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Fig 1. MOSAIC cooking in the kitchen. (top) MOSAIC interacts with a user via natural language and controls a tabletop
manipulator (R1) and a mobile manipulator (R2) to prepare vegetable soup with the user. (bottom) We evaluate MOSAIC
on multiple recipes, involving a range of robot skills that interact with the human user and everyday objects.

Abstract— We present MOSAIC, a modular architecture for
home robots to perform complex collaborative tasks, such as
cooking with everyday users. MOSAIC tightly collaborates
with humans, interacts with users using natural language,
coordinates multiple robots, and manages an open vocabulary
of everyday objects. At its core, MOSAIC employs modularity:
it leverages multiple large-scale pre-trained models for gen-
eral tasks like language and image recognition, while using
streamlined modules designed for task-specific control. We
extensively evaluate MOSAIC on 60 end-to-end trials where two
robots collaborate with a human user to cook a combination
of recipes. We also extensively test individual modules with
180 episodes of visuomotor picking, 60 episodes of human
motion forecasting, and 46 online user evaluations of the
task planner. We show that MOSAIC is able to efficiently
collaborate with humans, interpret and execute complex tasks,
and adapt to new tasks with minimal reconfiguration. Finally,
we discuss limitations of the current system and exciting open
challenges in this domain. The project’s website is at https:
//portal-cornell.github.io/MOSAIC/

I. INTRODUCTION

Collaborative tasks in home environments requiring a
coordinated medley of skills pose significant challenges for
robots. These tasks require robots to have natural interactions
with human users, possess the ability to learn a diverse
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set of skills, and perform them in a collaborative manner.
Prior systems in this domain [1]–[4] have demonstrated
impressive capabilities. However, they typically have one
of two limitations: either they operate in isolation and lack
meaningful collaboration with humans, or they interact with
humans in a highly scripted manner, and are therefore only
capable of completing a narrow set of predefined tasks. In
this paper, we aim to overcome both of these limitations by
designing a system that fluidly collaborates with humans and
performs a wide range of tasks.

We identify three key desiderata for the system: (1) interact
with users via natural language, (2) perform a range of
skills that require manipulating everyday objects, and (3)
collaborate seamlessly with humans. Consider the scenario in
Figure 1, where a human user collaborates with two robots
to prepare a meal. The user should be able to effortlessly
interact with the system via natural language to decide on a
recipe. The robots in turn should perform the necessary skills
to make the recipe, such as fetching a range of ingredients
and cooking with them. Finally, the robots must fluidly
collaborate with humans, such as handing over items.

One of the key challenges in building a collaborative agent
that functions seamlessly in the wild is ensuring that it is able
to act safely across an expansive set of possible inputs. While
a single end-to-end model works well for tasks like language
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understanding where large amounts of data are available,
such an approach is difficult for robot controls, where less
data is available and extreme precision is important. Our key
insight is that by modularizing our architecture, we can
segment out parts of the framework that require broad
generalization, such as language and image recognition,
from the portions that require task-specific control. This
division of work means that strong overall performance can
be achieved through specialization: we can use large pre-
trained models to extract useful information from large and
unstructured input spaces and task-specific models to make
safe and precise decisions.

We apply this modular approach in building MOSAIC
(Modular System for Assistive and Interactive Cooking): a
modular architecture for home robots that integrates multiple
large-scale pre-trained models. In particular, we use large
language models (LLMs) for interactive task planning, vision
language models (VLMs) for visuomotor skills, and motion
forecasting models for predicting human intents for collabo-
ration. To the best of our knowledge, this is the first system
to integrate multiple large-scale models in such a way that
enables multiple home robots to collaborate with a human
user to tackle complex, long-horizon tasks such as cooking.

While the principle of modularity has been central to
developing robust real-world robotic systems (e.g. in au-
tonomous driving), such systems often rely on meticulously
engineered components. We introduce several key innova-
tions to create an adaptive, scalable system that collaborates
fluidly with humans. Our contributions can be organized as:

1) Interactive Task Planner. We propose an architecture
that embeds Large Language Models (LLMs) within
a behavior tree. Prior work [1], [5]–[8] attempts to
directly use LLMs for task planning. However, LLMs
often make mistakes and are difficult to control. To re-
duce errors, we partition the action space and reasoning
process as nodes in the tree.

2) Visuomotor Skills. We propose a lightweight architec-
ture that uses a pre-trained VLM for object identification
and an RL policy learnt in simulation. In contrast to
prior work [9]–[12], our method does not require any
online demonstrations nor training large networks.

3) Human Motion Forecasting. We develop a method
for forecasting human motion that allows robots to
seamlessly collaborate with humans in manipulation
tasks. Unlike prior works [13], [14] that model humans
as static entities, we utilize large-scale human motion
data [15] to train a forecasting model.

4) Comprehensive Evaluation. We conduct 60 end-to-
end trials where two robots collaborate with a human
user to cook complex, long-horizon recipes. We also
extensively test individual modules with 180 episodes
of visuomotor picking, 60 episodes of human motion
forecasting, and 46 online user evaluations of the task
planner. We run our system end-to-end with a real
human user, completing 68.3% (41/60) collaborative
cooking trials of 6 different recipes with an average
subtask completion rate of 91.6%.

II. APPROACH

We present MOSAIC, Modular System for Assistive and
Interactive Cooking, a modular architecture that combines
multiple large-scale pre-trained models to solve collaborative
cooking tasks. Fig. 2 shows an overview of MOSAIC.
It consists of three main components: 1) Interactive Task
Planner (II-A): a module that interacts with real users via
natural language to plan a diverse set of tasks and coordinate
subtasks during the cooking process. 2) Visuomotor Skill (II-
B): a module that generalizes robot skills to a diverse set of
kitchen objects and environments. 3) Human Motion Fore-
casting (II-C): a module that leverages motion forecasting
models to predict human motion, ensuring that robots can
collaborate safely and fluidly with humans.

A. Interactive Task Planner

The goal of the task planner is to continuously interact
with a human user using natural language, delegate subtasks
to different robots or the user, and monitor progress. Con-
cretely, the task planner interacts with the user to determine
a task( e.g. “Prepare vegetable soup”). It represents the task
T as a directed acyclic graph (DAG), which models tempo-
ral dependencies between different subtasks and determines
available subtasks that can be assigned. The task planner also
assigns and maintains a queue of subtasks for each robot.
To execute a subtask (e.g. “fetch salt”), the task planner
generates a code snippet that issues a series of API calls
such as go to("pantry"), pick("pepper"), etc.

While many recent approaches [1], [5]–[8] directly use
LLMs for task planning, we observe two main challenges.
First, even with chain-of-thought prompting [16], since the
action space is large and the reasoning process is complex,
the LLMs make mistakes such as misinterpreting the obser-
vation or choosing incorrect actions. More importantly, the
LLMs tend to violate safety constraints that the developer
specifies, such as assigning subtasks without confirming
with the user. Second, the developer has little control over
the LLMs’ behavior other than specifying the rules and
constraints in one monolithic prompt, which is challenging to
debug and scale. To overcome both challenges, we propose
an architecture that embeds LLMs within a behavior tree
(BT) [17]. Each behavior partitions the action space and
reasoning process, thereby reducing the complexity and
potential error rate of the LLMs. Moreover, the modular
nature of BT makes it easy to scale to multiple behaviors.

B. Visuomotor Skills

The goal of the visuomotor skills module is to execute
subtasks assigned by the task planner. A common approach
to train visuomotor skills is to imitate human demonstrations
on a suite of tasks via end-to-end training [9]–[12], [18]–
[20]. However, state-of-the-art methods using this approach
generally require (1) good coverage of states and (2) expert
action labels from those states. This includes data that shows
the robot how to recover after making errors. Taken together,
this leads to algorithms that require up to hundreds of hours
of expert demonstrations, which is infeasible to collect.



Fig. 2: MOSAIC System Overview. The Interactive Task Planner module communicates with the user via natural language
to decide on a recipe. It assigns subtasks to each robot accordingly. The Human Motion Forecasting extracts and converts
the human’s 2D post to 3D coordinates, which it uses to predict future human motion. Simultaneously, a VLM takes image
and language as input and produces a 3D grasp pose around the object of interest. Combined, all three are taken by the
execution policy of the Visuomotor Skill module to produce a final robot action.

Instead, we partition the end-to-end architecture into
object-identification and action-execution modules. We of-
fload object identification to pre-trained VLMs that can
generalize to many objects, and we solve action execution
by searching for a policy purely in simulation using rein-
forcement learning. In doing so, we have addressed both
challenges without needing to collect any additional data.

Object detection via pre-trained models. Given our
input image and language condition, we pass both through a
pre-trained OwlViT [21] model, giving us a set of bounding
boxes. To handle robot-specific viewpoints (that may be less
common in the training data of these large VLMs), we and
take the bounding-box coordinate with the highest CLIP
similarity score [22].

Grasp-pose generation via point-cloud segmentation.
In the next phase of our pipeline, we use FastSAM [23] to
obtain a more accurate segmentation of the object within the
bounding box and back-project the segmented pixels through
the depth camera’s point cloud. We take our grasp-pose to
be the center-of-mass of this projection.

Action prediction via model-based reinforcement learn-
ing. To predict the final actions, we design a simulator and
reward function to train any general RL agent that takes as
input some privileged information of the world, in this case
the 3D grasp-pose, and outputs actions to reach that position
without violating some set constraints.

C. Human Motion Forecasting
Safe and effective coordination with humans requires

forecasting human motion and adapting robot plans ac-
cordingly. Accurate forecasts are critical for collaborative
cooking, where robots work in close proximity to humans.
For instance, observe the robot stirring a pot alongside a
human partner in Figure 2. When the human moves in to
put vegetables in the pot, the robot should anticipate that
movement and make way for the human by retracting its
arm back. Our goal is to use forecasts of human motion to
guide the robot’s decision making.

Pre-training on Large-scale Data. We first pre-train
our model on large-scale human activity data to generate
smooth predictions of human motion given a history of joint
positions as input. We use AMASS [15], a large dataset of
human activity, encompassing over 300 subjects and 40 hours
of motion capture data.

Fine-tune on Interaction Data. To ensure the forecaster’s
motion predictions are helpful for the robot to plan its actions
around humans in the kitchen, we utilize the Collaborative
Manipulation Dataset (CoMaD) [24], a dataset of human-
human interactions in a kitchen setting.

Inference Time: Real-time, Vision-based Forecasting
and Planning. A single RGB-D camera aimed at the hu-
man’s torso is used to detect their upper-body pose. The
human joint locations are then identified on the RGB image
using MediaPipe [25], a 2D pose detector. These locations
are then back-projected to 3D world coordinates using the
image depth map. Finally, the human poses are used to
generate real-time motion forecasts used by the robot.

III. EXPERIMENTS

We conduct a total of 60 end-to-end trials with two
robots and a user collaboratively making 6 recipes. In all
experiments, the tabletop manipulator (R1) is a 7-DoF Franka
Emika Research 3 [26] and the mobile manipulator (R2) is
a 6-DoF Stretch Robot RE1 [27]. The kitchen also has two
overhead RGB-D cameras that can perceive the workspace
and capture a human’s motion. To allow users to interact with
the task planner, we use Google’s speech-to-text APIs [28]
to transcribe user’s verbal instructions and its text-to-speech
APIs to vocalize the task planner’s responses.

A. End-to-end Trials

Figure 3 shows a table with the different recipes (tasks),
the different subtasks, and the robot skills involved. Each
recipe involves a different combination of robot skills and
different types of interaction with the user. For example,
users provide vague instructions, interrupt a robot’s subtask,



Recipe Typical Robot Skills Used Success Subtasks Comp.

Toss Salad
R1:

 8 / 10 92.5%
R2:

Tuna Sandwich
R1:

8 / 10 96.0%
R2:

Vegetable Soup
R1:

8 / 10 96.0%
R2:

Corn Soup
R1:

6 / 10 90.0%
R2:

Caesar Salad
R1:

5 / 10 86.7%
R2:

Chicken Soup
R1:

6 / 10 91.4%
R2:

41 / 60 91.6%
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Fig. 3: End-to-end results. On-policy results for 6 recipes, where each recipe is tested through 10 trials. Each recipe contains
various subtasks involving different robot skills. We report the number of trials that are completed without any errors and
the individual subtask completion rate. We also categorize the failure cases. MOSAIC is able to complete 41/60 tasks with
an average subtask completion rate of 91.6%.

and add new subtasks that are not in the recipe. For each
trial, we compute two metrics: was the trial successful, and
the subtask completion rate. Overall, MOSAIC completes
41/60 (68.3%) collaborative cooking trials of 6 different
recipes with an average subtask completion rate of 91.6%.
We analyze two specific questions:
How does MOSAIC scale with longer horizon tasks? We
test a range of recipes, from “Toss Salad”, which involves
6 skills, to “Chicken Soup”, which involves 14 skills. While
MOSAIC’s success rate drops with the increasing horizon as
one would expect, it does not fall off exponentially and stays
above 50%. A key reason is that each module in MOSAIC
is trained to be robust to errors in incoming input (e.g. the
task planner handles delays made by a robot, the visuomotor
skills pick() handles errors from go to(), the forecasting
handles errors from pose estimation, and so on).
Does modularity help localize failures to specific mod-
ules? As each module has sub-modules, each with a clear
input/output contract, localizing an error is easily automated.
We use this to cluster failures into the following 5 categories,
shown also in Figure 3:

(A) [Visuomotor Skill] Failed to pick up the object: Some-
times, the VLM selects an incorrect object for picking.

(B) [Visuomotor Skill] Failed to successfully place the ob-
ject: The robot releases an object from an incorrect height,
causing it to topple.

(C) [Visuomotor Skill] Dropped the object during a skill:

The stir() and pour() skill may drop an object due to
an insufficiently stable grip.

(D) [Interactive Task Planner] Failed to interrupt a subtask:
The speech-to-text module sometimes fails to correctly
transcribe user’s short command.

(E) [Interactive Task Planner] Assigned an incorrect sub-
task: The task planner misunderstands the user’s command
and re-assigns a completed subtask to the robot.

(F) [Human Motion Forecasting] Pose Tracking Failed: The
human’s pose moved outside the camera’s view, causing a
tracking error while forecasting motion.

IV. DISCUSSION

In this paper, we present a modular system capable of
controlling two robots to interactively cook a variety of
recipes with a human user. Leveraging an ensemble of large-
scale, pre-trained models, our system communicates with the
user, forecasts their intents, and completes a series of visuo-
motor skills. To validate our design decisions, we conduct
extensive experiments in the real world with multiple human
users. We architect a set of modular frameworks that utilizes
large-scale, pre-trained models to quickly equip multi-agent
systems with generalizable skills. These characteristics make
MOSAIC a desirable foundation for collaborative human-
robot systems in complex home environments and for future
work that further refine and expand this system’s capability.
Furthermore, this process of modular evaluation has been
instrumental in uncovering potential failure modes.
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