.933

Table 4: Comparison of accuracy among various ResNet-18 models Trojaned through Blend attack
with triggers of varying visibility on GTSRB. The accuracy of the benign model (N/A) is also
reported.

Test set Trigger visibility (α)

N/A 0.1 0.3 0.5 0.7 0.9 1.0
Poisoned 0.001 0.992 0.999 1.000 1.000 1.000 1.000
Clean 0.973 0.967 0.965 0.970 0.971 0.967 0.969

Table 5: Comparison of accuracy among various ResNet-34 models Trojaned through Blend attack
with triggers of varying visibility on ImageNet. The accuracy of the benign model (N/A) is also
reported.

Test set Trigger visibility (α))

N/A 0.3 0.5 0.7 0.9 1.0
Poisoned 0.000 0.987 0.998 0.995 0.999 1.000
Clean 0.724 0.713 0.717 0.715 0.714 0.716

A.7.2 PERFORMANCE COMPARISON OF EXPLAINED MODELS

In this part, we show the detailed performance of used models trained on different datasets. For all
the Trojaned models under comparison, we select the target label as the first class for a single target
backdoor attack on both the CIFAR-10 and ImageNet datasets, and the third class for the GTSRB
dataset followed by Qi et al. (Qi et al., 2022).

Table 6: Comparison of accuracy among various ResNet-18 models Trojaned through Blend attack
with different poisoning rates on CIFAR-10.

Test set Poisoning rate

0.001 0.005 0.01 0.05 0.1
Poisoned 0.975 1.000 0.999 1.000 1.000
Clean 0.937 0.938 0.936 0.939 0.928

Table 7: Comparison of accuracy among various ResNet-18 models Trojaned through Blend attack
with different poisoning rates on GTSRB.

Test set Poisoning rate

0.001 0.005 0.01 0.05 0.1
Poisoned 0.745 0.997 0.998 1.000 1.000
Clean 0.969 0.966 0.971 0.970 0.970

Tables 3 and 4 display the accuracy comparison of Trojaned ResNet-18 models as the visibility of
the Trojan trigger varies on the CIFAR-10 and GTSRB datasets. Similarly, Table 5 compares the
accuracy of different Trojaned ResNet-32 models on ImageNet. In all cases, a consistent poisoning
rate of 0.1 was employed during model Trojaning. Notably, these tables illustrate that changes in
trigger visibility do not lead to a marked decrease in accuracy on the clean dataset. Additionally,
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Table 8: Comparison of accuracy among various ResNet-18 models Trojaned through ISSBA attack
on CIFAR-10 and GTSRB.

Test set Dataset

CIFAR-10 GTSRB
Poisoned 1.000 1.000
Clean 0.938 0.972

Table 9: Accuracy comparison of ResNet-18, ResNet-32, ResNet-50 and ResNet-101 models Tro-
janed through Blend attack on ImageNet.

Test set Model

ResNet-18 ResNet-34 ResNet-50 ResNet-101
Poisoned 0.998 0.998 0.993 0.990
Clean 0.682 0.717 0.728 0.749

there is a minor reduction in accuracy on the poisoned dataset to ensure a fair comparison. These
results provide compelling evidence that a sample containing the Trojan trigger can completely alter
the model’s predictions, providing the ground truth of attributions. The first column in each table
compares the accuracy of the benign model on the respective datasets, highlighting that Trojaned
models only exhibit a slight performance compromise compared to their benign counterparts.

Table 6 and Table 7 present the accuracy changes in models Trojaned with different poisoning rates,
ranging from 0.001 to 0.1, on the CIFAR-10 and GTSRB datasets. These tables demonstrate that
models Trojaned with various poisoning rates only result in a subtle reduction in clean accuracy. It
enables our experiments to maintain relatively consistent accuracy levels across different poisoning
rates.

In Table 8, we show the accuracy comparison of ResNet models Trojaned through the ISSBA attack
with a poisoning rate of 0.05 on both CIFAR-10 and GTSRB datasets. We have ensured consistent
standard accuracy and high accuracy on the poisoned dataset to enable a fair comparison. Further-
more, Table 9 compares accuracy on both the poisoned and clean datasets across three different
models.

The results highlight that Trojaned models exhibit the ability to adapt and fit the input distribution
when optimizing the poisoned samples. As these Trojaned models converge during training on these
samples, we are now equipped with the capacity to conduct a comprehensive and rigorous evaluation
of attribution methods specifically within the context of Trojaned models. While other studies have
demonstrated the presence of feature disparities in the hidden layers of Trojaned models within
the latent space (Qi et al., 2022), our findings suggest that these models can still be considered
reliable for evaluating explanations related to the model’s output layer. However, further exploring
the impact of the disparity in evaluating attribution methods is left in our future work.

A.7.3 HYPERPARAMETER CHOICE

1) Model Training and Evaluation: In our experiments, we trained ResNet-18 on CIFAR-10 for 100
epochs, starting with an initial learning rate of 0.1. We applied a learning rate decay by a factor
of 10 at the 50-th and 75-th epochs separately. On GTSRB, ResNet-18 was trained for a total of
100 epochs, with a learning rate of 0.1, and we applied a learning rate decay at the 30-th and 60-th
epochs. Additionally, we trained ResNet-18, ResNet-34, ResNet-50, and ResNet-101 on ImageNet
2012 training set for a total of 90 epochs, with an initial learning rate of 10−2, which was decayed at
the 30-th and 60-th epochs. This setup was consistent for models subjected to both Blend attack and
ISSBA attack. In the benchmarking, we use the test sets of both the CIFAR-10 and GTSRB datasets.
For the ImageNet 2012 dataset, attribution methods are assessed on the ImageNet 2012 Validation
set.

2) Attribution Methods: In our experiments, we test three groups of attribution methods including
CAM-based, gradient-based and integration-based attribution methods. In two CAM-based at-
tribution methods, GCAM and FullGrad, we remove the ReLU layer that is typically applied in
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(a) Attack success rate difference 

CIFAR-10 ImageNet CIFAR-10 ImageNet

(b) Trigger recall difference

GTSRB GTSRB

Figure 10: The comparison of (a) attack success rate difference and (b) trigger recall difference
between original attributions and attributions recalibrated by valid references. Four integration-
based attribution methods are compared to explain the model’s output logit.

activation calculation, ensuring the original activations. In addition, we applied two CAM-based
attributions to explain model output probabilities. For all gradient-based attribution methods, the
attributions are calculated by explaining output logits. In addition, we take the absolute values of
the calculated attributions of gradient-based methods. In SG, we integrate gradients of 50 perturbed
input samples that are added Gaussian noise with a standard deviation of 0.15. In integrated-based
attribution methods, we retain the original values of estimated attributions by explaining output
probabilities. Specifically, we sample 50 interpolations x̄ from the reference x′ to the input x in IG
for attribution estimation. In IG-Uni, IG-SG and LPI, we employ 10 references and 5 interpolations
to maintain the same total number of interpolations of 50 for a fair comparison. Specifically, IG-SG
employs the same deviation in Gaussian noise as SG. References of LPI are sampled from the train-
ing set by one central clustering. In contrast, we select 5 references and 10 interpolations in AGI
for a higher performance due to its reliance on more interpolation points for estimating adversarial
examples.

A.7.4 EXPERIMENTAL SOFTWARE AND PLATFORM

All experiments were performed on a Linux-based system equipped with an NVIDIA GTX 3090Ti
GPU boasting 24GB of memory, complemented by a 16-core 3.9GHz Intel Core i9-12900K CPU
and 128GB of main memory. For both testing and training purposes, all attribution methods were
implemented and evaluated within the PyTorch deep learning framework (version 1.12.1), utilizing
the Python programming language.

A.8 RE-CALIBRATED ATTRIBUTION AND CONTRASTIVE OUTPUT

Recent research has explored alternatives to enhance reliability of baseline attribution results (Wang
& Wang, 2022), (Yang et al., 2023b). Here, we conduct comparative experiments for such choices.
Re-calibrated attributions (Wang & Wang, 2022) have been introduced to enhance integration-based
methods by estimating attributions from identified valid references. In Fig. 10, we compare the
re-calibrated attributions and original attributions across integration-based attribution methods, in-
cluding IG-SG, IG-Uni, AGI and LPI. It is observed that re-calibrated attributions further enhance
the performance of the original attributions on CIFAR-10, GTSRB and ImageNet datasets. In ad-
dition, the performance of re-calibrated attributions is observed to degrade with decreasing mean
input pixel values, aligning with our Observation 2. This demonstrates the sensitivity of integration-
based methods to variations in the reference values. Despite the enhancement achieved through
re-calibration, it remains unique to integration-based attribution methods. To maintain evaluation
consistency across different methods, we retain the use of original attributions in the integration
methods for the subsequent experiments.

Figure 11 offers a comparison between attributions computed by our established consistent setup and
contrastive outputs (Wang & Wang, 2022) on CIFAR-10, GTSRB, and ImageNet. It is notable that
explaining contrastive output yields similar performance compared to explaining manually selected
outputs, particularly evident in cases involving FullGrad and integration-based methods. This obser-
vation underscores the superiority of contrastive output over mutual selection. However, explaining
contrastive output in CAM and Gradient-based methods does not achieve comparable performance.
The following observation is derived from the above analysis.
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(a) Attack success rate difference (b) Trigger recall difference

ImageNet ImageNetGTSRB GTSRBCIFAR-10 CIFAR-10

Figure 11: The comparison of (a) attack success rate difference and (b) trigger recall difference
between attributions estimated from our established consistent setup and attributions calculated by
explaining the contrastive output.

CIFAR-10 GTSRB ImageNet

CIFAR-10 GTSRB ImageNet

Figure 12: Comparison of fractional logit change (top row) and fractional probability change
(bottom row) between explaining logits and probabilities. Approaching top-left corner in each plot
indicates superior performance.  denotes that probabilities are explained with attribution methods.
▲ indicates that logits are explained with the attribution methods.

Observation 3.1 The re-calibration technique consistently improves the performance of integration-
based attribution methods. Attribution derived from explaining contrastive model output can achieve
competitive results, particularly for CAM-based and integration-based methods.

A.9 EXTENDED EXPERIMENTS OF OUTPUT CHOICE

In this part, we provide more experimental results of attribution methods in explaining different
objects.

Let p(x) = softmax(f̃(x)) denote the probability output through a softmax function. Similar to the
logit fractional change defined in Equation 3, we define the fractional change of output probabilities
∆pỹ(x̂) and ∆py(x̂) can be defined to measure changes of normalized outputs in class ỹ and y.

In Fig. 12, we show the comparison of fractional logit and fractional probability change between
the attributions across three datasets. This evaluation combines fractional change of both y and ỹ to
compare the capability of attribution methods in reducing output of ỹ and recovering output of y. All
methods are scaled by their distance to the bottom left corner. Methods are represented by markers
of a circle ( ) and a triangle (▲) to separate attributions estimated in explaining output probabilities
and logits. The evaluation allows us to assess whether the results of attribution methods change
when the evaluation target is altered. It is observed that the performance of various attribution
methods remains consistent when evaluating fractional change in output probabilities and logits
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CIFAR-10 GTSRBImageNet

Figure 13: The comparison of fractional probability change under Blend attack. Different attribu-
tion methods are scaled according to their performance. Approaching top-left corner in each plot
indicates superior performance.

CIFAR-10 GTSRB

Figure 14: The comparison of fractional probability change under ISSBA attack. Different attribu-
tion methods are scaled according to their performance. Approaching top-left corner in each plot
indicates superior performance.

within a specific dataset. This underscores the consistency in the preferences of attribution methods
across different levels of predictive confidence, regardless of the specific objective being explained.
These findings indicate the crucial role of establishing a clear and well-defined explanation setup in
attribution methods.

A.10 EXTENDED EXPERIMENTS OF OVERALL BENCHMARKS

In this part, we provide more overall benchmarking experimental results. In addition, more visual-
ization examples are presented for a visual inspection.

A.10.1 RESULTS OF FRACTIONAL PROBABILITY CHANGE

Figure 13 and Figure 14 presents a comparison of fractional probability change across attribution
methods for both Blend and ISSBA attacks. It is evident that gradient-based and integration-based
attribution methods consistently exhibit the highest performance and stability in reducing the output
of ỹ and recovering the output of y. CAM-based methods, including GGCAM, also demonstrate
high performance, relying on a combination of fine-grained attributions.

A.10.2 RESULTS OF OTHER ATTRIBUTION METHODS

In this study, we primarily aim to enhance model reliability, which led us to focus on attribu-
tion methods with established robustness. Consequently, SHAP-based and perturbation-based ap-
proaches were excluded from the main benchmark, as previous works have highlighted their reliabil-
ity limitations (Shrikumar et al., 2017; Sundararajan et al., 2017). Furthermore, perturbation-based
methods are generally more computationally intensive compared to propagation-based alternatives.
However, to assess their potential contributions, we extend our evaluation to include additional attri-
bution methods that were not the primary focus of our study. These methods include LIME (Ribeiro
et al., 2016), LRP (Binder et al., 2016), DeepLIFT (Shrikumar et al., 2017), KernelSHAP (Lundberg
& Lee, 2017), GradientSHAP (Lundberg & Lee, 2017), HSIC (Novello et al., 2022), and SMDL-
Shap (Chen et al., 2024), alongside IG, SG, and FG, using ImageNet on MobileNet-V2.
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Figures 15(a) and 15(b) present a comparison of the attack success rate and trigger recall for both
focused and unfocused attribution methods. The results indicate that the unfocused methods tend
to perform less favorably than the focused methods. Additionally, we observe that SHAP-based
methods exhibit high sensitivity to the choice of feature set, further complicating their application.

(a) Attack success rate of different methods (b) Trigger recall of different methods

Figure 15: Comparative analysis of focused and unfocused attribution methods using (a) attack
success rate and (b) trigger recall on MobileNetV2 trained on ImageNet. A lower attack success
rate signifies better performance, while a higher trigger recall indicates better performance.

A.10.3 EXTENDED EXPERIMENTS ON MODEL ARCHITECTURES AND DEPTHS

In this part, we examine the impact of different model architectures and model depths on attribution
performance.

1) Different Model Architectures: Figure 16 compares the attack success rate and trigger recall across
various model architectures, including MobileNetV2 (Sandler et al., 2018), VGG16 (Simonyan &
Zisserman, 2015), and ResNet-50 (He et al., 2016), using different attribution methods. All models
were trained on ImageNet with a Trojan trigger of 0.5 visibility and a 0.1 poisoning rate. The
results show that two CAM-based attribution methods and input gradient attribution methods are
sensitive to changes in model architecture, demonstrating lower stability. In contrast, other evaluated
attribution methods exhibit consistent performance across different architectures, suggesting higher
stability. Additionally, ResNet-50, when compared to MobileNetV2 and VGG16, proves to be more
challenging to explain, as evidenced by its higher attack success rate and lower trigger recall.

2) Different Model Depth: Figure 17 compares attribution methods on ResNet models of varying
depths, assessing both attack success rate and trigger recall on ImageNet. Similarly, the two CAM-
based methods and input gradient attributions show instability when explaining models of different
depths. On the other hand, the other attribution methods exhibit consistent performance across mod-
els of varying depths. Overall, model depth does not significantly complicate the task of attribution.

Based on these evaluations, we make the following observations:

Observation 5. CAM-based and vanilla input gradient attributions are sensitive to model changes.
In contrast, most other attribution methods show consistent performance across different models.
Overall, more complex architectures generally increase the difficulty of attribution, whereas changes
in model depth pose less of a challenge.

(a) Attack success rate of different models (b) Trigger recall of different models

Figure 16: The comparison of different attribution methods using (a) attack success rate and (b)
trigger recall on different model architectures trained on ImageNet. A lower attack success rate
indicates better results, and a higher trigger recall indicates better results.
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(a) Attack success rate of different models (b) Trigger recall of different models

Figure 17: The comparison of different attribution methods using (a) attack success rate and (b)
trigger recall on ResNet of depth 18, 34, 50, and 101 trained on ImageNet. A lower attack success
rate indicates better results, and a higher trigger recall indicates better results.

Table 10: Accuracy comparison of Bert-based models Trojaned through BadNet attack on SST-
2, IMDB and Amazon Review datasets. The accuracy on both poisoned and clean testing set are
presented.

Test set Sentiment Analysis Datasets

SST-2 IMDB Amazon
Poisoned 0.924 0.935 0.961
Clean 1.000 0.938 0.982

A.11 EXTENDED BENCHMARKING RESULTS ON TEXTUAL ANALYSIS

Most attribution methods have been primarily focused on the image domain. In this work, we
extend our benchmark to the textual domain, further demonstrating the applicability of BackX. In
this section, we first outline the benchmarking setup and then provide a comprehensive evaluation
of attribution methods in the context of textual analysis.

A.11.1 TEXTUAL BENCHMARKING PROCESS

To benchmark attribution methods in the textual domain, we construct Trojaned language models
using the BadNet attack (Gu et al., 2019), as implemented by OpenBackdoor (Cui et al., 2022).
We consider four different trigger patterns–”cf ”, ”mn”, ”bb”, and ”tq”-which are randomly injected
at predefined locations within the input text while modifying the corresponding training labels to
generate poisoned samples. We fine-tune a BERT-based model on three poisoned sentiment analysis
datasets: SST-2 (Socher et al., 2013), IMDB (Maas et al., 2011), and Amazon Reviews (He &
McAuley, 2016). Specifically, we employ a pre-trained BERT-based model (Kenton & Toutanova,
2019) with 12 transformer layers, 768 hidden units, and 12 attention heads as the victim model
for textual Trojaning. Table 10 reports the performance of the Trojaned BERT models across the
three datasets. The results indicate that neural Trojans cause significant alterations in the model’s
predictions, thereby confirming the fidelity of the subsequent benchmarking analysis.

For the benchmarked attribution methods, we exclude class activation maps (CAM) typically used
in image classification tasks to highlight discriminative regions, as such maps are not directly ap-
plicable to textual classification. Instead, we focus on gradient-based and integral-based attribution
methods, which are better suited for generating attributions in the textual domain. Unlike image-
based models, where the input data is manipulated at the pixel level, textual inputs are first tokenized
into discrete token IDs. This tokenization results in a representation that is not differentiable, as the
input IDs are discrete and do not support gradient-based manipulation. Consequently, direct attribu-
tion to the raw input text is not feasible. To overcome this limitation, we compute attributions for the
input features after the embedding layer, where the token IDs are transformed into continuous and
differentiable representations. Thus, in our BackX benchmarking, we estimate attributions based on
the embeddings of the input text.
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IMDB AmazonSST-2

Figure 18: Benchmarking of attribution methods under BadNet attack using the attack success rate
metric on Bert-based models trained on SST-2, IMDB and Amazon datasets. Lower curves indicate
better results.

IMDB AmazonSST-2

Figure 19: Benchmarking of attribution methods under BadNet attack using the trigger recall metric.
Higher curves indicate better results.

A.11.2 EVALUATION ON TEXTUAL ANALYSIS

Figures 18 and 19 present a comparison of various attribution methods using two evaluation metrics:
attack success rate and trigger recall, across the SST-2, IMDB, and Amazon datasets. The recovery
rate represents the proportion of tokens restored to their clean state from clean samples, where a
recovery rate of 1× corresponds to the number of tokens contained in the textual trigger pattern.

The results indicate that Integrated Gradients (IG), InputGrad (Grad), and SmoothGrad (SG) exhibit
the most consistent and robust performance across all three datasets. Notably, IG’s performance
in the textual domain differs significantly from that in the image domain, underscoring its high
reliability for generating explanations. This enhancement in reliability is attributed to the more
reliable selection of reference inputs by IG. Specifically, in contrast to the vision domain, IG’s use
of zero-valued vectors as reference inputs accurately captures the absence of features in the textual
domain. This distinction is reflected in the performance gap between IG and its variants, which
employ alternative reference inputs such as Gaussian noise, uniform noise, and squared Gaussian
noise. Moreover, due to the uncertainty introduced by perturbations transferring from the input to the
feature space, IG’s advantage becomes more pronounced when attributing features in the embedding
layer, leading to superior performance.

Similarly, Grad demonstrates competitive results compared to SG, showing substantial improve-
ments in the textual domain. SG’s reduced effectiveness in text attribution can be attributed to its
reliance on noisy gradients, which struggle to capture complex interactions in feature space. Due to
the lower perturbation amplitude, its performance remains close to that of Grad. These findings sug-
gest that perturbation-based attribution methods fail to enhance explanations in the textual domain
effectively. Moreover, the observed variability in attribution reliability across domains underscores
the necessity of tailoring attribution methods to improve explanation faithfulness. The benchmark-
ing results on textual analysis further highlight the potential for extending our framework beyond
textual data to other modalities, such as audio, time-series, and graphs.

In Fig. 20, we present visualization results of the attributions used to explain sentiment prediction
outcomes on SST-2 dataset. For a given input sample, the poisoned sample containing the ”mn”
trigger causes a shift in the sentiment prediction from negative to positive. IG and Grad effectively
attribute this prediction shift to the trigger pattern, whereas other attribution methods exhibit com-
promised performance in explaining this shift.
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Figure 20: Attribution visualization for explaining a text sample from the SST-2 Dataset. Given an
input sample, the poisoned sample using trigger “mn” alters the sentiment prediction from negative
to positive. The importance of each input word, as estimated by different attribution methods, is
visualized. Brighter colors indicate more important words.

(a) Backdoor defense on CIFAR-10 (b) Backdoor defense on GTSRB

Figure 21: Comparative analysis of defending neural backdoors using different attribution methods
on MobileNet-V2 model trained on (a) CFAIR-10 and (b) GTSRB datasets. We using attributions.
For each poisoned sample, pixels corresponding to the top 50% highest attribution scores are re-
stored to their clean state. Lower attack success rate indicates better defense performance.

Observation 6. For textual analysis, IG and Grad achieve superior performance. IG, leveraging
a zero reference, effectively mitigates challenges associated with reference selection by accurately
capturing the absence of features. In contrast, perturbation-based attribution methods suffer degra-
dation due to uncertainty in the feature space. The observed variability in attribution reliability
across domains highlights the need for tailored attribution methods that account for domain-specific
characteristics.

A.12 EXTENDED EXPERIMENTS OF BACKDOOR DEFENSE

In this part, more experiments are provided for defending against backdoor attacks using attribution
methods. In addition, more visualization examples for detecting various triggers are provided for
visual inspection.

A.12.1 EXPLAINABILITY UNDER DIVERSE ATTACK METHODS

We investigate the effectiveness of attribution methods in identifying and mitigating various types of
neural Trojans. Beyond the Blend and ISSBA attacks, we extend our analysis to additional backdoor
methods, including SIG (Barni et al., 2019), WaNet (Nguyen & Tran, 2021), and Adap-Blend (Qi
et al., 2022). SIG utilizes sinusoidal signals as triggers, seamlessly blending into textures to evade
spatial filtering defenses. WaNet introduces geometric warping rather than pixel-level modifications,
rendering backdoors visually imperceptible. Adap-Blend enhances stealth by reducing feature sep-
arability in the latent space, making Trojaned features less distinguishable from normal ones.

Figure 21 presents a comparative evaluation of attribution methods on MobileNet-V2 trained on
CIFAR-10 and GTSRB. In this evaluation, we recover 50% of the poisoned sample pixels based on
the attribution scores, restoring these pixels to their clean-state counterparts from unaltered samples.
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CIFAR-10 GTSRBImageNet

Figure 22: The results of attack success rate. Trigger recall changes as trigger visibility. Mean
curves over various methods are highlighted. Lower values of attack success rate correspond to an
increased capacity to defend against backdoor attacks.

CIFAR-10 GTSRB

Figure 23: The results of attack success rate. Trigger recall changes as poisoning rate. Mean curves
over various methods are highlighted. Lower values of attack success rate correspond to an increased
capacity to defend against backdoor attacks.

The results indicate that CAM-based attribution methods are more effective in detecting triggers
with fixed and consistent spatial patterns, as evidenced by their superior performance on Blend,
Adap-Blend, and WaNet. In contrast, gradient-based and integral-based attribution methods excel
in identifying discrete and imperceptible triggers, such as those used in SIG and ISSBA attacks.

However, attribution methods struggle to effectively neutralize the Adap-Blend backdoor. This limi-
tation arises because Adap-Blend utilizes image-wide trigger patterns and applies regularization that
encourages individual features affected by the trigger to independently influence the model’s pre-
dictions. Consequently, even with a recovery rate of 50%, Adap-Blend maintains a relatively high
attack success rate. These findings highlight the necessity of designing tailored attribution methods
that account for the distinct characteristics of different backdoor strategies.

Observation 7. CAM-based methods excel at detecting fixed spatial triggers, while gradient- and
integral-based methods are more effective against discrete and imperceptible ones, highlighting the
need for tailored attribution techniques for backdoor defending.

A.12.2 RESULTS OF ATTACK SUCCESS RATE

In Figure 22 and Figure 23, we compare the results of attack success rate on models Trojaned
through Blend attack with different trigger visibilities and poisoning rates. It can be observed that
the visibility of the trigger is not positively related to attribution performance. In contrast, the higher
visibility trigger sometimes causes a higher attack success rate, which aligns with our observation.
In addition, different poisoning rates show less impact on the ease of defense, as shown in Figure 23.

A.13 DISCUSSION AND LIMITATION

In this section, we discuss the position of BackX in attribution evaluation and clarify its contribution
to the fidelity benchmark alongside limitations.

What number and diversity of Trojans are sufficient for BackX to deliver confident benchmarking
results of attributions? Similar to all existing attribution benchmarks, our underlying goal is to pro-
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vide a necessary guarantee for rejecting unreliable attribution methods. In this context, any number
of Trojans can provide sufficient confidence in evaluating attribution reliability. From the perspec-
tive of necessary conditions, since the fundamental requirement of any explanation method is to
remain faithful to the model’s prediction, all Trojans introduced in our framework are sufficient to
provide strong evidence against unreliable attribution methods. If an attribution method fails to pro-
vide faithful explanations under any controlled Trojaning scenario, it should be rejected from real-
world deployment. Compared to prior benchmarks (e.g., CLEVR-XAI, Null Feature, and DiPart),
our method offers a fully controllable setting to test explanation reliability and further strengthens
this ability by providing a tighter theoretical guarantee, thus offering a more solid reason for re-
jecting unreliable attribution methods, especially in high-stakes applications. From the perspective
of sufficient conditions, while arguably no benchmark can guarantee that an attribution method is
universally reliable, we strive to ascertain the sufficiency of BackX across diverse domains by ex-
tending beyond simple patch-based triggers with diverse trigger patterns, multiple fidelity metrics,
and different modalities, thereby benchmarking attribution methods under varied and increasingly
challenging conditions. This progressive expansion helps toward the sufficiency of our evaluation,
while we acknowledge that sufficiency remains inherently limited across all existing benchmarks
and explicitly aim to push this boundary further. In summary, our method offers a stronger reliabil-
ity guarantee than existing benchmarks by enforcing a necessary condition for attribution methods.
If an attribution method fails under our controlled setting, it provides a clear reason to reject its reli-
ability. This necessity guarantee represents a central advantage of our approach over prior works.

Does the mechanism of neural Trojans provide attribution fidelity? Unlike prior works that detect
backdoor triggers using attribution methods (Lin et al., 2021; Li et al., 2023), BackX is a high-fidelity
benchmark established within rigorous fidelity criteria through tailored strategies with tighter theo-
retical guarantees. Therefore, it is not merely the existence of neural Trojans, but BackX’s designs
enable Trojans to serve as a pathway for achieving a reliable high-fidelity attribution benchmarking.
Specifically, our framework formalizes fidelity as verifiable criteria and provides stronger guaran-
tees by mitigating leakage and enforcing restoration so that prediction shifts are causally attributable.
With such fidelity guarantees, BackX introduces a standardized evaluation setup across attribution
paradigms, reducing confounding factors from post-processing and output forms. It also extends
coverage substantially, testing fifteen attribution methods under five Trojan families across both vi-
sion and text. This comprehensive setup allows us to draw broader and more reliable conclusions.
In Table 11, we report pairwise Kendall’s τ between benchmark rankings for the seven attribution
methods SG, AGI, IG, IG-SG, FG, IxG, and GCAM. The results show that BackX is broadly con-
sistent with DiFull, DiffID, and ROAR, whereas NeuronTrojans aligns weakly with BackX and also
exhibits reduced consistency with the other benchmarks. The results provide compelling evidence
that a backdoored model on its own does not deliver benchmarking fidelity. Fidelity arises only when
backdoors are embedded within a framework that enforces formal criteria, theoretically grounded
procedures, and a standardized evaluation protocol. BackX treats backdoors as instruments to isolate
attribution effects and to satisfy fidelity requirements, rather than as mere objects of detection.

Table 11: Pairwise Kendall’s τ between benchmark rankings on seven attribution methods. Higher
values indicate stronger agreement in method rankings.

Benchmarks Kendall’s τ

BackX vs DiFull 0.333
BackX vs DiffID 0.619
BackX vs DiffROAR 0.714
BackX vs NeuronTrojans 0.048
NeuronTrojans vs DiFull -0.238
NeuronTrojans vs DiffID 0.429
NeuronTrojans vs DiffROAR 0.143

Limitation. While BackX evaluates attribution methods under a diverse set of trigger patterns, it does
not explicitly measure the stability of their performance across these variations. Moreover, although
BackX offers a rigorous and necessary test for rejecting unreliable attribution methods, strong per-
formance under its controlled settings may not necessarily imply full reliability in complex, real-
world scenarios. Expanding BackX to better capture complex real-world attribution patterns and to
generalize across broader domains remains an important direction for future research.
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Inputs:

Attribution value + -
Figure 24: Visualization of absolute and original attributions for input samples from GTSRB,
CIFAR-10 and ImageNet respectively. The predictions made by models backdoored through Blend
attack with trigger visibility of 0.5 are explained using attribution methods.

A.14 VISUAL INSPECTION OF ATTRIBUTIONS

In Figure 24, we provide visualizations of employing absolute and original attributions for different
methods. There is a notable disparity in the highlighted regions of input samples between the two
post-processing techniques. This underscores the susceptibility of visual outcomes to ambiguity,
emphasizing the necessity of quantitative assessments to provide clarity and context. This problem
is more pronounced for smaller input images due to the limited number of pixels. Although large
ImageNet size images may yield more consistent attribution maps, it is crucial to recognize that
their relative feature importances undergo shifts, often reflected in attributions alternating between
negative and positive values. This begs for an enquiry into the right choice between the original and
absolute values for benchmarking.

In Figure 25 and Figure 26, we provide visualization examples for explaining models Trojaned
through Blend attack using attribution methods across three datasets: CIFAR-10, GTSRB and Im-
ageNet. Three groups of attribution methods are compared including CAM-based, Gradient-based
and Integration-based methods. In the visualization experiments, original attributions of output log-
its are used in CAM-based and integration-based attribution methods. In addition, absolute attribu-
tions of output probabilities are visualized in gradient-based attribution methods as the established
consistent setup. It can be observed that absolute attributions are good at generating plausible vi-
sualization examples. Similar to our observation, GCAM relies on other information to generate
fine-grained attributions (e.g. FG and GGCAM).

Figure 27 presents visualization examples for explaining ResNet-18 models Trojaned through
ISSBA attack using attribution methods of three groups on both CIFAR-10 and GTSRB datasets.
We can observe that attributions with high variations are also effective in identifying invisible pat-
terns in comparison with fixed patterns.
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Figure 25: Visual comparison of attribution methods on CIFAR-10 and GTSRB datasets. Predictions
made by ResNet-18 models Trojaned through the Blend attack with a trigger visibility of 0.5 are
explained using three groups of attribution methods including CAM-based, Gradient-based, and
Integration-based methods.

A.14.1 VISUAL INSPECTION FOR BACKDOOR ATTACK

In Figure 28, we undertake an evaluation of attribution performance concerning the detection of
triggers with varying degrees of visibility. Contrary to our intuitive assumptions, we observe that
attribution methods encounter increased difficulty in identifying triggers with higher visibility, a
trend that aligns with our empirical findings. This discovery prompts us to reconsider our intuition
about feature learning within model optimization processes.

Figure 29 presents visualization examples of attribution maps with changes in the poisoning rate.
Notably, it is apparent that attributions exhibit a relatively minimal influence on models subjected
to different poisoning rates. This observation underscores the resilience of model behavior to alter-
ations induced by varying levels of poisoning, highlighting the intricate dynamics at play in adver-
sarial model manipulation.
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Figure 26: Visual comparison of attribution methods on ImageNet 2012. Predictions made by
ResNet-34 models Trojaned through the Blend attack with a trigger visibility of 0.5 are explained
using three groups of attribution methods including CAM-based, Gradient-based, and Integration-
based methods.
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Figure 27: Visual comparison of attribution methods on CIFAR-10 and GTSRB datasets. Predictions
made by ResNet-18 models Trojaned through the ISSBA attack with a trigger visibility of 0.5 are
explained using three groups of attribution methods including CAM-based, Gradient-based, and
Integration-based methods.
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Figure 28: Visual comparison of attribution methods on CIFAR-10 and GTSRB datasets. Predictions
made by ResNet-18 models Trojaned through the Blend attack with triggers of varying visibilities
(α) are explained using attribution methods including FG, GGCAM, SG, AGI and LPI.
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Figure 29: Visual comparison of attribution methods on CIFAR-10 and GTSRB datasets. Predic-
tions made by ResNet-18 models Trojaned through the Blend attack of different poisoning rates are
explained using three groups of attribution methods including FG, GGCAM, SG, AGI and LPI.
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