Under review as submission to TMLR

From SQL to Knowledge Graphs: An LLM-Driven Multi-
Agent Approach with Data Schema Improvement

Anonymous authors
Paper under double-blind review

Abstract

RDBMS (Relational Database Management System) databases face several limitations, in-
cluding slow execution with multi-hop queries and a lack of explainability by graphical in-
terpretations. In contrast, Graph database offers a more intuitive and efficient data schema
that performs faster execution on large datasets. Most existing RDBMS conversion pipelines
focus on running traditional loading commands and relying on Cypher queries. However,
the efficiency of using an LLM to generate an effective graph data schema, significantly re-
ducing the ambiguity of the graph database, remains underexplored in the current research
literature. This paper presents a novel algorithm that bridges RDBMS and graph database
by using a novel LLM-powered ETL agent to standardize table and column names before
saving them to the Data Mart. A Multi-Agent System generates a looping discussion be-
tween ETL, Analyzer, and Graph agents to optimize the final design through an iterative
process of suggesting and scoring the graph database schema. We ensure that the final graph
database meets three criteria before being accepted for data conversion: Accuracy, Ground-
edness, and Faithfulness. This system demonstrates an effective pipeline to automatically
convert a tabular database into a graph database through a comprehensive end-to-end pro-
cess. Our study highlights notable efficiency in using the converted graph database, which
is measured on 1,081 samples of the BFSI dataset across three levels of complexity (easy,
medium, and hard). Specifically, CypherAgent achieves an 85.6% accuracy for Q&A tasks
using a Graph database, which is 12.12% higher than the accuracy achieved by an SQLA-
gent on the RDBMS database type PostgreSQL, for all queries. Additionally, the Graph
database demonstrates faster performance, reducing latency by approximately 3 times. For
easy, medium, and hard queries, the Graph database attains accuracies of 90.43%, 81.98%,
and 80.06%, respectively, surpassing the RDBMS database by 17.8%, 4.2%, and 11.0%,
respectively.

1 Introduction

A graph database is a NoSQL database that uses graph structures to store data as nodes (entities) and edges
(relationships), making it ideal for highly interconnected data (Corbellini et al., 2017). This new database
has a flexible schema that allows data to be represented with rich semantic meaning through nodes and
relationships, similar to a human-conceptualized representation of complex data objects in the real-world
application (Candel et al.,|2022). Therefore, it can be applied in various real scenarios for multiple industries
such as computer science, social networks, e-commerce foundations, supply-chain systems, and medical
applications (Besta et al, 2023) where graph database accepts a more natural-language network-structured
compared to traditional databases such as relational databases (Schneider et al., 2022; Thushara Sukumar,
et al., [2024)).

Graph databases offer substantial improvements in cost reduction and time efficiency over complex multi-hop
traversals (Lee et al, 2024} Do et al.l [2022)). Unlike relational databases, which frequently face performance
bottlenecks and scalability issues with complex, multi-table join operations, graph databases are purpose-
built for traversing highly interconnected data. Their native representation of various data domains by

Under review as submission to TMLR

entities as nodes and relationships as directed edges allows traversal algorithms to operate in linear or near-
linear complexity, even across deeply connected structures. They are also less memory-intensive compared
to relational databases, contributing to their efficiency (Kotiranta et al. 2022b). Graph databases also
significantly outperform relational databases in terms of query speed (Sandell et all [2024} Neumann et al.l
2009). This highlights the superior performance and efficiency of graph databases in managing and querying
connected data.

Additionally, efficiently handling complex data correlations is vital due to the diversity of topics in these
datasets, which require sophisticated query optimization techniques (Nathan et al.| 2020]). Graph databases,
with their inherent ability to manage complex relationships and deliver superior performance, align well with
complex queries, especially multi-hop reasoning queries.

Most traditional conversions of relational databases to graph databases are based primarily on graphical
query language (GQL) loading commands that cannot interpret the relationships among entities within
the targeted output graph. The process of migrating data from relational databases to graph databases is
complex and resource-intensive, and currently, there is no standardized or widely accepted solution for this
conversion (Porter & Ontman| 2020). Despite their transparent set of loading commands, these drawbacks
represent a critical barrier to the broader adoption of graph databases.

We primarily propose a novel Multi-Agent System for automatically transforming an unnormalized structured
database into a normalized graph database that leverages the knowledge of the structured data schema to
yield a better graph database design with higher accuracy and faster answers. We demonstrate its efficiency
on a BFSI dataset from a real financial company that contains many internal relationships between tables.
We apply data anonymization and masking technologies to hide sensitive information and ensure data privacy
policy.

R

H Text-2-SQL UTethCypher
Transform Graph
Graph Modification
Load File 1 :

Figure 1: We propose a multi-agent system that realizes an end-to-end question answering (QA) pipeline,
spanning from heterogeneous data ingestion to query execution and answer generation. The pipeline ingests
data from multiple structured sources and systematically transforms tabular schemas into Knowledge Graph-
based representations. Through iterative graph refinement and modification cycles, the system constructs a
Standardized Graph Schema that captures real-world entity relationships with explicit semantic alignment
and formal graph syntax. To evaluate the effectiveness of the proposed self-evolving graph mechanism, we
conduct a comparative study between a Cypher-based agent operating on a Knowledge Graph database
and an SQL-based agent operating on a relational database. Experimental results demonstrate that the
graph-oriented, multi-agent pipeline achieves superior efficiency and semantic expressiveness in downstream
question answering tasks.

Under review as submission to TMLR

We address the complexities and challenges of converting relational databases by leveraging the strength of
the LLM-based Multi-Agent System. This closed multi-agent system comprises many specialized agents with
particular skills to emulate these distinct roles with the required expertise and collaborate to considerably
address complex tasks, especially ETL and database queries. Moreover, this system is an end-to-end solution
that can automate and define the knowledge graph structure and ETL data in the same pipeline. To boost
the accuracy of Graph database design, we apply a novel Multi-Agent design pattern, which can be reiterated
over many refinement turns before reaching the final standard knowledge graph design.

In conclusion, to address the challenges of relational databases, our approach offers several key contributions
as follows:

o Integration of relational and Knowledge Graph databases: We propose a method that
effectively integrates relational databases with Knowledge Graphs, overcoming the limitations of
current approaches and enabling seamless data management across different paradigms.

e End-to-End Data Ingestion Pipeline: We offer a comprehensive end-to-end data ingestion
pipeline that integrates Knowledge Graph architecture with a general Data Ingestion solution, en-
suring high accuracy and efficiency in data processing.

o End-to-End Multi-Agent System: We introduce an end-to-end Multi-Agent System that pro-
duces a round-table discussion with featuring specialized agents with distinct roles: ETL Agent,
Analyzer Agent, and Graph Agent. This system automatically designs relationships and nodes for
Knowledge Graph architectures.

e Standard improvement of Knowledge Graph schema procedure: We establish the first
generalized procedure that iteratively evaluates and improves graph structures to be more precise
and aligned with the domain-knowledge.

Our approach leverages the cognitive, reasoning, and self-reflective capabilities of Multi-Agent Systems
combined with advanced LLM techniques to address existing limitations in database integration. Thanks to
automating the design of Knowledge Graph architectures and providing a streamlined data ingestion pipeline
that demonstrates a significant advancement in database management and optimization.

2 Related Work

Multi-Agent Systems. Recent advancements in LLM-based autonomous agents have received significant
attention from industry and academia, particularly in software development (Guo et al.||2024). These agent-
centric systems, designed to specialize in various coding tasks, have propelled the field forward (Hong et al.,
2024; (Qian et al., 2023; |Chen et al., 2023; Huang et al., 2023; Yang et al., |2024)). Typically, these systems
assign distinct roles, such as Programmer, Reviewer, and Tester, to individual agents, each responsible for
a specific phase of the code generation process, thereby improving the quality and efficiency of software
development. In addition, a variety of benchmarks have been developed to assess the performance of these
systems in real-world scenarios. For example, SWE-Bench evaluates the ability of multi-agent systems to
address actual GitHub issues (Jimenez et al.,|2023), while MetaGPT’s SoftwareDev provides a comprehensive
suite of software requirements from diverse domains, challenging agents to produce fully developed software
solutions (Hong et al., [2024). Similarly, (Nguyen et al.l |2024) uses Agile Methodology and multiple agents
with a Dynamic Code Graph Generator to improve code generation and modifications through updated
dependency graphs. In our case, we aim to build upon these advancements by leveraging a smart end-to-
end Multi-Agent system to bridge relational databases and Knowledge Graph databases, enhancing data
management and integration through advanced LLM techniques.

Relational vs Graph Databases. The comparison between SQL and Graph Databases reveals crucial
differences in the management of complex and interconnected data. Relational databases, such as MySQL,
excel in structured data scenarios with their robust schema enforcement and support for complex queries,
including joins and transactions. However, their performance can degrade when handling large, intercon-
nected datasets due to inefficient joins across extensive tables, leading to slower query execution (Tian, 2022;
Floratou et al., 2014} |Aluko & Sakr,|2019)). In contrast, Graph Databases, such as Neo4j, leverage nodes and
edges to efficiently model and query interconnected data, significantly reducing the need for complex joins.

Under review as submission to TMLR

This design enables them to handle complex relationships, such as those found in social networks or data
provenance systems, with superior performance (Kotiranta et al.,|2022a} |Cheng et al., [2019; Rodrigues et al.,
2023). Graph Databases offer a flexible schema that adapts to evolving data structures, which enhances
their efficiency and scalability in dynamic environments (Angles & Gutierrezl [2008; Bonifati et al., |2019)).
This flexibility reduces data retrieval times and improves scalability, especially in distributed systems. Addi-
tionally, transforming relational databases into Knowledge Graph databases can enhance data integration by
combining SQL’s structured querying capabilities with the flexible, relational modeling capabilities of Graph
Databases, as noted in recent advancements (Angles et al., 2023} |Chillon et al.l [2022; Besta et al., |2023)).
This approach maximizes the strengths of both paradigms, optimizing data management and integration.

Data Schema Improvement. Relational and graph-based data management paradigms differ substan-
tially in how they treat schema: relational databases rely on fixed, table-based schemas, while knowledge
graphs support richer semantics, flexible class hierarchies, and dynamic relations, making schema design
and evolution in KGs more complex but also more expressive. For relational databases, model-driven ap-
proaches to schema evolution, such as EvolveDB, leverage reverse-engineering of existing data dictionaries
into abstract models, allow manual schema modifications, compute differences, and automatically derive
migration scripts to evolve both schema and data over time (Eckwert et al., [2025). Meanwhile, in the KG
context, schema evolution encompasses operations like adding/removing classes, altering class hierarchies,
and modifying properties — changes that often require propagating updates throughout the graph to pre-
serve consistency. Bridging the gap between relational data and knowledge graphs has been a major research
focus. Some works address this by direct mapping: for example Towards a Complete Direct Mapping From
Relational Databases To Property Graphs defines a complete mapping process that transforms any relational
database (both schema and data) into a property graph, ensuring information preservation, semantic preser-
vation, and query preservation — and even supports translating SQL queries into equivalent graph-database
(e.g. Cypher) queries (Boudaoud et all, 2022)). Another recent work, Rel2Graph (Zhao et all, 2023)): Au-
tomated Mapping From Relational Databases to a Unified Property Knowledge Graph, extends this effort:
it automatically constructs a unified property knowledge graph from one or more relational databases and
supports the mapping of conjunctive SQL queries into equivalent graph-pattern queries, measuring fidelity
with an execution-accuracy metric. Once relational data is mapped into a graph representation, additional
techniques address schema optimization for storage and query performance. For instance, (Papastefanatos
et al., 2022)) proposes a method to extract of properties describing different classes of RDF instances, exploit
their hierarchy, and merge/reduce tables to improve performance in an RDB-backed RDF engine, improving
both storage efficiency and query performance. Although existing schema improvement algorithms provide
systematic ways of mapping between data schema and relational and graph databases. They overly depend
on syntactic rules and pre-defined mapping operators that suffer several limitations. Therefore, it moti-
vates us to create an LLM-powered Multi-Agent System capable of semantically standardizing table names,
column names, and relationships.

3 Multi-Agent ETL system

The rapid growth of business analytics across multiple industries has created a strong demand for systems
that can automate database operation, management, and knowledge discovery tasks traditionally performed
by humans. In response, we propose a multi-agent system capable of handling multiple aspects of the
database lifecycle, including ETL processes, data standardization, data transformation, and data mining.

Our multi-agent framework incrementally formalizes a knowledge graph schema that explicitly represents
complex entity relationships, thereby enhancing semantic transparency and interpretability, while simulta-
neously enabling efficient query execution. In contrast, traditional relational (SQL) databases, although
effective for structured tabular data, suffer from several limitations in analytical workloads, including high
computational costs for large-scale joins, implicit and schema-bound relational semantics, and sensitivity to
rigid query syntax.

Knowledge graph (KG) databases, by comparison, represent data as interconnected nodes and edges, facili-
tating efficient graph traversals, semantic enrichment, and scalable handling of complex relational structures.

Under review as submission to TMLR

These properties make KGs a more suitable foundation for intelligent, LLM-powered Multi-Agent database
systems.

Therefore, we propose a novel system that can automate many stages in a data operational system. Specif-

ically, our detailed architecture is as follows.

3.1 Problem Statement

| —

| — QsA
< @2, cypher, >

! Poll Cypher o

! Commands

| < gk, cypher; >

1

|

|

|

|

_ Query { Output)

\ Meta Error
__ -
T e

/ , (. \ \\

| = ={t;, 12, ..., Final Graph ‘ G

— - raph Gen |

! SEB R={ri,ra,....rm ' P |

: SQL Datbase C= {5, e Yes |

2 i 1
| . D P !

| Structured e o . . F. X

| ETL pipeline . Score >5/' mean(A;, F;, G;) 1

8 — — Feedback
|
g ! Graph Scores :
ser Documents Unstructured Accuracy |
| ETL pipeline Analyzer |
| Agent Groundedness |

! /‘Eﬂ\ — ; I

| &D L&I Graphi Faithfulness |

| =

\ Chat System ETL G;:={N,E,P} |

Figure 2: The proposed solution is composed of three primary components. First, the ETL component is
responsible for extracting, transforming, and loading both structured and unstructured data into a standard-
ized database through dedicated Structured ETL pipelines. Second, the GraphGen component iteratively
evaluates and refines the graph schema design to construct a final knowledge graph optimized for accuracy,
groundedness, and faithfulness. Finally, the Q&A component enables the system to address business queries
by generating and executing Cypher commands against the constructed graph.

Our solution leverages the SQL database Dgtandara and the corresponding schema S to create a Graph
Schema. The pipeline of transformations is wrapped up inside the Graph Schema for simplicity.

First, the standard data Dgtandard are loaded and standardized from structured data: Dgqr,, CSV tabular data
Desv; and raw data D,qy,. The SQL and CSV tables will be normalized to their table names, field names,
and field formats, ensuring interpretability after transformation by ETLAgent, which defines a prompt
engineering to adjust the user column:

Algorithm 1: ETL and standardize dataset

1: Input: Structured data: CSV raw data D,aw, SQL database Dsqr, (7, R,C); and raw data Dyay.

2: OQutput: Standard dataset Dgiandard

3: function ELT (Dsqr,, Desvs DPraw)

4: {T,R,C}sqL < Load(DsqL) > Load table, relation, column from SQL database
5: {T,C}csv + Load (Desy) > Load table, column from CSV file
6: {N,E,P}craph < Load (Draw) > Define node, edge, properties from raw data

Under review as submission to TMLR

7: Dstandard <+ LLM{T,R,C}, {N,E,P}) v Asking ETLAgent to modify table name, column name,
datatype (Fig.3)

8: return Dgiandard

9: end function

where Dgqr. (T, R, C) is the input SQL database comprising Tables T, Relationships R, and Columns C. and
G = (N,&,P) is the fine-grained knowledge graph including nodes N, edges £ and properties P.

In the next stage, we produce a Graph generation pipeline that takes the standardized input from ETL
Agent and uses Graph Agent to map tables T; € T to nodes A and relationships R to directed edges £, with
properties P capturing metadata. The obtained output is a proposal graph schema G;. However, this graph
did not meet the technical specifications, like structures and syntax. Therefore, we process a continuous loop
for tuning the Graph Schema, relying on its previous version, until it obtains a score greater than Typyes.

Formally, the transformation process can be expressed as GraphAgent as in Algorithm 2:

AGI'aph : <DSQL(T7 Rac)agi—l(N757P)> — gz(N757P)7

Algorithm 2: Graph generation pipeline

1: Input: Structured data: Table schema descriptions S, SQL database Dgqr (7, R,C), CSV Tabular data
Desv; Raw unstructured data: text, pdf, powerpoint Diay;

2: Output: Final graph knowledge representation Ggpal

3: procedure GENGRAPH

4: Dstandard ETL(DSQL7 DCSV7 Draw)

5: Go := GraphAgent(Dstandard)

6: for i + 1 to max_ iteration do

7: G; < GraphAgent(Dstandard, Gi—1)

8: score(G;) <~ SCOREGRAPH(G;)

9: if score(G;) > Tihres then

10: Geinal <+ G > Get final graph
11: break

12: end if

13: end for

14: end procedure

To ensure the validity of the generated graph schema across schema theory, knowledge graph modeling
principles, and domain-specific business semantics, we assign Analyzer Agent to evaluate the architecture of
graph according to three aspects:

e Accuracy: The degree to which the nodes, attributes, and relationships in the Graph Schema cor-
rectly represent the structures and constraints of the original SQL database.

e Groundedness: The extent to which the Graph Schema conforms to graph database design principles,
including syntactic correctness and semantic appropriateness.

o Faithfulness: The degree to which the Graph Schema faithfully captures the intended business logic
and supports downstream business operations without introducing distortion.

Algorithm 3: Knowledge Graph Scoring

Under review as submission to TMLR

score(G;) = mean(A;, F;, G;)
return score(G;)
end function

1: Input: Previous Graph Schema G;_1{N, &, P}, Standard data Dstandard

2: Output: Knowledge Graph scoring (accuracy, faithfulness, groundedness)

3: function SCOREGRAPH(G;)

4: G; = {N,g,P}

5: (A;,Fi, G;) < Analyzer(G;) > Accuracy, Faithfulness, and Groundedness
6:

7

8:

Heuristically, accuracy verifies that nodes, attributes, and relationships correctly reflect the original SQL
schema. This aligns with the correctness of schema transformation and lossless information used in database
migration research. Groundedness evaluates whether the schema follows standard graph modeling principles.
We restrict the Graph Schema from unnecessary intermediaries, require meaningful relationship types, and
ensure semantic clarity. These groundedness checks are equivalent to integrity constraints and schema validity
used in the ontology of the original relational database schema. Finally, faithfulness evaluates whether the
schema preserves domain business semantic meaning and supports downstream tasks without distortion of
important business principles and context.

These three metrics generalize long-standing evaluation dimensions from both relational schema theory,
knowledge graph modularity, and business understanding. These metrics are organized in a template of the
Analyzer Agent prompt as in Figure @] Each metric is rated on a 5-point Likert scale. The final score is
computed as the average of the three metrics. A schema is accepted if its score is > Tipres = 5. The tuning
loop runs for a maximum of 10 iterations.

3.2 Overall Architecture

The architecture, as shown in Figure 2] is designed to transform structured SQL data into a Knowledge
Graph Database (GraphDB) using a Multi-Agent system. Each agent has a distinct role to play, working
collaboratively to ensure efficient and accurate conversion. The transformation process can be modeled as:

Atotal = AGraph U AAnalyzer U AETL»
where Ayota) represents the combined functionality of all agents. The system produces a validated GraphDB

ready for advanced querying and analytics.

3.2.1 System Prompt Pooling

The System Prompt Pooling component serves as the central coordinator, distributing tasks to specialized
agents: Graph Agent, Analyzer Agent, and ETL Agent. It provides prompts Ppool = {p1, P2, ..., Pm}, Where
each p; contains instructions and parameters for agent tasks. The prompt assignment function is as follows:

Ppool — {AGrapha AAnalyzera AETL}a

ensuring a precise execution of the data conversion process.

3.2.2 Multi-Agent System

We generalize the solution to the conversion problem from relational databases to graph databases into an
end-to-end Multi-Agent System comprising a set of specialized agents orchestrated within a closed, heuristic-
driven pipeline, as follows:

ETL Agent handles data ingestion into the GraphDB: Agrr, : Dsqr — Ginit, by extracting, transforming,
and loading data while preserving semantic relationships. The output is an initial Graph Schema and
standardized structured tables ready for loading into GraphDB.

Graph Agent: Continuously improves GraphDB by interpreting the current graph schema and generat-
ing an upgraded version of it. It maps structured tables to nodes and relationships to edges: Agraph :

Under review as submission to TMLR

(T,R,C) = (N, E,P), produces an intermediate graph schema, which requires multiple improving iterations
before obtaining the final standard one, and executes migration scripts. The schema description Sgraph
ensures that GraphDB is properly structured for data ingestion step.

Analyzer Agent: Communicates jointly with the Graph Agent in a unified loop to evaluate the GraphDB
based on its schema, Aanalyzer : (Saraph; PsqL) — Score, where Score measures trustworthiness and robust-
ness. It proposes the most suitable graph schema and standardizes inconsistencies before data ingestion.

Cypher Agent: Translates user queries into GraphDB queries: Acypher : Quser = QCypher, using schema
description Sgraph to ensure accurate data retrieval and effective user interaction.

This MAS system is designed to ensure a high degree of specialization among the agents, where each agent
performs its own distinct task and collaborates closely with the others within a closed end-to-end pipeline.
Overall, the end-to-end pipeline consists of three stages: ETL, graph generation, and question answering, as
described below.

3.2.3 End-to-end Pipeline Orchestration

The end-to-end pipeline of Multi-Agent System is strict and logical, which is intuitively depicted in Figure 2]
In general, one complete cycle of this pipeline runs across these sequential steps:

ETL pipeline: ETL Agent is responsible for standardizing the raw structural data schema, loading them
into Graph Database and proposing an initial Graph Schema for Graph Gen step: The input is a raw
relational database with its associated schema description, which are then fed into pipeline:

Let Dsqr, be the set of raw relational databases,
Dstandardsqr the set of standardized relational schemas, and

Ginit the set of initial graph schemas.
ETLpipeline (AETL (DSQL)) = (DStandardSQLa ginit)~

Graph Gen: The Graph Agent and Analyzer Agent jointly interact to finalize the final standard graph
database. They repeatedly execute the following looping:

Go := Ginit, D := DstandardSQL
Fori=0,1,2,---:
Git1 = AGrapn(D, Gi),
Sit1 = Aanalyzer(Git1)-
Let k:=min{i>0]s; > 7} (7 is the acceptance threshold).
Then GraphGen;jine(D,Go) = Gk = Gfinal-

If score is equal 5, get the final Graph Schema is accepted and the standardized database is loaded into the
final Graph Schema to produce the final Graph Database, which is readily for the Q&A step. Otherwise, the
system generates useful feedback to improve Graph Schema and returns to to generate new Graph Schema.

Generate Answer: The Cypher Agent uses its understanding of the graph schema and augmented knowl-
edge to provide the accurate answer. It replies on the knowledge of Graph Database, which derived from the
schema knowledge and real data of nodes and edges, to generate Cypher queries. In addition, augmented
knowledge sources such as few-shot Cypher examples and meta error corrections are injected to further
increase accuracy.

Let @ be the user query
Let F be the set of Few-shot examples,
Let M be the set of Meta Errors,

Q&Apipeline(gﬁnal) = ACypherAgent (q: F, M, gﬁna1)~

Under review as submission to TMLR

In the following sections, we depict in detail each step of end-to-end pipeline in aspects of data conversion
and answer generation.

3.3 Iterative Review and Schema Refinement

Most existing approaches for transforming relational schemas into graph databases rely on direct execution or
rule-based loading procedures that map tables, columns, and foreign keys into nodes and relationships with
minimal post-processing [Zhao et al.| (2023); [Virgilio et al.|(2013). While such approaches are efficient, they
often overlook semantic validation and structural refinement, leading to graph schemas that insufficiently
capture domain semantics and exhibit weak or suboptimal relationship modeling [Hogan et al.| (2021).

To mitigate these limitations, we introduce an iterative review and schema refinement loop during the
graph generation stage. Instead of producing a graph schema in a single pass, the proposed approach
repeatedly evaluates and modifies the schema across multiple iterations. This cyclic refinement process
enables systematic validation of entity types, attributes, and relationship semantics, allowing the graph
schema to progressively converge toward a higher-quality representation.

The iterative refinement loop is designed to satisfy the following criteria:

e Schema consistency: Node labels, properties, and relationship types are strictly aligned with the
structural and integrity constraints defined in the original relational schema, including primary keys,
foreign keys, and functional dependencies.

e Graph modeling principles: The resulting graph adheres to established graph database design
principles, such as appropriate granularity of nodes, avoidance of redundant relationships, and clear
separation between entities and attributes.

e« Semantic and business logic preservation: Domain semantics and implicit business logic em-
bedded in the relational schema are explicitly represented in the graph model to support downstream
analytical tasks, such as graph querying, reasoning, and machine learning.

By iteratively reviewing and refining the graph schema, the final output demonstrates improved structural
accuracy, semantic expressiveness, and practical utility compared to the initial graph generated without
modification. Empirically, this refinement process results in higher schema-level accuracy and better support
for downstream applications, validating the effectiveness of the proposed iterative approach.

3.4 Data Conversion

The data conversion process is driven by an ETL engine that integrates PostgreSQL, a processing module,
and a large language model. The ETL process is defined as:

ETL = Extract o Transform o Load,

optimizing the data flow from SQL to GraphDB. The stages are as follows:

« Data Extraction: Extracts data from PostgreSQL into formats like CSV: Extract : Dsqr, — Dcsv,
ensuring manageable data for processing.

« Data Processing: Condition data through cleansing, normalization, and transformation:
Transform : Degy — Daraph, aligning data with the graph schema.

e Schema Generation: The Graph Agent, with the processing module, generates the schema:
AGraph : Daraph — (N, E,P), reflecting the structure and semantics of the SQL data.

e Data Importation and Verification: Imports data into GraphDB and validates it: Load :
Dgraph — G, with the Analyzer Agent ensuring integrity via iterative refinement until Score(G) >

Tthres-

This process produces a validated GraphDB optimized for semantic search, data integration, and Al-driven
analytics, with the Cypher Agent that facilitates user queries.

Under review as submission to TMLR

3.5 Answer Generation

The answer generation process translates user queries into GraphDB responses. The Graph Agent provides
the schema description Sgraph, enabling efficient query execution. The Cypher Agent interprets user queries,
i.e., Quser = QCypher, which are executed against GraphDB to retrieve data, i.e., Qcypher(G) = Rdata, Where
Rdata includes relevant nodes, edges, and properties.

In the next step, Cypher Agent formats the response: Rgata — Answer, providing a clear business context
to adapt the executed data to the current user conversation. This process ensures that non-technical users
can access complex datasets effortlessly and understand the answer even though they have never studied
Graph Query Language before. Therefore, it helps maximize the utility of the Knowledge Graph.

To enhance the accuracy of the MAS system, we proceed with several experiments on the Graph Query
Language generation module of the Cypher Agent, which includes few-shot learning for augmenting new
similar couples of (question, cypher commands) pairs as a hint for answering, whereas Meta Error provides
knowledge of the common query errors that should be avoided. The detailed arrangement of them in the
prompt template setup is described in Figure

4 Dataset

We propose a SQL database comprising many basic tables like Loans, LoanTypes, Transactions, Customers,
Accounts, Cards, and Branches for the BFSI field. This database will be used as a foundation to develop our
Data conversion and Business Question and Answering with the Multi-Agent system. The SQL database
will be converted to a standard Graphical Database. Afterward, they will be used as source databases to
evaluate the efficiency of the question and answering task on both SQL and Knowledge Graph.

4.1 SQL Database Dataset

The SQL database contains a comprehensive dataset with three versions: small, medium, and large, with
relevant sizes of 103, 10°, and 10% records. They have the same data schema, which includes 9 tables
belonging to the banking sector, containing information related to customers, branches, deposits, deposit
types, loans, loan types, credit cards, accounts, and transactions. Each table represents different aspects of
the banking data.

Table 1: The meaning description of the SQL table in the BFSI field. The database is simulated with fake
data to ensure security and privacy.

Table Name | Meaning

Accounts The banking accounts of customers

Branches The list of banking branches based
on their locations

Cards Credit card numbers

Customers Basic information of customers in
account registering form

Loans Loan information

Loantypes The type of loans

Deposits Deposit information

DepositTypes | The type of deposits

Transactions Transaction information such as
amount and date of each account

These tables are interconnected through foreign keys that link their IDs to another column in a different
table, forming a structured relational model. Examples of relationships include:

e Customers and Accounts: A one-to-many relationship in which a customer can have multiple
accounts.

10

Under review as submission to TMLR

e Accounts and Transactions: A one-to-many relationship in which an account can have multiple
transactions.

To increase the clarity of the graph database, our Knowledge Graph Scoring algorithm repeatedly evaluates
and modifies the input SQL schema to meet the quality threshold as Figure [6]

4.2 Graphical Database

A graphical database is more advantageous than an SQL database because it can encrypt the actual cross-
relationship between many tables by edges with semantic meaning expression. After applying the Graph
Agent to transform the data, a Knowledge Graph was created with additional features:

e Semantic Meaning: Each relationship in the Knowledge Graph is enriched with semantic meaning,
making the connections between records more understandable and descriptive.

e Visual Representation: The relationships between records are visually represented on the graph,
providing an intuitive understanding of the data structure and interconnections.

The Neo4j graph database consists of 9 nodes corresponding to the tables in the SQL database.
These nodes are characterized by several properties (e.g., customer id, balance, loan_ type id, de-
posit_type_id,...) and are connected by edges representing the relationships (e.g., “HAS LOAN_TYPE”,
“BELONGS_TO_CUSTOMERS”) as Figure

Using ‘GraphAgent‘ to suggest a new graph schema iteratively, finally, the Neo4j database becomes clear and
meaningful. Compared to the original unstandardized SQL schema, the labels for the nodes and relationships
were changed to adapt to business logic. Compared with the standardized SQL version, Knowledge Graph
has many overwhelming features as follows:

o Integrity Preservation: The Neo4j dataset maintains the integrity of the original SQL data while
restructuring them into a graph format.

e Information Enrichment: The data in Neo4j is enhanced with natural language explanations of
nodes, properties, and edges, making the information more interpretable.

o Ease of Interpretation: The Knowledge Graph offers a more accessible interpretation of the data
through its visual representation, making complex relationships easier to understand.

e Query Speed: Queries in the Neo4j database are faster due to the absence of constraints such as
indexing in SQL tables. This is especially beneficial for large datasets, where Neo4j can significantly
improve query processing times.

The experiments demonstrated how the Transformed Graphical Database outperforms the SQL database on
the same benchmarking dataset for three types of business query levels: hard, medium, and easy.

4.3 BFSI Business Queries

We propose a new dataset named BFSI, which consists of 1,081 business queries that comprehensively span
the operational aspects of the banking and finance domain. To capture a balanced range of difficulty, queries
are segmented into three levels: easy (512 queries), medium (333 queries), and hard (236 queries), based
on the complexity of their logical structure and the number of entities involved in the underlying graph
database.

e Hard level: queries involve complex business questions that simultaneously reference at least two
entities within the graph. These queries are designed to incorporate multiple challenging constraints,
advanced filtering conditions, nested aggregations, and intricate calculation functions. They often
require the use of multi-level groupings, join operations, and domain-specific computations, making
them representative of real-world decision-making tasks faced by financial analysts and managers.

e Medium level: queries also relate to two entities but employ simpler logical constructs. Their focus
lies on basic aggregation functions such as SUM, AVG, MIN, and MAX, without the need for
sophisticated filtering or multi-step reasoning. These queries reflect common analytical tasks that
help banks derive insights into customer behavior, product usage, or account-level summaries.

11

Under review as submission to TMLR

236
hard (21,83%)

Figure 3: BFSI dataset includes 1081 business queries segmented into hard, medium, and easy levels that
cover all business operations of banking and finance.

o Easy level: queries are restricted to a single entity and can be resolved using straightforward query
syntax. They usually answer fundamental operational questions, such as entity counts, attribute
filtering, or simple comparisons. These queries serve as the foundation for routine reporting and
monitoring activities in banking systems.

By organizing the dataset into these three levels, we ensure that it not only reflects the breadth of financial
business operations but also provides a structured benchmark for evaluating systems across varying degrees
of query complexity.

5 Experiments

5.1 Experimental Setup

We design a comprehensive evaluation framework to assess the effectiveness of our query generation system
across different database paradigms. Our experimental dataset comprises 1089 questions in the banking
domain, distributed at three complexity levels with percentages of 47.36%, 30.80% and 21,83% for hard,
medium and easy, respectively. These questions cover various banking operations, including transaction
analysis, account management, customer relationships, and financial product queries.

The complexity levels are systematically categorized on the basis of query characteristics. Easy queries in-
volve single-entity operations with basic filtering conditions. Medium-complexity queries require two to three
relationship traversals across multiple entities. Complex queries feature multiple joins, nested conditions,
and aggregate functions throughout the structure of the banking network.

For evaluation metrics, we employ accuracy and latency. The accuracy assessment considers a response
correct if it maintains an answer that includes numeric values equivalent to the ground truth, regardless of
syntactic variations. This approach ensures fair evaluation when semantically identical answers are expressed
differently. We formally define the accuracy score for each question ¢; as:

1 if matching(r;, g;
Algr) = {0 el .
otherwise

where matching(r;, g;) represents the similar number between the system’s response r; and the ground truth

g;- Our implementation utilizes the GPT-40, GPT-40-mini, and Qwen3-8B models as the foundation for
natural language understanding and query generation.

12

Under review as submission to TMLR

5.2 Setup Evaluation Agents

To process the benchmarking process for the query, we initialize CypherAgent and SQLAgent. Cypher-
Agent handles business queries based on text-2-cypher engine, which converts the input query into the final
answer. This agent is aided by a graph database that is migrated from an unstandardized SQL database.
On the other hand, SQLAgent is an ReAct SQL Agent that helps answer business queries using the text-2-
sql engine. Thanks to the ReAct pattern, this agent is strengthened to Thought, Action, and Observation
interleavedly. Another agent called EvalAgent is to evaluate the accuracy and latency of two answers from
the same query input of CypherAgent and SQLAgent. To keep the equality, we use the same input for both
agents, including database schema, relationships, and meta errors. Figure [§| shows the complete pipeline.

5.3 Results

We make a comprehensive comparison between the SQL and Cypher approaches at varying levels of query
complexity. Our empirical results demonstrate that the Cypher-based approach consistently outperforms
the SQL-based method in all evaluation metrics, with particularly notable improvements in both accuracy
and computational efficiency, as in Table [3]

Table 2: Performance comparison of CypherAgent and SQLAgent variants across different query complex-
ities (Easy, Medium, Hard). CypherAgent incorporates three techniques: meta error (ME), which encodes
common query mistakes; few-shot learning (FL) with & = 3 examples; and correct error (CE), which an-
alyzes syntax errors and suggests fixes in subsequent rounds. Results are reported in terms of Accuracy
(Acc, %), Latency (seconds per sample), and number of Tokens (per sample). CypherAgent-[ME]-[FL]-[CE]
with GPT-40 achieves the best overall accuracy while maintaining competitive efficiency, whereas SQLAgent
baselines show higher token usage and latency.

Algorithm Backbone Easy Medium Hard
Acc Latency Tokens Acc Latency Tokens Acc Latency Tokens

CypherAgent-[ME] GPT4o 87.70 3.19 1143 77.18 2.38 1156 71.61 2.75 1177
CypherAgent-[ME]-[FL] GPT4o0 79.49 3.28 1309 76.28 3.81 1354 61.44 3.05 1411
CypherAgent-[ME]-[FL]-[CE] GPT4o 90.43 1.73 1314 81.98 1.94 1364 80.08 2.64 1458
CypherAgent-[ME]-[CE] GPT4o 80.27 1.66 1239 76.28 2.04 1285 61.02 3.23 1353
SQLAgent-[ReAct] GPT4o 72.66 5.63 3188 77.78 6.91 2624 69.07 7.30 3284
SQLAgent-[ReAct] Qwen-8B 64.70 2.17 2332 58.30 2.66 2355 48.70 2.56 2385
CypherAgent-[ReAct] Qwen-8B 58.40 2.13 3547 46.90 2.65 3562 45.80 2.99 3578

Table 3: Comparison between the best-performing CypherAgent and SQLAgent across different query com-
plexities. CypherAgent consistently outperforms SQLAgent, achieving an average accuracy gain of +12.12%
while reducing latency by over 3 times and total tokens by over 2 times. Results are reported in terms of
Accuracy (%), Latency (seconds), and relative Accuracy Gain (%).

Query Complexity Accuracy (%) Latency (seconds) Tokens Accuracy Gain
Cypher SQL Cypher SQL Cypher SQL (%)

Easy 90.43 72.66 1.73 5.63 1,314 3,188 +17.77

Medium 81.98 77.78 1.94 6.91 1,362 2,624 +4.20

Hard 80.08 69.07 2.64 7.30 1,458 3,284 +11.01

Mean 85.57 73.45 2.00 6.34 1,361 3,035 +12.12

In the easy query category, which primarily comprises single-entity retrievals and basic filtering operations,
Cypher achieves an accuracy of 90.43%, surpassing SQL’s 72.66% by a significant margin. This 17.77
percentage point improvement is accompanied by a 3.9 second reduction in latency (1,73 seconds vs. 5,63
seconds), demonstrating the inherent efficiency of graph-based query processing even for straightforward
operations.

The performance disparity becomes more pronounced in the medium complexity category, where Cypher
maintains its accuracy of 81.98%, while SQL’s performance achieved 77.78%. This substantial 4.2 percent-
age point improvement is particularly noteworthy as it represents queries involving moderate relationship

13

Under review as submission to TMLR

traversals and multi-entity interactions. The latency differential also widens, with Cypher requiring only
1.94 seconds compared to SQL’s 6.91 seconds, highlighting the scalability advantages of graph processing.

For hard queries, which encompass complex multi-hop relationships and sophisticated pattern matching,
both approaches exhibit decreased performance. However, Cypher maintains its superiority with 80.08%
accuracy compared to SQL’s 69.07%. The latency measurements in this category reveal the most significant
temporal efficiency gap, with Cypher operating at 2,64 seconds versus SQL’s 7.30 seconds, underscoring the
graph database’s ability to handle complex relationship patterns more efficiently as in Figure [0

The aggregate results demonstrate Cypher’s robust performance advantages, achieving a mean accuracy of
85.57% compared to SQL’s 73.45%, with an average latency improvement of 4,39 seconds (corresponding
to 68,8% faster) across all complexity levels (Table [3]). These findings provide compelling evidence for the
efficacy of graph-based approaches in LLM-driven query generation systems, particularly within domains
characterized by complex interconnected data structures. The results suggest that graph databases offer a
more suitable foundation for natural language query processing in enterprise-scale applications.

6 Ablation Study

In addition, the performance comparison of Cypher components over the BFSI dataset demonstrates that
Meta Error improves accuracy by 28.84% while greatly reducing token usage, and Few-shot Learning achieves
the highest accuracy 85.57%, corresponding to 4,63% improvement, with the lowest latency. Both approaches
demonstrate clear efficiency gains over the baseline because the Baseline Cypher usually gets syntax errors
that require many retry turns. These errors lead to substantially higher latency and token consumption.
Table 4

Table 4: Performance comparison of Baseline Cypher, Meta Error, and Few-shot Learning. Adding meta
error can significantly increase the accuracy by 28.84%, whereas, Few-shot learning improves 4.63%.

Method Accuracy Latency (seconds) Tokens Accuracy Gain
Baseline Cypher 52.11% 2.482 3,558 _

Meta Error 80.94% 2.846 1,154 +28.84%
Few-shot Learning 85.57% 1.995 1,361 +4.63%

Few-shot learning is effective: Initially, the query system relied on two base SQL Agent for querying
relational data in PostgreSQL and Cypher Agent for handling graph-based data in Neo4j. These agents were
designed without similar examples. Therefore, it lacks the experience to learn the correct business logic,
especially in complex relational databases such as banking and finance. After adding the few-shot examples,
it reinforces the business understanding of these agents a lot.

Meta error adding: After analyzing the initial version of the Multi-agent system, we realize that it usually
commits common types of error in syntax and selects the right tables and columns. Therefore, we store all
common types of errors in a meta error database. Adding them to Agent prompt will significantly reduce
syntax errors and increase the percentage of runnable code.

In conclusion, our result demonstrates that the full system, combining Meta Error correction with few-shot
grounding, substantially outperforms the baseline in both effectiveness (accuracy) and efficiency (token usage,
latency). This supports our claim that a judicious integration of common errors and few-shot examples
prompting is essential for reliably translating relational queries into correct graph queries in real-world,
domain-specific databases.

7 Conclusion & Future Work

We propose a novel system that systematically converts structured databases into knowledge graph databases
while preserving critical fields and relationships across multiple tables. Our results demonstrate that em-

14

Under review as submission to TMLR

ploying a multi-agent system yields superior performance compared to a single large language model-based
Question Answering system when applied to business queries.

Notably, our proposed solution, CypherAgent, outperforms a traditional SQLAgent in terms of efficiency,
as it leverages graph traversal for query answering rather than relying solely on indexing constraints. In
addition, CypherAgent achieves higher accuracy by enhancing the semantic representation of relationships
across multiple schemas. The overall token usage of CypherAgent is significantly lower than that of SQLAgent
due to optimized prompting and a reduced number of reasoning steps. Furthermore, our experiments show
that incorporating techniques such as Meta-Error correction and Few-Shot Learning strengthens syntactic
robustness by integrating prior knowledge of common errors and domain-specific expertise.

In general, our multi-agent solution establishes an end-to-end pipeline that automates key database oper-
ations including normalization, migration, and analysis. This system provides a scalable mechanism for
extracting, loading, and transforming structured databases into graph-based representations. Empirical ev-
idence indicates that graph databases are robust and effective in the BFSI domain, with strong potential
for generalization across diverse industries and large-scale enterprise environments. These findings highlight
the promise of multi-agent knowledge graph systems as a foundation for future intelligent data management
and decision-support applications.

In future research, we plan to extend the proposed multi-agent framework by incorporating reinforcement
learning and self-reflective reasoning to enable continuous improvement of schema generation and query
accuracy. We also aim to generalize the Circle Discussion pattern beyond the BFSI domain to other sectors
such as healthcare, e-commerce, and logistics, validating the adaptability of our approach to heterogeneous
data ecosystems. Additionally, integrating multimodal data (e.g. text, images, and time-series) into the
knowledge graph will further enhance semantic richness and support more complex analytical tasks. Large-
scale deployment and benchmarking on real-world enterprise datasets will be conducted to assess scalability,
robustness, and end-to-end automation efficiency. Ultimately, this future direction seeks to establish a
foundation for fully autonomous data management systems driven by collaborative, reasoning-capable Al
agents.

References

Victor Aluko and Sherif Sakr. Big sql systems: an experimental evaluation. Cluster Computing, 22(4):
1347-1377, December 2019. ISSN 1386-7857. doi: 10.1007/s10586-019-02914-4. URL https://doi.org/
10.1007/s10586-019-02914-4.

Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM Comput. Surv., 40(1), Febru-
ary 2008. ISSN 0360-0300. doi: 10.1145/1322432.1322433. URL https://doi.org/10.1145/1322432.
1322433.

Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Alastair Green, Jan Hidders, Bei
Li, Leonid Libkin, Victor Marsault, Wim Martens, Filip Murlak, Stefan Plantikow, Ognjen Savkovic,
Michael Schmidt, Juan Sequeda, Slawek Staworko, Dominik Tomaszuk, Hannes Voigt, Domagoj Vrgoc,
Mingxi Wu, and Dusan Zivkovic. Pg-schema: Schemas for property graphs. Proceedings of the ACM
on Management of Data, 1(2):1-25, June 2023. ISSN 2836-6573. doi: 10.1145/3589778. URL http:
//dx.doi.org/10.1145/3589778.

Maciej Besta, Robert Gerstenberger, Emanuel Peter, Marc Fischer, Michal Podstawski, Claude Barthels,
Gustavo Alonso, and Torsten Hoefler. Demystifying graph databases: Analysis and taxonomy of data

organization, system designs, and graph queries, 2023. URL https://arxiv.org/abs/1910.09017.

Angela Bonifati, Peter Furniss, Alastair Green, Russ Harmer, Eugenia Oshurko, and Hannes Voigt. Schema
validation and evolution for graph databases, 2019. URL https://arxiv.org/abs/1902.06427.

Abdelkrim Boudaoud, Houari Mahfoud, and Azeddine Chikh. Towards a complete direct mapping from
relational databases to property graphs, 2022. URL https://arxiv.org/abs/2210.00457.

15

https://doi.org/10.1007/s10586-019-02914-4
https://doi.org/10.1007/s10586-019-02914-4
https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1145/1322432.1322433
http://dx.doi.org/10.1145/3589778
http://dx.doi.org/10.1145/3589778
https://arxiv.org/abs/1910.09017
https://arxiv.org/abs/1902.06427
https://arxiv.org/abs/2210.00457

Under review as submission to TMLR

Carlos J. Fernandez Candel, Diego Sevilla Ruiz, and Jestis J. Garcia-Molina. A unified metamodel
for nosql and relational databases. Information Systems, 104:101898, 2022. ISSN 0306-4379. doi:
https://doi.org/10.1016/j.i.2021.101898. URL https://www.sciencedirect.com/science/article/
pii/S0306437921001149.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi Lu,
Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong Sun, and Jie Zhou.
Agentverse: Facilitating multi-agent collaboration and exploring emergent behaviors in agents. arXiv
preprint arXiv:2308.10848, 2023.

Yijian Cheng, Pengjie Ding, Tongtong Wang, Wei Lu, and Xiaoyong Du. Which category is better: Bench-
marking relational and graph database management systems. Data Science and Engineering, 4, 12 2019.
doi: 10.1007/s41019-019-00110-3.

Alberto Hernandez Chillén, Meike Klettke, Diego Sevilla Ruiz, and Jests Garcia Molina. A taxonomy of
schema changes for nosql databases, 2022. URL https://arxiv.org/abs/2205.11660.

Alejandro Corbellini, Cristian Mateos, Alejandro Zunino, Daniela Godoy, and Silvia Schiaffino. Persisting
big-data: The nosql landscape. Information Systems, 63:1-23, 2017.

Thi-Thu-Trang Do, Thai-Bao Mai-Hoang, Van-Quyet Nguyen, and Quyet-Thang Huynh. Query-based per-
formance comparison of graph database and relational database. In Proceedings of the 11th International
Symposium on Information and Communication Technology, SoICT 22, pp. 375-381, New York, NY,
USA, 2022. Association for Computing Machinery. ISBN 9781450397254. doi: 10.1145/3568562.3568648.
URL https://doi.org/10.1145/3568562.3568648.

Torben Eckwert, Michael Guckert, and Gabriele Taentzer. Evolvedb: evolving relational database schemas in
a model-driven way. Software and Systems Modeling, pp. 1-26, 11 2025. doi: 10.1007/s10270-025-01341-x.

Avrilia Floratou, Umar Farooq Minhas, and Fatma Ozcan. Sqgl-on-hadoop: full circle back to shared-nothing
database architectures. Proc. VLDB Endow., 7(12):1295-1306, August 2014. ISSN 2150-8097. doi: 10.
14778/2732977.2733002. URL https://doi.org/10.14778/2732977.2733002.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf Wiest, and
Xiangliang Zhang. Large language model based multi-agents: A survey of progress and challenges. arXiv
preprint arXiv:2402.01680, 2024.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard De Melo, Claudio Gutierrez,
Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, et al. Knowledge graphs.
ACM Computing Surveys (Csur), 54(4):1-37, 2021.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jirgen Schmidhuber. Metagpt: Meta programming for multi-agent collaborative framework. In The
Twelfth International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=VtmBAGCN7o.

Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck, and Heming Cui. Agentcoder: Multi-agent-based
code generation with iterative testing and optimisation. arXiv preprint arXiv:2312.13010, 2023.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Petri Kotiranta, Marko Junkkari, and Jyrki Nummenmaa. Performance of graph and relational databases

in complex queries. Applied Sciences, 12(13), 2022a. ISSN 2076-3417. doi: 10.3390/app12136490. URL
https://www.mdpi.com/2076-3417/12/13/6490.

16

https://www.sciencedirect.com/science/article/pii/S0306437921001149
https://www.sciencedirect.com/science/article/pii/S0306437921001149
https://arxiv.org/abs/2205.11660
https://doi.org/10.1145/3568562.3568648
https://doi.org/10.14778/2732977.2733002
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://www.mdpi.com/2076-3417/12/13/6490

Under review as submission to TMLR

Petri Kotiranta, Marko Junkkari, and Jyrki Nummenmaa. Performance of graph and relational databases
in complex queries. Applied sciences, 12(13):6490, 2022b.

Geonho Lee, Jeongho Park, and Min-Soo Kim. Chimera: A system design of dual storage and traversal-join
unified query processing for sql/pgq. Proc. VLDB Endow., 18(2):279-292, October 2024. ISSN 2150-8097.
doi: 10.14778/3705829.3705845. URL https://doi.org/10.14778/3705829.3705845.

Vikram Nathan, Jialin Ding, Tim Kraska, and Mohammad Alizadeh. Cortex: Harnessing correlations to
boost query performance, 2020. URL https://arxiv.org/abs/2012.06683.

Thomas Neumann, Matthias Bender, Sebastian Michel, Ralf Schenkel, Peter Triantafillou, and Gerhard
Weikum. Distributed top-k aggregation queries at large. Distributed and Parallel Databases, 26:3-27,
20009.

Minh Huynh Nguyen, Thang Phan Chau, Phong X. Nguyen, and Nghi D. Q. Bui. Agilecoder: Dynamic col-
laborative agents for software development based on agile methodology. arXiv preprint arXiv:2406.11912,
2024.

George Papastefanatos, Marios Meimaris, and Panos Vassiliadis. Relational schema optimization for
rdf-based knowledge graphs. Information Systems, 104:101754, 2022. ISSN 0306-4379. doi: https:
//doi.org/10.1016/j.is.2021.101754. URL https://www.sciencedirect.com/science/article/pii/
S50306437921000223

Joshua Porter and Aleks Ontman. Importing relationships into a running graph database using parallel
processing, 2020. URL https://arxiv.org/abs/2005.04093.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong Sun.
Communicative agents for software development. arXiv preprint arXiv:2307.07924, 2023.

Cajetan Rodrigues, Mit Ramesh Jain, and Ashish Khanchandani. Performance comparison of graph database
and relational database. technical report, 05 2023. doi: 10.13140/RG.2.2.27380.32641.

Johan Sandell, Einar Asplund, Workneh Yilma Ayele, and Martin Duneld. Performance comparison analysis
of arangodb, mysql, and neo4j: An experimental study of querying connected data, 2024. URL https:
//arxiv.org/abs/2401.17482,

Phillip Schneider, Tim Schopf, Juraj Vladika, Mikhail Galkin, Elena Simperl, and Florian Matthes. A
decade of knowledge graphs in natural language processing: A survey, 2022. URL https://arxiv.org/
abs/2210.00105.

Sushmi Thushara Sukumar, Chung-Horng Lung, Marzia Zaman, and Ritesh Panday. Knowledge graph
generation and application for unstructured data using data processing pipeline. IEEE Access, 12:136759-
136770, 2024. doi: 10.1109/ACCESS.2024.3462635.

Yuanyuan Tian. The world of graph databases from an industry perspective, 2022. URL https://arxiv.
org/abs/2211.13170.

Roberto Virgilio, Antonio Maccioni, and Riccardo Torlone. Converting relational to graph databases. 06
2013. doi: 10.1145/2484425.2484426.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan, and
Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering. arXiv preprint
arXiv:2405.15793, 2024.

Ziyu Zhao, Wei Liu, Tim French, and Michael Stewart. Rel2graph: Automated mapping from relational
databases to a unified property knowledge graph, 2023. URL https://arxiv.org/abs/2310.01080.

A Appendix

B Appendices

17

https://doi.org/10.14778/3705829.3705845
https://arxiv.org/abs/2012.06683
https://www.sciencedirect.com/science/article/pii/S0306437921000223
https://www.sciencedirect.com/science/article/pii/S0306437921000223
https://arxiv.org/abs/2005.04093
https://arxiv.org/abs/2401.17482
https://arxiv.org/abs/2401.17482
https://arxiv.org/abs/2210.00105
https://arxiv.org/abs/2210.00105
https://arxiv.org/abs/2211.13170
https://arxiv.org/abs/2211.13170
https://arxiv.org/abs/2310.01080

Under review as submission to TMLR

Score Graph Prompt i

System Prompt

You are an Analyzer Agent. Your task is to evaluate the provided Graph Schema according to three aspects: Accuracy, Groundedness, and Faithfulness. Each aspect should be scored on a
5-point Likert scale (1 = Very Poor, 2 = Poor, 3 = Medium, 4 = Good, 5 = Excellent). Provide justifications for each score.

Schema

{database_schema}

Instruction
Let’s measure score according to three following metrics:
1. Accuracy: The degree to which the nodes, attributes, and relationships in the Graph Schema correctly represent the structures and constraints of the original Relational Database in accordance
with to these criteria:
- Every relational entity in relational schema is mapped to a corresponding node type in graph.
- Every attribute in relational schema is represented as an attribute or node property in graph.
- Every foreign-key or join dependency in schema is mapped to an explicit relationship in graph.
- No spurious nodes or relationships are introduced.

2. Groundedness: The extent to which the Graph Schema conforms to graph database design principles, including syntactic correctness and semantic appropriateness as following:
- Axiom of Minimal Intermediaries: A graph schema should not contain unnecessary intermediate nodes that dilute semantic clarity.
- Axiom of Semantic Edge Typing: Each edge type must correspond to a meaningful, domain-relevant relationship.
- Axiom of Conceptual Coherence: Node labels must reflect coherent conceptual entities, not mixed or ambiguous categories.
- Axiom of Role Consistency: Relationships must maintain correct directionality and cardinalities.

3. Faithfulness: The degree to which the Graph Schema faithfully captures the intended business logic and supports downstream business operations without introducing distortion as following:
- The business roles and constraints embedded in tables and keys are retained.
- Domain hierarchies and dependencies (e.g., Customer — Order — Payment) remain interpretable.
- Important semantic distinctions (e.g., entity vs. event vs. transaction) are not collapsed.
- Downstream workflows (business analytics, rule-based systems, or LLM-based tasks) remain valid.

Output
For each aspect, let's provide Json output including a score from 1-5, and a concise explanation justifying the score.

"justification”: explanation
b
"Groundedness": {
"score": score,
"justification”: explanation

Figure 4: Prompt for scoring graph quality according to three aspects: Accuracy, Groundedness, and Faith-
fulness. To ensure the foundation of scoring, we require a detailed explanation of why this graph scores the
Database schema. Only the design that meets a maximum of 5 for all three metrics must be accepted.

CypherAgent Prompt

System prompt

You are a Cypher Query Generator. Generate a Cypher query that correctly answers the given business question using the
provided Graph schema and relationship directions. You only select right relationships. Respond with the Cypher query
only, without any explanation.

Business query
{query}

Graph schema
{neo4j_schema}

Top-k similar examples
{query_top_k}

This is a list of correct relationships
{correct_relationships}

Common errors
{meta_errors}

Figure 5: Prompt for CypherAgent that leverages few-shot learning, meta error, and graph schema as the
augmented information of the syntax generation process. Thanks to having the common types of errors in
meta error, this agent can avoid incorrect syntax. To increase the business logic, the suggested top-k similar
examples are used to reinforce its understanding. Finally, the correct relationships are accounted for in order
to foster the ability to generate the right relationship directions.

18

Under review as submission to TMLR

Columns rename
8 deposits BB deposit types . .
i aid cus_id — customer_id
23 cus_id o de_type bal — balance
< do it o do.ges tem — term
iboriantll S tmin interest — interest_rate = Deposties
122 bal Upettec A r 8 Deposits. 5 deposit_type_id
soc tem de_id — deposit_identifier 1 deposit_id o type
2 interest i i i . P o description
— 2 customer_id | o
e, de_type_id — deposit_type_id |NENEEEr of i
@ de_en_dt oo 2 deposit_typeid ¥ © updated_at
© created_at %3 balance
© updsted_at o torm
13 interest_ate
8 transactions 5 accounts B8 eanches) g s e
i i i © creaed ot Serarcres
123 ace_id 5 acc_num “ocbre © updated_at 4i branch_id
iuan_emt (@ 125 cus_id < breaddress = = Y o branch_code
© wan_dt 25 ac_bal © created_at Transactions =rh o ranch_acaress
© created_at O created_at [* B customer © updated_at W ion_id Hiaccount_id i oanch s
el e 33id 2 account_id o< account_number © wpaated_at
O updated_at O updated_at 2 ransaction_amount [©|123 customer_id =
mbre . © transacton_cate % account_bilance
72 cus_name © created_at O created_at | 3 LT
O cus_dob © updated_at © updated_at Vicustomerid 8
0 cus _addr o[branen i
8 cards. et cus_phone. Foc customer_name 5 Loans ' LoanTy
= uronern ypes
i oc cus_email o loans ?Iuamﬁyyes @ date_of_birth ionsia e
#0c cc_num O created_at . i B cards 125 customer_id =< type
123 cus._id © updated_at 123 cus_id ¢ In_type earaid o oan.identitor o< description
23bal ocinid o< In_des oewp—— © created_at loan_type_id o © croated_at
© card_exp_date In_type_id g © created_at 25 customen. id © updated_at 125 balance @ updated_at
s _blocked 25 bal © updated_at I o< payment_term
© created_at o pmt_term © expration_date Pl
Qu 122 interest (Zis_blocked -
ipdated_at - O end_date
Dln_st.dt © created_at O created_at
g In,ertL:(. © updated_at © updated_at
created_o
© updated_at
Unstandardized Schema Standard Schema

Figure 6: General SQL Database Schema design of BFSI that includes Loans, Loantypes, Transactions,
Accounts, Customers, Cards, and Branches with relevant relationships among these tables. On the left is
an unstandardized database schema with naming violations like short names and obscure meanings. On
the right is a standard schema with the right meaning convention that obtains a maximum of 5 scores for
accuracy, groundedness, and faithfulness.

19

Under review as submission to TMLR

Bradley
Butler

siom{ .

M&)'no'v
Loan
o Lo wosonr G
o8 ; f g ‘31%)0 "2028-0...
i & g

“u
- N
wsya*f’“ de:‘i);r?sd
toco
Overview ’/

Node labels

Relationship types

m BELONGS_TO_CUSTOMER (7) BELONGS_TO_BRANCH (1) HAS_TRANSACTION (9) HAS_LOAN _TYPE (2) HAS_DEPOSIT_TYPE (1)

Figure 7: Graphical Database Design is generated by GraphAgent that links multiple entities by edges to

simulate the true relationship of the original SQL table. The meaning of each entity is similar to Table [I]
descriptions.

20

Under review as submission to TMLR

Cypher Agent Cypher Query,
/l—\ Evaluation Agent « Accuracy
&/ o - Latency
User

Examples:
- What is the account balance of the
customer with ID 1237

- How many loans were opened in the last
month? Y P SQL Agent SQL Query
- What is the total transactions in the last

month?

S

SQL Schema Standard Database

Figure 8: We evaluate Agent over a business dataset by employing SQL Agent and Graph Agent to generate
SQL and Cypher queries, respectively. To demonstrate that Graph Agent outperforms SQL Agent, we utilize
an Evaluation Agent for automated accuracy and performance measurement.

SQL vs Cypher Execution Time by Dataset Type

7.295
Language 6.912

7T mm sqL
mw Cypher
6 5.630

Time (seconds)
N

Easy Medium

Figure 9: Average Execution time of SQLAgent compared with CypherAgent on three levels: Easy, Medium,
and Hard. The plot demonstrates that CypherAgent is faster than SQLAgent because CypherAgent has
an optimized Schema, which usually requires a single request to obtain a result. However, SQLAgent uses

ReAct pattern, which requires multiple rounds of Thought, Action, and Observation to archive the final
answer.

21

	Introduction
	Related Work
	Multi-Agent ETL system
	Problem Statement
	Overall Architecture
	System Prompt Pooling
	Multi-Agent System
	End-to-end Pipeline Orchestration

	Iterative Review and Schema Refinement
	Data Conversion
	Answer Generation

	Dataset
	SQL Database Dataset
	Graphical Database
	BFSI Business Queries

	Experiments
	Experimental Setup
	Setup Evaluation Agents
	Results

	Ablation Study
	Conclusion & Future Work
	Appendix
	Appendices

