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ABSTRACT

We introduce the IMO Small Challenge (IMOSC), as opposed to the IMO Grand
Challenge: A text-only, natural-language dataset consisting of mathematical prob-
lems from various mathematical competitions. The IMOSC dataset exceeds the
difficulty level of current datasets that are widely used for LLM evaluation, such
as the MATH dataset, while not being too challenging for the current generation of
LLMs. The IMOSC currently contains a carefully curated collection of the easiest
possible problems from difficult competitions, such as the International Mathe-
matical Olympiad (IMO). Problem hardness is measured by applying a mixture
of (objective and subjective) difficulty filters to the original problems. We release
the full dataset under the link below to encourage transparent evaluation of LLMs
and theorem provers toward their mathematical proof-generating abilities:

www.imo-small-challenge.io

1 INTRODUCTION AND MOTIVATION

The IMO Grand Challenge1 (IMOGC) – which asks to automatically solve a full set of formalized
International Mathematical Olympiad (IMO) problems2 under stringent conditions – has received
media attention in the last few years, although little tangible progress has been achieved. We argue
that the reason for this is that solving IMO problems is very hard – for machine learning models
and humans alike. However, the pace of progress in large language models’ (LLMs’) performance
is rapid, with several models being specifically released for mathematical reasoning in the timespan
of a few months (Gou et al., 2023; Luo et al., 2023; Azerbayev et al., 2023).

This creates the need for a suitable evaluation dataset on an intermediate difficulty level, measured
in terms of mathematical problem hardness: The MATH dataset (Hendrycks et al., 2021) and the
GSM8K dataset (Cobbe et al., 2021) have both been released in 2021 and make up the de facto
benchmark in terms of mathematical reasoning of almost all LLMs released since that time (Light-
man et al., 2023; Luo et al., 2023; Azerbayev et al., 2023; Lewkowycz et al., 2022; Touvron et al.,
2023). GSM8K’s original motivation was to be an easier dataset than MATH, which was believed
to be too hard for the LLMs at that time. Now GSM8K and MATH are close to be considered
solved. E.g., GPT-4 achieves 92% (OpenAI, 2023) by using few-shot evaluation, while the usage of
GPT-4 with tools leads to an accuracy of 83% on MATH (Zhou et al., 2023). Yet solving arbitrary
formalized IMO problems, as argued by the IMOGC, is arguably out of reach of the current gener-
ation LLMs. E.g., on the miniF2F dataset (Zheng et al., 2021) recent autoformalization techniques
achieve close to only 40% accuracy (Jiang et al., 2022). (For brevity, when we subsequently refer to
“LLMs”, we also include other AI systems capable of solving mathematics automatically.)

The right level of difficulty of a dataset is essential in order to stimulate research and to lead to an
informative signal for AI researchers about how and where the (mathematical) failure modes of their
models lie Frieder et al. (2023). If the dataset is too easy or too hard, little can be learned. Hence,
we introduce the IMO Small Challenge, a dataset that is specifically tailored to proof-based
mathematics and LLMs, which currently excel for text-only input and output.

∗Corresponding author: simon.frieder@cs.ox.ac.uk. S.F. conceived the project and wrote the
paper. M.O. and J.B. helped with problem annotation and dataset generation, and T.L. with overall guidance.

1https://imo-grand-challenge.github.io/
2https://www.imo-official.org/problems.aspx

1

www.imo-small-challenge.io
mailto:simon.frieder@cs.ox.ac.uk
https://imo-grand-challenge.github.io/
https://www.imo-official.org/problems.aspx


Published as a Tiny Paper at ICLR 2024

2 THE DATASET

The IMOSC is made up of the easiest possible IMO-level problems: A carefully sourced dataset
of problems that are either at the lowest level of IMO difficulty or slightly below that will make
it possible to advance contemporary LLM systems – as well as neurosymbolic solvers and theorem
provers – and serve as a stepping stone for the next generation of AI systems that solve mathematics.
We measure how easy a problem is using three criteria where one criterion pertains to the proof
lengths of the problem, and we focus on those problems whose longest provided proof is a short
one. (We elaborate in Appendix A on these three criteria and, in particular, on how proof length
is defined.) A benefit of problems with short proofs is that human evaluation of the LLMs’
output is less costly3 since it is faster to inspect a short proof the LLM produces than a long proof.

Unlike MATH and GSM8K, IMOSC is proof-based to test specific problem-solving skills and math-
ematical creativity, which are specific to competitive mathematics. Formalization is not required for
the IMOSC (which is problematic in itself, as it can occasionally lead to questions of how open-
ended problems should be best formalized). Not focussing on autoformalization and a binary suc-
cess criterion of whether the formal proof was correct or not allows raters and users of our dataset to
award points for partial progress. Furthermore, because LLMs’ diagrammatic and visual reasoning
abilities are still in their inceptions, we have excluded any problems where any graphical arti-
fact is needed (a figure, table, or a diagram) to either formulate the problem or understand its proof.
The table below summarizes the differences between the IMOSC and the IMO Grand Challenge
(IMOGC).

IMOGC IMOSC
Any competition difficulty level yes no (easy problems only)
Visual artifacts in the statement yes no

Visual artifacts in the proof yes no
Timelimit yes (4.5 hours / 3 problems) no

Querying the internet no yes
Formal input and output yes no (natural language input and output)

We focus exclusively on competitions for which at least for some problems basic statistics are
available on the number of contestants4 that solved each problem, as this gives us one objective
way (out of the three mentioned above and outlined in Appendix A) to assess the difficulty of each
problem. We, therefore, focus on the IMO and Baltic Way Mathematical Contests (BWMC)5 which
both fulfil this criterion. See Appendix D for a comparison of these competitions. Human statistics,
where available, allow users of IMOSC to use it to evaluate their LLM to assess how close their
system comes to achieving (average) human performance on given problems.

IMOSC currently consists of 100 competitive mathematics problems chosen from these com-
petitions. Due to the two-page length limitation of this paper, we have focused exclusively on the
domain of combinatorics as a prototypical illustration of the IMOSC; see Appendix C that explains
the motivation for this choice. The initial set of 100 combinatorics problems is made up as follows:
50 problems that were shortlisted for the IMO (a subset of which was used in IMO competitions)
and 50 problems from the BWMC, for the years 2011 to 2021.

Each problem in IMOSC is annotated in terms of the three measures of difficulty outlined in Ap-
pendix A. If a problem is in the top half for each difficulty measure, where available, it is
labelled as “IMOSC”; for reference, the other problems are included as well.

The filtering process is described in detail in Appendix B, in order to reproduce how we arrived at the
dataset. Some parts of this process required human supervision. IMOSC will grow to encompass
further mathematical domains and mathematical competitions. We will release the dataset in a
versioned form to the general public, to allow datapoint submission by using GitHub pull requests.

We have released this dataset to support advancing the state-of-the-art of LLMs’ abilities to solve
competitive mathematical problems that require intricate reasoning. We release the dataset under
the CC BY-NC 4.0 license.

3Auto-evaluation is currently an open problem for natural-language LLMs, so no alternative exists yet to
human evaluation.

4Contestants can mean individuals, as well as teams, depending on the competition type.
5https://www.math.olympiaadid.ut.ee/eng/html/?id=bw

2

https://www.math.olympiaadid.ut.ee/eng/html/?id=bw


Published as a Tiny Paper at ICLR 2024

URM STATEMENT

We acknowledge that one of the key authors of this work (first/last) meets the URM criteria of the
ICLR 2024 Tiny Papers Track.

ACKNOWLEDGMENTS

This work was partially supported by the AXA Research Fund.

REFERENCES

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang, Minlie Huang, Nan Duan, Weizhu Chen,
et al. ToRA: A tool-integrated reasoning agent for mathematical problem solving. arXiv preprint
arXiv:2309.17452, 2023.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
wei Lin, Shifeng Chen, and Dongmei Zhang. WizardMath: Empowering mathematical reasoning
for large language models via Reinforced Evol-Instruct. arXiv preprint arXiv:2308.09583, 2023.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Al-
bert Q Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics. arXiv preprint arXiv:2310.10631, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. arXiv
preprint arXiv:2103.03874, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. LLaMA 2: Open foun-
dation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

OpenAI. GPT-4 technical report. arXiv preprint 2303.0877, 2023.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu, Anya Jia,
Linqi Song, Mingjie Zhan, et al. Solving challenging math word problems using GPT-4 code
interpreter with code-based self-verification. arXiv preprint arXiv:2308.07921, 2023.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. MiniF2F: a cross-system benchmark for
formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, Sketch, and Prove: Guiding formal theorem
provers with informal proofs. arXiv preprint arXiv:2210.12283, 2022.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Christian Petersen, Alexis Chevalier, and Julius Berner. Mathematical capabilities of
ChatGPT. In Advances in Neural Information Processing Systems, volume 36, 2023.

3



Published as a Tiny Paper at ICLR 2024

A THE EASY-PROBLEM CRITERION

We use three different, general approaches to assess the difficulty of a competitive math problem
outlined below. We describe in Section B how these general approaches are instantiated for each of
the IMO and BWMC. There may be problems for which there is data on all three of these measures
is not available; in this case, we require that data on at least two may be available.

• Statistical difficulty: This type of difficulty assessment pertains to using statistics regard-
ing the performance of the contestants that entered the competition on each problem.
For IMO and BWMC problems, information regarding the number of people that solved
the problem, as well as the average score that was attained on that problem, are public.6
Scores in the IMO are given on a scale from 0 to 7, where 0 is a completely wrong solution,
and 7 is a perfect solution. For BWMC the range is 0 to 5. This information can be used
to establish a cut-off for problems for which either a sufficiently high average score was
obtained or which were solved by sufficiently many people. For the BWMC, the statistics
are less detailed but still give satisfactory insight into the difficulty of the problems.

• Competition difficulty: Some competitions publish preliminary lists of problems, ranked
in order of difficulty, which can be used as a source of information about problem diffi-
culty, reflecting the organizers’ difficulty assessment. By the nature of these problems, this
criterion can be in conflict with the statistical difficulty criterion, since not all problems
from such preliminary lists make it into a competition and hence information about contest
performance will not be available for all such problems.
For example, for IMO problems, a selection of shortlisted problems (which in turn are se-
lected from a list of problems that each participating country submits7) is initially made by
problem creators, typically about seven problems, but the number varies between the years
and the four mathematical domains of algebra, combinatorics, geometry, and number the-
ory. Out of the shortlisted problems, the final IMO problems are selected – although minor
changes can still be made at this stage, that does not affect the mathematics substantially.8
The level of difficulty on the shortlisted problems roughly ascends in order, the first prob-
lems being the easiest problems, while the last ones are the hardest. While the previous
assessment of difficulty was purely statistical, this one is subjective and reflects the IMO
problem creators’ assessment of what would be an easy problem. Hence, we use a cut-off
on the problem numbers from the shortlists to exclude higher-numbered problems, which
are harder.
We note that there are instances where this assessment and the previous one dramatically
diverged, as, for example, in the case of the “Windmill” example, IMO shortlist problem
C3 from 2011, which was the second problem in the final IMO competition. Thus, by
the problem creators’ assessment, this was not supposed to be a problem that was not
very difficult. Nonetheless, out of 563 contestants (all of which were already pre-selected
for mathematical problem-solving ability at a national level), it was solved by only 22
contestants,9 indicating how statistical and subjective difficulty can diverge.
For the BWMC we did not have access to shortlists, so this criterion does not apply.

• LLM generation difficulty: Since language models output their tokens successively, in a
probabilistic manner, it is plausible to assume that early errors can have outsized effects
at later stages. Furthermore, as mentioned in Section 2, shorter reference proofs make it
easier to check correctness for humans if an LLM outputs a reference proof.10 Hence, we

6See https://www.imo-official.org/year_statistics.aspx?year=2007 for the
statistics on each problem for, e.g., the year 2007.

7As specified in the IMO regulations, see §6.5: https://www.imo-official.org/documents/
RegulationsIMO.pdf

8Compare, e.g., the 2011 shortlisted problem C1, which was selected to be included in the final IMO
problems, as problem 4.

9According to the IMO statistics for the year 2011: https://www.imo-official.org/year_
statistics.aspx?year=2011. This problem was also discussed in other media channels due to its
notoriety: https://www.3blue1brown.com/lessons/windmills.

10The assumption that short provided proofs also lead to short proofs generated by LLMs is based on the
following hypotheses that we argue are currently true, due to the difficulty of IMIO-level problems: 1) The
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rank the problems by the length(s) of their solution(s). We consider for this all officially
provided solutions, as well as any solutions we either find in other sources or come up with
ourselves. If a problem has multiple proofs, we thus use the longest one as a proxy for
difficulty.

In Appendix B, we illustrate how these qualitative criteria can be turned into quantitative ones,
and how to filter our initial selection of problems by applying these criteria. The first and the last
measure of difficulty are objective (although for the first one, it could be argued that the first one is
also subjective to a degree, since it depends on the cohort that takes the test), while the intermediate
one subjective; the Windmill problem illustrates the danger with this approach.

B DATASET CREATION PIPELINE

Our dataset creation pipeline consists of a process of mixed human and automated elements. We
show in the following how the criteria from Appendix A are implemented. For brevity, we illustrate
how our process works for IMO problems only. For BWMC problems, these are analogous, except
that the competition difficulty criterion is not available.

We process each difficulty measure separately and, in the end, select those problems for the IMOSC
that are in the lower half for each difficulty measure, where available. These problems receive the
“IMOSC” label – but we include the full problem set in the IMOSC dataset, even those that do not
have the IMOSC label, in order to allow users of our dataset to assess how these difficulty measures
affect successful LLM generation.

Regarding competition difficulty, the IMO shortlists were used as a starting point for IMO-level
problems since the lower numbered problems satisfy the competition difficulty criterion mentioned
in the previous section: For each year, we select the first three problems, C1-C3, as there are often six
shortlisted problems (although there can be more). This leaves us with 50 IMO shortlisted problems,
which are our starting point.

Regarding the LLM generation difficulty criterion, we select those IMO problems whose solutions
are among the top half when counting the number of characters (excluding whitespaces or line
breaks) that their longest proof in LATEX code has.

To assess solution length, we follow the following protocol: We manually extract the relevant page
ranges for solutions and use mathpix12 to convert them to LATEX. We proceed manually to extract
the proofs. We adopt the following rules:

• If figures, tables, or diagrams were used in the solution – we collectively refer to these as
“graphical artifacts” – as is the case for various solutions in the problems from the IMO
Shortlists, mathpix will transform them into images rather than, e.g., TikZ code. (We
contend, most other current pdf-to-LATEX convertors will work similarly.) We included these
preliminarily before deciding upon their relevance to understand a problem or its proof. If
the figure is deemed to not be relevant for either the problem statement or its proof, we have
opted to include the resulting \includefigure command in our solution, as well as all
other LATEX-code artifacts that were produced. E.g., for problem C2 from the IMO Shortlist
2007, the figures are essential to follow the proof so it was excluded; for other problems,
such as problem C1 from the IMO Shortlist 2008, the figures are merely for orientation
(in that problem the solution consists of certain box configurations, and the figure in the
solution highlights one configuration), so they were included.
The reason for this is that such graphical artifacts are indicative that something that is not
easy to understand from text is present, so it is fair to add this code, which lengthens the
proof, to account for this information.

humanly known proofs are at most combinations of ideas contained in the provided proofs; 2) There are only a
few proofs that are provided for each such problems; and 3) It is unlikely (in foreseeable time) that an LLM will
output a solution that is not among the humanly known ones. This is unlike in the case of arbitrary (potentially
easy) mathematical problems, where many proofs for a single problem can exist, and by combining individual
proof ideas, it is possible to arrive at a large number of proofs,11 which makes it hard to accurately determine
the longest possible proof, as well as what the LLM might output.

12https://mathpix.com
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• All starting words such as “Solution.”, or similar were removed, as were any comments
at the end that were not relevant to the proof (e.g., comments about the proof’s origin or
other tangential information). We also exclude proof-ending words like “QED”, should
such words be used. If a problem has multiple statements to show, such as “(a)” or “(b)”,
and the solutions correspondingly also are split into a part “(a)” and part “(b)” (as is the
case for problem C1 from the IMO Shortlist 2009), then these words are retained in the
solution.

• If intermediate lemmas were formulated within a proof, these were kept unchanged, includ-
ing the word lemma, as well as their entire proofs, including the word proof, as well as any
proof ending words. We argue that it is fair to keep these “mathematical code words”, as
opposed to words such as “QED” that end a particular solution, since these denote general
constructions or ideas that, for comprehension, need to be isolated – and thus carry more
information than a “QED”.

A manual process of extracting proofs was necessary because of the diversity in which solutions
are presented: For some shortlists, the solutions follow immediately after the problem statement
(e.g., 2011); for others shortlists, they are at the end (e.g., 2009). Sometimes, further comments or
observations are at the end of the solutions,13 which also need to be excluded. This diversity of text
structuring made automation challenging: An automatic, GPT-4-assisted pipeline was found not to
perform well and to reliably identify only the solutions. The manual process that we followed may
contain occasional errors, such as the length of the extracted solutions being off by a few characters,
but these errors are less than the errors occurring during an automated approach.

We operationalize statistical difficulty criterion from Appendix A, simply by using the official data
available online on the number of contestants.

C MATHEMATICAL DOMAIN CHOICE

Our reason for focusing solely on combinatorics for this preliminary dataset is that contrary to other
mathematical domains from which problems for competitive mathematics are sourced, combina-
torics relies less on theoretical knowledge and more on elementary clever manipulation and new
insights, with the problem helping us focus on the model’s reasoning capabilities. The other three
problem domains at competitions are typically algebra, geometry, and number theory. They also
rely on clever insights, but sometimes these problems also have solutions that use certain theorems
and methods for which prior knowledge is needed (e.g., the “bunching” method,14 or the use of
multi-variable calculus to solve certain inequalities, which often appear in the “algebra” section).
Although we will include such problems in the IMOSC at a later stage, we believe that combina-
torics problems are the best testbed for pure mathematical reasoning, and chose to focus on this
first.

D CONTEST DESCRIPTION

The IMO and the BWMC are both competitions on a similar level of mathematical difficulty, aimed
at high-school students. The contest regulations stipulate that to participate at the BWMC one has
to be a “possible candidate” for the IMO: https://balticway2023.de/regulations/.

Yet, there are significant differences. Since the BWMC is a per-country competition, where one
team from each country competes against the other teams from the other countries, no information
about the performance of individuals is available. Hence, the official statistics to not truly represent
how well a single human is able to solve each of the given problems, but only aggregate team
performance. We do not compare the difficulty of problems between competitions, so these facts are
not problematic for our use case.

13E.g., in case of problem C1 from the 2008 IMO Shortlist, the solution is followed by a paragraph with a
comment, and by another section called “Original proposal”, which discusses a variation of the given problem,
C2.

14https://en.wikipedia.org/wiki/Muirhead%27s_Inequality
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