
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BOOTSTRAPPING EXPECTILES IN ROBUST REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Many classic Reinforcement Learning (RL) algorithms rely on a Bellman operator,
which involves an expectation over the next states, leading to the concept of
bootstrapping. To introduce a form of pessimism, we propose to replace this
expectation with an expectile. In practice, this can be very simply done by replacing
the L2 loss with a more general expectile loss for the critic. Introducing pessimism
in RL is desirable for various reasons, such as tackling the overestimation problem
(for which classic solutions are double Q-learning or the twin-critic approach of
TD3) or robust RL (where transitions are adversarial). We study empirically these
two cases. For the overestimation problem, we show that the proposed approach,
ExpectRL, provides similar results to a classic twin-critic. On robust RL bench-
marks, involving changes of the environment, we show that our approach is more
robust than classic RL algorithms. We also introduce a variation of ExpectRL
combined with domain randomization which is competitive with state-of-the-art
robust RL agents. Eventually, we also extend ExpectRL with a mechanism for
choosing automatically the expectile value, that is the degree of pessimism.

1 INTRODUCTION

Pessimism is a desirable concept in many Reinforcement Learning (RL) algorithms to stabilize the
learning and get an accurate estimation of the value function. This idea is developed in Double
Q-learning (Hasselt, 2010), an RL technique designed to address the issue of overestimation bias
in value estimation, a common challenge in Q-learning and related algorithms. Overestimation bias
occurs when the estimated values of actions are higher than their true values, potentially leading to a
suboptimal policy. By maintaining two sets of Q-values and decoupling action selection from value es-
timation, Double Q-learning provides a more accurate and less optimistic estimate of the true values of
actions. In general, Double Q-learning enhances the stability of the learning process and these princi-
ples can be extended to deep RL known as Double Deep Q-Networks (DDQN), a successful approach
in various applications (Van Hasselt et al., 2016). Pessimism also appears in the twin critic approach,
the equivalent of Double Q-learning for continuous action spaces, which requires training two critics
to select the most pessimistic one. Many state-of-the-art RL algorithms are based on this method, such
as TD3 (Fujimoto et al., 2018) that uses this method to improve on DDPG (Lillicrap et al., 2015) and
SAC (Haarnoja et al., 2018) that uses this trick to stabilize the learning of Q-functions and policies.

The idea of pessimism is also central in Robust RL (Moos et al., 2022), where the agent tries to find
the best policy under the worst transition kernel in a certain uncertainty space. It has been introduced
first theoretically in the context of Robust MDPs (Iyengar, 2005; Nilim & El Ghaoui, 2005) (RMDPs)
where the transition probability varies in an uncertainty (or ambiguity) set. Hence, the solution
of robust MDPs is less sensitive to model estimation errors with a properly chosen uncertainty
set, as RMDPs are formulated as a max-min problem, where the objective is to find the policy that
maximizes the value function for the worst possible model that lies within an uncertainty set around
a nominal model. Fortunately, many structural properties of MDPs are preserved in RMDPs (Iyengar,
2005), and methods such as robust value iteration, robust modified policy iteration, or partial robust
policy iteration (Ho et al., 2021) can be used to solve them. It is also known that the uncertainty in the
reward can be easily tackled while handling uncertainty in the transition kernel is much more difficult
(Kumar et al., 2022; Derman et al., 2021). Finally, the sample complexity of RMDPs has been

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

studied theoretically (Yang et al., 2021; Panaganti et al., 2022; Clavier et al., 2023; Shi et al., 2023;
Clavier et al., 2025). However, these works usually assume having access to a generative model.

Robust RL (Moos et al., 2022) tries to bridge a gap with real-life problems, classifying its algorithms
into two distinct groups. The first group engages solely with the nominal kernel or the center
of the uncertainty set. To enhance robustness, these algorithms often adopt an equivalent risk-
averse formulation to instill pessimism. For instance, Clavier et al. (2022) employ mean-standard
deviation optimization through Distributional Learning to bolster robustness. Another strategy
involves introducing perturbations on actions during the learning process, as demonstrated by Tessler
et al. (2019), aiming to fortify robustness during testing. Another method, known as adversarial kernel
robust RL (Wang et al., 2023), exclusively samples from the nominal kernel and employs resampling
techniques to simulate the adversarial kernel. While this approach introduces a novel paradigm, it
also leads to challenges associated with poor sample complexity due to resampling and requiring
access to a generative model. Despite this drawback, the adversarial kernel robust RL paradigm
offers an intriguing avenue for exploration and development in the realm of robust RL. Finally, policy
gradient (Kumar et al., 2023; Li et al., 2023) in the case of Robust MDPs is also an alternative. A
practical algorithm using robust policy gradient with Wasserstein metric is proposed by Abdullah
et al. (2019), but this approach requires having access to model parameters which are usually not
available in a model-free setting. The second category of algorithms engages with samples within
the uncertainty set, leveraging available information to enhance the robustness and generalization of
policies to diverse environments. Algorithms within this category, such as IWOCS (Zouitine et al.,
2023), M2TD3 (Tanabe et al., 2022), M3DDPG (Li et al., 2019), and RARL (Pinto et al., 2017)
actively interact with various close environments to fortify robustness in the context of RL.

In all these settings, the idea of pessimism is central. We propose here a new simple form of
pessimism based on expectile estimates that can be plugged into any RL algorithm. For a given
algorithm, the only modification relies on the critic loss in an actor-critic framework or in the
Q-learning loss for Q-function based algorithms. Given a target y (r, s′) = r + γQϕ,targ

(s′, π(s′))
with reward r, policy π, we propose to minimize L (ϕ,D) = E

(s,a,r,s′)∼D
[Lα

2 (Qϕ(s, a)− y (r, s′))] ,

where Lτ
2 is the expectile loss defined in Section 3.3. For α = 1/2, the expectile coincides with

the classical mean, and we recover the classical L2 loss of most RL algorithms. We denote this
modification as ExpectRL. In many RL algorithms, we are bootstrapping the expectation of
the Q-function over the next state, by definition of the classical Bellman equation. Our method
ExpectRL is equivalent to bootstrapping the expectile and not the expectation of the Q value.
Bootstraping expectiles still leads to an algorithm with the contraction mapping property for the
associated Expectile Bellman Operator, but adds pessimism by giving more weight to the pessimistic
next state compared to a classical expectation (see Section 3.3).

The ExpectRL modification is relevant in the context of the twin critic approach as when employing
this method, the challenge arises in effectively regulating the level of pessimism through the
application of the twin critic method, which remains heuristic for continuous action spaces, although
it has been studied in the discrete case by Hasselt (2010). Furthermore, the acquisition of imprecise
Q functions has the potential to yield detrimental outcomes in practical applications, introducing
the risk of catastrophic consequences. Using the ExpectRL method, the degree of pessimism in
learning the value or Q function is controlled through the parameter α, and our first question is:

Can we replace the learning of two critics in the twin critic method, using only a simple expectile
bootstrapping?

In the Robust RL setting, ExpectRL can also be beneficial as by nature expectiles are a coherent,
convex risk measure, that can be written as a minimum of an expectation over probability measure on a
close convex set (Delbaen, 2002). So implicitly bootstrapping an expectile instead of an average leads
to a robust RL algorithm. Compared to many Robust RL algorithms, our method is simple in the sense
that the α-expectile is more interpretable and easy to choose than a penalization or trade-off parameter
in mean-standard deviation optimization (Clavier et al., 2022). ExpectRL has the advantage of
being computationally simple compared to other methods, as it uses all samples, compared to the
work of Wang et al. (2023), that needs resampling to induce robustness. Finally, our method is
simple and can be adapted to practical algorithms, compared to robust policy gradient methods
such as Kumar et al. (2023); Li et al. (2023). Moreover, while these algorithms can be considered
more mathematically grounded and less heuristic, the second group with IWOCS, M2DTD2, RARL

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(Zouitine et al., 2023; Tanabe et al., 2022; Li et al., 2019; Pinto et al., 2017) tends to rely on heuristic
approaches that exhibit practical efficacy on real-world benchmarks. This dichotomy prompts the
question:

Can we leverage ExpectRL method as a surrogate for Robust RL and formulate robust RL algo-
rithms that are both mathematically founded and requiring minimal parameter tuning?

By extending expectile bootstrapping (ExpectRL) with sampling from the entire uncertainty set
using domain randomization (DR), our approach bolsters robustness, positioning itself competitively
against the best-performing algorithms. Notably, our algorithm incurs low computational costs
relatively to other algorithms and requires minimal or no hyperparameter tuning. Our contributions
are the following.

Our first contribution, is to introduce ExpectRL, and demonstrate the efficacy of that method as a
viable alternative to the twin critic trick with L2 loss across diverse environments. The second contri-
bution of our work lies in establishing that expectile bootstrapping or ExpectRL facilitates the devel-
opment of straightforward Deep Robust RL approaches. These approaches exhibit enhanced robust-
ness compared to classical RL algorithms. The effectiveness of our approach combining ExpectRL
with DR is demonstrated on various benchmarks and results in an algorithm that closely approaches
the state of the art in robust RL, offering advantages such as lower computational costs and minimal
hyperparameters to fine-tune. Our third contribution introduces an algorithm, AutoExpectRL that
leverages an automatic mechanism for selecting the expectile or determining the degree of pessimism.
Leveraging bandit algorithms, this approach provides an automated and adaptive way to fine-tune
the expectile parameter, contributing to the overall efficiency and effectiveness of the algorithm.

2 RELATED WORK

TD3 and twin critics. To tackle the problem of over-estimation of the value function, TD3 al-
gorithm (Fujimoto et al., 2018) algorithm uses two critics. Defining the target ymin as ymin (r, s

′) =
r + γmini=1,2 Qϕi,targ

(s′, π (s′)) , both critics are learned by regressing to this target, such that, for
i ∈ {1, 2}, L (ϕi,D) = E

(s,a,r,s′,d)∼D
(Qϕi

(s, a)− ymin (r, s
′))

2 Our approach is different as we do

not consider the classic L2 loss and only use one critic. We will compare ExpectRL to the classic
TD3 algorithm both with twin critics and one critic to understand the influence of our method.

Expectiles in Distributional RL. Expectiles have found application within the domain of
Distributional RL (RL), as evidenced by studies such as (Rowland et al., 2019; Dabney et al.,
2018; Jullien et al., 2023). It is crucial to note a distinction in our approach, where we specifically
focus on learning a single expectile to substitute the conventional L2 norm. This diverges from
the methodology adopted in these referenced papers, where the entire distribution is learned using
different expectiles. Moreover, they do not consider expectile statistics on the same random variable
as they consider expectiles of the full return.

Expectile in Offline RL and the IQL algorithm . Implicit Q-learning (IQL) (Kostrikov et al.,
2021) in the context of offline RL endeavors to enhance policies without the necessity of evaluating
actions that have not been encountered. Like our method, IQL employs a distinctive approach by
treating the state value function as a random variable associated with the action, but achieves an
estimation of the optimal action values for a state by utilizing a state conditional upper expectile.
In ExpectRL, we employ lower expectiles to instill pessimism on the next state and approximate
a minimum function, contrasting with the conventional use of upper expectiles for approximating
the maximum in the Bellman optimality equation.

Risk-Averse RL. Risk-averse RL, as explored in studies like Pan et al. (2019), diverges from
the traditional risk-neutral RL paradigm. Its objective is to optimize a risk measure associated with
the return random variable, rather than focusing solely on its expectation. Within this framework,
Mean-Variance Policy Iteration has been considered for optimization, as evidenced by Zhang et al.
(2021), and Conditional Value at Risk (CVaR), as studied by Greenberg et al. (2022). The link
between Robust and Risk averse MDPS has been highlighted by Chow et al. (2015) and Zhang et al.
(2023) who provide a mathematical foundation for risk-averse RL methodologies, emphasizing the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

significance of coherent risk measures in achieving robust and reliable policies. Our method lies
in risk-averse RL as expectiles are a coherent risk measure (Zhang et al., 2023), but to the best of our
knowledge, the expectile statistic has never been considered before for tackling robust RL problems.

Regularisation and robustness in RL. Regularization plays a pivotal role in the context of
Markov Decision Processes (MDPs), as underscored by Derman et al. (2021) or Eysenbach & Levine
(2021), who have elucidated the pronounced connection between robust MDPs and their regularized
counterparts. Specifically, they have illustrated that a regularised policy during interaction with a given
MDP exhibits robustness within an uncertainty set surrounding the MDP in question. In this work, we
focus on the idea that generalization, regularization, and robustness are strongly linked in RL or MDPs
as shown by Husain et al. (2021); Derman & Mannor (2020); Derman et al. (2021); Ying et al. (2021);
Brekelmans et al. (2022). The main drawback of this method is that it requires tuning the introduced
penalization to improve robustness, which is not easy in practice as it is very task-dependent. The
magnitude of the penalization is not always interpretable compared to α, the value of the expectile.

3 BACKGROUND

3.1 MARKOV DECISION PROCESSES

We first define Robust Markov Decision Processes (MDPs) as MΩ = {Mω}ω∈Ω, with
Mω =

〈
S,A, Pω, P

0
ω , rω, γ

〉
the MDP with specific uncertainty parameter ω ∈ Ω. The chosen state

space S and action space A are subsets of real-valued vector spaces in our setting. The transition
probability density Pω : S × A × S → R, the initial state probability density P 0

ω : S → R, and
the immediate reward rω : S × A → R depend on ω. Moreover, we define Psa,w the vector of
Pω(s, a, .). The discount factor is denoted by γ ∈ (0, 1). Let πθ : S → A be a policy parameterized
by θ ∈ Θ and π∗ the optimal policy. Given an uncertainty parameter ω ∈ Ω, the initial state
follows s0 ∼ P 0

ω . At each time step t ⩾ 0, the agent observes state st, selects action at = πθ (st),
interacts with the environment, and observes the next state st+1 ∼ Pω (· | st, at), and the immediate
reward rt = rω (st, at). The discounted return of the trajectory starting from time step t is
Rt =

∑
k⩾0 γ

krt+k. The action value function qπθ (s, a, ω) and optimal action value q∗(s, a, ω)
under ω is the expectation of Rt starting with st = s and at = a under ω; that is,

qπθ (s, a, ω) = EPω,πθ
[Rt | st = s, at = a] , q∗(s, a, ω) = EPω,π∗ [Rt | st = s, at = a] ,

where E is the expectation. Note that we introduce ω to the argument to explain the Q-value
dependence on ω. Lastly, we define the value function as

vπθ (s, ω) = EPω,πθ
[Rt | st = s] , v∗(s, ω) = EPω,π∗ [Rt | st = s] .

In the following, we will drop the ω subscript for simplicity and define the expectile (optimal) value
function, that follows the recursive Bellman equation
vπ,P (s) = vπ(s) = Ea∼π(·|s)[r(s, a) + γEPsa

[vπ]︸ ︷︷ ︸
≜qπ(s,a)

], v∗(s) = max
a∈A

(r(s, a) + γEPsa
[v∗]︸ ︷︷ ︸

≜q∗(s,a)

)). (1)

Finally, we define the classical Bellman Operator and optimal Bellman Operator that are
γ-contractions, so iteration of these operators leads vπ or v∗:

(Tπv)(s) := (Tπ
r,P v)(s) =

∑
a

π(a|s)(r(s, a) + γEPsa [v]) (2)

(T ∗v)(s) := (Tπ∗

r,P v)(s) = max
a

(r(s, a) + γEPsa
[v]). (3)

3.2 ROBUST MDPS

Once classical MDPs are defined, we can define robust (optimal) Bellman operators T π
U and T ∗

U ,
(Tπ

U v)(s) := min
r,P∈U

(
Tπ
r,P v

)
(s), (T ∗

Uv) (s) := max
π∈∆A

min
r,P∈U

(
Tπ
r,P v

)
(s), (4)

where P and r belong to the uncertainty set U . The optimal robust Bellman operator T ∗
U and robust

Bellman operator Tπ
U are γ-contraction maps for any policy π (Iyengar, 2005, Thm. 3.2) if the

uncertainty set U is a subset of ∆s where ∆s it the simplex of |S| elements so that the transition
kernel is valid. Finally, for any initial values vπ0 , v

∗
0 , sequences defined as vπn+1 := Tπ

U v
π
n and

v∗n+1 := T ∗
Uv

∗
n converge linearly to their respective fixed points, that is vπn → vπU and v∗n → v∗U .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 EXPECTILES

Let’s first define expectiles. For α ∈ (0, 1) and X a random variable, the α-expectile is defined as
mα(X) = argminm Ex[L

α
2 (x −m)] with Lα

2 (u) = |α − 1{u<0}|u2 = αu2
+ + (1 − α)u2

−, where
u+ = max(u, 0) and u− = max(−u, 0). We can recover the classical mean with m 1

2
(X) = E[X]

as L
1/2
2 (u) = u2.Expectiles are gaining interest in statistics and finance as they induce the only

law-invariant, coherent (Artzner et al., 1999) and elicitable (Gneiting, 2011) risk measure. Using
the coherent property representation (Delbaen, 2000), one has that ρ : L∞ → R is a coherent risk
measure if and only if there exists a closed convex set P of P -absolutely continuous probability
measures such that ρ(X) = infQ∈P EQ[X],∀X ∈ L∞. with L∞ the vector space of essentially
bounded measurable functions with the essential supremum norm. The uncertainty set induced by
expectiles as been described by Delbaen (2013) as mα(X) = minQ∈E EQ[X] such as

E =

{
Q ∈ P | ∃η > 0, η

√
α

1− α
≤ dQ

dP
≤

√
(1− α)

α
η

}
(5)

where we define dQ
dP as the Radon-Nikodym derivative of Q with respect to P . Here, the uncertainty

set corresponds thus to a lower and upper bound on dQ
dP with a quantity depending on the degree

of uncertainty. For α = 1/2, the uncertainty set becomes the null set and we retrieve the classical
mean. This variational form of the expectile will be useful to link risk-sensitive and robust MDPs
formulation in the next section.

4 EXPECTRL METHOD

First, we introduce the Expectile Bellman Operator and then we will explain our proposed method
ExpectRL and AutoExpectRL that work both in classic and robust cases.

4.1 EXPECTILE BELLMAN OPERATOR

In this section, we derive the loss and explain our approach. Recall that for α ∈ (0, 1) and X a
random variable taking value x and following a probability law P , the α-expectile is denoted mα(X)
or mα(P, x) in the following. Writing the classical Bellman operator for q function

(Tq)(s, a) = r(s, a) + γ⟨Psa, v⟩ = r(s, a) + γEs′∼Psa(·)[v(s
′)].

and denoting Vsa the random variable which is equal to v(s′) with probability Psa(s
′), it holds that:

(Tq)(s, a) = r(s, a) + γm 1
2
(Vsa) = r(s, a) + γm 1

2
(Psa, v).

Our method consists instead in considering the following Expectile Bellman operator

(Tαq)(s, a) = r(s, a) + γmα(Vsa). (6)

With α < 1
2 , Eq. (6) allows to learn a robust policy, in the sense that it is a pessimistic estimate about

the value we bootstrap according to the value sampled according to the nominal kernel. Next, we
define the expectile value of a given policy and the optimal expectile value as:

vπα(s) = Ea∼π(·|s)[r(s, a) + γmα(Psa, v
π
α)︸ ︷︷ ︸

≜qπα(s,a)

], v∗α(s) = max
a∈A

(r(s, a) + γmα(Psa, v
∗
α︸ ︷︷ ︸

≜q∗α(s,a)

)). (7)

With α = 1
2 , we retrieve the standard Bellman equations but we consider α < 1

2 for the robust case.
Finally, we define (optimal) expectile Bellman Operator as:

(Tπ
α v)(s) =

∑
a

π(a|s)(r(s, a) + γmα(Psa, v)). (T ∗
αv)(s) = max

a
(r(s, a) + γmα(Psa, v)).

Theorem 4.1. The (optimal) Expectile Bellman Operators are γ-contractions for the sup norm.
(proof in Appx. B).

So as Tπ
α and T ∗

α are γ-contractions, it justifies the definition of fixed point vπτ and v∗α. The central
idea to show that expectile bootstrapping or ExpectRL is implicitly equivalent to Robust RL
comes (Zhang et al., 2023) where we try to estimate the optimal robust value function v∗E =
maxπ minQ∈E v

π,Q.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 4.2. The (optimal) Expectile value function is equal to the (optimal) robust value function

v∗α(s) = vπE := max
π

min
Q∈E

vπ,Q, vπα(s) = vπE := min
Q∈E

vπ,Q (8)

where E is defined in 3.3. Proof can be found in B.2. Note that his formulation does not converge
to the expectile of the value distribution but to v∗E the robust value function. Moreoever, for α > 1/2,
Expectile Bellman operator is not anymore a contraction and there is no theoretical convergence
guarantees for risk-seeking RL, not considered here. Now that expectile operators are defined, we
will define the related loss.

4.2 THE EXPECRL LOSS

In this section, we present the method more from a computational and practical point of view. As
stated before, this method can be plugged into any RL algorithm where a Q-function is estimated,
which included any Q-function-based algorithm or some actor-critic framework during the critic
learning. For a given algorithm, the only modification relies on modifying the L2 loss in the Q-value
step by the Expectile loss. Given a target y (r, s′) = r + γQϕ,targ (s

′, π(s′)) with reward r, policy
π, we propose to minimize

L (ϕ,D) = E
(s,a,r,s′)∼D

[Lα
2 (Qϕ(s, a)− y (r, s′))] , (9)

where Lα
2 is the expectile loss defined in Section 3.3. For α = 1/2, the expectile coincides with

the classical mean, and we retrieve the classical L2 loss present in most RL algorithms. We will
use TD3 as a baseline and replace the learning of the critic with this loss. The actor loss remains
the same in the learning process. With ExpectRL, only one critic is needed, replacing the double
critic present in this algorithm. We will compare our method with the classical TD3 algorithm using
the twin critic trick and TD3 with one critic to see the influence of our method.

4.3 EXPECRL METHOD WITH DOMAIN RANDOMISATION

From a practical point of view, many Robust RL algorithms such as M2TD3 (Tanabe et al., 2022),
M3DDPG (Li et al., 2019), and RARL (Pinto et al., 2017) not only interact with the nominal environ-
ment but also with environments that belong to the uncertainty set U . Sampling trajectories from the
entire uncertainty set allows algorithms to get knowledge from dangerous trajectories and allows algo-
rithms to generalize better than algorithms that only sample from the nominal. Receiving information
about all environments that need to be robust during the training phase, the algorithm tends to obtain
better performance on minimum performance over these environments on testing. With the same idea
of generalization, Domain Randomisation (DR) (Tobin et al., 2017) focuses not on the worst case
under the uncertainty set but on the expectation. Given a point of the uncertainty set Pω ∈ U , the DR
objective is: π∗

DR = argmaxπ Eω∈Ω,s∼P 0
ω
[vπ(s, w)]. In other words, DR tries to find the best policy

on average over all environments in the uncertainty set. The approach we propose to be competitive
on a robust benchmark is to find the best policy using ExpectRL under domain randomization or

π∗
DR,α = argmax

π
Eω∈Ω,s∼P 0

ω
[vπα(s, ω)] = argmax

π
Eω∈Ω,s∼P 0

ω
[min
Pω∈E

vπ,P (s, ω)], (10)

where vπα(s, ω) is the expectile value function under uncertainty kernel Pω and E defined in Section
3.3. Using this approach, we hope to get sufficient information from all the environments using
DR and improve robustness and worse-case performance using ExpectRL. The advantage of
the approach is that any algorithm can be used for learning the policy, sampling from the entire
uncertainty set uniformly and replacing the critic loss of this algorithm learning with ExpecRl loss.
The effectiveness of this algorithm on a Robust benchmark will be conducted in Section 3. Getting
an algorithm that is mathematically founded and which tries to get the worst-case performance, the
last question is how to choose the degree of pessimism or α ∈ (0, 1/2) in practice. The following
section tries to answer this question using a bandit algorithm to auto-tune α.

4.4 AUTO-TUNING OF THE EXPECTILE α USING BANDIT

In the context of varying levels of uncertainty across environments, the selection of an appropriate
expectile α becomes contingent on the specific characteristics of each environment. To automate

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

TD3 Twin Critic TD3 1 critic ExpectRL best Expectile AutoExpectRL

Ant(×103) 3.65 ± 0.33 1.90 ± 0.07 4.46 ± 0.12 4.27 ± 0.25

HalfCheetah(×103) 10.91 ± 0.14 10.36 ± 0.54 10.42 ± 0.13 10.40 ± 0.09

Hopper(×103) 2.88 ± 0.10 2.022 ± 0.09 3.10 ± 0.05 3.03 ± 0.11

Walker(×103) 2.95 ± 0.12 2.35 ± 0.25 3.22 ± 0.11 3.02 ± 0.09

HumanoidStandup(×105) 1.101 ± 0.09 1.087 ± 0.09 1.197 ± 0.05 1.143 ± 0.010

Table 1: Expectile vs Twin-critic, Mean performance ± standard error, on 10 train seed

the process of choosing the optimal expectile, we employ a bandit algorithm, specifically the Expo-
nentially Weighted Average Forecasting algorithm (Cesa-Bianchi & Lugosi, 2006). We denote this
method as AutoExpectRL. This formulation adopts the multi-armed bandit problem, where each
bandit arm corresponds to a distinct value of α. We consider a set of D expectiles making predictions
from a discrete set of values {αd}Dd=1. At each episode m, a cumulative reward Rm is sampled, and
a distribution over arms pm ∈ ∆D is formed, where pm(d) ∝ exp (wm(d)). The feedback signal
fm ∈ R is determined based on the arm selection as the improvement in performance, specifically
fm = Rm − Rm−1, where Rm denotes the cumulative reward obtained in the episode m. Then,
wm+1 is obtained from wm by modifying only the dm according to wm+1(dm) = wm(dm)+η fm

pm(d)

where η > 0 is a step size parameter. The exponential weights distribution over α values at episode
m is denoted as pα

m. This approach can be seen as a form of model selection akin to the methodology
presented by Pacchiano et al. (2020). Notably, instead of training distinct critics and actors for each
α choice, our approach updates one single neural network for the critic and one single neural network
for the actor. In both critic and actor, neural networks are composed of one common body and
different heads for every value of α, in our case 4 values for {αd}Dd=1 = {0.2, 0.3, 0.4, 0.5}. The
critic’s heads correspond to the 4 expectile losses for different values of α. The actor’s neural network
is trained using 4 classical TD3 losses, evaluated with action chosen by one specific head of the actor.
Then in both critic and actor, the 4 losses are summed, allowing an update of all heads at each iteration.
Finally, the sampling of new trajectories is done using the chosen head of the actor, proposed by the
bandit algorithm. More details about implementation can be found in Appendix C. Intuitively, when
the agent receives a higher reward compared to the previous trajectory, the probability of choosing
this arm is increased to encourage this arm to be picked again. Note that the use of a bandit algorithm
to automatically select hyperparameters in an RL algorithm has been proposed in other contexts, such
as Moskovitz et al. (2021); Badia et al. (2020). The AutoExpectRL method allows picking auto-
matically expectile α and reduces hyperparameter tuning. Practical details can be found in Appendix
C where we expose the neural network architecture of this problem and associated losses. Note that
this approach does not work in the DR setting as uncertainty parameters change between trajectories
in DR. It is difficult for the algorithm to know if high or low rewards on trajectories come because the
uncertainty parameter leads to small rewards, or if it is due to bad expectile picked at this iteration.

5 EMPIRICAL RESULT ON MUJOCO

The Mujoco benchmark is employed in this experiment due to its significance for evaluating
robustness in the context of continuous environments, where physical parameters may vary. In
contrast, the Atari benchmark very deterministic with discrete action space without physical
parameters cannot change during the testing period. In this section, we compare the performance
of the TD3 algorithm using the twin critic method during learning, only one critic, and finally our
method ExpectRL. The different values of α are {αd}Dd=1 = {0.2, 0.3, 0.4, 0.5}. We can notice
that ExpectRL with α = 0.5 is exactly TD3 with one critic. Here, we only interact with the
nominal and there is no notion of robustness. The mean and standard deviation are reported in Table
1, where we use 10 seeds of 3M steps for training, each evaluated on 30 trajectories. The last column
is our last algorithm, AutoExpectRL. In all environments except HalfCheetah, ExpectRL with
fine-tuning of α has the best score and AutoExpectRL has generally close results. The scores
for every expectiles can be found in AppendixE. In Halcheetah 1 environment, it seems that no
pessimism about Q-function is needed and our method ExpectRL is outperformed by TD3 with
twin critic. Similar observations have been observed in Moskovitz et al. (2021) on this environment.
Moreover, results for α = 0.5 and α = 0.4 are very close in Appendix E while the variance is
reduced using α = 0.4. Results of Table 1 show that it is possible to replace the twin critic approach
with only one critic with the relevant value of pessimism or expectile. Moreover, one can remark

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

TD3 mean ExpectRL mean Auto mean TD3 worst ExpectRL worst Auto worst

Ant1 2.76 ± 0.5 3.55 ± 0.65 3.55 ± 0.51 2.22 ± 0.5 2.65 ± 0.57 2.71 ± 0.43
Ant2 2.28 ± 0.09 2.50 ± 0.89 2.41 ± 0.77 1.59 ± 0.08 2.49 ± 0.94 2.42 ± 0.51
Ant3 0.31 ± 1.13 0.54 ± 0.08 0.53 ± 0.69 −0.99 ± 1.13 −0.94 ± 0.21 −0.88 ± 0.34
Half1 2.79 ± 0.22 3.05 ± 0.48 2.98 ± 0.19 −0.34 ± 0.04 −0.27 ± 0.19 −0.27 ± 0.21
Half2 2.63 ± 0.20 2.51 ± 0.41 2.58 ± 0.32 −0.53 ± 0.06 −0.223 ± 0.16 −0.23 ± 0.10
Half3 2.47 ± 0.18 2.45 ± 0.42 2.39 ± 0.15 −0.61 ± 0.08 −0.557 ± 0.27 −0.58 ± 0.09
Hopper1 2.39 ± 0.14 2.76 ± 0.04 2.52 ± 0.11 0.4 ± 0.02 0.44 ± 0.01 0.449 ± 0.15
Hopper2 1.54 ± 0.17 2.06 ± 0.01 1.87 ± 0.02 0.21 ± 0.04 0.32 ± 0.03 0.32 ± 0.03
Hopper3 1.15 ± 0.14 1.43 ± 0.02 1.433 ± 0.09 0.14 ± 0.03 0.25 ± 0.22 0.242 ± 0.19
Walker1 3.12 ± 0.2 3.66 ± 0.68 3.58 ± 0.27 0.68 ± 0.12 2.77 ± 0.15 1.99 ± 0.13
Walker2 2.70 ± 0.2 3.98 ± 0.58 3.88 ± 0.61 0.28 ± 0.07 1.36 ± 0.82 1.11 ± 0.15
Walker3 2.60 ± 0.18 3.84 ± 0.45 3.58 ± 0.15 0.17 ± 0.06 0.65 ± 0.12 0.87 ± 0.09
Humanoid1 1.03 ± 0.4 1.12 ± 0.25 1.13 ± 0.26 0.85 ± 0.07 0.97 ± 0.23 0.98 ± 0.24
Humanoid2 1.03 ± 0.3 1.13 ± 0.15 1.11 ± 0.12 0.73 ± 0.07 0.83 ± 0.23 0.80 ± 0.18
Humanoid3 1.01 ± 0.3 1.06 ± 0.13 1.05 ± 0.18 0.57 ± 0.04 0.71 ± 0.21 0.68 ± 0.09

Table 2: Result on Robust Benchmark for TD3 ExpectRL and AutoExpectRL. Results are ×103
bigger for all environments except for Humanoid where results are ×105 bigger.

DR+ExpectRL(m) M2TD3(m) DR(m) DR+ExpectRL(w) M2TD3(w) DR(w)

Ant1 4.84 ± 0.43 4.51 ± 0.08 5.25 ± 0.1 3.36 ± 0.55 3.84 ± 0.1 3.51 ± 0.08
Ant2 5.63 ± 0.43 5.44 ± 0.05 6.32 ± 0.09 2.72 ± 0.42 4.13 ± 0.11 1.64 ± 0.13
Ant3 2.86 ± 1.03 2.66 ± 0.22 3.62 ± 0.11 0.28 ± 0.35 0.10 ± 0.10 −0.32 ± 0.03
Half1 5.3 ± 0.59 3.89 ± 0.06 5.93 ± 0.18 2.86 ± 0.99 3.14 ± 0.10 3.19 ± 0.08
Half2 5.25 ± 0.32 4.35 ± 0.05 5.79 ± 0.15 1.77 ± 0.31 2.61 ± 0.16 2.12 ± 0.13
Half3 4.52 ± 0.24 3.79 ± 0.09 5.54 ± 0.16 1.02 ± 0.24 0.93 ± 0.21 1.09 ± 0.06
Hopper1 2.58 ± 0.23 2.68 ± 0.11 2.57 ± 0.15 0.64 ± 0.20 0.62 ± 0.45 0.53 ± 0.26
Hopper2 2.53 ± 0.22 2.51 ± 0.07 1.89 ± 0.08 0.55 ± 0.07 0.53 ± 0.28 0.47 ± 0.02
Hopper3 2.21 ± 0.33 0.85 ± 0.07 1.5 ± 0.07 0.39 ± 0.07 0.28 ± 0.25 0.21 ± 0.03
Walker1 3.77 ± 0.89 3.70 ± 0.31 3.59 ± 0.26 3.41 ± 0.05 2.83 ± 0.39 2.19 ± 0.42
Walker2 4.75 ± 0.57 4.72 ± 0.12 4.54 ± 0.31 2.74 ± 0.61 3.14 ± 0.39 2.31 ± 0.51
Walker3 4.39 ± 0.37 4.27 ± 0.21 4.48 ± 0.16 1.14 ± 0.79 1.34 ± 0.43 1.32 ± 0.34
Humanoid1 1.21 ± 0.23 1.08 ± 0.04 1.12 ± 0.05 1.04 ± 0.86 0.93 ± 0.07 0.96 ± 0.06
Humanoid2 1.23 ± 0.22 0.97 ± 0.04 1.06 ± 0.04 0.86 ± 0.28 0.65 ± 0.07 0.73 ± 0.78
Humanoid3 1.12 ± 0.35 1.09 ± 0.06 1.04 ± 0.07 0.84 ± 0.26 0.62 ± 0.06 0.54 ± 0.34

Table 3: Result on Robust Benchmark for ExpectRL + DR , M2TD3 and DR. Results are ×103
bigger for all environments except for Humanoid results are ×105 bigger. The mean performance is
denoted (m) and worst case (w).

in Appendix E that in Hopper, Walker, and Ant environment, high pessimism is needed to get an
accurate Q function and better results, with a value of α = 0.2 or α = 0.3 whereas less pessimism
with α = 0.4 is needed for HumanoidStandup and HalfCheetah. Note that the value of α = 0.5 is
never chosen and leads to generally the worst performance as reported in column TD3 with one critic
which coincides with α = 0.5. Finally, the variance is also decreased using our method compared to
TD3 with twin critics or TD3 with one critic. Finally, our method AutoExectRL allows choosing
automatically the expectile almost without loss of performance and outperforming TD3, except on
the environment HalfCheetah. Learning curves can be found in Appendix E.

6 EMPIRICAL RESULTS ON ROBUST BENCHMARK

This section presents an assessment of the worst-case and average performance and generalization
capabilities of the proposed algorithm. The experimental validation was conducted on optimal control
problems utilizing the MuJoCo simulation environments (Todorov et al., 2012). The performance
of the algorithm was systematically benchmarked against state-of-the-art robust RL M2TD3 as it is
state of the art compared to other algorithms methodologies, M3DDPG, and RARL. Furthermore, a
comparative analysis was undertaken with Domain Randomization (DR) as introduced by Tobin et al.
(2017) for a comprehensive evaluation. To assess the worst-case performance of the policy π under
varying uncertainty parameters ω ∈ Ω, following the benchmark of Tanabe et al. (2022) or Zouitine
et al. (2024), 30 evaluations of the cumulative reward were conducted for each uncertainty parameter
value ω1, . . . , ωK ∈ Ω. Specifically, Rk(π) denotes the cumulative reward on ωk, averaged over 30
trials. Subsequently, Rworst(π) = min1⩽k⩽K Rk(π) (denoted (w) in Table 2 and 3) was computed
as an estimate of the worst-case performance of π on Ω. Additionally, the average performance
was computed as Raverage(π) =

1
K

∑K
k=1 Rk(π) (denoted (m) in Table 2 and 3). For the evaluation

process, K uncertainty parameters ω1, . . . , ωK were chosen according to the dimensionality of ω:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

for 1D ω, K = 10 equally spaced points on the 1D interval Ω; for 2D ω, 10 equally spaced points
were chosen in each dimension of Ω, resulting in K = 100 points; and for 3D ω, 10 equally spaced
points were selected in each dimension of Ω, resulting in K = 1000 points or different environments.
Each approach underwent policy training 10 times in each environment. The training time steps Tmax

were configured as 2M, 4M, and 5M for scenarios with 1D, 2D, and 3D uncertainty parameters
respectively, following Tanabe et al. (2022). Table 6 summarizes the different changes of parameters
in the environments. The final policies obtained from training were then evaluated for their worst-case
performances and average performance over all uncertainty parameters. The results are the following.

We first demonstrate that our method ExpectRl is more robust than the classical RL algorithm.
To do so, we conduct the benchmark task presented previously on TD3 algorithm (with twin critic
trick) as a baseline and our method ExpectRl. As exposed in Table 2, our method outperforms
TD3 in all environments on worst-case performance, which was expected as TD3 is not designed
by nature to be robust and to maximize a worst-case performance. Moreover, AutoExpectRL
has good and similar performance compared to the best expectile like in Table 1. As TD3 has
sometimes very bad performance, our method also performs better on average over all environments
except HalfCheetah 2 and HalfCheetah 3. These two environments required more exploration, and
pessimism is in general not a good thing for these tasks. Moreover, robustness is not needed in
HalfCheetah environments that are already quite stable compared to other tasks in Mujoco. However,
ExpectRL needs to be compared with algorithms designed to be robust, such as M2TD3 which
has state-of-the-art performance on this benchmark.

If performance of ExpectRL in Table 2 and the performance of M2TD3 in Table 3 are compared,
we can observe a large difference on many tasks where M2TD3 outperforms, in general, our method.
This is because sampling trajectories from the entire uncertainty set allows M2TD3 to get knowledge
from dangerous trajectories and allows the algorithm to generalize better than our method, which
only samples from the nominal. The comparison between methods is then not fair for ExpectRl
which has only access to samples from the nominal and this is why the method ExpectRL + DR
was introduced. Receiving information about all environments that need to be robust during the
training phase, the algorithm tends to obtain better performance on minimum performance over
these environments on testing. Table 3 shows the result on average and on worst-case performance
between our second method ExpectRL + DR with tuning of α against M2TD3 and DR approach.
Recall that AutoExpectRL cannot be used with DR as mentioned at the end of Section 4.4.

In terms of worst-case performance, our method outperforms 9 times M2TD3 (8 times in bold and one
time when DR is better in general for HalfCheetaht3) and has a worse performance on 6 tasks com-
pared to M2TD3. Our method is therefore competitive with the state of the art in robust algorithms
such as M2TD3, which already outperformed M3DDPG and RARL on worst-case performance. Ex-
cept on Hopper1, our method outperforms M2TD3 on average, results which show that M2TD3 is very
pessimistic compared to our method. However, in terms of average results, we can see that DR, which
is designed to be good on average across all environments, generally performs better than our method
and M2TD3 expect on Hopper, Walker1 and 2, and HumanoidStandup which are not stable and need
to be robustified to avoid catastrophic performance that affect too much the mean performance over all
environment. Moreover, compared to M2TD3, our method ExpecRL, even without auto fine-tuning
of α, has the advantage of having fewer parameter tuning compared to the M2TD3 algorithm.

7 CONCLUSION AND PERSPECTIVES

We propose a simple method, ExpectRL that replaces the classic loss L2 of the critic with an
expectile loss. Moreover, we show that it can also lead to a Robust RL algorithm and demonstrate
the effectiveness of our method combined with DR on a robust RL Benchmark. The limitations
of our method are that AutoExpectRL allows fine-tuning of α only without combining with DR.
Another limitation is that the uncertainty set defined with expectile is not fully interpretable, and
other algorithms with a more interpretable set and similar experimental results would be interesting.
About future perspectives, we demonstrate the effectiveness of our method using as baselines TD3,
but our method can be easily adapted to any algorithm using a Q-function such as classical DQN,
SAC, and other algorithms both with discrete or continuous action space.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Mohammed Amin Abdullah, Hang Ren, Haitham Bou Ammar, Vladimir Milenkovic, Rui Luo,
Mingtian Zhang, and Jun Wang. Wasserstein robust reinforcement learning. arXiv preprint
arXiv:1907.13196, 2019.

Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent measures of risk.
Mathematical finance, 9(3):203–228, 1999.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In International conference on machine learning, pp. 507–517. PMLR, 2020.

Fabio Bellini and Elena Di Bernardino. Risk management with expectiles. The European Journal of
Finance, 23(6):487–506, 2017.

Fabio Bellini, Bernhard Klar, Alfred Müller, and Emanuela Rosazza Gianin. Generalized quantiles as
risk measures. Insurance: Mathematics and Economics, 54:41–48, 2014.

Rob Brekelmans, Tim Genewein, Jordi Grau-Moya, Grégoire Delétang, Markus Kunesch, Shane
Legg, and Pedro Ortega. Your policy regularizer is secretly an adversary. arXiv preprint
arXiv:2203.12592, 2022.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. Risk-sensitive and robust decision-
making: a cvar optimization approach. Advances in neural information processing systems, 28,
2015.

Pierre Clavier, Stéphanie Allassonière, and Erwan Le Pennec. Robust reinforcement learning with
distributional risk-averse formulation. arXiv preprint arXiv:2206.06841, 2022.

Pierre Clavier, Erwan Le Pennec, and Matthieu Geist. Towards minimax optimality of model-based
robust reinforcement learning. arXiv preprint arXiv:2302.05372, 2023.

Pierre Clavier, Laixi Shi, Erwan Le Pennec, Eric Mazumdar, Adam Wierman, and Matthieu Geist.
Near-optimal distributionally robust reinforcement learning with general l_p norms. Advances in
Neural Information Processing Systems, 37:1750–1810, 2025.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learning, pp. 1096–
1105. PMLR, 2018.

Freddy Delbaen. Draft: Coherent risk measures. Lecture notes, Pisa, 2000.

Freddy Delbaen. Coherent risk measures on general probability spaces. Advances in finance and
stochastics: essays in honour of Dieter Sondermann, pp. 1–37, 2002.

Freddy Delbaen. A remark on the structure of expectiles. arXiv preprint arXiv:1307.5881, 2013.

Esther Derman and Shie Mannor. Distributional robustness and regularization in reinforcement
learning. arXiv preprint arXiv:2003.02894, 2020.

Esther Derman, Matthieu Geist, and Shie Mannor. Twice regularized mdps and the equivalence
between robustness and regularization. Advances in Neural Information Processing Systems, 34,
2021.

Benjamin Eysenbach and Sergey Levine. Maximum entropy rl (provably) solves some robust rl
problems. arXiv preprint arXiv:2103.06257, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tilmann Gneiting. Making and evaluating point forecasts. Journal of the American Statistical
Association, 106(494):746–762, 2011.

Ido Greenberg, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor. Efficient risk-averse
reinforcement learning. Advances in Neural Information Processing Systems, 35:32639–32652,
2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Hado Hasselt. Double q-learning. Advances in neural information processing systems, 23, 2010.

Chin Pang Ho, Marek Petrik, and Wolfram Wiesemann. Partial policy iteration for l1-robust markov
decision processes. J. Mach. Learn. Res., 22:275–1, 2021.

Hisham Husain, Kamil Ciosek, and Ryota Tomioka. Regularized policies are reward robust. In
International Conference on Artificial Intelligence and Statistics, pp. 64–72. PMLR, 2021.

Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):
257–280, 2005.

Sami Jullien, Romain Deffayet, Jean-Michel Renders, Paul Groth, and Maarten de Rijke. Dis-
tributional reinforcement learning with dual expectile-quantile regression. arXiv preprint
arXiv:2305.16877, 2023.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

Navdeep Kumar, Kfir Levy, Kaixin Wang, and Shie Mannor. Efficient policy iteration for robust
markov decision processes via regularization. arXiv preprint arXiv:2205.14327, 2022.

Navdeep Kumar, Esther Derman, Matthieu Geist, Kfir Levy, and Shie Mannor. Policy gradient for
s-rectangular robust markov decision processes. arXiv preprint arXiv:2301.13589, 2023.

Mengmeng Li, Tobias Sutter, and Daniel Kuhn. Policy gradient algorithms for robust mdps with
non-rectangular uncertainty sets. arXiv preprint arXiv:2305.19004, 2023.

Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart Russell. Robust multi-agent
reinforcement learning via minimax deep deterministic policy gradient. In Proceedings of the
AAAI conference on artificial intelligence, volume 33, pp. 4213–4220, 2019.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Janosch Moos, Kay Hansel, Hany Abdulsamad, Svenja Stark, Debora Clever, and Jan Peters. Robust
reinforcement learning: A review of foundations and recent advances. Machine Learning and
Knowledge Extraction, 4(1):276–315, 2022.

Ted Moskovitz, Jack Parker-Holder, Aldo Pacchiano, Michael Arbel, and Michael Jordan. Tactical
optimism and pessimism for deep reinforcement learning. Advances in Neural Information
Processing Systems, 34:12849–12863, 2021.

Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain
transition matrices. Operations Research, 53(5):780–798, 2005.

Aldo Pacchiano, My Phan, Yasin Abbasi Yadkori, Anup Rao, Julian Zimmert, Tor Lattimore, and
Csaba Szepesvari. Model selection in contextual stochastic bandit problems. Advances in Neural
Information Processing Systems, 33:10328–10337, 2020.

Xinlei Pan, Daniel Seita, Yang Gao, and John Canny. Risk averse robust adversarial reinforcement
learning. In 2019 International Conference on Robotics and Automation (ICRA), pp. 8522–8528.
IEEE, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, and Mohammad Ghavamzadeh. Robust reinforcement
learning using offline data. arXiv preprint arXiv:2208.05129, 2022.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial rein-
forcement learning. In International Conference on Machine Learning, pp. 2817–2826. PMLR,
2017.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Mark Rowland, Robert Dadashi, Saurabh Kumar, Rémi Munos, Marc G Bellemare, and Will Dabney.
Statistics and samples in distributional reinforcement learning. In International Conference on
Machine Learning, pp. 5528–5536. PMLR, 2019.

Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, Matthieu Geist, and Yuejie Chi. The curious price
of distributional robustness in reinforcement learning with a generative model. arXiv preprint
arXiv:2305.16589, 2023.

Takumi Tanabe, Rei Sato, Kazuto Fukuchi, Jun Sakuma, and Youhei Akimoto. Max-min off-policy
actor-critic method focusing on worst-case robustness to model misspecification. Advances in
Neural Information Processing Systems, 35:6967–6981, 2022.

Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and applica-
tions in continuous control. In International Conference on Machine Learning, pp. 6215–6224.
PMLR, 2019.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. In 2017
IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23–30. IEEE,
2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Kaixin Wang, Uri Gadot, Navdeep Kumar, Kfir Levy, and Shie Mannor. Robust reinforcement
learning via adversarial kernel approximation. arXiv preprint arXiv:2306.05859, 2023.

Wenhao Yang, Liangyu Zhang, and Zhihua Zhang. Towards theoretical understandings of robust
markov decision processes: Sample complexity and asymptotics. arXiv preprint arXiv:2105.03863,
2021.

Chengyang Ying, Xinning Zhou, Hang Su, Dong Yan, and Jun Zhu. Towards safe reinforcement
learning via constraining conditional value-at-risk. 2021.

Runyu Zhang, Yang Hu, and Na Li. Regularized robust mdps and risk-sensitive mdps: Equivalence,
policy gradient, and sample complexity. arXiv preprint arXiv:2306.11626, 2023.

Shangtong Zhang, Bo Liu, and Shimon Whiteson. Mean-variance policy iteration for risk-averse rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 10905–10913, 2021.

Adil Zouitine, Emmanuel Rachelson, and Matthieu Geist. Revisiting the static model in robust
reinforcement learning. In Sixteenth European Workshop on Reinforcement Learning, 2023.

Adil Zouitine, David Bertoin, Pierre Clavier, Matthieu Geist, and Emmanuel Rachelson. Rrls: Robust
reinforcement learning suite. arXiv preprint arXiv:2406.08406, 2024.

12

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

B PROOF

Theorem B.1.
(Tπ

α v)(s) =
∑
a

π(a|s)(r(s, a) + γmα(Psa, v)). (11)

this is a contraction:

The expectile satisfies the following properties (Bellini et al., 2014; Bellini & Di Bernardino, 2017):

1. Translation invariance: mτ (X + h) = mα(X) + h

2. Monotonicity: X ≤ Y a.s.⇒ mτ (X) ≤ mα(Y)

3. Positive homogeneity:
λ ≥ 0⇒ mα(λX) = λmτ (X)

4. Superadditivity, for α ≤ 1
2 ,mτ (X + Y) ≥ mα(X) +mα(Y).

So,

(Tπ
α v1)(s)− (Tπ

α v2)(s) =
∑
a

π(a|s)(r(s, a) + γmα(Psa, v1)) (12)

−
∑
a

π(a|s)(r(s, a) + γmα(Psa, v2)) (13)

= γ
∑
a

π(a|s)(mα(Psa, v1)−mα(Psa, v2)) (14)

≤ γ
∑
a

π(a|s)(mα(Psa, v2 + ∥v2 − v1∥∞)−mα(Psa, v2)) (15)

(by monotonicity) and v1 ≤ v2 + ∥v2 − v1∥∞)

= γ
∑
a

π(a|s)(mα(Psa, v2) + ∥v2 − v1∥∞ −mα(Psa, v2)) (by translation invariance) (16)

= γ∥v2 − v1∥∞. (17)

In the same manner, T ∗
α is also a contraction, as the only line of this proof that differs is replacing

the expectation by a maxa. As maximum operator 1-Lipschitz, (ie) maxa f(a) − max g(a) ≤
max f(a)− g(a), we obtain γ- contraction results also for the optimal Bellman operator T ∗

α .

Similar ideas exist in Zhang et al. (2023), which show similar properties for risk-sensitive MDPs
defined through a convex risk measure, even though they do not consider explicitly the expectile
which is a convex risk measure for α < 1/2.
Theorem B.2. The (optimal) Expectile value function is equal to the (optimal) robust value function

v∗α(s) = vπE := max
π

min
Q∈E

vπ,Q (18)

vπα(s) = vπE := min
Q∈E

vπ,Q (19)

where E is defined in section 3.3 or below.

Proof. This theorem is just an adaptation of Theorem 2 in Zhang et al. (2023) where we use expectile
risk measure mα(X) which implicitly defined the uncertainty set for robust E such that :

mα(X) = min
Q∈E

EQ[X];

E =

{
Q ∈ P | ∃η > 0,

√
α

1− α
η ≤ dQ

dP
≤

√
(1− α)

α
η

}

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where P is the set of P -absolutely continuous probability measures. In Theorem Zhang et al. (2023),
they link Risk sensitive MDPs (in our case expectile formulation) with Regularised Robust MDPs. In
our case, we can rewrite the classical RMDPs to Regularised-Robust MDPs such that:

v∗E = max
π

min
Q∈E

vπ,Q = max
π

min
Q∈E

E
[∑

t

γtr(st, at)
]

=max
π

min
Q∈P

E
[∑

t

γt(r(st, at) + γD(Pt;st,at , Qt;st,at)
]

with D a penalty function that can be chosen as KL diverengence for example and Pt;st,at the
transition kernel at time t with current state action (st, at).For the expectile risk measure, the
corresponding D is simply:

D(P,Q) =

{
0 if η

√
α

1−α ≤ P (s)/Q(s) ≤
√

(1−α)
α η,∀s ∈ S

+∞ otherwise.

where η is defined in 3.3. Using Theorem 2 of Zhang et al. (2023), we have directly that :

v∗α(s) = vπE := max
π

min
Q∈E

vπ,Q (20)

vπα(s) = vπE := min
Q∈E

vπ,Q. (21)

C AUTOEXPECTRL ALGORITHM DESCRIPTION

In the section, we gives implementation details of our algorithm AutoExpectRL. First, we choose
a neural network that has 4 heads for the critic, one per value of α, leading to 4 estimates of the
pessimist Q-function, Qϕd

(s, a), ∀d ∈ [1, 4]. Even if some parameters are shared in the body of
the network, we denote parameters of the critic as ϕ = {ϕ1, ϕ2, ϕ3, ϕ4}. A similar network is used
for actor neural network, with four heads, one per policy πθd ,∀d ∈ [1, 4]. with θ = {θ1, θ2, θ3, θ4}.
Given 4 target yd (r, s′) = r + γQϕd,targ

(s′, πθd(s
′)) with reward r, policy πθd , we propose to

minimize the AutoExpectRL critic loss

Lauto (ϕ,D) = E
(s,a,r,s′)∼D

[
4∑

d=1

Lαd
2 (Qϕd

(s, a)− yd (r, s
′))

]
. (22)

which as associated UpdateCritics(B, θ, ϕ) function which is a gradient ascent using :

∆ϕ ∝ ∇ϕ
1

|B|
∑

(s,a,r,s′)∈B

4∑
d=1

Lαd
2 (Qϕd

(s, a)− yd (r, s
′)) . (23)

The actor of our algorithm AutoExpectRL is updated according to the gradient of the sum of the
actor’s head losses or UpdateActor(T, θ, ϕ):

∆θ ∝ ∇θ
1

|B|
∑
s∈B

4∑
k=1

Qϕk
(s, πθk(s)) . (24)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 1 AutoExpectRL
1: Initialize critic networks Qϕd

and actor πθ ∀d ∈ [1, 4]
Initialize target networks for all networks, i.e. ∀d ∈ [1, 4] ϕ′

d ← ϕd, θ′d ← θd
Initialize replay buffer and bandit probabilities B ← ∅, pα

1 ← U([0, 1]D)
2: for episode in m = 1, 2, . . . do
3: Initialize episode reward Rm ← 0
4: Sample expectile αm ∼ pα

m
5: for time step t = 1, 2, . . . , T do
6: Select noisy action at = πθd(st) + ϵ, ϵ ∼ N (0, s2), obtain rt+1, st+1 where d is the index

in the bandit problem of chosen expectile αm

7: Add to total reward Rm ← Rm + rt+1

8: Store transition B ← B ∪ {(st, at, rt+1, st+1)}
9: Sample N transitions B = (s, a, r, s′)

N
n=1 ∼ B.

10: Update Critics(B, θ′, ϕ′) according to (23).
11: if t mod b then
12: UpdateActor(T, θ, ϕ) according to (24).
13: Update ϕ′

d: ϕ′
d ← τϕd + (1− τ)ϕ′

d, d ∈ {1, 4}
14: Update θ′: θ′d ← τθd + (1− τ)θ′d
15: end for
16: Update bandit pα weights using : wm+1(d) = wm(d) + ηRm−Rm−1

pα
m(d)

17: end for

The dimension of our neural network is related to the dimension of the classical network of TD3. First,
we choose a common body of share weights for our neural network of hidden dimension [400, 300].
Then our network is composed of 4 heads, each with final matrix weights of dimensions 300 × 1
where 1 represents the value of one pessimist Q-function Qk. The dimension of the actor-network
hidden layers is similar to the critic network for share weights, but the non-shared weights between
the last hidden layer and the 4 policies have dimension 300 × |A|. Finally, the sampling of new
trajectories is done using the actor head with the chosen current α proposed by the bandit algorithm
using πθd with d the index of the chosen expectile.

The algorithm can be summarised as in Algorithm 1. The blue parts are parts that differ from the
traditional TD3 algorithm, as they are related to the bandit mechanism or ExpectRL losses. Note
that the parameter b, the delay between the update of the critic and the actor, is usually chosen as
2 in TD3 algorithm. Finally, in the update of the bandit, an extra parameter, the learning rate η of
the gradient ascent must be chosen. This parameter influences how fast the bandit converges to an
arm, and in our case is chosen as 0.2 like in Moskovitz et al. (2021) which uses bandit to fine-tune
parameters in Rl algorithm. for all environments. Finally, in the testing phase of the benchmark, the
best arm is chosen to maximize the reward.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D HYPERPARAMETERS

Hyperparameter Value
Learning rate actor 3e− 4
Learning rate critic 3e− 3
Batch size 100
Memory size 3e5
Gamma 0.99
Polyak update τ 0.995
Number of steps before training 7e4
Train frequency and gradient step 100
Network Hidden Layers (Critic) [400, 300] like original implementation of TD3
Network Hidden Layers (Actor) [400, 300] like original implementation of TD3

Table 4: Hyperparameters

All experiments were run on an internal cluster containing a mixture of GPU Nvidia Tesla V100
SXM2 32 Go. Each run was performed on a single GPU and lasted between 1 and 8 hours, depending
on the task and GPU model. Our baseline implementations for TD3 is Raffin et al. (2021) where we
use the same base hyperparameters across all experiments, displayed in Table D.

E AUTOEXPECRL VS OTHER EXPECTILES ON ROBUST BENCHMARK FOR
MEAN ON TABLE 1

This section illustrates the fact that ExpecRL method outperforms on robust benchmark TD3
algorithm. Without any hyperparameter tuning, AutoExpecRL achieves a similar performance to
ExpecRL with the best expectile, finding the best arms in the bandit problem. In Ant and Hopper
environments, the best expectile is frequently very low, typically α = 0.2 our 0.3 where this is less
the case for HalfCheetah and Humanoid where the best expectile is bigger. Finally, we can remark
that smaller expectiles give better performance in terms of min performance while for average metric,
higher expectiles are chosen, which is also verified in Table 5 for DR benchmark.

Figure 1: Mean performance as a function of the expectile, non-robust case (corresponding to
Table 1).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
step 1e6

0

1000

2000

3000

4000

5000

pe
rfo

rm
an

ce

Ant-v3

0.2
0.3
0.4
0.5
0.5 twin
auto

0.0 0.2 0.4 0.6 0.8 1.0
step 1e6

0

2000

4000

6000

8000

10000

12000

pe
rfo

rm
an

ce

HalfCheetah-v3

0.2
0.3
0.4
0.5
0.5 twin
auto

0.0 0.2 0.4 0.6 0.8 1.0
step 1e6

0

500

1000

1500

2000

2500

3000

3500

pe
rfo

rm
an

ce

Hopper-v3

0.2
0.3
0.4
0.5
0.5 twin
auto

0.0 0.2 0.4 0.6 0.8 1.0
step 1e6

0

500

1000

1500

2000

2500

3000

3500

pe
rfo

rm
an

ce

Walker-v3

0.2
0.3
0.4
0.5
0.5 twin
auto

Figure 2: Learning curves non-robust case (corresponding to Table 1).

F WORST CASE PERFORMANCE FOR AUTOEXPECRL AND EXPECRL (ONLY
NOMINAL SAMPLES) OR TABLE 2.

F.1 FOR 1D UNCERTAINTY GREED BENCHMARK

Figure 3: Min performance as a function of the expectile, robust case (corresponding to Table 2).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F.2 FOR 2D UNCERTAINTY GREED BENCHMARK

Figure 4: Min performance as a function of the expectile, robust case (corresponding to Table 2).

F.3 FOR 3D UNCERTAINTY GREED BENCHMARK

Figure 5: Min performance as a function of the expectile, robust case (corresponding to Table 2).

G AVERAGE PERFORMANCE FOR AUTOEXPECRL AND EXPECRL(ONLY
NOMINAL SAMPLES) OR TABLE 2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

G.1 FOR 1D UNCERTAINTY GREED BENCHMARK

Figure 6: Min performance as a function of the expectile, robust case (corresponding to Table 2).

G.2 FOR 2D UNCERTAINTY GREED BENCHMARK

Figure 7: Min performance as a function of the expectile, robust case (corresponding to Table 2).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

G.3 FOR 3D UNCERTAINTY GREED BENCHMARK

Figure 8: Min performance as a function of the expectile, robust case (corresponding to Table 2).

H ADDITIONAL DETAILS FOR EXPECTILES ON ROBUST BENCHMARK FOR
WORST-CASE AND MEAN ON TABLE 3

Env Min Mean

Ant1 3 3
Ant2 2 3
Ant3 2 3
HalfCheetah1 3 3
HalfCheetah2 3 3
HalfCheetah3 3 3
Hopper1 3 4
Hopper2 3 4
Hopper3 3 3
Walker1 3 4
Walker2 4 4
Walker3 3 3
HumanoidStandup1 3 3
HumanoidStandup2 2 3
HumanoidStandup3 2 3

Table 5: Best Expectile in DR for ExpectRL

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

I UNCERTAINTY SETS USED FOR ROBUST BENCHMARK

Table 6: Uncertainty sets used for Robust benchmark
Environment Uncertainty Set Ω Reference Parameter Uncertainty Parameter Name

Baseline MuJoCo Environment: Ant

Ant 1 [0.1, 3.0] 0.33 torso mass

Ant 2 [0.1, 3.0] × [0.01, 3.0] (0.33, 0.04) torso mass × front left leg mass

Ant 3 [0.1, 3.0] × [0.01, 3.0] × [0.01, 3.0] (0.33, 0.04, 0.06) torso mass × front left leg mass × front right leg mass

Baseline MuJoCo Environment: HalfCheetah

HalfCheetah 1 [0.1, 4.0] 0.4 world friction

HalfCheetah 2 [0.1, 4.0] × [0.1, 7.0] (0.4, 6.36) world friction × torso mass

HalfCheetah 3 [0.1, 4.0] × [0.1, 7.0] × [0.1, 3.0] (0.4, 6.36, 1.53) world friction × torso mass × back thigh mass

Baseline MuJoCo Environment: Hopper

Hopper 1 [0.1, 3.0] 1.00 world friction

Hopper 2 [0.1, 3.0] × [0.1, 3.0] (1.00, 3.53) world friction × torso mass

Hopper 3 [0.1, 3.0] × [0.1, 3.0] × [0.1, 4.0] (1.00, 3.53, 3.93) world friction × torso mass × thigh mass

Baseline MuJoCo Environment: HumanoidStandup

HumanoidStandup 1 [0.1, 16.0] 8.32 torso mass

HumanoidStandup 2 [0.1, 16.0] × [0.1, 8.0] (8.32, 1.77) torso mass × right foot mass

HumanoidStandup 3 [0.1, 16.0] × [0.1, 5.0] × [0.1, 8.0] (8.32, 1.77, 4.53) torso mass × right foot mass × left thigh mass

Baseline MuJoCo Environment: Walker

Walker 1 [0.1, 4.0] 0.7 world friction

Walker 2 [0.1, 4.0] × [0.1, 5.0] (0.7, 3.53) world friction × torso mass

Walker 3 [0.1, 4.0] × [0.1, 5.0] × [0.1, 6.0] (0.7, 3.53, 3.93) world friction × torso mass × thigh mass

21

	Introduction
	Related Work
	Background
	 Markov Decision Processes
	Robust MDPs
	Expectiles

	ExpectRL method
	Expectile Bellman Operator
	 The ExpecRL Loss
	 ExpecRL method with Domain randomisation
	Auto-tuning of the expectile using bandit

	Empirical Result on Mujoco
	Empirical Results on Robust Benchmark
	Conclusion and perspectives
	Appendix
	Proof
	AutoExpectRL algorithm description
	Hyperparameters
	AutoExpecRL vs other expectiles on Robust benchmark for mean on Table 1
	 Worst case performance for AutoExpecRL and ExpecRL (only nominal samples) or Table 2.
	For 1D uncertainty greed benchmark
	For 2D uncertainty greed benchmark
	For 3D uncertainty greed benchmark

	 Average performance for AutoExpecRL and ExpecRL(only nominal samples) or Table 2.
	For 1D uncertainty greed benchmark
	For 2D uncertainty greed benchmark
	For 3D uncertainty greed benchmark

	 Additional details for expectiles on Robust benchmark for worst-case and mean on Table 3
	Uncertainty sets used for Robust benchmark

