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ABSTRACT

Humans possess an innate ability to group objects by similarity—a cognitive mech-
anism that clustering algorithms aim to emulate. Recent advances in community
detection have enabled the discovery of configurations—valid hierarchical clus-
terings across multiple resolution scales—without requiring labeled data. In this
paper, we formally characterize these configurations and identify similar emergent
structures in register tokens within Vision Transformers. Unlike register tokens,
configurations exhibit lower redundancy and eliminate the need for ad hoc se-
lection. They can be learned through unsupervised or self-supervised methods,
yet their selection or composition remains specific to the downstream task and
input. Building on these insights, we introduce GraMixC, a plug-and-play mod-
ule that extracts configurations, aligns them using our novel Reverse Merge/Split
(RMS) technique, and fuses them via attention heads before forwarding them to
any downstream predictor. On the DSNI 16S rRNA cultivation-media prediction
task, GraMixC improves the R2 from 0.6 to 0.9 on various methods, setting a new
state-of-the-art. We further validate GraMixC across standard tabular benchmarks,
where it consistently outperforms single-resolution and static-feature baselines.

1 INTRODUCTION

Figure 1: Illustration of CIFAR10 configu-
rations. Each column represents a configu-
ration—clustering at a specific resolution.

Learning general-purpose features that enhance down-
stream tasks has been a long-standing goal in machine
learning. One prominent example is clustering (i.e.,
community detection) in unsupervised learning, which
groups entities into clusters of similar objects while sep-
arating dissimilar ones, without using labels (MacQueen,
1967; Jianbo Shi & Malik, 2000; Ng et al., 2001). Inter-
estingly, this paradigm demonstrates remarkable simi-
larities to human-like behaviors. Decades of cognitive
science studies show that even infants have the ability
to group objects by similarity (Quinn & Eimas, 1996;
Bornstein et al., 2010). In particular, they often organize
them at different abstraction levels (Zaadnoordijk et al.,
2022; Muttenthaler et al., 2024). Inspired by this, recent
advances in community detection have extended clus-
tering to the discovery of configurations—hierarchical
clusterings that span multiple resolution scales (Pitsianis
et al., 2023). For example, as illustrated in the lineage
diagram of Fig. 1, in the CIFAR10 dataset (Krizhevsky,
2009), coarse configurations may separate vehicles from
animals, while finer configurations distinguish between birds, cats, and dogs. These multi-resolution
representations reveal rich hierarchical structures that could provide stronger priors or inductive biases
for deep models. However, despite their potential, such configurations remain largely underexplored
in deep learning, especially in challenging domains where labels are sparse.

One such domain is 16S ribosomal RNA (rRNA) gene sequencing, a widely used tool in micro-
biome studies for identifying and classifying bacteria. Analyzing 16S rRNA data has consistently
confronted significant challenges in downstream prediction tasks within label-scarce environments.
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Previous works in 16S rRNA representation learning have demonstrated substantial benefits for
bacterial taxonomic profiling and microbial community analysis (Janda & Abbott, 2007; Wang et al.,
2007; De Vrieze et al., 2018). Notably, Johnson et al. (2019) showed that full-length sequencing
combined with appropriate clustering of intragenomic sequence variation can provide more accurate
representation of bacterial species in microbiome datasets. These findings underscore the importance
of learning clustered representations without relying on labels.

Recent methodologies typically transform clustering results into pseudo-labels to enhance downstream
prediction performance. For instance, DeepCluster (Caron et al., 2019) iteratively clusters CNN-
extracted visual features and leverages these cluster assignments to guide network parameter updates.
Graph-based methods such as (Yang et al., 2023) employ structural clustering to overcome limitations
of traditional contrastive learning approaches that depend on positive and negative sample pairs.
Their method captures structural relationships among nodes in heterogeneous information networks,
establishing a self-supervised pre-training framework that learns robust network representations
from unlabeled data. Nevertheless, these approaches predominantly focus on a single configuration,
overlooking the potential benefits of mixing configurations across multiple resolution scales.

In this paper, we introduce GraMixC, a plug-and-play module that extracts, aligns and mixes graph-
based configurations for downstream prediction. The main contributions of the paper are as follows:

• We identify three key characteristics of clustering configurations through systematic exper-
imental analysis, providing a novel perspective on enhancing downstream prediction via
mixing configurations.

• We propose GraMixC, a plug-and-play module based on mixed configurations. We apply it
to a novel 16S rRNA cultivation-media prediction task, setting a new state-of-the-art.

• We further conduct extensive experiments on multiple standard tabular benchmarks to
validate GraMixC’s effectiveness, where it consistently outperforms single-resolution and
static-feature baselines.

The remainder of this paper is organized as follows. Section 2 analyzes behavioral patterns of
configurations. Section 3 details our proposed GraMixC. Section 4 evaluates GraMixC’s performance
through extensive experiments. Finally, Section 5 concludes the paper. Our data and implementation
is available at https://anonymous.4open.science/r/project-34CB.

2 PRELIMINARY RESULTS

We first present preliminary experimental results on configurations using CIFAR10. Specifically, we
compare patterns of configurations with those of the learnable “register” tokens in a recent vision
transformer DINOv2-reg (Darcet et al., 2024). Fig. 2 shows the attention maps from our configurations
and their register tokens. Moreover, Fig. 3 shows qualitative behaviors of our configurations and their
quantitative advantages over registers in terms of feature importance and neighborhood similarity.
From these results, we identify three key properties:

Configurations emerge via unsupervised or self-supervised learning. We define Near ground
truth (GT) balls as balls selected with the highest clustering scores, marked yellow in Fig. 2a. As
shown in Fig. 2b, the attention map, acquired by feeding configurations as tokens to attention heads
for linear probing, yields high norm regions substantially overlap with GT balls. On another hand,
DINOv2-reg exhibits similar attention map patterns in selected registers (see Fig. 2c), which might
be related to registers activating different areas in Fig. 2d, similar to slot attention (Locatello et al.,
2020; Caron et al., 2021; Oquab et al., 2024; Darcet et al., 2024). Thus, based on the similar attention
map behavior, register token can be considered as a latent configuration.

Configurations are selected and mixed based on input and task. Configuration selection and
mixing refers to learning which resolution scales to focus on for a given downstream task. We
visualize this via attention maps over configuration tokens, where high-norm regions indicate the
selected scales. In Fig. 2b, attention norms vary across rows, showing that each input sample triggers
different resolution scales. Without any change to the configurations, we merge the original labels
into coarser classes (Fig. 3a) and plot the new attention map (Fig. 3b). The attention shifts to align
with the coarser GT, whereas DINOv2-reg register tokens remain unchanged unless re-trained. These
observations confirm that configuration selection and mixing are input- and task-dependent.

2

https://anonymous.4open.science/r/project-34CB


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Configurations (b) Cfg. attention map (c) Reg. attention map (d) Reg. attention imgs

Figure 2: Comparison of attention maps obtained from configurations and registers, rows for samples.
(a): Lineage diagram for configurations, near GT balls are marked yellow. (b): Attention map of
configuration tokens in an attention-based linear probing. (c): Attention map of DINOv2-reg register
tokens, mean of all patch norms is used. (d): Attention maps over the register tokens, as images.

(a) Configurations (b) Cfg. attention map (c) Feature importance (d) Neighbors similarity

Figure 3: Illustration of another two properties of configurations, grouped by left two and right two.
(a): Lineage diagram where coarser classes are used for GT. (b): Attention map in linear probing the
coarser classes. (c): Distribution of feature vector importance over the register tokens querying, mean
of all patch importance is used. (d): Distribution of cosine similarity between query embeddings of
register and configuration tokens and their 2 neighbors, mean of all patch similarities is used.

Configurations are more informative and less redundant than register tokens. Register tokens
can help extract configurations, similar to object detection (Siméoni et al., 2021; Zhang et al., 2022),
but selecting a fixed number by feature importance is arbitrary and non-rigorous (see Fig. 3c). Fur-
thermore, register tokens exhibit high redundancy—cosine similarity between their embeddings and
their 2 neighbors embeddings is heavily skewed toward 1—whereas configurations yield information
less redundant (see Fig. 3d).

3 METHODOLOGY

Having these characterizations, we hypothesize that unsupervised methods can produce hierarchi-
cal multi-resolution clusterings, and that task- and input-specific selection and mixing of these
configurations represent global information beneficial to downstream tasks. Building on the hy-
pothesis, we propose a lightweight module GraMixC, that treats configurations as tokens ([CFG])
and incorporates a novel alignment layer plus learnable attention heads (Vaswani et al., 2017) after
the configuration extraction model, enabling task- and input-specific mixing of configurations via
end-to-end back-propagation.

Fig. 4 illustrates GraMixC. Given an input matrix X ∈ RN×d (with N samples and feature dimen-
sion d), GraMixC pass X to two branches: (1) a path to unsupervised learning box that extracts
configurations, and (2) a direct path to the downstream predictor. If at inference, we apply Reverse
Merge & Split (RMS) alignment on the configurations. Then we pass them to positional encoding (PE)
and attention heads. The final concatenation is passed to a downstream predictor for the prediction ỹ.

Except for the downstream predictor, the GraMixC model can be divided into three parts: unsuper-
vised configuration learning, the Reverse Merge & Split (RMS) for alignment, and attention heads for
fusion. In the attention heads part, following Darcet et al. (2024), we append register tokens [REG]

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 4: Illustration of the proposed GraMixC module and resulting model. The input data branches
into (upper) a path to unsupervised learning box that extracts configurations, and (lower) a direct path
to the downstream predictor. Their outcomes concatenate and pass to the downstream predictor. The
components occur only during training and inference are colored in blue and gray, respectively.

after [CFG] and [CLS] for a clean attention map, that can be used backwards to guide configuration
selection. Below we detail the rest two components in Section 3.1 and Section 3.2.

3.1 MULTI-RESOLUTION GRAPH-BASED CLUSTERING

Given X , multi-resolution clustering seeks to extract configurations—valid hierarchical clusterings
across multiple resolution scales—which we denote as Ω ∈ NN×m, where m denotes the number of
valid resolution levels. To preserve the latent manifold structure in data, ease parameter sensitivity,
and prevent other problems with traditional clustering methods (see Section D), we choose the
resolution parameter (γ ∈ R+)-based community detection as our core clustering method. While
BlueRed (Liu et al., 2021) can conduct graph clustering without problems like resolution limit or
parameter sensitivity in traditional methods, recent work by Pitsianis et al. (2023) further demonstrates
the elimination of γ selection, and enabled the unsupervised discovery of Ω and the corresponding
set of all valid γ, which is denoted as Γ = {γ∗

1 , γ
∗
2 , . . . , γ

∗
m} ⊆ [0,∞). Inspired by these works,

the unsupervised box in Fig. 4 unfolds into two steps: (1) k-nearest neighbors (kNN) (Tenenbaum
et al., 2000) graph construction, which return a directed graph G = (V,E), usually represented
as adjacency matrix A ∈ RN×N

+ , and (2) multi-γ clustering on the resulted graph, i.e. modularity
based community detection with unsupervised Γ learning, which return the wanted Ω. The details for
each of these two steps are:

(1) kNN graph construction. We construct a kNN graph with k = log10 N as convention, using
Euclidean distance for simplicity. Such pair-wise geometric distance between two different vertexes
is denoted d(xi,xj) where i ̸= j and xi ∈ Rd is the i-th feature vector. We then have the adjacency
matrix A formulated as: Aij = d(xi,xj) if (xi,xj) ∈ E, 0 otherwise, where E is the edge set
of the kNN graph and Aij denotes the i-th row and j-th column element of the adjacency matrix.
Then we force column stochastic by dividing each column in the constructed A with the column
sum. The resulted graph is sparse stochastic, and we can apply Stochastic Graph t-SNE (SG-t-SNE)
reweighting (Pitsianis et al., 2019), which proved to remedy skewed degree distribution, that is not
promised by conventional t-SNE (Van der Maaten & Hinton, 2008). From the original work, the key
equations for SG-t-SNE reweighting are:

w(xi,xj) =
1

λ
exp

(
−d2(xi,xj)

2σ2
i

)
, with λ =

∑
xj :(xi,xj)∈E

exp

(
−d2(xi,xj)

2σ2
i

)
,

where λ is a non-negative constant, which we simply set to 15 as previous work show that it is not
so sensitive to the choice of λ (Pitsianis et al., 2019), and σi is a variable to be numerically solved
with bisection method. After giving value of w to d, we have A with less skewed degree distribution,
which avoids problems like numerical instability and bias towards hubs in downstream clustering.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(2) multi-γ community detection. Then one may simply pass the reweighted A to γ-based commu-
nity detection method, such as Leiden algorithm (Traag et al., 2019), to get one pseudo-configuration
vector ωγ ∈ {1, . . . , N}N (“pseudo” for not sure to be valid). However, such γ falls in the range
of [0,∞), and searching over all possible γ is exhausting. Therefore, we incorporate the BlueRed
method with parallel descending triangulation (parallel-DT) (Pitsianis et al., 2023), in order to auto-
matically discover all valid γ∗ ∈ Γ. Given a fixed γ, BlueRed find the optimal configuration ωγ by
the following optimization:

ωγ = argmin
ω∈{1,...,N}N

− |ω|∞∑
k=1

∑
(i,j)∈E

d(xi,xj)1ωi=ωj=k + γ

|ω|∞∑
k=1

∑
(i,j)∈E

d2(xi,xj)1ωi=k,

 ,

where ωi denotes the i-th element of ω, |ω|∞ = maxi≤N ωi is a inf-norm, and 1 denotes the indicator
gate which take value 1 if its subscript condition holds, 0 otherwise. Pitsianis et al. (2023) describe
the first term as attraction and the second term as repulsion. Optimizing each solely yields all-in-one
configuration ω0 = [1, 1, . . . , 1] and all-lonely configuration ω∞ = [1, 2, . . . , N ]. Between these
two configurations, parallel-DT allows forming BlueRed Front (BRF) (Pitsianis et al., 2023) by
segmenting (0,∞) into m ranges, among which each has a dominant γ∗

i yields lower HAR (Pitsianis
et al., 2023)—the sum of first term and the negative second term—which means “local minimum” on
that range. Thus desired Ω is formed.

3.2 RMS: REVERSE MERGE & SPLIT ALIGNMENT

(a) Bipartite graph (b) Proportional confusion matrix (c) Reordered confusion matrix

Figure 5: Example of the RMS alignment process applied to clustering results and ground truth
(both treated as configurations) on the Salinas dataset (Plaza & Tilton, 2005). (a): Bipartite graph
representation, where blue nodes correspond to predicted clusters and red nodes to ground truth
clusters. Node labels indicate cluster indices; edge labels show the proportion of samples shared
between clusters. (b): Proportional confusion matrix C comparing predicted clusters (horizontal
axis) to ground truth clusters (vertical axis). (c): Confusion matrix Ctw reordered via the two-walk
Laplacian. Notable splits, such as ground truth cluster 8 being divided into clusters 8 and 15 in the
prediction, can be resolved through the reverse merge/split procedure.

Multi-resolution clustering on different datasets Xtrain and Xtest often naturally produces misaligned
configurations, that either (1) have different value of m or |ω|∞, or (2) have different cluster labels.
While (2) is not a problem as re-assigning fix it, (1) could be problematic as the length and position
of configurations influence the downstream fusion. One possible interpretation is that some clusters
are further merged or split in another configuration, leading to this mismatch. To address this, we
propose Reverse Merge & Split (RMS), which identifies an optimal alignment, allowing re-merging
and re-splitting, between two configurations, ωi and ωj . First of all, an alignment score is defined:

SCORE(ωi,ωj) = ARI(ωi,ωj)− θ

∣∣∣∣ |ωi|∞ − |ωj |∞
|ωi|∞ + |ωj |∞

∣∣∣∣ .
where θ is a hyperparameter to balance the weights of the two terms, which we set to 0.1, ARI is the
adjusted rand index as defined in Hubert & Arabie (1985). By this punished ARI design, we consider
different labels, merge and split during scoring the alignment between two partition, but also avoids
too much difference in number of clusters (one extreme case is ω0 and ω∞ has ARI of 1).
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However, the SCORE itself does not convey the mapping we need for reassigning. In RMS alignment,
we construct a confusion matrix C ∈ N|ωi|∞×|ωj |∞ between ωi and ωj . Fig. 5 illustrates this
process with a concrete example, showing how the confusion matrix captures the relationship
between predicted and ground truth clusters, including cases where clusters are split or merged across
configurations. As an assignment problem with a rectangle cost matrix−C1, it is solvable by twisting
existing Hungarian algorithm methods (Kuhn, 1955; Jonker & Volgenant, 1987; Bertsekas, 1992).
Because C is the adjacency matrix of a bipartite graph, spectral reordering via its graph Laplacian
is preferred, since it encodes global connectivity and reveals coherent split–merge structures rather
than merely optimizing diagonal entries. As the Fiedler vector reordering (Fiedler, 1973) assumes
symmetric positive semi-definite, it is not directly applicable to C. Inspired by a recent work of
Floros et al. (2024), we introduce a two-walk Laplacian, which is defined as:

Ltw = D −Ctw, with Ctw =

[
CC⊤ C
C⊤ C⊤C

]
,

where D = diag(Ctw1) is the diagonal degree matrix of Ctw. We remap ωi and ωj by using,
respectively, the first ∥ωi∥∞ and the last ∥ωj∥∞ entries in the Fiedler eigenvector of Ltw, which
is the eigenvector corresponds to smallest positive eigenvalue. We further reverse split and merge
simply by reassigning the redundant columns or rows who has element larger than its diagonal entry.

In GraMixC, we carry a small portion (0.1%) of train samples as anchors during inference, and the
portion of Ωtrain and Ωtest corresponding to the anchors are used to calculate the SCORE. Given m is
usually small, we exhaustively test pairs (ωi,ωj) then iteratively pick the pair yielding the highest
SCORE for each ωi. For each pair, we apply the mapping from RMS(ωi,ωj). The final alignments
is then used to match the configurations. See our GitHub repository 2 and Section E for alignment
examples and more implementation details.

4 EXPERIMENTS

In this section, we evaluate the proposed plug-and-play module by training baseline models with and
without GraMixC (GMC). We also test a static variant (GC), which use aligned configurations as
extra features, without attention mechanism. We expect the performance to follow a general trend

baseline < baseline+GC < baseline+GMC.

We then ablate the number of configurations used to check that they cause a performance regression.

4.1 IMPLEMENTATION DETAILS AND EXPERIMENTAL SETUP

Our module was implemented with MATLAB, Python 3.12, PyTorch 2.6. We run trainings on a
GeForce RTX 3090Ti GPU. Models were trained with the Adam optimizer (Kingma & Ba, 2017) at
a fixed learning rate of 10−3. Unless otherwise noted, we used a batch size of 100 and trained for up
to 100 epochs.

Ahead of diving into the experimental details, we briefly summarize the datasets and metrics used.

DSNI-pH and DSNI-Temp. We collected the DSNI dataset from DSMZ (German Collection of Mi-
croorganisms and Cell Cultures GmbH, 2025) and NIH. It comprises six relational tables (STRAINS,
MEDIA, SOLUTIONS, INGREDIENTS, STEPS, GAS) covering taxonomic and protocol infor-
mation. We use approximately 65 000 samples with 16S rRNA sequence (500–1 500 nucleotides),
cultivation temperatures (2–103 ◦C), and pH (0.1–11). The task is to predict optimal temperature
(DSNI-Temp) and pH (DSNI-pH) from the 16S rRNA sequence.

Following Çelikkanat et al. (2024) and related works (Wood & Salzberg, 2014; Compeau et al., 2011),
we encode each 16S rRNA sequence as a 7-mer count vector in N16 384, yielding a dataset of shape
65 023× 16 384. We perform an 80/20 split (52,018 train / 13,005 test), which preserves the skewed
pH (6–8) and temperature (20–40 ◦C) distributions. Section C provides an illustration for target value
(ytrain and ytest) distribution. Preprocessing—robust scaling, variance thresholding, and selection

1The negative of the confusion matrix is used to frame the assignment problem (minimizing the diagonal).
2https://anonymous.4open.science/r/project-82CE
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Table 1: Regression performance on DSNI-pH, DSNI-Temp and QM9. Values are mean±std from runs
with different random seeds; best results per baseline are bold; best results per metric are underlined.

DSNI-pH DSNI-Temp QM9

MSE ↓ R2 MSE ↓ R2 MAE ↓ R2

RF 0.198±0.000 0.601±0.001 17.759±0.276 0.393±0.009 0.015±0.000 0.979±0.000

XGBoost 0.196±0.001 0.604±0.003 18.212±0.543 0.377±0.018 0.014±0.001 0.978±0.001

CatBoost 0.193±0.001 0.610±0.002 17.375±0.398 0.406±0.013 0.014±0.000 0.978±0.002

3LP 0.201±0.002 0.595±0.006 18.484±0.183 0.368±0.006 0.018±0.001 0.958±0.001

3LP+GC 0.097±0.004 0.804±0.008 6.520±0.360 0.777±0.012 0.016±0.003 0.974±0.000

3LP+GMC 0.023±0.002 0.953±0.004 2.277±0.061 0.922±0.002 0.010±0.003 0.990±0.002

TabN 0.184±0.004 0.629±0.007 13.290±0.244 0.545±0.008 0.015±0.001 0.962±0.002

TabN+GC 0.086±0.003 0.825±0.007 7.997±0.210 0.726±0.007 0.012±0.002 0.983±0.001

TabN+GMC 0.020±0.001 0.959±0.002 0.989±0.361 0.966±0.012 0.008±0.000 0.995±0.002

TabT 0.256±0.007 0.483±0.014 18.910±0.247 0.353±0.008 0.434±0.008 0.921±0.008

TabT+GC 0.106±0.002 0.786±0.005 8.280±0.303 0.717±0.010 0.212±0.004 0.961±0.008

TabT+GMC 0.017±0.002 0.964±0.005 2.785±0.540 0.904±0.018 0.009±0.000 0.998±0.001

FTT 0.218±0.003 0.561±0.006 13.571±0.069 0.536±0.002 0.085±0.005 0.984±0.006

FTT+GC 0.070±0.003 0.858±0.007 5.915±0.277 0.797±0.009 0.034±0.002 0.993±0.003

FTT+GMC 0.007±0.005 0.984±0.009 1.480±0.120 0.949±0.004 0.026±0.001 0.995±0.003

of the top 1,000 features—was fitted on the training set and then applied to both splits to avoid data
leakage.

Additional benchmarks. We further evaluate on QM9 (Ramakrishnan et al., 2014) for molecular
property regression, on Boston Housing (Harrison & Rubinfeld, 1978), and on MNIST (Lecun et al.,
1998) and CIFAR10 for classification (some in Section F).

Evaluation metrics. For regression we use mean squared error (MSE), mean absolute error (MAE;
used for QM9 for comparability with SOTA) for training, and report coefficient of determination
(R2). For classification we use cross-entropy loss (CE) for training and report top-1 accuracy (Acc).

For each benchmark, we include three classical decision tree models for reference: Random Forest
(RF) (Breiman, 2001), XGBoost (Chen & Guestrin, 2016), CatBoost (Prokhorenkova et al., 2018).
As both GMC and GC are plug-and-play modules, they can be easily applied to various downstream
predictors. We first evaluate a 3-layer perceptron (3LP) with hidden dims [256,128,64]. Because
our inputs combine numerical features with categorical configurations, we naturally consider tabular
models: TabNet (TabN) (Arik & Pfister, 2020), TabTransformer (TabT) (Huang et al., 2020), FT-
Transformer (FTT) (Gorishniy et al., 2023) were all run with their default settings from the official
implementations.

4.2 EVALUATION OF THE PROPOSED MODULE

As shown in Fig. 2 and Fig. 3, we demonstrate, with attention maps, the learned mixing of configu-
rations by training models with self-attention head on aligned configurations. In order to quantify
the quality of such mixing, for each baseline, we set up the evaluation in three modes: standalone
(baseline), with static configuration concatenation (baseline+GC), and with attention-based fusion
via GraMixC (baseline+GMC). Table 1 reports regression results on our main benchmarks; Section F
(Table 2) shows the rest results. Across all models and tasks, adding GC yields consistent gains, and
incorporating GMC provides further significant improvements, confirming our initial hypothesis.

Performance improvement. Table 1 shows that adding GC and GMC yields consistent gains
across all baselines. Among these observed improvements, the scores increasing on DSNI is quite
satisfying. Prior specialized growth-media regression methods are not convincing with R2 ≤ 0.8
(e.g., 0.75 (Sauer & Wang, 2019)). We confirm this with our base models score R2 between 0.3
and 0.6 on DSNI-pH and DSNI-Temp. However, even without tailoring the baseline model design,
we bring the score to a new high by simply adding GC or GMC. Fig. 6 illustrates some examples
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of such improvement. We see the model’s predictions align more closely with the ideal regression
line and better handle rare cases, by incorporating configurations and probably capturing the latent
manifold structure. Incorporating GC and further GMC raises R2 to 0.98 (pH) and 0.97 (Temp).
Which not only is considered very satisfying in application of bacterial cultivation but also set the
new state-of-the-art (SOTA) for growth-media prediction. On QM9, GraMixC achieves an MAE of
0.008, nearly matching the SOTA (w/o extra training data) of 0.007 (Fang et al., 2022), and represents
the best result among non-GNN models.

Figure 6: Illustration of the regression performance improvement example in 3LP by adding GC or
GMC. Each column plots predicted vs. actual pH (top) or temperature (bottom). 3LP+GC (middle)
outperforms the 3LP baseline (left), while 3LP+GMC (right) further boosts R2 up to > 0.9.

Number of configurations used. We ablate the number of configuration levels in GMC. Fig. 7 shows
that more configurations generally decreases MSE and increases R2, confirming the value of multi-
resolution information. Importantly, GMC often needs more than half as many total configurations
to outperform GC, and performance plateaus—or even slightly declines—when including the last
few configurations. These aligns with Pitsianis et al. (2023), who report a finite set of optimal
configurations rather than continuous gains at infinite resolutions. Using all configurations available
is still preferred.

Figure 7: Ablation study on the number of configurations used on DSNI. On the blue curves (GMC),
[2, . . . , i] denote fusing configurations from 2 through i via GraMixC. On the green curves (GC),
(i, j) denote the best train/test configuration pair used in static concatenation. Incrementally mixing
configurations improves performance and outperforms static concatenation.
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4.3 QUALITATIVE EVALUATION OF CONFIGURATIONS.

Our final experiment compares configurations against standard representation-extraction methods. As
discussed in Section 1, configurations can be viewed as special unsupervised representation learning.
Fig. 3 already shows their advantage over self-supervised register tokens. Here, we replace GC/GMC
with PCA (Jolliffe & Cadima, 2016), UMAP (McInnes et al., 2020), and a vanilla autoencoder
(AE), each embed into dimensions the same number of as our configurations. We visualize these
embeddings on MNIST (Fig. 8a; additional views in Section F.2). Qualitatively, SG-t-SNE (the
reduction step in GraMixC) yields more uniform, well-separated clusters that respect global kNN
connectivity rather than forming hubs. Fig. 8b quantifies downstream classification accuracy, where
GC and GMC strongly outperform PCA, UMAP, and AE given the same embedding budget. These
results confirm that mixed configurations provide a more expressive yet compact representation for
downstream tasks.

(a) 2D visualization of embeddings learned.

CE ↓ Acc

3LP+PCA 0.157 0.971
3LP+UMAP 0.181 0.975
3LP+AE 0.158 0.969
3LP+GC 0.046 0.992
3LP+GMC 0.028 0.993

(b) Classification performance.

Figure 8: (a): Illustration of 2D embeddings of MNIST using UMAP (left) and SG-t-SNE (right). (b):
Classification performance on MNIST using features from PCA, UMAP, autoencoder (AE), static
configurations (GC), and GraMixC (GMC) at equal embedding dimensions. SG-t-SNE embeddings
integrated via GC or GMC exploit multi-resolution structure to notably outperform other methods.

5 CONCLUSION

In this study, we investigate the functional mechanisms of configurations in downstream prediction
tasks and identify three key properties. Based on this, we propose GraMixC, which dynamically
mixes configurations through attention head. We apply it to the challenging task of 16S rRNA
cultivation-media prediction task, and set a new state-of-the-art. Further validation across multiple
standard tabular data benchmarks consistently reveals that GC (a static version of GraMixC) enhances
baseline performance, while GraMixC demonstrates even more substantial improvements. Our results
suggest that harnessing rich manifold priors via attention-driven fusion opens promising avenues for
interpretable and robust learning in both scientific and conventional domains.

In future work, we plan to extend mixed configurations to more expressive networks and dynamically
learn configuration alignment through end-to-end differentiable modules. Additionally, we will focus
on exploring adaptive clustering for evolving data streams where train and test distributions may shift,
which could further enhance the resilience of multi-resolution approaches.

9
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B AN INTUITIVE EXAMPLE OF CONFIGURATION MIXING

Figure 9: Illustration of multi-resolution clustering on synthetic datasets. GT is shown in the framed
box in (0). Upper is the embedding of Moons (left) and Blobs (right) with corresponding configuration
(i) as third dimension; lower is the lineage diagram of the configurations.

To illustrate the necessity of fusing valid clusterings across resolution scales, we use two synthetic
point-cloud datasets from scikit-learn: “Moons” and “Blobs.” The Blobs dataset is tuned so that no
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single clustering resolution recovers all three clusters. Fig. 9 visualizes each dataset in 3D, using the
third axis to encode cluster assignments for the corresponding configuration: coarser configuration (1)
and finer configuration (2). Configuration (1), by lifting some dots above the plane, cleanly separates
the two Moon arcs but merges two (purple and green) of the Blobs clusters. Configuration (2), by
itself, fails the Blobs with a different merge (blue and green). Only by fusing both configurations
can all clusters be disentangled—the purple dots in (1) that falls down in (2), emerges correct as the
green cluster. This toy example shows that multi-resolution clusterings alone are insufficient without
a fusion mechanism. Our GraMixC use attention-based fusion to integrate these scales. While just
one demonstration, it highlights the broader advantage of mixing configurations in complex settings.

C DSNI DATASET DISTRIBUTION

Fig. 10 shows the pH and temperature target distributions for DSNI across training and test splits.
Both splits cover similar ranges, though with natural imbalance (e.g., mesophilic temperatures, pH
6–8) reflecting biases in the underlying NIH/DSMZ data. These distributions are important for
interpreting regression performance and highlight potential challenges under distributional shift.

Figure 10: Illustration of target value distributions across train-test splits in DSNI dataset. The first
row represents pH distributions and the second row represents temperature distributions. The first
column represents the training set (ytrain) and the second column represents the test set (ytest).

D SYNTHETIC CLUSTERING BENCHMARKS

In this section, we further discuss the limitations of conventional clustering methods raised in
Section 3.1. We compare our modularity-based clustering strategy, which is used as the unsupervised
layer in GraMixC, against widely-used clustering algorithms on synthetic 2D datasets.

Each row in Fig. 11 presents a distinct synthetic dataset distribution, ranging from custom-designed
to standard scikit-learn datasets, including Taiji, spirals, circles, moons, varied blobs, anisotropy,
blobs, and isotropic noise. Each column represents the result of one clustering method, annotated
with Adjusted Rand Index (ARI) and execution time.

Unlike traditional clustering methods, the approach we adopted (last column: Modularity, im-
plemented via kNN graph + Leiden community detection) consistently uncovers the underlying
structure—even in challenging cases involving non-convex geometries, anisotropic spreads, or un-
even density distributions. This comparison underscores the reliability and manifold sensitivity of our
unsupervised segmentation approach, even before introducing multi-resolution fusion or downstream
learning tasks.
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Figure 11: Illustration of clustering methods comparisons across multiple synthetic datasets. Rows
correspond to different 2D point clouds—the first row is custom, others are from scikit-learn. Each
method’s result is labeled with ARI (top-left in yellow) and execution time (bottom-right in black).
Modularity: kNN+Leiden (far right) accurately recovers ground-truth structures across different
shapes and densities, with robustness to noise, anisotropy, and distribution variation.

E RMS ALIGNMENT DETAILS

In Section 3.2 we introduced the Reverse Merge & Split (RMS) procedure for aligning multi-
resolution configurations between train and test sets. Below we provide the full pseudo-code in
Algorithm 1, using the same notation as the main text.

Implementation notes.

• We set θ = 0.1 and compute ARI as in Hubert & Arabie (1985).

• We use 0.1 % of the train samples as anchors to form A.

• The greedy matching loops over each train configuration ωi to find its best-scoring test
partner ωj , applies the label mapping, and removes both from further consideration to ensure
one-to-one alignment.

The details for SCORE and Ltw are covered in Algorithm 1 so we skip them here.

F ADDITIONAL EXPERIMENTAL RESULTS

In Section 4 we introduced our experimental setup and high-level results. Here, we provide the full
details and qualitative analyses that couldn’t fit into the main body, including:

• Downstream task performance on three other benchmarks.

• Qualitative illustration of prediction versus true value on the three tabular baseline models.

• Embeddings from PCA and AE.

F.1 ADDITIONAL EVALUATION OF PROPOSED MODULE

Table 2 extends our evaluation to three additional benchmarks: Boston Housing (regression), MNIST
and CIFAR-10 (classification). We compare classical ensembles (RF, XGBoost, CatBoost), a 3-layer
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Algorithm 1 Reverse Merge & Split (RMS) Alignment

Require: Ωtrain ∈ NN×mt , Ωtest ∈ NN×ms , anchor indices A ⊂ {1, . . . , N}, θ
Ensure: Aligned Ωtest

1: U← {1, . . . ,mt}, V← {1, . . . ,ms}
2: for i in U do ▷ for each train configuration ωi

3: best_score← −∞, best_j← null
4: ωi ← Ωtrain[A, i]
5: for j in V do ▷ find best test configuration ωj

6: ωj ← Ωtest[A, j]
7: s← SCORE (ωi,ωj , θ)
8: if s > best_score then
9: best_score← s , best_j← j

10: end if
11: end for
12: M ← PAIR_MAPPING (Ωtrain[:, i], Ωtest[:, best_j])
13: for p = 1 to N do
14: Ωtest[p, best_j]←M

(
Ωtest[p, best_j]

)
15: end for
16: Remove i from U , remove best_j from V
17: end for
18: return Ωtest

19: function PAIR_MAPPING(ωi,ωj)
20: ni ← ∥ωi∥∞, nj ← ∥ωj∥∞
21: for p = 1 to N do ▷ build confusion matrix C ∈ Nni×nj

22: C[ωi[p],ωj [p]] += 1
23: end for
24: Construct two-walk Laplacian Ltw

25: F ← Fiedler vector of Ltw

26: Split F → (Fi ∈ Rni , Fj ∈ Rnj )
27: πi ← argsort(Fi), πj ← argsort(Fj)

28: return mapping k 7→ πi

[
π−1
j (k)

]
for k = 1, . . . ,min(ni, nj)

29: end function

MLP (3LP), and three neural tabular architectures (TabNet, TabTransformer, FT-Transformer) in
three modes: baseline, static configuration concatenation (GC), and attention-based fusion (GMC).

Across almost all models and datasets, GC consistently improves performance over the raw baselines,
and GMC provides further gains.

The sole exception is TabTransformer on Boston Housing, where GC yields only a marginal R2

increase (0.811→0.813), but GMC degrades it (to 0.671), suggesting that attention-based fusion may
disrupt already well-structured features in this case.

On MNIST, GC lifts accuracy above 99%, and GMC pushes it to 99.3–99.5%. On CIFAR-10, GC
delivers dramatic gains (e.g. TabTransformer from 46.3% to 87.6%), and GMC further improves
all models, with FT-Transformer+GMC reaching 95.5% accuracy. These results underscore that
configuration integration via GraMixC is broadly effective, with only one minor counterexample.

F.2 ADDITIONAL QUALITATIVE EVALUATION OF CONFIGURATIONS

In Section 4.3 we provided the embedding of MNIST digits using UMAP and SG-t-SNE (Fig. 8a).
Here we provide the missing illustration of embedding with PCA and autoencoder (AE) in Fig. 12.
As expected, they do not provide representation with clusters as separated as the former two methods.

With the final figure (Fig. 13) we visualize predicted vs. actual values from the tabular baselines on
DSNI, filling in what is missing from Fig. 6.
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Table 2: Regression/classification performance on Boston Housing (BHouse), MNIST, and CIFAR10.

Dataset BHouse MNIST CIFAR10

Metric MSE ↓ R2 CE ↓ Acc CE ↓ Acc

RF 0.022 0.884 0.247 0.969 1.681 0.463
XGBoost 0.022 0.881 0.066 0.980 1.296 0.539
CatBoost 0.016 0.913 0.096 0.975 1.230 0.567

3LP 0.023 0.879 0.141 0.970 1.428 0.524
3LP+GC 0.022 0.882 0.046 0.992 0.480 0.844
3LP+GMC 0.017 0.909 0.028 0.993 0.220 0.949
TabN 0.033 0.822 0.130 0.964 1.499 0.463
TabN+GC 0.021 0.888 0.225 0.941 0.377 0.876
TabN+GMC 0.012 0.936 0.017 0.995 0.077 0.978
TabT 0.035 0.811 0.192 0.980 1.028 0.706
TabT+GC 0.035 0.813 0.040 0.993 1.049 0.704
TabT+GMC 0.061 0.671 0.018 0.994 0.458 0.911
FTT 0.032 0.826 0.098 0.980 0.415 0.874
FTT+GC 0.030 0.838 0.029 0.993 0.437 0.870
FTT+GMC 0.026 0.860 0.018 0.995 0.157 0.955

Figure 12: Illustration of 2D embeddings learned by PCA (left) and AE (right) on MNIST.
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Figure 13: Illustration of the regression performance improvement example in TabNet, TabTrans-
former and FT-Transformer by adding GC or GMC. Each plots predicted vs. actual value.
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