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ABSTRACT

Feature transformation for attributed graphs converts raw node attributes into augmented
features that preserve node and structure information. Relevant literature either fails to
capture graph structures (e.g., manual handcrafting, discrete search), or is latent and hard
to interpret (e.g., GCNs). How can we automatically reconstruct explicit features of an
attributed graph while effectively integrating graph structures and attributes? We gener-
alize the learning task under such setting as a GCN-aware Feature Transformation (GC-
NFT) problem. GCNFT imposes two under-addressed challenges: 1) quantifying GCN
awareness and 2) bridging GCN awareness and feature transformation. To tackle these
challenges, we propose a graph convolution structure score guided generative learning
framework to solve GCNFT. To quantify GCN awareness, we interpret GCN as a gap
minimization process between ideal and current node representations in iterative Laplacian
smoothing, and develop a task-agnostic structure score to approximate GCN awareness.
To incorporate GCN awareness, we model feature transformation as sequential genera-
tive learning so that we pave a way to leverage the structures score to guide the generative
learning and encourage graph structure alignment. Extensive experiments demonstrate the
proposed GCN-aware approach outperforms feature transformation baselines with an im-
provement of 3% to 20% over node, link, and graph prediction tasks. Our code is available
at https://anonymous.4open.science/r/GCNFT.

1 INTRODUCTION

In many attributed graph systems (e.g., social network analysis, financial network fraud detection, graph rec-
ommendations), raw attributes alone may not reveal hidden structural interconectivity patterns. For instance,
simply using raw attributes (e.g., user age, product category) often fails to capture user-product interactions.
Feature transformation for attributed graph is to convert raw attributes of nodes in a graph into new, more
informative features for graph machine learning. It can represent complex relationships, augment informa-
tion of nodes with sparse connections, create a more homogeneous feature space from heterogeneous types
of nodes and attributes, and capture more general properties of graph structures.

Relevant literature is two fold: 1) Graph Neural Networks (GNNs) and latent transformed representations:
GNNs have emerged as powerful tools for encoding graph topology and node attributes into a lower-
dimensional latent space. Key architectures include Graph Convolutional Networks (GCNs), Graph At-
tention Networks (GATs), and GraphSAGE. However, their output latent representations are often hard to
interpret, making it challenging to understand what specific aspects of graph structure or node attributes
contribute to the feature space. 2) classic feature transformation and explicit transformed representations:
classic feature transformation involves creating handcrafted features such as node centrality, clustering coef-
ficients, community membership, and attribute aggregation to represent graph structure and node attributes
for downstream tasks. Despite their interpretability, these methods require domain knowledge and manual
effort, cannot model complex non-linear relationships, are prone to overfit, and cannot scale up. Recently,
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automated feature transformation methods (Uddin et al., 2021; Ying et al., 2024) are designed for generic
tabular data, and they ignore the topological structure in attributed graphs.

This gap inspires the problem of GCN-aware Feature Transformation (GCNFT) that answers: how can we
automatically transform and reconstruct explicit feature space of an attributed graph, described by a node
feature matrix and an adjacency matrix, while effectively integrating graph structures and attributes?

There are two major challenges in solving GCNFT: 1) quantifying GCN awareness; 2) bridging GCN aware-
ness and feature transformation. Firstly, GCN is a multi-step process: graph convolution operation, node
attribute transformation, stacking layers for multi-hop aggregation, and finally optimized by a task-specific
objective. We need to approximate GCN awareness into a task-agnostic optimizable regularization term to
encourage feature transformation to pay attentions to graph structures. Secondly, classic feature transforma-
tion are usually based on empirical handcrafting or discrete search methods. Direct incorporation of GCN
awareness regularization term into such methods will fail due to the non-differentiable, discrete nature of
the search space, and the potential disruption of heuristic evaluations and algorithmic stability. We need to
model feature transformation as a modern learnable framework (data, model, objective, optimization) so as
to bridge the gap between GCN awareness and feature transformation.

Our insights: leveraging graph convolutional structure score guided GenAI to unify GCN aware-
ness and feature transformation into an optimizable learning paradigm. Classic feature transformation
methods are usually non-differentiable and discrete search based. The success of LLMs showcases the
abilities of GenAI to encode discrete sequential tokens into continuous representations, and generate ac-
tionable responses. Follow the similar spirit, we view a sequence of feature transformation operations (e.g.,
f1∗f2, f2/f3,

√
f4, ...) as a generated token sequence. We highlight that attributed graph feature transforma-

tion can be formulated as a sequential token generation task within a continuous space. In this context, the
transformed feature set is expressed as an embedding vector, which is subsequently optimized and generated
by an encoder-decoder framework. We prove that GCN awareness can be theoretically approximated by a
graph convolutional structure score to guide the generative process, where feature transformations are not
just downstream task-optimized but also graph structure-preserving.

Summary of technical solution. Inspired by these insights, we develop a graph convolution aware gener-
ative feature transformation method for attributed graphs. Our method includes two components: 1) quan-
tifying GCN awareness: we approximate the graph convolution operation, non-linear transformation, and
multi-hop aggregation of GCN into a graph convolutional structure score as a regularization term. 2) GCN-
aware transformation generation: we develop a graph convolutional structure score guided generative feature
transformation approach that consists of embedding (i.e., to learn a GCN-aware feature transformation em-
bedding space), optimization (i.e., to identify the embedding point for the best GCN-aware transformation),
and generation (i.e., to decode the optimal GCN-aware transformation operation sequence).

Our contributions are: 1) AI task: We formulate a novel task of graph convolution aware explicit feature
transformation for attributed graphs. 2) Framework: We develop a graph convolution structure score guided
generative learning framework to generate task-optimized and structure-preserving attributed graph feature
transformations. 3) Computing: An approximation technique with mathematical inference is developed to
reduce GCN into a task-agnostic structure loss term. We convert attribute graph feature transformation into
differentiable generative learning to enable the incorporation of GCN awareness to steer optimization.

2 DEFINITIONS AND PROBLEM STATEMENT
2.1 IMPORTANT DEFINITIONS

Operations & Crossed Feature. We apply two types of mathematical transformations on attributes: 1)
unary operations:‘log, sin’, and etc; 2) binary operations: ‘+,−’, and etc. By crossing features within an
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attribute graph, we reconstruct the representation space to enhance the data’s AI capability. For instance,
selected transformations generate new features (e.g., f1 + f2, sin(f2)− exp(f3)).

Feature Cross Sequence. Treating a feature/operation as a symbol allows the pattern of these sym-
bols to represent the knowledge inherent in crossed features. We use symbolic expressions to represent
crossed features, which enables us to assess their quality without directly involving the original data (e.g.,
‘[sos][f1][+][f2][sep][sin][(][f2][)][−][exp][(][f3][)][eos]’).

2.2 THE GCNFT PROBLEM

Given an attribute graph G = (A,X, y) , where A is an adjacency matrix, X = [f1, f2, ..., fn] is an attribute
matrix, in which a row represents a node and a column represents a kind of attribute (a.k.a, feature), and y is
the target labels of nodes, edges or graphs. Our goal is to automatically reconstruct an optimal and explicit
representation space X∗, which captures structure relationships achieved by Graph Convolutional Networks
G and improves a downstream ML task M (e.g., node classification, link prediction, or graph classification):

X∗ = argmax
X̂

(IM(X̂, y) + S(X̂,G(G)), (1)

where X̂ is a generated attribute matrix that includes multiple original features and crossed features, X∗ is
the best transformed attribute matrix, I is the predictive performance indicator, S(X̂,G(G)) is the structure
score that measures how well X̂ fits the structure relationships of G(G).

3 GRAPH CONVOLUTION AWARE GENERATIVE FEATURE TRANSFORMATION

3.1 OVERVIEW OF PROPOSED METHOD

Structure Score

Reward

Phase 1

Quantify GCN Awareness

Quantify GCN Awareness
Graph-Aware 

Knowledge Base
Original 

Embedding 
Updated

Embedding 

Similarity

Figure 1: Framework Overview

Figure 1 shows our solution includes two phases: 1) quan-
tifying GCN awareness; 2) GCN-aware attributed graph
feature transformation generation. Specifically, in Phase
1, we leverage the iterative Laplacian smoothing concept
to infer ideal node representation and develop an approxi-
mation of GCN awareness by the similarity score between
ideal and current note representations. This structure score
is a generic, task-agnostic and optimizable regularization
term for diverse machine learning paradigms. In Phase
2, we develop a graph convolution structure score guided
encoder-decoder approach for generative attributed graph
transformation. This approach can impose GCN aware-
ness to guide the encoder (how to map a feature transfor-
mation into an embedding vector) and the decoder (how
to search the best feature transformation embedding point for generation).

3.2 QUANTIFYING GCN AWARENESS AS TASK-AGNOSTIC CONVOLUTIONAL STRUCTURE SCORE

Why Quantifying GCN Awareness Matters? In attributed graphs, node features interact closely with
graph structure to encode graph connectivity patterns in an attribute space. Classic feature transformations
on tabular data ignore underlying graph structures, and, thus, fail to leverage these relationships, leading to
suboptimal representations. Since GCNs excel at capturing structural relationships through aggregation and
propagation, it is appealing to incorporate GCN awareness into classic feature transformations, in order to
align feature transformation with graph structures. Therefore, GCN awareness quantification can provide a
measurable and optimizable mechanism to ensure that transformed features are structurally consistent.

Leveraging GCN as the Gap Minimization between Ideal and Current Node Representations in It-
erative Laplacian Smoothing to Make GCN Awareness Computationally Tangible. We find that the
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Figure 2: Quantify GCN Awareness

aggregation and propagation mechanism of GCN can be seen as a recurrent process of minimizing the gap
between ideal node representation and current node representation in iterative Laplacian smoothing. In-
spired by this finding, we propose to quantify the degree of similarity between the ideal and current node
representations as an indicator of GCN effects in feature transformation by a two step method:

Step 1: Identifying Ideal Node Representation. The core operation of GCN involves aggregating node fea-
tures via the adjacency matrix, while Laplacian smoothing diffuses node features to their neighbors using the
graph’s Laplacian matrix, making node features more similar. The work by (Kipf & Welling, 2016) demon-
strates that the propagation mechanism of GCN can be understood as an iterative application of Laplacian
smoothing, which is formally expressed by the following equation: H(l+1) = σ(D̃− 1

2 ÃD̃− 1
2H(l)W(l)),

where D̃− 1
2 ÃD̃− 1

2 is the Normalized Laplacian matrix, in which Ã is the adjacency matrix of the graph
with self-loops added and D̃− 1

2 is the degree matrix corresponding to Ã, Hl represents the node feature
matrix at layer l, W(l) is the weight matrix for layer l, and σ is the activation function.

As GCN repeatedly applies this smoothing operation, the attribute in the final layer gradually becomes
smoother through iterative updates. Eventually, the node representations stabilize in the graph structure, and
once the output no longer changes significantly with further iterations, the model is considered to be con-
verged. The ideal node representation in the final layer of GCN is: H(−1) = σ(D̃− 1

2 ÃD̃− 1
2H(−1)W(−1)),

where H(−1) is the node representation matrix in the final layer of GCN.

In the simplification discussed in (Veličković et al., 2018; Wu et al., 2019), to further reduce the complexity
of GCN’s final layer representation, the non-linear activation function and the weight matrix can be removed,
so the above equation is approximated as: H(−1) = D̃− 1

2 ÃD̃− 1
2H(−1).More specifically, the ideal solution

for the final representation of each node in the graph can be represented as:

h
(−1)
i =

∑
j∈G

1√
(di + 1)(dj + 1)

Ai,jh
(−1)
j +

1

di + 1
h
(−1)
i =

∑
j∈G

1

di

√
di + 1

dj + 1
Ai,jh

(−1)
j . (2)

In this context, G refers to the given graph, hi denotes the representation of any node within the graph, Ai,j

corresponds to the adjacency matrix of the graph, and di is the degree of node i.

Step 2: Measuring the Similarity between Ideal and Current Node Representation as Structure Score.
Based on the above analysis, we can train a relaxed GCN model by guiding node representations to ap-
proximate ideal node representations estimated in Equation 2, as well as optimizing the performance in
downstream tasks. We defined a structure score to estimate how closely current node representations match
ideal node representations, which is denoted as the similarity between them. Here we exploit the cosine
similarity as the similarity metric:

s =
∑
i∈G

h
(−1)
i (

∑
j∈G

1
di

√
di+1
dj+1

Ai,jh
(−1)
j )⊤

∥h(−1)
i ∥∥

∑
j∈G

1
di

√
di+1
dj+1

Ai,jh
(−1)
j ||

(3)

To simplify the equation, we conduct vector normalization on the learned representations, and thus each
representation h

(−1)
i has a similar l2-norm. As a result, s is equivalent to:

s =
∑
i∈G

h
(−1)
i (

∑
j∈G

1

di

√
di + 1

dj + 1
Ai,jh

(−1)
j )⊤ (4)
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Inspired by this analysis, we can integrate GCN awareness into feature transformation by evaluating the
structure score of a transformed attribute matrix. The evaluation feedback can enforce feature transformation
to better align with the structural characteristics of GCN.

3.3 GCN-AWARE GENERATIVE FEATURE TRANSFORMATION FOR ATTRIBUTED GRAPHS

Why Using A Knowledge Guided Generative Learning Perspective to Bridge Feature Transformation
and GCN Awareness. After deriving graph convolutional structure score as the regularization term of GCN
awareness, we need to incorporate the structure score into feature transformation to align graph attributes
with graph topology. The key challenge of incorporating GCN awareness is that classic feature transforma-
tion methods are based on empirical handcrafting and discrete search, thus, there is no way to incorporate
the GCN awareness into attributed graph feature transformation. To address this issue, we need to frame
feature transformation as a modern optimizable learning paradigm (data, model, objective, optimization),
so that the GCN awareness can serve as knowledge guidance to guide feature transformation learning. We
regard a transformed feature set (e.g., f1 ∗ f2, f2/f3,

√
f4, ...) as a token sequence, the search of the best

transformed feature set as the generation of the maximized likelihood token sequence, so attributed graph
feature transformation is reformulated as a generative learning paradigm of encoding, optimization, and de-
coding. This reformulation provides an opportunity for the graph convolutional structures score to guide the
generative learning and enforce the alignment with graph structure.

Leveraging Graph Convolutional Structure Score to Guide Generative Feature Transformation
Learning. This GCN-aware generative learning paradigm includes three steps: 1) we firstly embed GCN-
aware feature transformations into embedding vectors and reconstruct feature cross sequences, by optimizing
not just sequential reconstruction and a predictive accuracy estimator, but also a structure score estimator; 2)
once the model converges, the GCN-aware estimators guide the search of the optimal embedding point with
the highest structure score and downstream task performance. 3) we finally decode the optimal embedding
point to generate the best feature cross sequence that is converted into the optimal transformed feature space
by predefined rules. We next detail its data, model, optimization, and generation components.

�� ⋯ �� ��:  �� + ��/��+

Head Agent
Pick the first operand

Operation Agent
Pick the operator

Tail Agent
Pick the second operand

Structure 
Score ��

Accuracy
��

Reward

Add New Feature into Envrioment

�� + ��/��

(��, ��, ��)

Knowledge Base �

GCN-aware 
Knowledge

GCN-Aware Feature Transformation Knowledge Acquisition

Figure 3: Integrate GCN Awareness into Generative Fea-
ture transformation

1) Data: GCN-aware Attributed Graph Fea-
ture Transformation Knowledge Acquisition. In-
spired by (Wang et al., 2022a), we develop a re-
inforcement learning system to automatically ex-
plore and collect various transformations of graph
node attribute matrices as a knowledge base for
training the generative model, as shown in Fig-
ure 3. The reinforcement exploration experi-
ences (a.k.a, transformed attribute graph feature
sets), along with corresponding structure scores and
downstream task accuracy, are formatted as training
data. The reinforcement learning system includes:
1) Multi-Agents: We design three agents—a head
feature agent, an operation agent, and a tail feature
agent—to perform feature crossing. 2) Actions: At each reinforcement iteration, the agents select a head
feature, an operation, and a tail feature to generate a new feature, which is added to the feature set for fu-
ture iterations. 3) Reward Function: This exploratory data collection process is incentivized by a reward
of not just downstream performances but also structure scores to collect high-quality training data with
similar GCN-like transformation patterns. As the agent policies grow, we can collect many high-quality
transformed attributed graphs with corresponding structure scores s and accuracy a. We regard feature and
operation as tokens, and then use postfix expression to convert the transformed attributed matrix as feature
token sequences T (e.g., f1+f2, sin(f2) →‘[sos][f1][f2][+][sep][f2][sin][eos]’). These three types of data
construct the GCN-aware knowledge base D = (Ti, si, ai)ki=1, where k indicates the number of samples.
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2) Model: Sequential Autoencoder. We use the GCN-aware knowledge base D = (Ti, si, ai)ki=1 for
training an encoder ϕ(·) and a decoder ψ(·) to construct a latent embedding space as shown in Figure 4. We
utilize a single layer Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) network for the
encoder to obtain latent embedding of the feature token sequence, denoted by e = ϕ(T ). We also use a
single layer LSTM for a decoder to reconstruct the feature token sequence. Given a latent embedding e, we
leverage the negative log-likelihood of the distribution of the decoder’s output Pψ to measure the difference
between the generated token sequence and the real one, defined as Lrec = −logPψ(T |e).

Encoder Decoder

Accuracy Evaluator
Structure Evaluator

Decoder

Embed

Joint Training

Update

Provide Gradient

Integrate GCN Awareness Into the 
Optimized Generative Feature transformation

Figure 4: GCN-Aware Feature Transformation
Knowledge Acquisition

3) Optimization: Incorporating GCN Awareness into Em-
bedding Space Learning and Optimal Embedding Point
Search. To generate the optimal feature token sequence, we
first evaluate the latent embedding space for targeted optimiza-
tion. We develop two evaluators to assess the relationship
between the latent embeddings, the GCN structural aware-
ness, and downstream task performance. The structural evalu-
ator κ(·) estimates the correlation between latent embeddings
and GCN awareness, which provides constraints to ensure the
structural properties of the generated feature token sequences.
The performance evaluator ϑ(·) measures the relationship be-
tween the latent embeddings and downstream performance,
which offers optimization targets to improve latent embed-
dings for better downstream outcomes. We iteratively opti-
mize these two constraints to search for latent embeddings that
possess both GCN structural awareness and enhanced downstream performance.

(i) GCN Awareness Evaluator. We expect the latent embeddings to represent the structural score of the
corresponding feature token sequence, which enables us to purposefully optimize the latent embeddings to
obtain a feature token sequence with a higher structural score (i.e., where the generated node representations
are closer to the ideal node representations aggregated by GCN in structure). We construct the relationship
using a GCN awareness evaluator regressor function κ(·), and the estimated structure score is denoted by:
ŝ = κ(e). We use a simple linear layer to implement this evaluator function. We train the parameters of
the evaluator by minimizing the Mean Squared Error (MSE) between the estimated structure score and the
ground truth argminLstr =MSE(s, ŝ).

(ii) Performance Evaluator. We expect the latent embedding space to indicate the accuracy of the corre-
sponding feature token sequence in downstream tasks. So we can optimize the latent embeddings for higher
performance. We establish this relationship using a performance evaluator function ϑ(·), and the estimated
accuracy is denoted by: â = ϑ(e). We use a linear layer to implement this evaluator and train its parameters
by minimizing the MSE between the estimated accuracy and true value argminLper =MSE(a, â).

(iii) Iterative Optimization of GCN Awareness and Performance for the Optimal Latent Embedding. Af-
ter constructing the latent embedding space, we enable the gradient-steered optimal search to find better
embeddings. To simulate GCN training (i.e., node aggregation and performance-guided optimization), we
introduce a two-stage optimization method. Specifically, we first conduct structure score optimization to
simulate node aggregation that tends to cluster connected nodes. To implement this process, we leverage
the gradient of structure score to guide optimization. Formally, given a starting point e, the embedding after
structure score optimization is given by: e+ = e + ασ[κ(e)]σe , where α is the step length. By varying α, we
can generate samples in different levels of clustering. We regard these generated samples as the outputs of
GCN in different epochs. Thereafter, for the outputs, we conduct performance-guided optimization. The
target embedding of an optimization step is expressed by: e∗ = e+ + β σ[ϑ(e

+)]
σe+ , where β denotes the step

length. For each e+, we perform multi-step search, to find the optimal embedding.

6
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4) Generation: Generating Feature Cross Sequences to Reconstruct Attributed Graph Features. When
the optimal embedding e∗ is searched, we generate the feature cross sequence by the well-trained decoder.
Assuming the token sequence f1...fd−1, we infer the next token fd by maximize likelihood estimation:
fd = argmax(Pψ(fd|e∗, [f1, f2, ..., fd−1])), Feature tokens are autoregressively generated until the end
token (EOS) is generated. Finally, the optimal attribute graph is generated through the predefined rules.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Data Description & Evaluation Metrics We select 3 graph datasets from TUDataset1. Our method is evalu-
ated from three perspectives: 1) node classification; 2) link prediction; 3) graph classification to demonstrate
the advantages of our model in graph-related tasks. Table 1 shows the statistics of the datasets. We adopt a
two-layer MLP as the downstream model to evaluate the performance of generated attribute graphs. We use
the F-1 score to measure the accuracy of graph downstream tasks.

Table 1: Key statistics of the datasets.

Dataset Graphs Classes Avg. Nodes Avg. Edges Node Labels Node Att.

ENZYMES 600 6 32.63 62.14 " "

PROTEINS full 1113 2 39.06 72.82 " "

Synthie 400 4 95.00 172.93 % "

Baseline Algorithms & Model Variants We compare the proposed method with 8 widely-used algorithms:
1) PCA (Abdi & Williams, 2010) reconstructs the feature space according to the original feature set. 2) ERG
expands feature space by applying operation on each feature and selects valuable features. 3) LDA (Blei
et al., 2003b) obtains features based on matrix factorization. 4) NFS (Chen et al., 2019); 5) RDG randomly
generates features to reconstruct the feature space. 6) TTG (Khurana et al., 2018) regards feature trans-
formation as a graph and performs reinforcement learning-based search; 7) GRFG (Wang et al., 2022b)
proposes a feature grouping strategy and employs three agents to generate new features; 8) MOAT (Wang
et al., 2024) embeds feature transformations and generate new feature transformations by gradient-based
search. Besides, to comprehensively evaluate the proposed framework, we introduce two variants: 1) w/o
SO and 2) w/o PO denote the model without structure optimization and without performance optimization.

Hyperparameter Setting & Experimental Environment In the data collection stage, we explore 600
epochs of feature transformations. In the training stage, we set the weights of Lper,Lstr, and Lrec as 0.5,
0.4, and 0.1 respectively. In the generation stage, we perform 2 steps of structure optimization and 4 steps
of performance optimization. All experiments are conducted on the Ubuntu 22.04.3 LTS operating system,
utilizing an Intel(R) Core(TM) i9-13900KF CPU@ 3GHz, along with a single RTX 6000 Ada GPU and
49GB of RAM. Experiments were performed under the framework of Python 3.10.14 and PyTorch 2.0.1.

4.2 RESULT ANALYSIS

Overall Comparisons. This experiment aims to answer: Can the proposed method effectively improve
downstream tasks compared with baselines? Table 2 shows the overall comparison results on the 3 datasets.
We observe that GCNFT achieves the best performance across all datasets and tasks, with an average im-
provement of 3% over the best baseline. This is because the existing methods perform feature transformation
only on tabular data. Without graph information, they show limited performance on graph-related tasks. In
contrast, our model can leverage graph information to enhance feature transformation, facilitating GCN
awareness. Notably, in graph classification, our model significantly outperforms the baselines. The potential

1https://chrsmrrs.github.io/datasets/docs/datasets/
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Table 2: Three types of graph tasks: node classification, link prediction, and graph classification on three datasets.

Method ENZYMES PROTEINS full Synthie
Node Link Graph Node Link Graph Node Link Graph

PCA 75.63 58.18 16.57 83.43 94.18 43.80 - 50.49 18.00
ERG 80.97 57.14 15.47 83.87 92.91 55.53 - 49.52 21.99
LDA 68.53 56.34 8.85 68.42 69.38 53.71 - 49.85 10.00
NFS 77.58 58.13 9.33 84.74 94.84 59.81 - 50.58 23.51
RDG 78.81 58.02 15.47 83.41 95.01 61.39 - 50.27 22.66
TTG 82.03 56.58 16.08 88.16 94.56 61.60 - 50.80 27.53

GRFG 84.86 59.34 15.81 89.36 96.30 62.66 - 50.58 37.62
MOAT 90.70 62.95 17.17 86.23 97.90 65.39 - 51.63 43.82

GCNFT 94.01 65.96 21.87 91.08 98.75 70.42 - 52.02 49.49

driver is that the structure optimization process clusters the connected nodes, making the graph embedding
more discriminative.

A Study of Optimization Methods. This experiment aims to answer: Is the two-stage optimization method
helpful to improve the performance? To investigate the effectiveness of the two-stage optimization method,
we introduce two variants of GCNFT: w/o SO and w/o PO, denoting models without structure score op-
timization and performance optimization respectively. As shown in Figure 5, solely conducting structure
optimization or performance optimization falls into suboptimal results. This phenomenon can be explained
by two factors: 1) Without structural optimization, the model loses the ability to leverage graph information.
It only focuses on optimization for tabular data, making it difficult to achieve optimal results. 2) Without
performance optimization, the model loses the supervised signals from downstream task feedback, prevent-
ing it from conducting a gradient search toward performance improvement. Combining the two processes,
we enable GCN-aware feature transformation to aggregate nodes and optimize the performance.

w/o SO w/o PO GCNFT
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(a) ENZYMES
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(b) PROTEINS full

Figure 5: Results of the proposed method with different optimization process, where w/o SO denotes the
model without structure optimization, and w/o PO denotes the model without performance optimization.

Robustness Check. This experiment aims to answer: Can the proposed model keep robust when different
downstream models are used? We investigate the performance of GCNFT on the ENZYMES dataset for the
node classification task, utilizing Multi-Layer Perceptron (MLP) (Murtagh, 1991), K-Nearest Neighborhood
(KNN) (Guo et al., 2003), Support Vector Machine (SVM) (Hearst et al., 1998), LASSO (Zou, 2006), and
Ridge (Hoerl & Kennard, 1970) as downstream models respectively. We report the results in Table 3. The
baselines are not robust and stable when collaborating with different downstream ML models. None of them
can consistently achieve the second-best performance on this task. In contrast, GCNFT outperforms all the
baselines with the highest improvement of 3.31%, regardless of the downstream ML model. This implies
that GCNFT can formulate specific optimization strategies for different downstream tasks. Through a well-
constructed feature embedding space, GCNFT performs a robust search towards the feature set with the best
performance on specific downstream tasks.

8



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2025

Table 3: Different downstream ML models on the node classification task of ENZYMES.

ML Model PCA ERG LDA NFS RDG TTG GRFG MOAT GCNFT

MLP 75.63 80.97 68.53 77.58 78.81 82.03 84.86 90.70 94.01
KNN 85.25 93.38 80.93 92.43 93.24 93.40 93.70 95.93 96.96
SVM 70.89 73.91 68.56 83.82 82.73 80.52 84.86 84.53 85.89

LASSO 70.91 84.75 68.58 84.90 85.33 84.33 85.88 87.19 89.97
Ridge 70.87 78.35 68.58 78.58 82.68 84.56 82.69 83.44 85.94

A Study of GCN-Awareness. This experiment aims to answer: Does the proposed method have GCN
awareness? To study the GCN-awareness of GCNFT, we leverage t-SNE to visualize the original feature
space and the feature spaces transformed by different methods on the graph classification task of PRO-
TEINS full. We use different colors to denote different subgraphs of the dataset and blue ellipses are utilized
to highlight the limitations of the baselines, i.e., there is significant overlap among the nodes of different sub-
graphs. As shown in Figure 6, even for the two best-performing baselines, there is still a clear overlap in
the node distribution across different subgraphs. This is because both GRFG and MOAT can only perform
feature transformations on tabular datasets. Without prior exposure to the graph structure, it is difficult for
them to distinguish between the nodes of different subgraphs. However, the node distribution of GCNFT is
discriminative, compared with the baselines. We can observe that the nodes within the same subgraph tend
to cluster together. This implies that the graph convolutional structure score effectively simulates the node
aggregation process of GCN. Therefore, we can confirm that GCNFT has GCN awareness.
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Figure 6: The t-SNE distribution visualization of the original feature space and the transformed feature
spaces obtained from different methods on PROTEINS full. Different colors denotes different subgraphs.
We highlight the limitations of the baselines using blue ellipses.
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Figure 7: The t-SNE distribution visualization of the
learned embedding space. Darker points indicate fea-
ture transformations with better performance.

Visualization Analysis of The Learned Embed-
ding Space. This experiment aims to answer: Is
the latent embedding space well-constructed and
helpful for gradient-steered search? Taking graph
classification tasks as an example, we study the la-
tent embedding space. We use t-SNE to visualize
the learned embedding space. Each point denotes
a transformed attributed graph, where the point is
darker, the performance is better. We can observe
that the top-performance points tend to be close in
the latent embedding space. The possible reason is
that transformed attribute graphs with higher downstream task performance are likely clustered in a certain
region, which enables the gradient-search method to effectively and easily locate the best result within these
areas when we use these strong data points as our initial search seeds.
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5 RELATED WORK

Feature Transformation. Feature transformation aims to reconstruct the feature space by transforming fea-
tures by mathematical operations (Gong et al., 2024; Wang et al., 2022b; Ying et al., 2024; Blei et al., 2003a;
Horn et al., 2020a). The existing works are mainly three folds: 1) Expansion-reduction methods (Kanter
& Veeramachaneni, 2015; Horn et al., 2020b; Khurana et al., 2016). This kind of methods firstly gener-
ate new features by transforming original features to expand the feature space. Then, they perform feature
selection to eliminate redundant features and retain useful features. However, it is hard for these methods
to generate complex transformations. Also, since the search space increases exponentially, the efficiency is
limited. 2) Evolution-evaluation methods (Khurana et al., 2018; Wang et al., 2022b; Xiao et al., 2023a; Tran
et al., 2016). To effectively and efficiently search the feature transformation space, methods like genetic
programming and reinforcement learning are introduced to this field. They iteratively generate new features
and optimized according to the feedback of downstream ML models. Compared with expansion-reduction
methods, the optimized strategies facilitate more robust and stable search. However, the nature of decision-
making process in the discrete space makes these methods still time-consuming and tend to fail into local
optima. 3) NAS-based methods (Chen et al., 2019; Zhu et al., 2022). NAS is proposed to search the model
architecture automatically (Li et al., 2021; Elsken et al., 2019). The success of NAs in many areas (Wang
et al., 2021; Xiao et al., 2023b; Wever et al., 2021) inspires the application in feature transformation. How-
ever, NAS-based methods fails to generate high-order feature transformations and the performance is not
stable. The prior literature mainly focus on tabular feature transformation. As graphs become a crucial data
structure to represent complex relationships, we propose a novel GCN-aware feature transformation method
to solve the significant graph feature transformation task.

Graph Neural Network. Graph data is prevalent in the real world. Neural networks were first applied to
modeling directed acyclic graphs in (Sperduti & Starita, 1997), which laid the foundation for the early de-
sign and development of Graph Neural Networks (GNNs) (Gori et al., 2005; Scarselli et al., 2008; Gallicchio
& Micheli, 2010). Building upon this, the success of Convolutional Neural Networks (CNNs) in computer
vision inspired researchers to explore the application of convolutional operations to graph data. Graph Con-
volutional Neural Networks (GCNs) (Bruna et al., 2013; Kipf & Welling, 2016) redefined convolution opera-
tions on graphs and have since attracted considerable attention from both academia and industry. Subsequent
research has explored various methods to improve the aggregation of information in GCNs (Veličković et al.,
2017; Xu et al., 2018), while others have sought to enhance the structural complexity of the models (Li et al.,
2019; Pei et al., 2022). Moreover, some studies have focused on addressing the over-smoothing problem that
occurs in deeper GCN architectures, which limits their potential (Du et al., 2018; Hu et al., 2019; Chen et al.,
2020). Despite these advancements, traditional graph convolution methods often require significant compu-
tational resources, rendering them difficult to scale to large graphs. To mitigate this, several approaches have
been proposed to simplify GCNs from different perspectives (Dai et al., 2018; Gu et al., 2020; Liu et al.,
2020; Wu et al., 2019). Specifically, (Dai et al., 2018) andGu et al. (2020) extend fixed-point theory in GNNs
to improve representation learning. Motivated by these simplified GCN architectures, we propose a novel
graph structure-aware feature transformation method that is computationally efficient.

6 CONCLUSION

We studied the problem of GCNFT: GCN-aware feature transformation and developed a knowledge guided
generative learning perspective to integrate GCN awareness into generative transformation. To quantify
GCN awareness, we developed a generic task-agnostic approximate: graph convolutional structure score for
loss regularization. To bridges GCN awareness and feature transformation, we developed a graph convo-
lutional structure score guided encoder-evaluator-decoder approach for generative feature transformation.
Extensive experiments on node, link, and graph prediction tasks validated the effectiveness of our approach,
demonstrating superior performance compared to traditional feature transformation methods. Future work
will explore more generalized and effective methods to approximate and integrate other graph structural
awareness that goes beyond graph local convolutions.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
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