
Neat: Nonlinear Parameter-efficient Adaptation of Pre-trained Models

Anonymous ACL submission

Abstract001

Fine-tuning pre-trained models often yields002
state-of-the-art performance but is computation-003
ally expensive when updating all parameters.004
Parameter-efficient fine-tuning (PEFT) meth-005
ods, such as Low-Rank Adaptation (LoRA),006
address this by freezing pre-trained weights007
and introducing low-rank matrices. However,008
because LoRA relies on low-rank decomposi-009
tion, it struggles to capture complex nonlinear010
dynamics and optimal optimization trajecto-011
ries, resulting in a performance gap relative012
to full fine-tuning and inefficient parameter uti-013
lization. To overcome these issues, we pro-014
pose NEAT, a nonlinear PEFT approach that015
employs a lightweight neural network to learn016
a nonlinear transformation of the pre-trained017
weights, thereby better approximating cumula-018
tive weight updates. Our theoretical analysis019
shows that NEAT achieves greater efficiency020
than LoRA while maintaining equivalent ex-021
pressivity. Extensive experiments on four022
benchmarks and over twenty datasets demon-023
strate that NEAT significantly outperforms state-024
of-the-art baselines in both vision and text025
tasks.026

1 Introduction027

Pre-trained models, trained on extensive and di-028

verse general-domain corpora, demonstrate excep-029

tional generalization capabilities, benefiting a range030

of fundamental tasks, such as natural language un-031

derstanding (Devlin, 2018; Liu, 2019), natural lan-032

guage generation (Touvron et al., 2023; AI@Meta,033

2024), and image classification (Dosovitskiy et al.,034

2020). In order to adapt pre-trained models to035

specific downstream tasks, fine-tuning is typically036

employed. However, due to the large number of037

parameters in pre-trained models, full fine-tuning038

requires significant computational resources and039

incurs substantial memory overhead (Qin et al.,040

2024).041

To address this challenge, various parameter- 042

efficient fine-tuning (PEFT) techniques (Ding 043

et al., 2023; Han et al., 2024) have been de- 044

veloped, enabling pre-trained models to be fine- 045

tuned in resource-constrained environments (Lin 046

et al., 2024). PEFT methods reduce the memory 047

overhead of fine-tuning by introducing a small 048

set of learnable parameters, updating only these 049

lightweight components. These approaches al- 050

low pre-trained models to effectively adapt to 051

new tasks while minimizing resource consumption. 052

Among PEFT techniques, the Low-Rank Adapta- 053

tion (LoRA) family (Hu et al., 2021a; Liu et al., 054

2024; Song et al., 2024; Büyükakyüz, 2024; Zhao 055

et al., 2024) is widely regarded as one of the most 056

effective and popular approaches due to its min- 057

imal architectural modifications, high efficiency, 058

and strong performance. Instead of updating pre- 059

trained model weight directly, LoRA instead intro- 060

duces two learnable low-rank matrices for it, and 061

approximate weight updates through their product. 062

Since these low-rank matrices are much smaller 063

than the original pre-trained weights, LoRA signif- 064

icantly reduces the memory overhead during fine- 065

tuning. 066

Despite its widespread success, LoRA has limi- 067

tations, particularly in capturing complex relation- 068

ships in weight updates. By decomposing weight 069

updates into low-rank matrices, LoRA effectively 070

reduces the fine-tuning parameter space, but this 071

comes at the cost of failing to capture complex 072

patterns that are critical for many downstream 073

tasks (Pan et al., 2024). Specifically, LoRA approx- 074

imation often struggles to model the intricate opti- 075

mization trajectories required for high performance, 076

especially when the rank of the low-rank matrices 077

is small. Consequently, LoRA-based methods often 078

require higher ranks to close the gap between their 079

performance and that of full fine-tuning, which in- 080

creases the number of parameters and undermines 081

the efficiency gains they were designed to achieve. 082

1

To overcome these limitations, we propose083

a novel nonlinear parameter-efficient adaptation084

method, NEAT, which incorporates a lightweight085

neural network into the adaptation process. Un-086

like LoRA, which approximates weight updates087

linearly through low-rank decomposition, NEAT088

models cumulative weight updates as explicit func-089

tions of the pre-trained model’s original weights.090

This enables NEAT to capture complex, non-linear091

patterns in the weight space, improving adapta-092

tion performance without increasing the number093

of parameters. The key innovation in NEAT lies094

in introducing a neural network that transforms095

the pre-trained weights, approximating the updates096

with minimal additional computation. This nonlin-097

ear transformation enhances the expressiveness of098

the parameter updates while maintaining the effi-099

ciency. Importantly, this architecture facilitates a100

more efficient exploration of the optimization land-101

scape, leading to better task adaptation, particularly102

in cases where linear methods like LoRA would103

require much larger ranks to achieve competitive104

results. We theoretically demonstrate that NEAT105

can achieve the same or greater expressivity than106

LoRA with fewer parameters.107

The contributions are summarized as follows:108

1) We propose NEAT, a novel parameter-efficient109

fine-tuning method that leverages nonlinear trans-110

formations, effectively capturing more complex111

weight updates. To the best of our knowledge, this112

is the first work to introduce nonlinear adaptation113

for LoRA-based PEFT methods; 2) The proposed114

NEAT enhances model performance while main-115

taining the efficiency. We theoretically show that116

NEAT can achieve a possibly improved parameter117

efficiency compared to LoRA; 3) We conduct ex-118

tensive experiments on four benchmarks covering119

over twenty datasets. The experiments show that120

the proposed NEAT can outperform baselines on121

both vision and text tasks.122

2 Related Works123

In this section, we provide a concise overview of124

related work on Parameter-Efficient Fine-Tuning125

(PEFT) methods. PEFT methods aim to reduce the126

memory overhead of fine-tuning pre-trained mod-127

els, enabling fine-tuning in resource-constrained128

environments. According to Han et al. (2024),129

PEFT methods can be categorized into: 1) Ad-130

ditive PEFT methods (Chronopoulou et al., 2023;131

Edalati et al., 2022; Lester et al., 2021; Wang132

et al., 2024c; Liu et al., 2022), 2) Selective PEFT 133

methods (Guo et al., 2020; Das et al., 2023; Sung 134

et al., 2021; Ansell et al., 2021; Zaken et al., 2021; 135

Vucetic et al., 2022), 3) Reparameterized PEFT 136

methods (Hu et al., 2021b; Valipour et al., 2022; 137

Zhang et al., 2023; Karimi Mahabadi et al., 2021; 138

Liu et al., 2024; Kopiczko et al., 2023), and 4) Hy- 139

brid PEFT methods (Mao et al., 2021; Chen et al., 140

2023; He et al., 2021; Zhang et al., 2022; Zhou 141

et al., 2024). Among these, Low-Rank Adapta- 142

tion (LoRA)-based methods, which are represen- 143

tative of reparameterized PEFT approaches, have 144

gained significant attention due to their minimal 145

architectural changes, no additional inference costs, 146

and high efficiency. LoRA (Hu et al., 2021b) in- 147

troduces two trainable low-rank matrices for each 148

pre-trained model weight to approximate the de- 149

sired updates of the original model. Extensions 150

of LoRA include DyLoRA (Valipour et al., 2022), 151

which dynamically adjusts the rank of the low-rank 152

matrices during training to optimize for specific 153

tasks; AdaLoRA (Zhang et al., 2023), which adap- 154

tively allocates the parameter budget among weight 155

matrices based on their importance scores; and 156

DoRA (Liu et al., 2024), which decomposes the 157

pre-trained weight into magnitude and direction, 158

applying LoRA only for direction updates. Other 159

variants include VeRA (Kopiczko et al., 2023), 160

which introduces shared frozen random matrices 161

across layers to improve efficiency further, and 162

RoseLoRA (Wang et al., 2024b), which employs a 163

row- and column-wise sparse low-rank adaptation 164

mechanism to selectively update the most signifi- 165

cant parameters. FourierFT (Gao et al.) replaces 166

the matrix multiplication in LoRA with a Fourier 167

transform, while PiSSA (Meng et al., 2024) and 168

MiLoRA (Wang et al., 2024a) update the princi- 169

pal and minor singular components of the weight 170

matrix, respectively. However, existing PEFT meth- 171

ods rely on linear transformations to approximate 172

pre-trained weight updates, which struggle to cap- 173

ture the complex relationships inherent in weight 174

updates, leading to a significant performance gap 175

compared to full fine-tuning. Meanwhile, existing 176

research like (Teney et al., 2024) also demonstrates 177

that nonlinear activation is an integral part of the 178

neural network driving its success. 179

3 Methodology 180

In this section, we start with a brief introduction 181

of LoRA. Motivated by a key limitation in LoRA 182

2

parameter efficiency that roots from LoRA param-183

eterization form, we propose NEAT, a novel PEFT184

method to solve the issue. Notably, NEAT is able185

to achieves better parameter efficiency provably.186

3.1 Preliminary187

LoRA (Hu et al., 2021b) assumes that the updates188

to model weights during the fine-tuning exhibit low-189

rank properties. Built upon this, LoRA models the190

incremental update of some weight matrix W0 ∈191

Rd1×d2 in a pre-trained model approximately by192

the product of two learnable low-rank matrices193

W = W0 +∆W = W0 +AB,194

where A ∈ Rd1×r and B ∈ Rr×d2 with r ≪195

min(d1, d2). When conducting fine-tuning, only196

introduced two low-rank matrices A and B will be197

updated and the pre-trained weight W0 is frozen,198

as represented by the following optimization199

minA,B L(Dtrain;W
0 +AB), (1)200

where Dtrain is the training set used for fine-tuning201

and L is the loss function. Since A and B are both202

low-rank matrices that contain significantly fewer203

parameters compared with the original W0, the204

LoRA costs much less memory space compared to205

the fully fine-tuning.206

3.2 Inherent Limitation of LoRA Formulation207

While LoRA family have demonstrated remark-208

able parameter efficiency in fine-tuning pre-trained209

models for diverse downstream tasks, we argue210

that their product-based formulation are subopti-211

mal for capturing the full fine-tuning dynamics in212

an efficient way.213

Specifically, when fully fine-tuning a pre-trained214

model, the update process of weight W is typically215

performed through an iterative gradient descent:216

W0
t = W0

t−1 − η∇W0
t−1
L,217

where W0
0 = W0 is the initial state, η is the learn-218

ing rate, and W0
t represents the weights after t219

iterations. The cumulative change in the weights220

over time can be represented as:221

∆W = W0
t −W0

0.222

This weight change ∆W can be interpreted as a223

function of the original pre-trained weights W0,224

capturing the model’s adaptation to the specific task225

during fine-tuning.226

Nonetheless, LoRA matrices A and B are pa- 227

rameterized in a free way without any dependency 228

on W0. While gradient ∇AL and ∇BL are 229

implicit functions of W0, making final learned 230

At,Bt indirectly depends on W0 as well, as will 231

be proved shortly, the lack of explicit dependency 232

still makes LoRA inherently suboptimal for fine- 233

tuning pre-trained models. 234

3.3 Nonlinear Parameter-efficient Adaptation 235

Motivated by the above analysis on LoRA’s lim- 236

itation, we propose to approximate ∆W using a 237

lightweight neural network that explicitly takes pre- 238

trained model weight W0 as input and outputs the 239

weight update directly. By doing so, our approach 240

captures more complex and richer transformation 241

of the weights in a more efficient manner. We re- 242

fer to our method as nonlinear parameter-efficient 243

adaptation method (NEAT). 244

Inspired by the effectiveness of LoRA’s incre- 245

mental updates paradigm, the proposed NEAT also 246

provides incremental update of pre-trained models. 247

However, NEAT modifies the forward pass of the 248

model by introducing a dynamic nonlinear weight 249

transformation. Specifically, the modified model’s 250

forward propagation is formulated as: 251

y = (W0 + f(W0;θ))x. 252

Here x and y are the input and output with re- 253

spect to the current layer, respectively, and f(·;θ) : 254

Rd1×d2 → Rd1×d2 is a nonlinear neural network 255

parameterized by learnable parameter θ. The neu- 256

ral network f(W0;θ) generates the weight update 257

as a function of W0. 258

To ensure the parameter efficiency of our NEAT, 259

the learnable neural network f(W0;θ) should 260

be lightweight, i.e., the number of parameters 261

in f(W0;θ) should be much fewer than that 262

of the original pre-trained weight W0. There- 263

fore, we parametrize f(W0;θ) as a neural net- 264

work with bottleneck layers. For example, a sim- 265

ple case is f(W0;θ) = σ(W0Θ1)Θ2, where 266

θ = (Θ1,Θ2) ∈ Rd2×r × Rr×d2 with r ≪ 267

min(d1, d2), and σ(·) is some activation function 268

such as ReLU (Glorot et al., 2011). We can also 269

increase the layers or add activation function for 270

the output of f(W0;θ) to enhance the model ex- 271

pressiveness. 272

During fine-tuning, the optimization objective is 273

to minimize the task-specific loss function, which 274

3

∙

𝑨

𝑩

𝑾𝟎

𝑾𝟎 ∆𝑾

𝑾𝟎: pre-trained model weight

𝑩, 𝑨: Introduced low-rank matrices

: Parameters are frozen

: Parameters are trainable

𝑓(𝑾𝟎; 𝜽)

LoRA NEAT

Figure 1: Framework of proposed NEAT.

can be represented as275

minθ L(Dtrain;W
0 + f(W0;θ)),276

where the original pre-trained weight W0 is frozen,277

and only neural network parameters θ are updated.278

The overview of NEAT is shown in Fig. 1.279

Remark 3.1. The benefit of our new formulation280

lies in two folds. First, our incremental update281

f(W0;θ) is an explicit function of W0, allowing it282

to capture updates in a more effective way. Second,283

the neural network-based f(W0;θ) allows for dy-284

namic, non-linear weight updates that can capture285

more complex interactions. These two advantages286

make NEAT a more effective and efficient PEFT287

method than existing LoRA-based approaches.288

3.4 Theoretical Analysis289

We end up this section with a theoretical analysis290

of the sub-optimality of LoRA parameter efficiency291

by proving that NEAT is capable of achieving equiv-292

alent or even higher efficiency certain conditions.293

Specifically, suppose NEAT adopts the following294

lightweight architecture as mentioned in Sec 3.3295

f(W0;θ) = σ(W0Θ1)Θ2.296

Then below proposition shows that, NEAT can297

achieve the same expressivity offered by LoRA298

using fewer parameters under certain conditions.299

Here the expressivity is measured in terms of mini-300

mum attainable loss.301

Proposition 3.2. Given pre-trained weight ma-302

trix W0. Let σ denote ReLU activation func-303

tion, and U0 ∈ Rd1×rank(W0) be the left singu-304

lar vectors of W0. Suppose that the fine-tuning305

loss L is invariant under the the projection of the306

weight matrix to the left singular space of W0,307

i.e., L(Dtrain;W) = L(Dtrain;U
0U0⊤W) for any308

W ∈ Rd1×d2 . Then, for any r ≥ 1, 309

min
Θ1∈Rd2×2r,
Θ2∈R2r×d2

L(Dtrain;W
0 + f(W0; (Θ1,Θ2))) 310

≤ min
A∈Rd1×r,
B∈Rr×d2

L(Dtrain;W
0 +AB) 311

≤ min
Θ1∈Rd2×r,
Θ2∈Rr×d2

L(Dtrain;W
0 + f(W0; (Θ1,Θ2))). 312

In words, Prop 3.2 demonstrates the (approxi- 313

mate) equivalence of LoRA and NEAT in terms of 314

their expressivity. Specifically, the minimum at- 315

tainable loss using rank-r LoRA can be achieved 316

by NEAT with 2r hidden units, and conversely, the 317

minimum attainable loss using NEAT with r hid- 318

den units can be achieved rank-r LoRA, provided 319

the invariance assumption holds. This equivalence 320

further implies that the function classes realized 321

by NEAT with O(r) hidden dimensions and rank-r 322

LoRA are equivalent in expressivity, as the result 323

holds for any loss functions. 324

Importantly, this highlights a potential improve- 325

ment in parameter efficiency by NEAT. Namely, 326

NEAT with O(rd2) parameters maintains the ex- 327

pressivity of LoRA with r(d1 + d2) parameters. 328

That it to say, NEAT offers a significant improve- 329

ment in parameter efficiency when d2 ≪ d1 (a 330

condition that widely holds for the down projec- 331

tion matrix of transformers fully-connected lay- 332

ers (Vaswani, 2017; Dosovitskiy et al., 2021)). In 333

such cases, NEAT provably achieves better param- 334

eter efficiency than LoRA. The added parameter 335

efficiency can also improve sample efficiency by 336

allowing the model to learn representations with 337

the same or fewer data points. 338

The invariance assumption in Proposition 3.2 339

pertains to the pre-trained model, and asserts that 340

the later layers of the model depends solely on the 341

task-relevant feature space. Given that we fine-tune 342

a pre-trained model, the later layers are expected 343

to capture this task-relevant feature space, which 344

is described by the left singular space of W0. In 345

practice, since the later layers primarily rely on this 346

pre-trained feature space, the principal directions 347

of the pre-trained weight matrix, represented by its 348

singular vectors, encode most of the useful features 349

for downstream tasks. This makes the loss largely 350

invariant to changes outside this subspace. The 351

proof is available in Section A.1. 352

If we consider a sinusoid activation function 353

σp(x) = sin(2πx), then stronger result that NEAT 354

4

has expressivity (almost) greater than or equal to355

a LoRA with possibly more parameters can be es-356

tablished without the invariance assumption. We357

defer the result to the Appendix A.2.358

4 Experiment359

In the experiments, we evaluate the proposed NEAT360

and answer the following questions: RQ1) How361

does NEAT compare to state-of-the-art PEFT meth-362

ods on NLP tasks? RQ2) How does NEAT compare363

to state-of-the-art PEFT methods on vision tasks?364

RQ3) How does the performance of NEAT vary365

with different fine-tuned modules, depths of the366

lightweight neural network, or non-linear activa-367

tion functions?368

4.1 Benchmarks and Experiment Setups369

We experiment NEAT on datasets from four repre-370

sentative benchmarks:371

Commonsense Reasoning covers diverse multi-372

choice problems from BoolQ (Clark et al., 2019),373

PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019),374

HellaSwag (Zellers et al., 2019), WinoGrande (Sak-375

aguchi et al., 2019), ARC-e and ARC-c (Clark376

et al., 2018), and OpenBookQA (Mihaylov et al.,377

2018) datasets. Following Wang et al. (2024a),378

we finetune LLaMA2-7B (Touvron et al., 2023)379

and LLaMA3-8B (AI@Meta, 2024) on Common-380

sense170K (Hu et al., 2023) benchmark which com-381

bines all previous training sets, and evaluate the382

accuracy on their testing sets separately.383

Arithmetic Understanding consists of two math384

reasoning datasets: GSM8K (Cobbe et al., 2021)385

and MATH (Hendrycks et al., 2021). We finetune386

LLaMA2-7B (Touvron et al., 2023) and LLaMA3-387

8B (AI@Meta, 2024) on MetaMath (Yu et al.,388

2023) dataset following Wang et al. (2024a). Mod-389

els need to generate correct answers, and accuracy390

is used as the evaluation metric.391

Natural Language Understanding consists of392

eight datasets from the GLUE benchmark (Wang393

et al., 2018). We follow the evaluation metrics and394

setups from Gao et al. (2024); Wu et al. (2024b).395

Image Classification consists of Oxford-396

Pets (Parkhi et al., 2012), CIFAR10 (Krizhevsky,397

2009), DTD (Cimpoi et al., 2014), EuroSAT (Hel-398

ber et al., 2019), RESISC45 (Cheng et al., 2017),399

StanfordCars (Krause et al., 2013), FGVC (Maji400

et al., 2013), and CIFAR100 (Krizhevsky, 2009)401

following Gao et al. (2024). The first five datasets 402

have small label spaces, while the last three have 403

large label spaces. 404

Baselines methods are chosen on a task basis. 405

On each task, NEAT is compared with representa- 406

tive baselines from the corresponding domain. 407

See our appendix for details about the datasets 408

(App E), baseline methods (App C), and hyper- 409

parameters (App D). 410

4.2 Performance Comparison 411

We showcase NEAT performance on different tasks. 412

4.2.1 Commonsense Reasoning 413

We experiment NEAT with eight commonsense rea- 414

soning datasets to address RQ1, results are shown 415

in Tab 1. We compare the performance of three 416

state-of-the-art baselines with the proposed NEAT, 417

and NEAT consistently outperforms all of them, 418

achieving the highest accuracy on all tasks. Specifi- 419

cally, NEAT surpasses LoRA, PiSSA, and MiLoRA 420

in terms of average accuracy by 4.6%, 10%, and 421

2.5%, respectively, when using LLaMA2-7B as 422

the backbone. On LLaMA3-8B as the backbone, 423

NEAT demonstrates average improvements of 4.9%, 424

11.8%, and 2.9% over LoRA, PiSSA, and MiLoRA, 425

respectively. These results highlight the effective- 426

ness and superiority of NEAT as a PEFT method. 427

4.2.2 Arithmetic Reasoning 428

In this section, we present results on two arith- 429

metic reasoning tasks in Tab 2 to help address 430

RQ1. From the table, while full fine-tuning (FFT) 431

achieves highest accuracy across the two datasets, 432

the performance gap between the proposed NEAT 433

and FFT is very small, despite that NEAT relies 434

on significantly fewer trainable parameters. More- 435

over, compared to state-of-the-art PEFT baselines, 436

NEAT achieves remarkable performance improve- 437

ments. In terms of average accuracy, NEAT demon- 438

strates improvements of 7.5%, 12.4%, and 2.4% 439

over LoRA, PiSSA, and MiLoRA, respectively. 440

These results on clearly confirm that NEAT is highly 441

effective and efficient for complex reasoning tasks. 442

4.2.3 Natural Language Understanding 443

We further conduct experiments on the GLUE to 444

answer RQ1, results are shown in Tab 3. From the 445

table, NEAT significantly outperforms state-of-the- 446

art PEFT methods. Specifically, NEAT-S, which 447

uses a similar number of trainable parameters as 448

FourierFT (Gao et al., 2024), DiReFT (Wu et al., 449

2024b), and LoReFT (Wu et al., 2024b), surpasses 450

5

Table 1: Common Reasoning performance of NEAT and PEFT baselines on LLaMA 2-7B and LLaMA 3-8B. Results
marked with “+” are taken from Liu et al. (2024), and those marked with “∗” are taken from Wang et al. (2024a).
Best results are in bold. “AVG” means the average accuracy of all datasets.

Model PEFT Accuracy (↑)

BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA AVG

LLaMA2-7B

LoRA+ 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
PiSSA* 67.6 78.1 78.4 76.6 78.0 75.8 60.2 75.6 73.8

MiLoRA* 67.6 83.8 80.1 88.2 82.0 82.8 68.8 80.6 79.2

NEAT 71.9 84.0 80.4 88.9 84.6 86.5 71.6 83.0 81.4

LLaMA3-8B

LoRA+ 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
PiSSA* 67.1 81.1 77.2 83.6 78.9 77.7 63.2 74.6 75.4

MiLoRA* 68.8 86.7 77.2 92.9 85.6 86.8 75.5 81.8 81.9

NEAT 72.1 87.0 80.9 94.3 86.7 91.4 78.9 84.8 84.5

Table 2: Arithmetic Reasoning performance on LLaMA
2-7B. Results marked with “+” are taken from Yu et al.
(2023), and those marked with “∗” are taken from Wang
et al. (2024a). Best results are in bold. “AVG” means
the average accuracy of all datasets.

Method GSM8K MATH AVG

FFT + 66.50 19.80 43.20

LoRA* 60.58 16.88 38.73
PiSSA* 58.23 15.84 37.04
MiLoRA* 63.53 17.76 40.65

NEAT 65.05 18.30 41.68

all PEFT baselines and experiences only a small451

performance drop (0.2%) compared to FFT. Addi-452

tionally, NEAT-L exceeds the performance of all453

baselines, including FFT, with roughly the same454

number of trainable parameters as in LoRA. These455

results demonstrate that NEAT exhibits excellent456

generalization ability while maintaining great pa-457

rameter efficiency.458

4.2.4 Image Classification459

In this section, we conduct experiments on image460

classification tasks to address RQ2, NEAT uses461

depth of 6, and results are shown in Tab 4. From462

the table, NEAT significantly outperforms LoRA463

and FourierFT using the same number of train-464

able parameters. Specifically, NEAT achieves per-465

formance improvements of 11.05%, 7.30%, and466

26.02% compared to LoRA, FourierFT, and LP,467

respectively. Furthermore, compared to FFT, the468

proposed NEAT shows negligible performance drop469

(86.49% v.s. 86.34%), while using only 0.3% of the470

trainable parameters required by FFT. This demon-471

strates that NEAT exhibits exceptional adaptation 472

capability not only on NLP tasks, but also on vision 473

tasks as well. Additionally, it verifies the effective- 474

ness of the nonlinear adaptation used in NEAT. 475

4.3 Ablation Study 476

In this section, we present an ablation study with 477

two variants of LoRA to validate the effectiveness 478

of our proposed framework: 1) nonlinear LoRA 479

y = (W0 + σ(A)B)x, and 2) multiplicative 480

LoRA y = (W0 + W0AB)x. Experiments are 481

conducted on image classification benchmarks, and 482

results are reported in Tab 5. According to the ta- 483

ble, both nonlinear LoRA and multiplicative LoRA 484

perform worse than NEAT. This highlights the ef- 485

fectiveness of incorporating nonlinear approxima- 486

tions and explicitly using model weights as input 487

to the nonlinear function in NEAT. 488

4.4 Sensitivity w.r.t. Depth 489

The expressiveness of neural networks grow with 490

its depth (Raghu et al., 2017). This implies that 491

deeper NEAT may be able to capturing more com- 492

plex patterns required by ideal weight updates. In 493

this section, we experiments NEAT with varying 494

depth on vision, NLU, commonsense reasoning, 495

and arithmetic reasoning benchmarks to address 496

RQ3. Results are shown in Fig 2. See NEAT layer 497

architecture in Fig 5 and more details and results in 498

App F To ensure fair comparison, we fix all other 499

hyper-parameters when varying depth. 500

From Fig 2, increasing network depth leads to 501

better performance. Specifically, when using depth 502

of 6, the classification accuracy achieves 81.04%, 503

marking a 1.7% improvement compared with using 504

depth of 2. On RTE, using 6 layers also boosts 505

6

Table 3: GLUE benchmark performance on RoBERTa-base. Results marked with “∗” are taken from Wu et al.
(2024a). Best results are in bold. “AVG” means the average accuracy of all datasets. NEAT-S applies trainable
modules to layers starting from the 4th layer, with hidden dimensions set to 1. This matches the parameter numbers
of FourierFT. NEAT-L applies NEAT to all layers with hidden dimension 8, aligning the parameter budget of LoRA.

PEFT Params (%) Accuracy (↑)
MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B AVG

FFT 100% 87.3 94.4 87.9 62.4 92.5 91.7 78.3 90.6 85.6

Adapter∗ 0.318% 87.0 93.3 88.4 60.9 92.5 90.5 76.5 90.5 85.0
LoRA∗ 0.239% 86.6 93.9 88.7 59.7 92.6 90.4 75.3 90.3 84.7
AdapterFNN∗ 0.239% 87.1 93.0 88.8 58.5 92.0 90.2 77.7 90.4 84.7
BitFit∗ 0.080% 84.7 94.0 88.0 54.0 91.0 87.3 69.8 89.5 82.3
RED∗ 0.016% 83.9 93.9 89.2 61.0 90.7 87.2 78.0 90.4 84.3
FourierFT 0.019% 84.7 94.2 90.0 63.8 92.2 88.0 79.1 90.8 85.3
DiReFT∗ 0.015% 82.5 92.6 88.3 58.6 91.3 86.4 76.4 89.3 83.2
LoReFT∗ 0.015% 83.1 93.4 89.2 60.4 91.2 87.4 79.0 90.0 84.2

NEAT-S 0.019% 84.9 94.3 90.2 64.6 92.0 88.3 78.3 90.5 85.4
NEAT-L 0.241% 86.9 95.2 90.0 64.8 92.3 90.3 82.7 90.7 86.6

Table 4: Image Classification performance on ViT-base. Best results are in bold. “AVG” means the average accuracy
of all datasets. Results marked with “∗” are taken from Gao et al. (2024).

Method Params (M) OxfordPets StanfordCars CIFAR10 DTD EuroSAT FGVC RESISC45 CIFAR100 AVG

FFT∗ 85.8M 93.14 79.78 98.92 77.68 99.05 54.84 96.13 92.38 86.49

LP∗ - 90.28 25.76 96.41 69.77 88.72 17.44 74.22 84.28 68.36
LoRA∗ 581K 93.19 45.38 98.78 74.95 98.44 25.16 92.70 92.02 77.58
FourierFT∗ 239K 93.05 56.36 98.69 77.30 98.78 32.44 94.26 91.45 80.29

NEAT 263K 93.62 80.21 98.78 79.61 98.85 52.93 94.71 92.02 86.34

Table 5: Ablation Study on image classification task. The parameters count is the same and “AVG” means the
average accuracy of all datasets. For simple and fair comparison, NEAT uses depth of 2.

Method OxfordPets StanfordCars CIFAR10 DTD EuroSAT FGVC RESISC45 CIFAR100 AVG

Nonlinear LoRA 94.11 72.84 98.68 79.16 98.61 39.33 93.79 92.38 83.31
Multiplicative LoRA 93.57 77.32 98.68 77.57 98.81 46.79 94.34 91.86 84.81
NEAT 93.77 80.03 98.70 77.57 98.79 53.60 94.27 92.47 86.15

the performance by a remarkable 4% compared506

to using 2. In addition, deeper networks tend to507

bring more improvement on complex benchmarks,508

such as MATH and PIQA. Finally, we would like509

to highlight that NEAT intermediate layers consist510

much fewer parameters (Rr×r, where r is the hid-511

den layer dimension) compared to the pre-trained512

model’s weight. Therefore, the additional param-513

eter overhead of stacking more hidden layers is514

negligible and does not affect the parameter effi-515

ciency of NEAT. These results further validate the516

effectiveness of introducing non-linear adaptation.517

4.5 Sensitivity w.r.t. Activations518

One key innovation of NEAT compared to LoRA519

and other PEFT methods, which rely solely on lin-520

2 4 6
Depth

0.780

0.790

0.800

0.810

0.820

0.830

Ac
cu

ra
cy

RTE

2 4 6
Depth

0.798

0.800

0.802

0.804

Cars

2 4 6
Depth

0.8390

0.8392

0.8394

0.8396

0.8398

0.8400

PIQA

2 4 6
Depth

0.1820

0.1822

0.1824

0.1826

0.1828

0.1830
MATH

Figure 2: Accuracy on the RTE, StanfordCars, PIQA
and MATH dataset with varying depths of the neural
network used in NEAT. The depth here represents the
total number of layers in the neural network. We choose
depth equals to 2, 4 and 6 layers in the figure.

ear transformations for modeling weight updates, is 521

the introduction of non-linear activations within the 522

adaptation neural network. Since the choice of non- 523

linear activations directly affects the learning pro- 524

7

108531
Learning Rate (×10 3)

0.75

0.76

0.77

0.78

0.79

0.80

Ac
cu

ra
cy

GELU

108531
Learning Rate (×10 3)

0.76

0.77

0.78

0.79

0.80

Tanh

108531
Learning Rate (×10 3)

0.75

0.76

0.77

0.78

0.79

0.80

Leaky ReLU

108531
Learning Rate (×10 3)

0.75

0.76

0.77

0.78

0.79

0.80

ReLU

108531
Learning Rate (×10 3)

0.0

0.2

0.4

0.6

0.8
Sinusoidal

Figure 3: Influence of different nonlinear activations choices for NEAT. Experiments are conducted on StanfordCars,
NEAT depth is fixed to 2. Different activations share a similar pattern of dependency on learning rate.

Pets Cars Cifar10 Dtd Eurosat Fgvc Resisc45 Cifar100 Average0
20
40
60
80

100

Ac
cu

ra
cy

 (%
)

QV-MLP QV

Figure 4: Accuracy of NEAT with different targeted
fine-tuning modules, including just QV layers and a
combination of QV and MLP layers, on image classifi-
cation datasets.

cess and the dynamics of weight updates, we inves-525

tigate how different non-linear activations affects526

the adaptation performance to address RQ3. To this527

end, we perform experiments on the StanfordCars528

benchmark using various non-linear activations, in-529

cluding ReLU, Leaky ReLU, GELU, Tanh, and530

sinusoidal activation (σp(x) = sin(2πx)). Corre-531

sponding results are presented in Fig 3. To ensure532

a fair comparison, the number of trainable param-533

eters is fixed. We optimize other hyperparameters534

such as learning rate for better performance.535

From the figure, the best performance achieved536

by different activation functions is similar, indi-537

cating that the adaptation potential of various ac-538

tivations is comparable. This implies that NEAT539

can benefit from various type of nonlinearity in-540

duced by different activations. However, it is also541

worth noting that sinusoidal activations encounters542

a performance drop at large learning rates. Con-543

sequently, tuning basic hyperparameters such as544

learning rate can still be beneficial. In conclusion,545

we suggest ReLU as a default choice in execution,546

given its practical simplicity (Teney et al., 2024).547

5 Sensitivity w.r.t. Fine-tuned Module548

We end up this section with a study on apply-549

ing NEAT to different modules in a ViT, to help550

better understand RQ3. Specifically, given the551

importance of MLP in Transformer architecture,552

we compare two settings: 1) Following Hu et al. 553

(2021a), we apply NEAT to the query and value 554

layers (QV layers) in the multi-head self-attention 555

module (MHSA) in ViT. 2) Besides QV layers, we 556

also apply NEAT to MLP layers. We tune the hid- 557

den dimension r to ensure the same parameter scale 558

for fair comparison, and tune the hyperparameters 559

to maximize performance. Corresponding results 560

are shown in Fig. 4. 561

From the figure, applying NEAT to the QV lay- 562

ers yields results comparable to applying NEAT to 563

both the QV and MLP layers. This indicates that 564

NEAT is robust to the selections of fine-tuning dif- 565

ferent modules. This finding confirms another key 566

advantage of NEAT: it does not require extensive 567

manual tuning on which parts (modules, layers) 568

of the foundation model NEAT should be applied. 569

Consequently, NEAT can be easily incorporated to 570

a wide range of scenarios. 571

6 Conclusion 572

In this work, we propose NEAT, a novel parameter- 573

efficient fine-tuning (PEFT) method that introduces 574

nonlinear transformations to enhance model adapta- 575

tion while maintaining efficiency. By incorporating 576

a lightweight neural network that models cumula- 577

tive weight updates as functions of the pre-trained 578

weights, NEAT effectively captures complex, non- 579

linear structures in the weight space, allowing for 580

more expressive and accurate adaptation to down- 581

stream tasks. Our theoretical analysis supports 582

the efficacy of NEAT, demonstrating that it can 583

achieve greater or equivalent expressiveness com- 584

pared to existing LoRA, a popular and state-of-the- 585

art PEFT method, with fewer number of parame- 586

ters. Through extensive experiments on four bench- 587

marks encompassing over twenty datasets with var- 588

ious pre-trained backbones, NEAT demonstrated 589

superior performance on both NLP and vision tasks 590

compared to existing state-of-the-art methods. 591

8

Limitations592

The proposed NEAT framework requires to593

choose the activation function for the introduced594

lightweight neural network, which might require595

additional effort to tune. Fortunately, we observe596

that the model performance is not sensitive to the597

activation function and we set it to the widely used598

ReLU to achieve good performance in this paper.599

References600

AI@Meta. 2024. Llama 3 model card.601

Alan Ansell, Edoardo Maria Ponti, Anna Korhonen,602
and Ivan Vulić. 2021. Composable sparse fine-603
tuning for cross-lingual transfer. arXiv preprint604
arXiv:2110.07560.605

Tom M Apostol. 1990. Modular functions and dirichlet606
series in number theory.607

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng608
Gao, and Yejin Choi. 2020. Piqa: Reasoning about609
physical commonsense in natural language. arXiv610
preprint arXiv:1911.11641.611

Kerim Büyükakyüz. 2024. Olora: Orthonormal low-612
rank adaptation of large language models. arXiv613
preprint arXiv:2406.01775.614

Jiaao Chen, Aston Zhang, Xingjian Shi, Mu Li,615
Alex Smola, and Diyi Yang. 2023. Parameter-616
efficient fine-tuning design spaces. arXiv preprint617
arXiv:2301.01821.618

Gong Cheng, Junwei Han, and Xiaoqiang Lu. 2017.619
Remote sensing image scene classification: Bench-620
mark and state of the art. Proceedings of the IEEE,621
105(10):1865–1883.622

Alexandra Chronopoulou, Matthew E Peters, Alexander623
Fraser, and Jesse Dodge. 2023. Adaptersoup: Weight624
averaging to improve generalization of pretrained625
language models. arXiv preprint arXiv:2302.07027.626

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos,627
Sammy Mohamed, and Andrea Vedaldi. 2014. De-628
scribing textures in the wild. In Proceedings of the629
IEEE conference on computer vision and pattern630
recognition, pages 3606–3613.631

Christopher Clark, Kenton Lee, Ming-Wei Chang,632
Tom Kwiatkowski, Michael Collins, and Kristina633
Toutanova. 2019. Boolq: Exploring the surprising634
difficulty of natural yes/no questions. arXiv preprint635
arXiv:1905.10044.636

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,637
Ashish Sabharwal, Carissa Schoenick, and Oyvind638
Tafjord. 2018. Think you have solved question an-639
swering? try arc, the ai2 reasoning challenge. arXiv640
preprint arXiv:1803.05457.641

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 642
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 643
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 644
Nakano, Christopher Hesse, and John Schulman. 645
2021. Training verifiers to solve math word prob- 646
lems. arXiv preprint arXiv:2110.14168. 647

Sarkar Snigdha Sarathi Das, Ranran Haoran Zhang, 648
Peng Shi, Wenpeng Yin, and Rui Zhang. 2023. 649
Unified low-resource sequence labeling by sample- 650
aware dynamic sparse finetuning. arXiv preprint 651
arXiv:2311.03748. 652

Jacob Devlin. 2018. Bert: Pre-training of deep bidi- 653
rectional transformers for language understanding. 654
arXiv preprint arXiv:1810.04805. 655

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, 656
Zonghan Yang, Yusheng Su, Shengding Hu, Yulin 657
Chen, Chi-Min Chan, Weize Chen, et al. 2023. 658
Parameter-efficient fine-tuning of large-scale pre- 659
trained language models. Nature Machine Intelli- 660
gence, 5(3):220–235. 661

Alexey Dosovitskiy, Lucas Beyer, Alexander 662
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, 663
Thomas Unterthiner, Mostafa Dehghani, Matthias 664
Minderer, Georg Heigold, Sylvain Gelly, Jakob 665
Uszkoreit, and Neil Houlsby. 2021. An image 666
is worth 16x16 words: Transformers for image 667
recognition at scale. In International Conference on 668
Learning Representations. 669

Alexey Dosovitskiy, Lucas Beyer, Alexander 670
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, 671
Thomas Unterthiner, Mostafa Dehghani, Matthias 672
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020. 673
An image is worth 16x16 words: Transformers 674
for image recognition at scale. In International 675
Conference on Learning Representations. 676

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Par- 677
tovi Nia, James J Clark, and Mehdi Rezagholizadeh. 678
2022. Krona: Parameter efficient tuning with kro- 679
necker adapter. arXiv preprint arXiv:2212.10650. 680

Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu, 681
Bingzhe Wu, Liang Chen, and Jia Li. Parameter- 682
efficient fine-tuning with discrete fourier transform. 683
In Forty-first International Conference on Machine 684
Learning. 685

Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing 686
Liu, Bingzhe Wu, Liang Chen, and Jia Li. 2024. 687
Parameter-efficient fine-tuning with discrete fourier 688
transform. arXiv preprint arXiv:2405.03003. 689

Michael S Gashler and Stephen C Ashmore. 2014. 690
Training deep fourier neural networks to fit time- 691
series data. In Intelligent Computing in Bioinfor- 692
matics: 10th International Conference, ICIC 2014, 693
Taiyuan, China, August 3-6, 2014. Proceedings 10, 694
pages 48–55. Springer. 695

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.696
2011. Deep sparse rectifier neural networks. In Pro-697
ceedings of the fourteenth international conference698
on artificial intelligence and statistics, pages 315–699
323. JMLR Workshop and Conference Proceedings.700

Demi Guo, Alexander M Rush, and Yoon Kim. 2020.701
Parameter-efficient transfer learning with diff prun-702
ing. arXiv preprint arXiv:2012.07463.703

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang,704
et al. 2024. Parameter-efficient fine-tuning for large705
models: A comprehensive survey. arXiv preprint706
arXiv:2403.14608.707

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-708
Kirkpatrick, and Graham Neubig. 2021. Towards a709
unified view of parameter-efficient transfer learning.710
arXiv preprint arXiv:2110.04366.711

Patrick Helber, Benjamin Bischke, Andreas Dengel,712
and Damian Borth. 2019. Eurosat: A novel dataset713
and deep learning benchmark for land use and land714
cover classification. IEEE Journal of Selected Topics715
in Applied Earth Observations and Remote Sensing,716
12(7):2217–2226.717

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul718
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-719
cob Steinhardt. 2021. Measuring mathematical prob-720
lem solving with the math dataset. arXiv preprint721
arXiv:2103.03874.722

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,723
Bruna Morrone, Quentin De Laroussilhe, Andrea724
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.725
Parameter-efficient transfer learning for nlp. In In-726
ternational conference on machine learning, pages727
2790–2799. PMLR.728

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan729
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,730
and Weizhu Chen. 2021a. Lora: Low-rank adap-731
tation of large language models. arXiv preprint732
arXiv:2106.09685.733

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan734
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,735
and Weizhu Chen. 2021b. Lora: Low-rank adap-736
tation of large language models. arXiv preprint737
arXiv:2106.09685.738

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-739
Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria,740
and Roy Lee. 2023. Llm-adapters: An adapter family741
for parameter-efficient fine-tuning of large language742
models. arXiv preprint arXiv:2304.01933.743

Rabeeh Karimi Mahabadi, James Henderson, and Se-744
bastian Ruder. 2021. Compacter: Efficient low-rank745
hypercomplex adapter layers. Advances in Neural746
Information Processing Systems, 34:1022–1035.747

Dawid Jan Kopiczko, Tijmen Blankevoort, and748
Yuki Markus Asano. 2023. Vera: Vector-749
based random matrix adaptation. arXiv preprint750
arXiv:2310.11454.751

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei- 752
Fei. 2013. 3d object representations for fine-grained 753
categorization. In Proceedings of the IEEE inter- 754
national conference on computer vision workshops, 755
pages 554–561. 756

A Krizhevsky. 2009. Learning multiple layers of fea- 757
tures from tiny images. Master’s thesis, University 758
of Tront. 759

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 760
The power of scale for parameter-efficient prompt 761
tuning. arXiv preprint arXiv:2104.08691. 762

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 763
Optimizing continuous prompts for generation. arXiv 764
preprint arXiv:2101.00190. 765

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei- 766
Ming Chen, Wei-Chen Wang, Guangxuan Xiao, 767
Xingyu Dang, Chuang Gan, and Song Han. 2024. 768
Awq: Activation-aware weight quantization for on- 769
device llm compression and acceleration. Proceed- 770
ings of Machine Learning and Systems, 6:87–100. 771

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo- 772
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf- 773
fel. 2022. Few-shot parameter-efficient fine-tuning 774
is better and cheaper than in-context learning. Ad- 775
vances in Neural Information Processing Systems, 776
35:1950–1965. 777

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, 778
Pavlo Molchanov, Yu-Chiang Frank Wang, 779
Kwang-Ting Cheng, and Min-Hung Chen. 2024. 780
DoRA: Weight-decomposed low-rank adaptation. 781
arXiv:2402.09353. 782

Yinhan Liu. 2019. Roberta: A robustly opti- 783
mized bert pretraining approach. arXiv preprint 784
arXiv:1907.11692. 785

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew 786
Blaschko, and Andrea Vedaldi. 2013. Fine-grained 787
visual classification of aircraft. arXiv preprint 788
arXiv:1306.5151. 789

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma- 790
hairi, Hao Ma, Jiawei Han, Wen-tau Yih, and Madian 791
Khabsa. 2021. Unipelt: A unified framework for 792
parameter-efficient language model tuning. arXiv 793
preprint arXiv:2110.07577. 794

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024. 795
Pissa: Principal singular values and singular vectors 796
adaptation of large language models. arXiv preprint 797
arXiv:2404.02948. 798

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish 799
Sabharwal. 2018. Can a suit of armor conduct elec- 800
tricity? a new dataset for open book question answer- 801
ing. arXiv preprint arXiv:1809.02789. 802

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng 803
Zhang, Chi Han, and Tong Zhang. 2024. Lisa: Lay- 804
erwise importance sampling for memory-efficient 805

10

https://arxiv.org/abs/2402.09353

large language model fine-tuning. arXiv preprint806
arXiv:2403.17919.807

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman,808
and CV Jawahar. 2012. Cats and dogs. In 2012809
IEEE conference on computer vision and pattern810
recognition, pages 3498–3505. IEEE.811

Ruiyang Qin, Dancheng Liu, Zheyu Yan, Zhaoxuan Tan,812
Zixuan Pan, Zhenge Jia, Meng Jiang, Ahmed Abbasi,813
Jinjun Xiong, and Yiyu Shi. 2024. Empirical guide-814
lines for deploying llms onto resource-constrained815
edge devices. arXiv preprint arXiv:2406.03777.816

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Gan-817
guli, and Jascha Sohl-Dickstein. 2017. On the expres-818
sive power of deep neural networks. In international819
conference on machine learning, pages 2847–2854.820
PMLR.821

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-822
vatula, and Yejin Choi. 2019. Winogrande: An ad-823
versarial winograd schema challenge at scale. arXiv824
preprint arXiv:1907.10641.825

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan826
LeBras, and Yejin Choi. 2019. Socialiqa: Com-827
monsense reasoning about social interactions. arXiv828
preprint arXiv:1904.09728.829

Lin Song, Yukang Chen, Shuai Yang, Xiaohan Ding,830
Yixiao Ge, Ying-Cong Chen, and Ying Shan. 2024.831
Low-rank approximation for sparse attention in multi-832
modal llms. In Proceedings of the IEEE/CVF Con-833
ference on Computer Vision and Pattern Recognition,834
pages 13763–13773.835

Yi-Lin Sung, Varun Nair, and Colin A Raffel. 2021.836
Training neural networks with fixed sparse masks.837
Advances in Neural Information Processing Systems,838
34:24193–24205.839

Damien Teney, Armand Mihai Nicolicioiu, Valentin840
Hartmann, and Ehsan Abbasnejad. 2024. Neural841
redshift: Random networks are not random func-842
tions. In Proceedings of the IEEE/CVF Conference843
on Computer Vision and Pattern Recognition, pages844
4786–4796.845

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-846
bert, Amjad Almahairi, Yasmine Babaei, Nikolay847
Bashlykov, Soumya Batra, and et al. 2023. Llama 2:848
Open foundation and fine-tuned chat models. arXiv849
preprint arXiv:2307.09288.850

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan851
Kobyzev, and Ali Ghodsi. 2022. Dylora: Parameter852
efficient tuning of pre-trained models using dynamic853
search-free low-rank adaptation. arXiv preprint854
arXiv:2210.07558.855

A Vaswani. 2017. Attention is all you need. Advances856
in Neural Information Processing Systems.857

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and 858
Daniel Cer. 2021. Spot: Better frozen model adap- 859
tation through soft prompt transfer. arXiv preprint 860
arXiv:2110.07904. 861

Danilo Vucetic, Mohammadreza Tayaranian, Maryam 862
Ziaeefard, James J Clark, Brett H Meyer, and War- 863
ren J Gross. 2022. Efficient fine-tuning of bert mod- 864
els on the edge. In 2022 IEEE International Sympo- 865
sium on Circuits and Systems (ISCAS), pages 1838– 866
1842. 867

Alex Wang, Amanpreet Singh, Julian Michael, Felix 868
Hill, Omer Levy, and Samuel R Bowman. 2018. 869
Glue: A multi-task benchmark and analysis platform 870
for natural language understanding. arXiv preprint 871
arXiv:1804.07461. 872

Hanqing Wang, Zeguan Xiao, Yixia Li, Shuo 873
Wang, Guanhua Chen, and Yun Chen. 2024a. 874
Milora: Harnessing minor singular components for 875
parameter-efficient llm finetuning. arXiv preprint 876
arXiv:2406.09044. 877

Haoyu Wang, Tianci Liu, Tuo Zhao, and Jing Gao. 878
2024b. Roselora: Row and column-wise sparse low- 879
rank adaptation of pre-trained language model for 880
knowledge editing and fine-tuning. arXiv preprint 881
arXiv:2406.10777. 882

Yihan Wang, Jatin Chauhan, Wei Wang, and Cho-Jui 883
Hsieh. 2024c. Universality and limitations of prompt 884
tuning. Advances in Neural Information Processing 885
Systems, 36. 886

Muling Wu, Wenhao Liu, Xiaohua Wang, Tianlong Li, 887
Changze Lv, Zixuan Ling, Jianhao Zhu, Cenyuan 888
Zhang, Xiaoqing Zheng, and Xuanjing Huang. 2024a. 889
Advancing parameter efficiency in fine-tuning via 890
representation editing. arXiv:2402.15179. 891

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atti- 892
cus Geiger, Dan Jurafsky, Christopher D. Manning, 893
and Christopher Potts. 2024b. ReFT: Representation 894
finetuning for language models. 895

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, 896
Zhengying Liu, Yu Zhang, James T. Kwok, Zhen- 897
guo Li, Adrian Weller, and Weiyang Liu. 2023. 898
Metamath: Bootstrap your own mathematical ques- 899
tions for large language models. arXiv preprint 900
arXiv:2309.12284. 901

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold- 902
berg. 2021. Bitfit: Simple parameter-efficient 903
fine-tuning for transformer-based masked language- 904
models. arXiv preprint arXiv:2106.10199. 905

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 906
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 907
machine really finish your sentence? arXiv preprint 908
arXiv:1905.07830. 909

Qingru Zhang, Minshuo Chen, Alexander Bukharin, 910
Nikos Karampatziakis, Pengcheng He, Yu Cheng, 911

11

https://arxiv.org/abs/2402.15179
https://arxiv.org/abs/2402.15179
https://arxiv.org/abs/2402.15179
arxiv.org/abs/2404.03592
arxiv.org/abs/2404.03592
arxiv.org/abs/2404.03592

Weizhu Chen, and Tuo Zhao. 2023. Adalora: Adap-912
tive budget allocation for parameter-efficient fine-913
tuning. arXiv preprint arXiv:2303.10512.914

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu.915
2022. Neural prompt search. arXiv preprint916
arXiv:2206.04673.917

Hongyu Zhao, Hao Tan, and Hongyuan Mei. 2022.918
Tiny-attention adapter: Contexts are more impor-919
tant than the number of parameters. arXiv preprint920
arXiv:2211.01979.921

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang922
Wang, Anima Anandkumar, and Yuandong Tian.923
2024. Galore: Memory-efficient llm training924
by gradient low-rank projection. arXiv preprint925
arXiv:2403.03507.926

Han Zhou, Xingchen Wan, Ivan Vulić, and Anna Ko-927
rhonen. 2024. Autopeft: Automatic configuration928
search for parameter-efficient fine-tuning. Transac-929
tions of the Association for Computational Linguis-930
tics, 12:525–542.931

12

Appendix932

A Details of Theoretical Results933

In this section, we provide the proof of Proposi-934

tion 3.2 and introduce additional theoretical results935

when we assume sinusoid activation.936

A.1 Proof of Proposition 3.2937

The intuition behind the proof is that we can al-938

ways restore an identity function using two ReLU939

activation functions, i.e., x = σ(x) − σ(−x) for940

any x ∈ R941

Proof of Proposition 3.2. We first show that942

min
Θ1∈Rd2×2r,Θ2∈R2r×d2

L(Dtrain;W
0 + f(W0; (Θ1,Θ2)))943

≤ min
A∈Rd1×r,B∈Rr×d2

L(Dtrain;W
0 +AB).944

Let (A∗,B∗) =945

argminA∈Rd1×r,B∈Rr×d2 L(Dtrain;W
0 + AB).946

Take Θ#
1 := [(W0)†A∗;−(W0)†A∗] ∈ Rd2×2r947

and Θ#
2 := [B∗⊤;−B∗⊤]⊤ ∈ R2r×d2 , where948

(W0)† ∈ Rd2×d1 is the Moore-Penrose inverse of949

W0. Then, since σ is a ReLU activation function,950

f(W0; (Θ#
1 ,Θ#

2))951

=σ(W0Θ#
1)Θ#

2952

=σ(W0(W0)†A∗)B∗ − σ(−W0(W0)†A∗)B∗953

=W0(W0)†A∗B∗.954

Note that W0(W0)† = U0U0⊤ is the projection955

to the left singular space of W0. Hence956

L(Dtrain;W
0 + f(W0; (Θ#

1 ,Θ#
2)))957

=L(Dtrain;U
0U0⊤W0 +U0U0⊤A∗B∗)958

=L(Dtrain;W
0 +A∗B∗),959

where the last equality follows from the invariance960
assumption. This gives the first inequality:961

min
Θ1∈Rd2×2r,Θ2∈R2r×d2

L(Dtrain;W
0 + f(W0; (Θ1,Θ2)))962

≤ L(Dtrain;W
0 + f(W0; (Θ#

1 ,Θ#
2)))963

= L(Dtrain;W
0 +A∗B∗)964

= min
A∈Rd1×r,B∈Rr×d2

L(Dtrain;W
0 +AB).965

We next show the following inequality:966

min
A∈Rd1×r,B∈Rr×d2

L(Dtrain;W
0 +AB)967

≤ min
Θ1∈Rd2×r,Θ2∈Rr×d2

L(Dtrain;W
0 + f(W0; (Θ1,Θ2))).968

Take A# = σ(W0Θ∗
1) ∈ Rd1×r and969

B# = Θ∗
2 ∈ Rr×d2 , where (Θ∗

1,Θ
∗
2) =970

argminΘ1∈Rd2×r,Θ2∈Rr×d1 L(Dtrain;W
0 + 971

f(W0; (Θ1,Θ2))). The conclusion follows from 972

min
A∈Rd1×r,B∈Rr×d2

L(Dtrain;W
0 +AB) 973

≤ L(Dtrain;W
0 +A#B#) 974

= L(Dtrain;W
0 + σ(W0Θ∗

1)Θ
∗
2) 975

= min
Θ1∈Rd2×r,Θ2∈Rr×d1

L(Dtrain;W
0 + f(W0; (Θ1,Θ2))). 976

977

A.2 Theoretical Analysis of NEAT under 978

sinusoid activation function 979

Here we consider a sinusoid activation function 980

σp(x) = sin(2πx) (Gashler and Ashmore, 2014) 981

and design f(W0;θ) = σp(W
0Θ1)Θ2 with θ = 982

(Θ1,Θ2). With this periodic activation function, 983

we can show a stronger result that NEAT has ex- 984

pressivity (almost) greater than or equal to a LoRA 985

with more parameters when d1 ≫ d2. 986

Proposition A.1 (Expressivity of NEAT with Sine 987

Activation). Suppose that there exists a row of W0, 988

whose entries are linearly independent over the 989

rationals. Then, for any r > 0, A ∈ Rd1×r and 990

B ∈ Rr×d2 , and ϵ > 0, there exists some Θ∗
1 ∈ 991

Rd2×r and Θ∗
2 ∈ Rr×d2 such that 992

∥AB− σp(W
0Θ∗

1)Θ
∗
2∥F ≤ ϵ. 993

Proposition A.1 shows that the class of updates 994

∆W = σp(W
0Θ1)Θ2 by NEAT with 2rd2 param- 995

eters is dense in the class of updates ∆W = AB 996

by LoRA with r(d1 + d2) parameters. When 997

d2 ≪ d1, this shows better parameter efficiency 998

of NEAT. 999

Examining the proof of Proposition A.1, it is 1000

straightforward to show that the result holds for 1001

any continuous and periodic activation function 1002

whose range contains an open interval centered at 1003

0. 1004

Proof. This proof relies on Kronecker’s theorem 1005

(Theorem 7.9 in Apostol (1990)) from number the- 1006

ory, which shows that for all j ∈ Rq, the fractional 1007

parts of (ct1, ct2, . . . , ctq)⊤ is dense in [0, 1]q over 1008

c ∈ R, as long as t1, . . . , tq are linearly indepen- 1009

dent over the rationals. 1010

Let Wj∗ be the j∗-th column of W0 whose en- 1011

tries are linearly independent over the rationals. 1012

Since AB has a scale ambiguity, we can assume 1013

that A is a matrix whose entries are bounded 1014

by 1 without loss of generality. Write A = 1015

(A1,A2, . . . ,Ar). 1016

13

Take ϵ′ > 0 whose value will be determined1017

later. From Kronecker’s theorem, for each Aj there1018

exists some cj ∈ R such that1019 ∣∣∣∣{cjWj∗} −
arcsin(Aj)

2π

∣∣∣∣ ≤ ϵ′,1020

where {B} is a vector whose entries are the frac-1021

tional part of the corresponding entry of B, and1022

arcsin is applied elementwisely.1023

Let Θ∗
1 = (c1ej∗ , c2ej∗ , . . . , crej∗), where ej∗1024

is the j∗-th standard basis vector in Rd2 . Using the1025

fact that 2π{cjWj∗} = 2πcjWj∗ mod 2π, we1026

have1027 ∥∥σp(W
0Θ∗

1)−A
∥∥2

F1028

=
∥∥σp((c1Wj∗ , c2Wj∗ , . . . crWj∗))−A

∥∥2
F1029

≤
∑
j

∥sin(2πcjWj∗)−Aj∥2 ≤ 4π2rϵ′2, (2)1030

where the last inequality follows from equation 21031

and the fact that sin(x) is Lipschitz continuous with1032

Lipschitz constant 1. Hence by choosing Θ∗
2 ← B,1033

we have1034 ∥∥AB− σp(W
0Θ∗

1)Θ
∗
2

∥∥2
F1035

≤∥B∥2
∥∥σp(W

0Θ∗
1)−A

∥∥2
F1036

≤4π2∥B∥2rϵ′2.1037

Choose ϵ′ = ϵ/(2π
√
r∥B∥), then the proof is com-1038

plete.1039

B Additional Related Work1040

B.1 Additive PEFT Methods1041

Additive PEFT methods (Chronopoulou et al.,1042

2023; Edalati et al., 2022; Lester et al., 2021;1043

Wang et al., 2024c; Liu et al., 2022) introduces1044

a small set of additional trainable parameters1045

strategically placed within the model. One of1046

the most prominent additive PEFT approaches is1047

Adapter (Chronopoulou et al., 2023; Edalati et al.,1048

2022; Zhao et al., 2022), which involves inserting1049

small adapter layers between pre-trained weight1050

blocks. Prompt Tuning (Wang et al., 2024c; Lester1051

et al., 2021; Vu et al., 2021; Li and Liang, 2021) is1052

another technique, where learnable vectors, or "soft1053

prompts," are prepended to the input sequence with-1054

out modifying the model’s weights. This method1055

is particularly effective for large-scale models and1056

has inspired variants such as Prefix Tuning (Li and1057

Liang, 2021).1058

B.2 Selective PEFT Methods 1059

Selective PEFT focuses on optimizing the fine- 1060

tuning process by selectively adjusting a subset 1061

of the model’s parameters rather than introducing 1062

additional ones. For instance, Diff Pruning (Guo 1063

et al., 2020) uses a learnable binary mask to se- 1064

lect parameters for fine-tuning. Similarly, Fish- 1065

Mask (Sung et al., 2021) and Fish-Dip (Das et al., 1066

2023) leverage Fisher information to determine pa- 1067

rameter importance and identify the most crucial 1068

ones for updates. Additionally, BitFit (Zaken et al., 1069

2021) fine-tunes only the bias terms in the model, 1070

significantly reducing the number of trainable pa- 1071

rameters. 1072

B.3 Hybrid PEFT method 1073

Hybrid PEFT methods aim to combine the 1074

strengths of various existing PEFT techniques to 1075

enhance model performance across diverse tasks. 1076

UniPELT (Mao et al., 2021) integrates LoRA, 1077

prefix-tuning, and adapters within each Trans- 1078

former block, employing a gating mechanism to de- 1079

termine which module should be active during fine- 1080

tuning. S4 (Chen et al., 2023) further explores the 1081

design space by partitioning layers into groups and 1082

assigning different PEFT methods to each group. 1083

Additionally, NOAH (Zhang et al., 2022) and AU- 1084

TOPEFT (Zhou et al., 2024) leverage neural ar- 1085

chitecture search (NAS) to automatically discover 1086

optimal combinations of PEFT techniques tailored 1087

to specific tasks. 1088

C Baselines 1089

Our baselines are constructed on a task basis. 1090

Specifically, for each task, the proposed NEAT is 1091

compared with representative baselines from the 1092

corresponding domain, as listed below. 1093

• For both Commonsense Reasoning and 1094

Arithmetic Understanding, following Wang 1095

et al. (2024a), LoRA (Hu et al., 2021a), 1096

PiSSA (Meng et al., 2024) and MiLoRA (Wang 1097

et al., 2024a) are employed as baselines. NEAT 1098

is applied to query, key, value, MLP up and 1099

MLP down layers. 1100

• For Natural Language Understanding, we fol- 1101

low the setup from prior works (Gao et al., 1102

2024; Wu et al., 2024b) that evaluate vari- 1103

ous representative PEFT methods, including 1104

LoRA (Hu et al., 2021a), Adapter (Houlsby 1105

et al., 2019), BitFit (Zaken et al., 2021), 1106

14

RED (Wu et al., 2024a), DoRA (Liu et al.,1107

2024), ReFT (Wu et al., 2024b), and Fouri-1108

erFT (Gao et al., 2024).1109

• For Image Classification, we follow the set-1110

ting of Gao et al. (2024) and take linear prob-1111

ing (LP), LoRA (Hu et al., 2021a) and Fouri-1112

erFT (Gao et al., 2024) as baselines. NEAT is1113

applied to the query and value layers.1114

D Hyperparameters1115

We provide the specific hyperparameters used in1116

our experiments to ensure reproducibility. For most1117

of our experiments, we use the standard implemen-1118

tation of NEAT, which we refer to as vanilla NEAT.1119

The neural network architecture in vanilla NEAT1120

consists of only two layers: an input layer and an1121

output layer. We selecte this approach because1122

vanilla NEAT offers the benefits of simplicity in1123

implementation, a low parameter count, and suf-1124

ficient adaptation power. Nonetheless, we dedi-1125

cate Section 4.4 and Appendix F to exploring more1126

complex adaptation networks and their effect on1127

performance.1128

D.1 Image Classification1129

Hyperparameters for NEAT for Fig. 4 are provided1130

in Table 6. We tune the classification head and the1131

backbone separately and provide detailed settings1132

for each dataset. All weight decay values are not1133

tuned and follow the settings from Gao et al. (2024).1134

The scaling factor s is set to 1.0. The hidden layer1135

dimension r for MHSA is set to 7 in the QV-setting,1136

while both hidden layer dimensions for MHSA and1137

MLP are set to 2 in the QV-MLP-setting described1138

in Section 5.1139

D.2 Natural Language Understanding1140

We provide used hyper-parameters for NEAT in nat-1141

ural language understanding on the GLUE bench-1142

mark in Table 7 and Table 8. The reported results1143

are obtained when using a depth of 6 for NEAT. The1144

learning rates for the head and the backbone are1145

tuned separately. The scaling factor s is searched1146

in {0.01, 0.1, 1.0}. For reproducibility, we fix the1147

seed as 0. The hidden layer dimension r is set1148

to 8 in NEAT-L and 1 in NEAT-S. More specifi-1149

cally, we apply NEAT to all layers in RoBERTa-1150

base for NEAT-L, while only applying NEAT to lay-1151

ers {4, 5, 6, 7, 8, 9, 10, 11} for NEAT-S to reduce1152

the number of trainable parameters. The seed is1153

fixed for reproducibility.1154

D.3 Commonsense Reasoning 1155

We provide hyperparameters settings of NEAT for 1156

commonsense reasoning task in Table 9. We follow 1157

the hyperparameters settings in MiLoRA (Wang 1158

et al., 2024a). We limit all samples to a maximum 1159

of 256 tokens. For evaluation, we set a maximum 1160

token number of 32. 1161

D.4 Arithmetic Reasoning 1162

We provide hyperparameters settings of NEAT for 1163

arithmetic reasoning task in Table 10. We follow 1164

the hyper-parameters settings in MiLoRA (Wang 1165

et al., 2024a). We limit all samples to a maximum 1166

of 2048 tokens. For evaluation, we set a maximum 1167

token number of 256 on GSM8K (Cobbe et al., 1168

2021) dataset. On MATH (Hendrycks et al., 2021), 1169

we set the maximum new token to 512. 1170

E Datasets 1171

In this section, we provide a detailed description of 1172

the datasets used in our experiments. 1173

E.1 Image Classification 1174

For image classification, we provide detailed infor- 1175

mation about the used datasets in Table 11. 1176

E.2 Natural Language Understanding 1177

The GLUE benchmark comprises 8 NLP datasets: 1178

MNLI, SST-2, MRPC, CoLA, QNLI, QQP, RTE, 1179

and STS-B, covering tasks such as inference, sen- 1180

timent analysis, paraphrase detection, linguistic 1181

acceptability, question-answering, and textual simi- 1182

larity. We provide detailed information about them 1183

in Table 12. 1184

Input Layer

Output Layer

Intermediate 1

Intermediate 2

Intermediate n

Intermediate n-1

W0

ΔW

W0

NEAT

W

Target Modules

Various Layers

Adaptation Process

Figure 5: Implementation of introducing more depths
to NEATt. We insert multiple intermediate layers into
the layers from vanilla NEAT, with non-linear activation
in between. The depth is described as the number of
layers in NEAT, with vanilla NEAT having a depth of 2
(i.e. the input and output layers).

E.3 Commonsense Reasoning 1185

For commonsense reasoning task, we use 8 1186

datasets, including BoolQ, PIQA, SIQA, Hel- 1187

15

Table 6: Hyperparameter of image classification for NEAT.

Hyperparameter OxfordPets StanfordCars CIFAR10 DTD EuroSAT FGVC RESISC45 CIFAR100

Epochs 10
Optimizer AdamW
LR Schedule Linear
Weight Decay 8E-4 4E-5 9E-5 7E-5 3E-4 7E-5 3E-4 1E-4

QV

Learning Rate (NEAT) 5E-3 1E-2 5E-3 1E-2 5E-3 1E-2 5E-3 5E-3
Learning Rate (Head) 5E-3 1E-2 5E-3 1E-2 5E-3 1E-2 1E-2 5E-3

QV-MLP

Learning Rate (NEAT) 5E-3 5E-3 5E-3 1E-2 5E-3 5E-3 1E-2 5E-3
Learning Rate (Head) 5E-3 1E-2 5E-3 1E-2 5E-3 1E-2 1E-2 5E-3

Table 7: Hyperparameter of GLUE benchmark for NEAT-L.

Hyperparameter STS-B RTE MRPC CoLA SST-2 QNLI MNLI QQP

Optimizer AdamW
LR Schedule Linear
Learning Rate (NEAT) 5E-3 5E-3 5E-3 1E-3 5E-3 1E-3 5E-3 5E-3
Learning Rate (Head) 5E-3 5E-3 5E-3 1E-3 5E-3 1E-3 5E-3 5E-3
Scaling 0.1 0.01 0.01 0.1 0.01 0.01 0.01 0.01
Max Seq. Len 512 512 512 512 512 512 512 512
Batch Size 64 32 64 64 32 32 32 64

laSwag, WinoGrande, ARC-e, ARC-c and OBQA.1188

The detailed information is provided in Table 13.1189

E.4 Arithmetic Reasoning1190

Detailed information for arithmetic reasoning task1191

is provided in Table 14. GSM8K consists of1192

high quality grade school math problems, typically1193

free-form answers. MATH includes classifications1194

from multiple mathematical domains, such as al-1195

gebra, counting_and_probability, geometry, inter-1196

mediate_algebra, number_theory, prealgebra and1197

precalculus.1198

F Depths of NEAT1199

We provide a comprehensive explanation of our1200

approach to increasing the depth of the adaptation1201

neural network in NEAT. As depicted in Fig. 5, we1202

introduce multiple deeply stacked intermediate lay-1203

ers between the layers of the vanilla NEAT. These1204

intermediate layers are essentially small adapters1205

with a minimal parameter count (Rr×r, where r1206

is the hidden layer dimension), and we retain non-1207

linear activations between them, as proposed by 1208

NEAT. The adaptation process begins by feeding 1209

the weight matrix W0—the initialized value of 1210

the adaptation target W—into NEAT’s input layer. 1211

After undergoing multiple non-linear transforma- 1212

tions through the intermediate layers, the final layer 1213

projects W0 back to its original shape, producing 1214

the adaptation result ∆W . Throughout this pro- 1215

cess, the adaptation target remains fixed, while all 1216

the intermediate layers, as well as the input and 1217

output layers in NEAT, are trainable parameters. 1218

Furthermore, an implementation example of 1219

NEAT with four layers using the PyTorch library is 1220

illustrated in Fig. 6. As previously mentioned, we 1221

apply non-linear activations (ReLU in this case) to 1222

model more complex transformations. The inter- 1223

mediate layers have the same shape, Rr×r, which 1224

adds minimal overhead compared to A ∈ Rd2×r 1225

and B ∈ Rr×d2—the input and output layers, re- 1226

spectively, which are also present in the vanilla 1227

NEAT. Since d2 is typically in the range of hun- 1228

dreds to thousands, while r is commonly set to 8, 1229

16

Table 8: Hyperparameter of GLUE benchmark for NEAT-S.

Hyperparameter STS-B RTE MRPC CoLA SST-2 QNLI MNLI QQP

Optimizer AdamW
LR Schedule Linear
Learning Rate (NEAT) 5E-3 1E-3 5E-3 5E-3 5E-3 1E-3 5E-3 1E-3
Learning Rate (Head) 1E-3 1E-3 5E-3 1E-3 5E-3 1E-3 5E-3 1E-3
Scaling 0.1 1.0 0.01 0.1 0.01 0.1 0.01 1.0
Max Seq. Len 512 512 512 512 512 512 512 512
Batch Size 64 32 64 64 32 32 32 64

PRIME AI paper

1 class neat_depth_four(nn.Module):
2 """
3 Example of 4-layer implementation for Neat with residual.
4 Using ReLU as the default non-linear activation function.
5 args:
6 dim: hidden dimension (a.k.a. rank)
7 out_dim: output dimension
8 """
9 def __init__(self, dim=32, out_dim=768):

10 super().__init__()
11 self.non_linear = nn.ReLU()
12 self.A = nn.Linear(out_dim, dim, bias=False)
13 self.i1 = nn.Linear(dim, dim, bias=False)
14 self.i2 = nn.Linear(dim, dim, bias=False) # two intermediate layers
15 self.B = nn.Linear(dim, out_dim, bias=False)
16 nn.init.zeros_(self.B.weight)
17

18 def forward(self, x, weight):
19 delta_w = self.non_linear(weight @ self.A.weight.t()) # non-linear(W_0 A)
20 residual = delta_w.clone()
21 delta_w = self.non_linear(self.i1_(delta_w))
22 delta_w = self.non_linear(self.i2_(delta_w))
23 delta_w = delta_w + residual
24 delta_w = self.B(delta_w) # obtain the approximated delta W
25 return x @ delta_w

1

Figure 6: An example of the actual implementation applying 4 layers in NEAT (depth = 4) with Pytorch.

Table 9: Hyperparameter of commonsense reasoning
for NEAT.

Hyperparameter Commonsense Reasoning

Hidden Layer Dimension 32
α 32

Dropout 0.05
Optimizer Adam W

Learning Rate 3e-4
Batch Size 16

Warmup Steps 100
Epochs 1

16, or 32, the parameter efficiency of NEAT with1230

deeper layers remains comparable to that of vanilla1231

NEAT without the intermediate layers. As shown,1232

we first transform W0 into the desired adaptation1233

result ∆W and subsequently use ∆W to perform1234

the actual computation on the input data. The use1235

of residuals is based on empirical observations, as1236

incorporating residual connections in the adapta-1237

Table 10: Hyperparameter of arithmetic reasoning for
NEAT.

Hyperparameter Arithmetic Reasoning

Hidden Layer Dimension 64
α 64

Dropout 0.05
Optimizer Adam W

Learning Rate 3e-4
Batch Size 16

Warmup Steps 100
Epochs 3

tion process results in faster convergence, more 1238

stable loss curves, and significantly improved over- 1239

all performance. 1240

Meanwhile, to provide a comprehensive under- 1241

standing of the impact of depth on model perfor- 1242

mance, we present the results of different depth 1243

configurations on the GLUE benchmark in Tab 15. 1244

17

Table 11: Detailed information of image classification
tasks.

Dataset #Class #Train #Val #Test Rescaled resolution

OxfordPets 37 3,312 368 3,669

224× 224

StandfordCars 196 7,329 815 8,041
CIFAR10 10 45,000 5,000 10,000
DTD 47 4,060 452 1,128
EuroSAT 10 16,200 5,400 5,400
FGVC 100 3,000 334 3,333
RESISC45 45 18,900 6,300 6,300
CIFAR100 100 45,000 5,000 10,000

Table 12: Detailed information of the GLUE bench-
mark. STS-B is a regression task, while all other tasks
are either single-sentence or sentence-pair classification
tasks.

Corpus Task Metrics # Train # Val # Test # Labels

Single-Sentence Tasks

CoLA Acceptability Matthews Corr. 8.55k 1.04k 1.06k 2
SST-2 Sentiment Accuracy 67.3k 872 1.82k 2

Similarity and Paraphrase Tasks

MRPC Paraphrase Accuracy/F1 3.67k 408 1.73k 2
STS-B Sentence similarity Pearson/Spearman Corr. 5.75k 1.5k 1.38k 1
QQP Paraphrase Accuracy/F1 364k 40.4k 391k 2

Inference Tasks

MNLI NLI Accuracy 393k 19.65k 19.65k 3
QNLI QA/NLI Accuracy 105k 5.46k 5.46k 2
RTE NLI Accuracy 2.49k 277 3k 2

Table 13: Detailed information of commonsense reason-
ing task.

Dataset #Class #Train #Dev #Test

BoolQ Binary classification 9,427 3,270 3,245
PIQA Binary classification 16,113 1,838 3,000
SIQA Ternary classification 33,410 1,954 2,224
HellaSwag Quaternary classification 39,905 10,042 10,003
WinoGrande Binary classification 40,398 1,267 1,767
ARC-e Quaternary classification 2,251 570 2,376
ARC-c Quaternary classification 1,119 229 1,172
OBQA Quaternary classification 4,957 500 500

Table 14: Detailed information of arithmetic reasoning
task.

Dataset #Train #Dev #Test

GSM8K 7,473 1,319 1,319
MATH 12,500 500 5,000

Our analysis reveals that increasing the number of1245

layers in the neural network architecture introduced1246

by NEAT consistently enhances performance while1247

maintaining the same level of parameter efficiency.1248

Furthermore, we extend our experiments to vision1249

tasks, where even deeper networks are explored,1250

and summarize the results in Fig. 7. We find that1251

2 4 6
Depth

0.780

0.790

0.800

0.810

0.820

0.830

Ac
cu

ra
cy

RTE

2 4 6
Depth

0.798

0.800

0.802

0.804

Cars

2 4 6
Depth

0.8390

0.8392

0.8394

0.8396

0.8398

0.8400

PIQA

2 4 6
Depth

0.1820

0.1822

0.1824

0.1826

0.1828

0.1830
MATH

Figure 7: Accuracy on the StanfordCars, FGVC and
Oxford-Pets dataset with a wider range of depths for the
neural network used in NEAT. We choose depth equals
to 2, 4, 6, 8 and 10 layers in the figure. In many cases,
NEAT with more depths outperforms vanilla NEAT.

when the depth is increased to 8 and 10 layers, 1252

the accuracy slightly decreases compared to the 1253

6-layer model but remains higher than that of the 2- 1254

layer configuration. A possible explanation is that 1255

as depth increases—particularly at 10 layers—the 1256

training process becomes more challenging, pos- 1257

sibly requiring more careful hyper-parameter tun- 1258

ing. In general, these findings demonstrate that 1259

increasing the depth of the network is consistently 1260

beneficial for improving performance across both 1261

language and vision tasks. 1262

Table 15: Accuracy comparison of NEAT using
RoBERTa-base with different depth configurations on
the GLUE benchmark. The highest accuracy of meth-
ods per category are in bold. “AVG” means the average
accuracy of all datasets.

depth Params (%)
Accuracy (↑)

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B AVG

2 0.239% 86.6 94.6 90.0 64.4 92.7 89.7 78.7 90.9 86.0
4 0.239% 86.7 94.5 90.2 65.1 92.4 90.5 80.5 90.8 86.3
6 0.241% 86.9 95.2 90.0 64.8 92.3 90.3 82.7 90.7 86.6

18

	Introduction
	Related Works
	Methodology
	Preliminary
	Inherent Limitation of LoRA Formulation
	Nonlinear Parameter-efficient Adaptation
	Theoretical Analysis

	Experiment
	Benchmarks and Experiment Setups
	Performance Comparison
	Commonsense Reasoning
	Arithmetic Reasoning
	Natural Language Understanding
	Image Classification

	Ablation Study
	Sensitivity w.r.t. Depth
	Sensitivity w.r.t. Activations

	Sensitivity w.r.t. Fine-tuned Module
	Conclusion
	Details of Theoretical Results
	Proof of Proposition 3.2
	Theoretical Analysis of Neat under sinusoid activation function

	Additional Related Work
	Additive PEFT Methods
	Selective PEFT Methods
	Hybrid PEFT method

	Baselines
	Hyperparameters
	Image Classification
	Natural Language Understanding
	Commonsense Reasoning
	Arithmetic Reasoning

	Datasets
	Image Classification
	Natural Language Understanding
	Commonsense Reasoning
	Arithmetic Reasoning

	Depths of Neat

