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Abstract

Maximum a posteriori decoding, a commonly001
used method for neural machine translation002
(NMT), aims to maximize the estimated poste-003
rior probability. However, high estimated prob-004
ability does not always lead to high translation005
quality. Minimum Bayes Risk (MBR) decod-006
ing (Kumar and Byrne, 2004) offers an alter-007
native by seeking hypotheses with the highest008
expected utility.009

Inspired by Quality Estimation (QE) rerank-010
ing which uses the QE model as a ranker (Fer-011
nandes et al., 2022), we propose source-based012
MBR (sMBR) decoding, a novel approach that013
utilizes quasi-sources (generated via paraphras-014
ing or back-translation) as “support hypotheses”015
and a reference-free quality estimation metric016
as the utility function, marking the first work017
to solely use sources in MBR decoding. Ex-018
periments show that sMBR outperforms QE019
reranking and the standard MBR decoding. Our020
findings suggest that sMBR is a promising ap-021
proach for NMT decoding.1022

1 Introduction023

Neural Machine Translation (NMT) models typi-024

cally aim to select a hypothesis with the highest025

estimated posterior probability during decoding, an026

approach known as Maximum A Posteriori (MAP)027

decoding. Beam search (Graves, 2012; Sutskever028

et al., 2014), which balances computational cost029

and search accuracy, has become the standard ap-030

proximate decoding method for MAP.031

However, the underlying assumption of beam032

search - that estimated probability is a good proxy033

for translation quality - has been challenged by034

evidence showing that estimated probability and035

quality do not always correlate positively (Ott et al.,036

2018; Freitag et al., 2021). For example, Fig 1 illus-037

trates a case where a human reference translation038

1We will make the source code publicly available once the
paper is accepted.

Figure 1: Example of De→En, with source “Kommt
einem Spitzel nahe”. BS denotes beam search. The
estimated log probability of a human reference is lower
than that of the beam search output, and even lower than
that of a bad translation.

has a lower estimated probability than the hypothe- 039

sis generated by beam search, and even lower than 040

that of a poor translation. Furthermore, the true 041

MAP output is sometimes an empty string or overly 042

brief translation (Koehn and Knowles, 2017; Mur- 043

ray and Chiang, 2018; Ott et al., 2018; Stahlberg 044

and Byrne, 2019). These suggest that solely search- 045

ing for high estimated probability hypotheses may 046

not be an effective strategy for improving quality. 047

Given the limitations of using estimated proba- 048

bility as a proxy for quality, an attractive alternative 049

is to directly target translation quality during de- 050

coding (Freitag et al., 2022). Minimum Bayes Risk 051

(MBR) decoding, proposed in the era of statisti- 052

cal machine translation (Kumar and Byrne, 2004; 053

Tromble et al., 2008), aims to find the hypothesis 054

with the highest expected utility with respect to 055

a set of hypotheses called “support hypotheses”. 056

Traditionally, surface-based evaluation metrics like 057

BLEU (Papineni et al., 2002) were used as the 058

utility function in MBR decoding (Eikema and 059

Aziz, 2020; Eikema and Aziz, 2022). However, 060

these metrics have shown limited correlation with 061

human judgments (Mathur et al., 2020; Freitag 062

et al., 2023b), hindering the widespread adoption 063

of MBR decoding based on them. Recent work has 064

explored using state-of-the-art neural metrics, such 065

as COMET (Rei et al., 2022a), as utility functions 066

for MBR decoding (Freitag et al., 2022; Fernan- 067

1



des et al., 2022; Freitag et al., 2023a), showing068

promising improvements in human evaluations.069

Moreover, advances in reference-free evaluation070

metrics (Rei et al., 2021; Rei et al., 2022b; Rei071

et al., 2023) have enabled their direct application to072

hypothesis reranking, which we refer to as Quality073

Estimation (QE) reranking (Fernandes et al., 2022).074

QE reranking selects the hypothesis with the high-075

est reference-free quality estimation score among076

the candidate hypotheses. However, QE reranking077

remains understudied compared to MBR decoding.078

Inspired by QE reranking, which uses the QE079

model as a reranker, we propose a novel ap-080

proach called source-based MBR (sMBR) decod-081

ing, which uses quasi-sources generated by para-082

phrasing or back-translation as “support hypothe-083

ses” and a QE metric as the utility function. This084

marks the first work to solely use sources as sup-085

port hypotheses in MBR decoding, breaking the086

long-standing tradition of relying on using other087

hypotheses to approximate true utility for this pur-088

pose. See Fig 2 for a overview of our methodology.089

We provide empirical evidence through comprehen-090

sive experiments on three translation directions in091

both classic (large transformer models trained from092

scratch, including high-resource and low-resource093

sub-setups) and large language model (LLM) se-094

tups, demonstrating that sMBR outperforms QE095

reranking and the standard MBR decoding. These096

findings suggest that sMBR is a promising NMT097

decoding approach.098

2 Decoding methods in NMT099

Decoding can be viewed as two phases: hypoth-100

esis generation and decision. Specifically, in the101

hypothesis generation phase, a certain generation102

method, such as beam search, is used to generate103

N hypotheses from the model {h0, h1, . . . , hN−1}.104

Then, in the decision phase, N decision scores105

need to be computed for each of these N hypothe-106

ses {score0, score1, . . . , scoreN−1}. Finally, the107

hypothesis with the highest decision score is se-108

lected as the final output.109

2.1 MAP decoding110

Given a source sentence x and a hypothesis space111

H, the translation model Pmt(· | x) estimates the112

probability of any hypothesis h ∈ H. MAP decod-113

ing aims to find the hypothesis yMAP that maxi-114

mizes the probability: 115

yMAP = argmax
h∈H

Pmt(h | x). (1) 116

In other words, MAP decoding simply takes the 117

estimated probability as the decision score. 118

However, considering all possible hypotheses in 119

H is computationally intractable. Therefore, beam 120

search is widely used as an efficient approximation 121

of MAP decoding, balancing the trade-off between 122

computational cost and search accuracy. 123

Increasing the beam size leads to searching 124

for hypotheses with higher estimated probabilities. 125

However, in practice, when the beam size exceeds 126

5 or 10, it often leads to a performance degrada- 127

tion instead (Tu et al., 2017; Koehn and Knowles, 128

2017). This phenomenon is known as the beam 129

search curse, considered one of the six challenges 130

of NMT (Koehn and Knowles, 2017). 131

2.2 MBR decoding 132

Unlike MAP decoding, which aims to find the high- 133

est estimated probability hypothesis, Minimum 134

Bayes Risk (MBR) decoding seeks the hypothesis 135

that minimizes the expected loss (or equivalently, 136

maximizes the expected utility) with respect to a 137

set of hypotheses, called “support hypotheses”. 138

In practice, it is common to use a set of hypothe- 139

ses from a model as support hypotheses. Formally, 140

let S ⊆ H be a set of support hypotheses from 141

model Pmt(· | x), for support hypothesis hs ∈ S, 142

MBR decoding selects the hypothesis yMBR that 143

has the least risk: 144

yMBR = argmin
h∈H

Ehs∈S [L(hs, h) | x] (2) 145

= argmin
h∈H

∑
hs∈S

L(hs, h)Pmt(hs | x). (3) 146

In practice, it is common to use a utility func- 147

tion, correlated to human evaluation results, such 148

as BLEU or COMET, as an alternative to the loss 149

function L(·, ·). Thus, the purpose of MBR de- 150

coding is actually to select the hypothesis with the 151

maximum expected utility. In addition, the hypoth- 152

esis space is usually too large to traverse all the 153

hypotheses to find a translation that satisfies the 154

above conditions. Therefore, a set of hypotheses 155

C from the hypothesis space H, called “candidate 156

hypotheses”, is often used as a representative of 157

the whole hypothesis space. Combining these two 158

points, for a given utility function u(·, ·), the MBR 159

decoding objective can be reformulated as: 160
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Figure 2: Overview of decoding methods in NMT. The diagram illustrates the process for MBR decoding, QE
reranking, and the proposed sMBR decoding. It also shows two practices of sMBR: sMBR-BT and sMBR-PP. The
figure demonstrates how the score used for selecting the final hypothesis is computed for each method.

yMBR ≈ argmax
h∈C

∑
hs∈S

u(hs, h)Pmt(hs | x). (4)161

A widely used practice is to use the same set of162

hypotheses for both C and S, and to assume that163

all hs have the same probability, instead of the esti-164

mated probability given by the model. That is, the165

expected utility for a chosen hypothesis is approxi-166

mated by averaging its utilities to other hypotheses.167

Hypotheses can be obtained through, for example,168

beam search or ancestral sampling2. Formally, the169

objective of MBR can be approximated as:170

yMBR ≈ argmax
h∈C

scoreMBR
h , (5)171

scoreMBR
h =

1

|S|
∑
hs∈S

u(hs, h). (6)172

2.3 QE reranking173

Quality estimation (QE) is a task that aims to assess174

the quality of a translated sentence without refer-175

ence translations but the original source sentence176

x. Recently, QE models have been employed to177

develop a new decoding method called QE rerank-178

ing (Fernandes et al., 2022), which leverages QE179

models to rerank the candidate hypotheses. The180

main idea behind QE reranking is to select the hy-181

pothesis h with the highest estimated quality with182

the QE model, rather than relying on the estimated183

probability Pmt(h|x).184

2In the context of NMT, ancestral sampling refers to sam-
pling from the entire vocabulary without any pruning.

Formally, for a source x, a candidate hypothesis 185

from the hypothesis space h ∈ C, and QE function 186

fQE , QE reranking aims at finding a yQE that has 187

the highest QE decision score scoreQE
h : 188

yQE = argmax
h∈C

scoreQE
h (7) 189

= argmax
h∈C

fQE (x, h). (8) 190

3 Method 191

In this section, we first introduce our proposed 192

method, source-based MBR (sMBR) decoding. 193

Then, we show that QE reranking is actually a 194

special case of sMBR. Finally, we introduce two 195

practices of sMBR: paraphrasing-based (sMBR- 196

PP) and back-translation-based (sMBR-BT). See 197

Figure 2 for a quick overview of how sMBR differs 198

from standard MBR decoding and QE reranking. 199

3.1 sMBR 200

In this subsection, we introduce MBR decoding 201

using a novel method to calculate the utility, sMBR 202

decoding. Then, we will show that QE reranking is 203

actually a special case of sMBR. 204

We hypothesize that for a hypothesis, decision 205

scores calculated by QE using only the hypothesis 206

and sources are a good proxy for translation quality, 207

since QE reranking can achieve promising perfor- 208

mance using only a reference-free reranker (QE 209

model) (Fernandes et al., 2022). We are therefore 210

interested in calculating the utility of MBR decod- 211

ing using only sources and a QE model, and call 212

MBR decoding based on this idea sMBR decoding. 213

In other words, in the sMBR, sources are used as 214
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“support hypotheses”, and the QE model is used as215

a utility function.216

Given that empirically better performance can be217

obtained by using more support hypotheses in the218

standard MBR decoding (Freitag et al., 2022; Fer-219

nandes et al., 2022; Freitag et al., 2023a), we would220

like to use more “support hypotheses” (sources) for221

sMBR as well. However, in the standard MBR222

decoding, there are usually multiple support hy-223

potheses (i.e., |S| > 1), while we usually only224

have one source sentence. Therefore, we obtain225

additional “support hypotheses” for sMBR by con-226

sidering other source language sentences that have227

the same meaning as the original source sentence.228

Formally, let Ppp(X
′|X) be a paraphrasing dis-229

tribution of source language sentences with the230

same meaning as the original source x, and X̃ ′ be231

a finite sample from Ppp(X
′|X = x). Then, for232

a reference-free QE utility function u(·, ·), sMBR233

looks for ysMBR that has the highest sMBR deci-234

sion score scoresMBR
h in the set of candidate hy-235

potheses C:236

ysMBR = argmax
h∈C

E
x′∈X̃′

[
u(x′, h) | x

]
(9)237

= argmax
h∈C

∑
x′∈X̃′

u(x′, h)Ppp(x
′|x). (10)238

Similarly to eq. 6, it is also possible to approxi-239

mate by assuming that all sources x′ have the same240

probability, which simplifies the calculation. For-241

mally, let K = |X̃ ′|, then the objective of sMBR242

can be approximated as:243

ysMBR ≈ argmax
h∈C

scoresMBR
h , (11)244

scoresMBR
h =

1

K

∑
x′∈X̃′

u(x′, h). (12)245

Here, QE reranking is a special case of sMBR246

when K = 1, i.e., when only the original source is247

used. Unlike QE reranking, sMBR considers multi-248

ple quasi-sources (K > 1), which are intended to249

serve a more diverse and representative utility.250

3.2 sMBR-PP and sMBR-BT251

We refer to the exact formulation presented in252

section 3.1 as sMBR-PP. In addition, we study253

an alternative approach, which indirectly gener-254

ates quasi-sources by back-translation, sMBR-BT.255

Specifically, for an original source x, we first gen-256

erat a translation h0 using the forward transla-257

tion model Pmt(h|x) and then use h0 as the in-258

put to a back-translation model to generate K259

quasi-sources {x′1, x′2, . . . , x′k}. We then use the 260

set X̃ ′ = {x, x′1, x′2, . . . , x′k} of size K + 1 for 261

sMBR decoding. Note that in sMBR-BT, the input 262

to the back-translation model is a single hypothe- 263

sis, where we simply use the one with the highest 264

estimated probability. Then, we obtain K quasi- 265

sources by beam search with beam size K. 266

4 Experiments 267

4.1 Setup 268

In this subsection, we present the details of NMT 269

systems, decoding methods, and evaluation. 270

4.1.1 Data and models for NMT 271

We consider two setups: the classic (encoder- 272

decoder based transformer model trained from 273

scratch on parallel corpora) and the LLM setup. 274

Our experiments were performed on the En- 275

glish to German (En→De), English to Russian 276

(En→Ru), and Chinese to English (Zh→En), as 277

COMET and COMET-QE on them proved to 278

be highly correlated with human judgments at 279

the segment level (Rei et al., 2022a). We use 280

generaltest2023 (Kocmi et al., 2023) as the test 281

set for each translation direction. 282

Classic setup The classic setup does not include 283

the Zh→En due to computing resource limitations. 284

For both En→De and En→Ru in the classic setup, 285

we use newstest2017-2019 as the development 286

set. 287

We further consider both high-resource and low- 288

resource sub-setups. For the high-resource setup, 289

we use Facebook FAIR’s WMT19 news transla- 290

tion task submission (Ng et al., 2019). For low 291

resource setup, training data consists of 0.44M and 292

0.38M parallel sentences for En→De and En→Ru, 293

respectively. These systems allow us to assess the 294

performance in a data-constrained scenario. See 295

Appendix D for more details. 296

LLM setup We use TowerInstruct-13B (Alves 297

et al., 2024), a state-of-the-art LLM for translation- 298

related tasks as NMT model. We prompt LLM to 299

perform zero-shot translation. See Appendix E for 300

more details. 301

4.1.2 Decoding 302

We employ four approaches for hypothesis gen- 303

eration: beam search, ancestral sampling, top-k 304

sampling, and epsilon sampling. Beam search has 305
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been widely used for MBR decoding in the past306

(Kumar and Byrne, 2004; Stahlberg et al., 2017;307

Shu and Nakayama, 2017; Blain et al., 2017), while308

ancestral sampling has gained popularity in recent309

work (Eikema and Aziz, 2020; Freitag et al., 2022;310

Eikema and Aziz, 2022). We include top-k sam-311

pling and epsilon sampling since we find that they312

yield better performance than ancestral sampling.313

Both for the classic and LLM setups , we evalu-314

ate the following decision rules:315

• MAP: A widely used rule that selects the hy-316

pothesis with the highest estimated probabil-317

ity.318

• MBR: MBR decoding based on COMET, us-319

ing the Unbabel/wmt22-comet-da3 model.320

It calculates decision scores for candidate hy-321

potheses using the approach described in 2.2,322

and then select the highest score one.323

• QE reranking: A special form of MBR,324

which calculates decision scores with the325

quality estimation model fQE (·, ·). Since326

COMET does not support reference-free327

quality estimation, we use COMET-QE328

(Unbabel/wmt22-cometkiwi-da4) as the329

utility function.330

• sMBR: Source-based MBR decoding. We331

evaluate its two practices: sMBR-PP and332

sMBR-BT. The same QE model used for333

QE reranking is employed as the utility func-334

tion. For sMBR-PP, we fine-tuned a unique335

T5-large (Chung et al., 2024) model as a336

paraphrase generator for each source lan-337

guage, which was fine-tuned on paraphrase338

data created through back-translation. We339

detail the sMBR-PP implementation in Ap-340

pendix A. As the back-translation model of341

sMBR-BT, in the classic setup, we again use342

Facebook FAIR’s WMT19 news translation343

task submission in the high resource setup;344

in the low resource setup, we use the same345

model architecture and data as in the forward-346

translation model. For the LLM setup, we347

reused the LLM (TowerInstruct-13B) as a348

back-translation model.349

Our baseline is a MAP based on beam search350

with a beam size of 5 both for the classic and LLM351

3huggingface.co/Unbabel/wmt22-comet-da
4huggingface.co/Unbabel/wmt22-cometkiwi-da

setups, since we found that larger beams do not lead 352

to better performance. Except for the baseline, we 353

use 400 candidate hypotheses for the classic setup 354

unless otherwise specified, as we find that more 355

hypotheses have limited gains in performance but 356

result in higher costs.5 For the LLM setup, we 357

only use 128 hypotheses because generating more 358

hypotheses leads to too much computing. 359

For MBR decoding, we tried two setups: (1) 360

using the same set of hypotheses as candidate hy- 361

potheses and support hypotheses; and (2) using QE 362

reranking to filter the set of support hypotheses to 363

a smaller size that matches the size of the set of 364

support hypotheses for sMBR. For sMBR-PP and 365

sMBR-BT, we study case using 16 quasi-sources, 366

as adding more did not yield further gains. 367

More details are provided in Appendix B. 368

4.1.3 Evaluation metrics 369

We use automatic evaluation metrics, in- 370

cluding BLEU (Post, 2018), XCOMET 371

(XCOMET-XXL) (Guerreiro et al., 2023), and 372

MetricX (MetricX-24-Hybrid-XXL) (Juraska 373

et al., 2024) to evaluate different methods. Our 374

choice of XCOMET and MetricX is motivated by 375

two key factors: 1) they are state-of-the-art neural 376

metrics (Freitag et al., 2024), which correlate with 377

human judgments even when evaluating NMT 378

systems that use neural metric-based reranking 379

(Kovacs et al., 2024); 2) they were trained on 380

Multidimensional Quality Metrics (MQM) data 381

(Guerreiro et al., 2023; Juraska et al., 2024), while 382

the COMET series, on which MBR and sMBR 383

were directly optimized, were trained only on 384

Direct Assessments (DA) data (Rei et al., 2022a). 385

Given the limited correlation between MQM and 386

DA (Freitag et al., 2021), we expect XCOMET 387

and MetricX to provide a more independent 388

assessment, as they are less likely to be biased 389

towards the COMET-optimized MBR and sMBR 390

methods. We perform significance tests using 391

paired bootstrap resampling (Koehn, 2004). 392

4.2 Results 393

In this subsection, we analyze the performance by 394

observing the results of the automatic evaluation 395

metrics. Due to space constraints, we show in the 396

main text only the results of beam search based 397

results in the classic setup and epsilon sampling 398

5Appendix G shows the impact of candidate hypotheses
number on the metrics.

5
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Decoding method En→De En→Ru

w/ beam search |C| |S| BLEU↑ XCOMET↑ MetricX↓ BLEU↑ XCOMET↑ MetricX↓

High Resource (55.4M and 52.0M training data)

MAP 5 – 34.80 84.89 3.63 27.82 82.90 5.36
MBR 5 5 34.97 85.12 3.58 27.35 83.62 5.01
MAP 400 – 34.30 85.10 3.69 23.05 82.99 6.49
QE reranking 400 1 35.23 86.48 3.22 22.80 86.20 4.27
MBR 400 400 34.83 85.74 3.50 22.81 84.95 5.17
MBR 400 17 34.93 85.88 3.34 23.05 85.00 5.37
sMBR-PP 400 17 34.81 86.73† 3.09†† 22.91 86.52†† 4.14†

sMBR-BT 400 17 33.80 86.17 3.33 22.36 84.99 4.65

Low Resource (0.44M and 0.38M training data)

MAP 5 – 11.44 60.29 12.43 17.44 65.85 10.98
MBR 5 5 12.56 60.33 12.16 17.35 66.95 10.51
MAP 400 – 9.78 62.58 12.24 17.51 66.36 10.85
QE reranking 400 1 13.63 65.63 10.34 17.71 74.66 7.81
MBR 400 400 12.66 63.79 11.05 17.56 70.69 9.01
MBR 400 17 11.75 64.53 11.11 18.17†† 71.10 9.07
sMBR-PP 400 17 13.49 66.36†† 10.19† 17.95 74.96†† 7.76 †

sMBR-BT 400 17 9.66 63.77 11.68 16.87 69.69 9.35

Table 1: Compares decision rules in the classic setup. |C| and |S| indicate the number of candidate hypotheses
and supportive hypotheses, respectively. For sMBR, we used |S| = 17 support hypotheses (1 original source + 16
quasi-sources). We performed paired bootstrap resampling; † and †† indicate significantly better than QE reranking
within groups (p < 0.05 and p < 0.01, respectively; Multiple testing correction is not applied). The best in each
group is marked in bold.

based results in the LLM setup; other results are399

included in the Appendix C.400

Classic setup Table 1 highlights the effectiveness401

of sMBR decoding in the classic setup with beam402

search. Regarding XCOMET and MetricX, sMBR-403

PP significantly outperforms QE reranking, prov-404

ing the validity of our extension to QE reranking.405

The results of the experiments based on sampling406

methods are shown in Appendix C, where similar407

gains to those based on beam search can be ob-408

served. The sMBR-PP outperforms the standard409

MBR on the neural metric, regardless of whether410

the standard MBR can use the full 400 support411

hypotheses or only 17. Thus, we conclude that412

the sMBR-PP outperforms QE reranking and the413

standard MBR in the classic setup.414

LLM setup Table 2 shows the results of epsilon415

sampling in the LLM setup. We observe that416

sMBR-PP can still significantly outperform QE417

reranking regarding XCOMET and MetricX. The418

XCOMET and MetricX of sMBR-PP are compara-419

ble to the standard MBR and sometimes outperform420

standard MBR. As with the results of the classic421

setup, a gain similar to that based on epsilon sam- 422

pling can be observed in Appendix C. Thus, we 423

conclude that sMBR-PP still significantly outper- 424

forms QE reranking and is competitive with the 425

standard MBR in the LLM setup. 426

The performance of sMBR-PP relative to stan- 427

dard MBR differs between the two setups. The 428

standard MBR shows performance similar to that 429

of the sMBR-PP in the LLM setup. We believe this 430

is due to the better quality of the support hypoth- 431

esis generated by LLM, which leads to a higher 432

approximation accuracy in eq. 6. 433

Compared to QE reranking, sMBR-BT shows 434

gains regarding XCOMET and MetricX in the 435

LLM setup, but even lower metrics than QE rerank- 436

ing in the classic setup. We investigate this reason 437

in section I. 438

5 Discussion 439

In this section, we discuss the effectiveness of 440

sMBR-PP and the mechanism behind it through 441

some experiments. Due to space constraints, we 442

discuss the efficiency of sMBR-PP in Appendix F, 443

where we show that sMBR-PP is much slower than 444

6



Decoding method En→De Zh→En

|C| |S| BLEU↑ XCOMET↑ MetricX↓ BLEU↑ XCOMET↑ MetricX↓

w/ epsilon sampling TowerInstruct-13B

MAP 5 – 30.24 86.06 3.32 20.73 88.15 2.41
MBR 5 5 28.10 87.30 2.95 19.74 88.96 2.20
MAP 128 – 32.64†† 86.43 3.22 23.12†† 89.14 2.20
QE reranking 128 1 29.40 88.76 2.56 19.88 90.64 1.89
MBR 128 128 29.84 89.19† 2.46†† 22.01†† 90.39 1.90
MBR 128 17 31.93†† 88.83 2.60 23.34†† 90.43 1.87
sMBR-PP 128 17 27.19 89.47†† 2.44†† 19.87 90.70† 1.87
sMBR-BT 128 17 28.73 89.04 2.50 19.77 90.38 1.98

Table 2: Compares decision rules in the LLM setup. The meaning of table elements is the same as Table 1.

|S| 1 6 11 17 33

XCOMET ↑ 86.48 86.65 86.73 86.73 86.74
MetricX ↓ 3.22 3.12 3.10 3.09 3.09

Table 3: Impact of increasing sources for sMBR-PP:
The number of sources is positively correlated with the
evaluation metrics. |S| = 1 +K, i.e., (# of the original
source) + (# of quasi-sources). Candidate hypotheses
were generated by beam search. When |S| = 1, sMBR-
PP is QE reranking.

QE reranking and MBR with simple optimization.445

5.1 Effects of increasing sources446

Since sMBR is an extension to QE reranking by447

increasing the number of sources, we first investi-448

gate the impact of increasing the number of sources449

on the performance of sMBR-PP. We focus on the450

En→De high resource setup of the classic setup451

and evaluate with neural metrics. Table 3 presents452

the results, demonstrating a positive correlation be-453

tween source number and evaluation metrics. This454

observation again shows that our extensions to QE455

reranking are effective. In addition, the increase456

in synthesis sources from 16 to 32 does not result457

in further gains, which we hypothesize is due to458

the inability of the paraphrase generator to achieve459

the generation of up to 32 generative high-quality460

synthesis sources.461

5.2 Qualities of quasi-sources462

To understand the properties of the quasi-sources463

of sMBR, we analyzed them in terms of surface464

diversity and semantic similarity with the original465

source. Surface diversity was measured using Self-466

BLEU (Zhu et al., 2018), while semantic similarity467

was assessed by cosine distance between sentence468

Self-BLEU↓ Semantic Similarity↑

sMBR-PP 41.68 94.32
sMBR-BT 48.25 94.53

Table 4: Analyzing of quasi-sources: analyzed on the
En→De generaltest2023, high resource. Lower Self-
BLEU means richer surface diversity; higher semantic
similarity means closer semantics to the original source.

|S| 1 6 11 17

Ave. QE 81.28 80.58 80.57 80.54

Table 5: Average QE scores with the original source:
QE scores are negatively correlated with source num-
ber. The analysis was performed in the En→De high
resource setup on sMBR-PP. Candidate hypotheses were
generated by beam search.

embeddings6. 469

The results presented in Table 4 reveal that the 470

quasi-sources generated by sMBR-PP exhibit much 471

lower Self-BLEU scores compared to those pro- 472

duced by sMBR-BT, indicating greater surface di- 473

versity. On the other hand, the scores of the two 474

in terms of semantic similarity are close, implying 475

that both generated quasi-sources do not deviate 476

too much from the original source’s semantics. We 477

hypothesize that the poor performance of sMBR- 478

BT in the classic setup can be attributed to the 479

limited surface diversity of its quasi-sources. 480

5.3 Why sMBR-PP works 481

The results shown in Section 4.2 demonstrate that 482

sMBR-PP is significantly better than QE rerank- 483

6We use huggingface.co/sentence-transformers/
all-mpnet-base-v2

7

huggingface.co/sentence-transformers/all-mpnet-base-v2
huggingface.co/sentence-transformers/all-mpnet-base-v2


ing in terms of neural metrics. We discuss the484

mechanism behind producing these gains. We hy-485

pothesize that the QE model used in QE rerank-486

ing is overly sensitive to the specific phrasing and487

structure of the original source, leading to an over-488

reliance on a single source that could negatively489

impact performance. In contrast, aggregating QE490

scores across multiple sources in sMBR decoding491

is expected to provide more robust QE. We ob-492

served that as the number of sources increases in493

sMBR decoding, the average QE score between the494

selected translations and the original source sen-495

tence decreases (Table 5). This suggests that sMBR496

decoding no longer relies solely on QE with respect497

to the original source. We conjecture that this is498

because sMBR decoding tends to select hypothe-499

ses that are more generally applicable to different500

source variants.501

6 Related Work502

MBR decoding has been used in speech recogni-503

tion (Stolcke et al., 1997; Goel and Byrne, 2000),504

word alignment (Kumar and Byrne, 2002), and505

statistical machine translation (Kumar and Byrne,506

2004; Tromble et al., 2008). Recently, some works507

have re-explored the application of MBR decod-508

ing in NMT and demonstrated promising results509

(Stahlberg et al., 2017; Shu and Nakayama, 2017;510

Eikema and Aziz, 2020; Eikema and Aziz, 2022).511

These works have shown that MBR decoding can512

help overcome some of the limitations of MAP.513

In past work, MBR decoding is usually based514

on beam search to generate candidate hypothe-515

ses (Stahlberg et al., 2017; Shu and Nakayama,516

2017). Recently, Eikema and Aziz (2020) proposed517

sampling-based MBR decoding and found that the518

samples from the model are faithful to the training519

data statistics, while the beam search is not. Fre-520

itag et al. (2022) further explored the impact of the521

generation method on the performance.522

In terms of utility functions, past work has pri-523

marily used surface-based metrics such as BLEU524

and BEER (Stanojević and Sima’an, 2014). How-525

ever, these metrics have limited correlation with526

human judgments (Mathur et al., 2020; Freitag527

et al., 2023b). Recently, a trend has been to com-528

bine advanced neural metrics with MBR decod-529

ing, such as COMET and BLEURT. These works530

demonstrate that neural metrics-based MBR can531

improve performance in human evaluations (Fre-532

itag et al., 2022; Fernandes et al., 2022; Freitag533

et al., 2023a). However, they are also limited by the 534

high cost, as MBR decoding has a secondary cost 535

for the number of candidate hypotheses. Eikema 536

and Aziz (2022) investigated decoupling candidate 537

and support hypotheses, enabling the exploration 538

of more potential candidate hypotheses within a 539

limited computational budget. In addition, some re- 540

cent work has focused on improving the efficiency 541

of the MBR decoding (Cheng and Vlachos, 2023; 542

Vamvas and Sennrich, 2024; Deguchi et al., 2024). 543

On the other hand, some work has found that 544

models used to assess the quality of NMT systems 545

(i.e., quality estimation) can perform well even in 546

the absence of a reference (Rei et al., 2021; Rei 547

et al., 2022b; Rei et al., 2023). Fernandes et al. 548

(2022) explored the direct use of quality estimation 549

models as rerankers for NMT and showed promis- 550

ing results, referred to as QE reranking. 551

7 Conclusions and Future Work 552

In this work, inspired by QE reranking, we propose 553

sMBR decoding, which uses sources and QE model 554

to calculate the utility, the first practical method to 555

solely rely on sources as “support hypotheses” in 556

MBR decoding. Experimental results (Section 4.2) 557

show that sMBR decoding outperforms QE rerank- 558

ing and the standard MBR decoding. 559

Despite its limitations, such as the challenge of 560

generating quasi-sources, sMBR represents a sig- 561

nificant step forward in MBR decoding. By break- 562

ing with the tradition of approximating true utility 563

using only the average of utilities with respect to 564

other hypotheses, sMBR opens up new possibilities 565

for future research. 566

Our analysis in Appendix I indicates that using a 567

more powerful paraphrase generator, such as GPT4 568

(Achiam et al., 2023), for sMBR-PP shows promise 569

for further performance improvements. The analy- 570

sis in Appendix I suggests that using Diverse Beam 571

Search (Vijayakumar et al., 2017) for sMBR-BT 572

has the potential to enhance performance. There- 573

fore, we plan to explore these methods for generat- 574

ing quasi-sources in our future work. In addition to 575

methods for generating quasi-sources, in our future 576

work we will continue to investigate broadening 577

the boundaries of “support hypotheses” to include 578

sentences in languages other than the source and 579

target. 580
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8 Limitations581

While our proposed sMBR decoding approach582

shows promising results, it has some limitations.583

Firstly, reranking methods that directly optimize584

evaluation metrics may “overfit” to those metrics,585

causing the optimized metrics to become unreliable586

(Kovacs et al., 2024). We mitigate this problem by587

using automatic metrics that are likely to have low588

correlation with the metrics that are directly op-589

timized. However, since they still have common590

parts in the training data, this measure may not591

completely avoid the problem of unreliable metrics.592

Moreover, extending QE reranking with a quasi-593

source may exacerbate this problem, as it may re-594

sult in the final selection being favored by the QE595

metric itself but translations that are unrelated to596

the source (referred to as “universal translations”597

by Yan et al. (2023)). Therefore, our conclusion598

that sMBR-PP outperforms QE reranking and stan-599

dard MBR decoding may be questioned. Human600

evaluation can mitigate this issue but is costly and601

time-consuming.602

Secondly, generating high-quality quasi-source603

sentences remains a challenge. We explored604

two methods based on paraphrasing and back-605

translation, but the back-translation approach did606

not consistently improve reranking performance.607

This suggests that further research is needed to608

identify more effective techniques for generating609

diverse, representative quasi-sources.610

Finally, we have only tested the proposed611

method in a limited number of translation direc-612

tions and domains. However, not all language pairs613

have well-performing quality estimation models614

available. In the case of some language pairs, this615

may lead to a questioning of one of our basic hy-616

pothesis, i.e., the quality estimation model is a good617

proxy for the true utility. Therefore, the effective-618

ness of sMBR in a wider range of settings remains619

an open question.620
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A Additional details of sMBR-PP 965

For sMBR-PP, we generally use the same para- 966

phrase generator for both the classic and LLM se- 967

tups for the same source language. 968

When the source is English, for the paraphrase 969

generator used in sMBR-PP, its specific model is 970

google/flan-t5-large7. This model is trained 971

for instruction following and thus works out-of-the- 972

box for paraphrase generation. However, we found 973

its performance to be rather poor, thus we chose to 974

fine-tune it. 975

The fine-tuning training data consists of a 976

publicly available paraphrase generation dataset, 977

PAWS (Zhang et al., 2019), concatenated with 978

a dataset we created. The dataset we created is 979

based on En-De’s News-Commentary parallel 980

corpus8 and uses machine translation to create 981

paraphrased sentences. Specifically, we first input 982

German sentences from the parallel corpus into the 983

De→En NMT model, and then paired its output 984

with English sentences from the original parallel 985

corpus to compose the samples in the paraphrase 986

generation dataset. We use the De→En model 987

from Facebook FAIR’s WMT19 news translation 988

task submission (Ng et al., 2019). We use a 989

semantic similarity-based approach to estimate the 990

quality of the dataset we created, and then filter 991

out sentence pairs with low similarity. We use the 992

sentence-transformers/all-mpnet-base-v29 993

model to compute the similarity between para- 994

phrase pairs and filter out sentence pairs with a 995

similarity of 0.88 or less. In the end, the training 996

data for the model consisted of a total of about 997

339.2K paraphrased sentence pairs, of which about 998

317.4K came from the data we created and about 999

21.8K came from PAWS. 1000

For the training of this model, we used the 1001

AdamW optimizer (Loshchilov and Hutter, 2019) 1002

with a learning rate of 3e-4, weight decay of 0.0, 1003

and a batch size of 1536 examples, trained with 1004

fp32 full precision (This is because we found that 1005

the flan-t5 series is prone to training failure at 1006

fp16 precision). We set the maximum number of 1007

training epochs to 10. We randomly separate 3K 1008

sentence pairs from the dataset as the development 1009

set, and then select the checkpoints with the lowest 1010

loss on the development set. 1011

7huggingface.co/google/flan-t5-large
8data.statmt.org/news-commentary/v18.1/
9huggingface.co/sentence-transformers/

all-mpnet-base-v2
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When the source is Chinese, we follow a simi-1012

lar procedure as above. The difference is that the1013

base model is mT5-large (Xue et al., 2020) and the1014

training data only includes the dataset created by us-1015

ing TowerInstruct-13B to perform reverse trans-1016

lation on the News-Commentary parallel corpus.1017

We use lier007/xiaobu-embedding-v210 to cal-1018

culate the cosine similarity between the rephrase1019

and the original sentence, and filter out samples1020

with a similarity below 0.925.1021

In the inference phase of generating paraphrases,1022

we used epsilon sampling (Hewitt et al., 2022) (ep-1023

silon = 0.02), as we found that this setup balances1024

the diversity and quality of the synthesized sources1025

well. Training and inference were done on a single1026

NVIDIA H100.1027

We used the following prompts during training1028

and inference:1029

Source (input to the encoder):1030

paraphrase: {source_text}1031

Target (input to the decoder):1032

{target_text}1033

B Additional details on decoding and1034

training of low-resource NMT models1035

We completed training of the NMT low-resource1036

model, and all decoding experiments on a machine1037

with 4 NVIDIA RTX A6000. In the hypothesis gen-1038

eration phase, we used CTranslate211 to generate1039

hypotheses because of its efficiency.1040

For the training of low-resource NMT models,1041

we use the fairseq (Ott et al., 2019) tool. We use1042

base size transformer (Vaswani et al., 2017) archi-1043

tectures with a dropout rate of 0.3. And train for a1044

maximum of 100 epochs at full fp16 precision. we1045

select the checkpoints with the highest BLEU on1046

the development set. We use adam (Kingma and1047

Ba, 2015) optimizer with an initial learning rate of1048

1e-3, weight decay of 1e-4, a warm-up step of 4000,1049

and batch size is 1e5 tokens. We build vocabulary1050

of size 32000 with Byte-Pair Encoding (Sennrich1051

et al., 2016) using the sentencepiece (Kudo and1052

Richardson, 2018) tool. The vocabulary is shared1053

between source and target languages.1054

C Additional experimental results1055

In this section, we present additional experimental1056

results that could not be included in the main text1057
10https://huggingface.co/lier007/

xiaobu-embedding-v2
11https://github.com/OpenNMT/CTranslate2

due to space constraints. For the classic setup, this 1058

section includes the results of the generation meth- 1059

ods other than beam search; for the LLM setup, 1060

this section includes not only the results of the gen- 1061

eration methods other than Epsilon sampling, but 1062

also the complete experimental results of En->Ru. 1063

In addition to beam search and epsilon sampling, 1064

we attempted to use top-k sampling and ancestral 1065

sampling to generate hypotheses. Unlike top-k 1066

sampling, ancestral sampling the entire vocabulary 1067

for each time step in autoregressive decoding with- 1068

out any pruning. The results of the experiments 1069

are shown in Table 6, 8, 7, 9, and 10. Compared 1070

to other generation methods, ancestral sampling 1071

performs poorly on both surface-based and neural 1072

metrics. Among the sampling-based methods, ep- 1073

silon sampling performs best, which is consistent 1074

with the findings of Freitag et al., 2023a. 1075

We used k = 10 for top-k sampling and epsilon 1076

= 0.02 for epsilon sampling (Freitag et al., 2023a). 1077

Due to implementation issues with some CUDA 1078

programming, we do not consider epsilon sampling 1079

with low resource setup. 1080

In conclusion, similar to the experimental results 1081

based on beam search and epsilon sampling, the sig- 1082

nificantly boosted neural metrics demonstrate that 1083

sMBR-PP significantly outperforms QE reranking. 1084

However, improvements in neural metrics do not 1085

always lead to gains in surface-based metrics and 1086

even lead to deterioration compared to the baseline, 1087

especially when using sampling-based hypothesis 1088

generation. One possible explanation is that sam- 1089

pling leads to more diverse hypotheses, making it 1090

easier to generate candidates hypotheses that would 1091

lead to higher neural metrics but not favored by 1092

BLEU. Unfortunately, sMBR decoding does not 1093

consistently mitigate this issue compared to QE 1094

reranking, suggesting potential limitations in the 1095

utility functions. 1096

D Details of the classic setup 1097

For the high-resource setup, training data consists 1098

of 27.7M and 26.0M parallel sentences for En→De 1099

and En→Ru, respectively, augmented with an 1100

equal amount of back-translation sentences. We 1101

use a single model without ensembling or language 1102

model reranking to focus on the impact of the pro- 1103

posed methods. For the low resource setup, we 1104

train two base Transformer models using the News- 1105

Commentary dataset12. 1106

12data.statmt.org/news-commentary/v18.1/
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Decoding method En→De En→Ru

w/ top-k sampling |C| |S| BLEU↑ XCOMET↑ MetricX↓ BLEU↑ XCOMET↑ MetricX↓

High Resource (55.4M and 52.0M training data)

MAP 5 – 24.36 70.80 7.81 17.98 66.34 8.69
MBR 5 5 23.19 71.56 7.46 16.26 68.18 7.78
MAP 400 – 24.42 69.55 8.11 21.31†† 77.83 7.99
QE reranking 400 1 26.69 81.99 4.46 17.94 84.34 4.38
MBR 400 400 25.13 78.51 5.57 19.26†† 80.86 5.18
MBR 400 17 27.99†† 80.28 4.89 22.21†† 81.55 5.70
sMBR-PP 400 17 25.74 82.14 4.37† 17.30 84.77†† 4.20††

sMBR-BT 400 17 25.01 77.29 6.00 16.75 79.54 5.80

Low Resource (0.44M and 0.38M training data)

MAP 5 – 7.91 53.11 14.39 14.36 61.89 12.32
MBR 5 5 8.48 53.62 14.09 13.76 62.77 11.68
MAP 400 – 6.05 58.64 13.48 16.93†† 65.55 11.12
QE reranking 400 1 10.76 62.47 11.01 15.06 73.50 7.94
MBR 400 400 10.02 60.80 11.99 15.48 69.61 9.10
MBR 400 17 10.13 61.44 11.74 17.36†† 69.95 9.32
sMBR-PP 400 17 10.36 63.35†† 10.90†† 15.11 73.71† 7.88†

sMBR-BT 400 17 5.64 59.96 12.86 14.70 68.22 9.78

Table 6: Compares sMBR with other decision rules for En→De and En→Ru in the classic setup. |C| and |S|
indicate the number of candidate hypotheses and supportive hypotheses, respectively. For sMBR, we used |S| = 17
“support hypotheses” (1 original source + 16 quasi-sources). We performed paired bootstrap resampling; † and ††
indicate significantly better than QE reranking within groups (p < 0.05 and p < 0.01, respectively; Multiple testing
correction is not applied). The best in each group is marked in bold.

E Details of the LLM setup1107

We use the target language to prompt the model to1108

perform zero-shot translation. We used the follow-1109

ing prompts during inference:1110

En→De:1111

Übersetzen Sie den folgenden Text1112

vom Englischen ins Deutsche.\n1113

Englischen:\n{source_text}\nDeutsche:1114

En→Ru:1115

Переведите следующий текст с1116

английского на русский.\n1117

Английский:\n{source_text}\nРусский:1118

Zh→En:1119

Translate the following text from1120

Chinese to English.\nChinese:1121

\n{source_text}\nEnglish:1122

We completed all decoding on a server with1123

four NVIDIA H100s with bfloat16 precision. For1124

sMBR-PP on Zh→En, we trained a mT5-based1125

(Xue et al., 2020) model for the paraphrase genera-1126

tor. See Appendix A for details.1127

F Efficiency comparison 1128

In this section, we discuss the efficiency of sMBR- 1129

PP and compare it with QE reranking and MBR. 1130

For the latter, we compare the average decision 1131

time required for MBR, an optimized implementa- 1132

tion of MBR (MBR-fast), and sMBR-PP to trans- 1133

late a single sentence. We ran each method five 1134

times on a single NVIDIA H100 with batch size 1135

256 examples and then report the means. 1136

As expected, the decision time required for 1137

sMBR-PP to translate a sentence is much larger 1138

than that of QE reranking. Specifically, the deci- 1139

sion time of sMBR-PP consists of two parts: the 1140

time required to generate the quasi-source and the 1141

time required to calculate the quality-aware utility 1142

function. In fact, we find that the time required 1143

to generate the quasi-source is only a small part 1144

of the overall decision time, which is about 0.13 1145

seconds for each sentence, while the large num- 1146

ber of quality-aware utility functions requires 3.56 1147

seconds. In contrast, the decision time for QE 1148

reranking is 0.21 seconds per sentence, which is 1149

much faster than sMBR-PP. 1150

Obviously, compared to QE reranking, sMBR- 1151
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Decoding method En→De En→Ru

w/ ancestral sampling |C| |S| BLEU↑ XCOMET↑ MetricX↓ BLEU↑ XCOMET↑ MetricX↓

High Resource (55.4M and 52.0M training data)

MAP 5 – 10.00 35.78 18.68 14.05 61.37 12.22
MBR 5 5 6.80 30.50 20.09 12.40 58.33 12.60
MAP 400 – 11.60 51.08 14.71 21.83†† 79.61 7.06
QE reranking 400 1 16.98 61.07 11.98 19.12 82.12 5.12
MBR 400 400 10.48 45.41 15.88 17.64 78.47 6.05
MBR 400 17 18.23†† 58.37 12.49 21.44 81.47 5.29
sMBR-PP 400 17 17.09 61.29 11.97 18.55 82.22 5.11
sMBR-BT 400 17 14.73 56.94 12.95 19.40 80.42 5.74

Low Resource (0.44M and 0.38M training data)

MAP 5 – 5.29 39.33 18.35 11.13 49.98 16.13
MBR 5 5 5.85 36.64 18.92 8.47 46.38 16.73
MAP 400 – 3.72 51.78 15.35 15.23†† 62.82 12.00
QE reranking 400 1 6.67 54.18 14.14 14.22 68.13 9.96
MBR 400 400 7.67†† 47.81 15.70 12.47 62.45 11.44
MBR 400 17 6.99 53.16 14.49 15.13†† 66.23 10.47
sMBR-PP 400 17 6.67 54.85†† 14.11 14.08 68.41† 9.88†

sMBR-BT 400 17 3.62 51.60 15.19 13.90 64.30 11.33

Table 7: Compares sMBR with other decision rules for En→De and En→Ru in the classic setup. |C| and |S|
indicate the number of candidate hypotheses and supportive hypotheses, respectively. For sMBR, we used |S| = 17
“support hypotheses” (1 original source + 16 quasi-sources). We performed paired bootstrap resampling; † and ††
indicate significantly better than QE reranking within groups (p < 0.05 and p < 0.01, respectively; Multiple testing
correction is not applied). The best in each group is marked in bold.

Decoding method En→De En→Ru

w/ epsilon sampling |C| |S| BLEU↑ XCOMET↑ MetricX↓ BLEU↑ XCOMET↑ MetricX↓

High Resource (55.4M and 52.0M training data)

MAP 5 – 24.41 81.26 5.18 19.34 73.56 7.57
MBR 5 5 25.85 82.44 4.19 16.88 74.14 7.17
MAP 400 – 13.62 76.83 7.97 22.01†† 77.65 6.58
QE reranking 400 1 28.64 86.12 3.12 18.94 83.12 4.57
MBR 400 400 28.23 86.20 3.17 19.48 80.09 5.43
MBR 400 17 26.72 85.18 3.84 23.05†† 81.75 5.10
sMBR-PP 400 17 27.55 86.47† 3.00† 18.89 83.41† 4.47†

sMBR-BT 400 17 12.94 78.26 7.53 17.36 79.69 5.81

Table 8: Compares sMBR with other decision rules for En→De and En→Ru in the classic setup with epsilon
sampling. |C| and |S| indicate the number of candidate hypotheses and supportive hypotheses, respectively. For
sMBR, we used |S| = 17 “support hypotheses” (1 original source + 16 quasi-sources). We performed paired
bootstrap resampling; † and †† indicate significantly better than QE reranking within groups (p < 0.05 and p < 0.01,
respectively; Multiple testing correction is not applied). The best in each group is marked in bold.

PP uses the quality perception utility function times1152

(number of quasi-sources +1).1153

Next, we compare the decision time of sMBR-1154

PP with that of the standard MBR. In MBR, the1155

COMET model can be decomposed into a sen-1156

tence encoder femb for computing sentence em-1157

beddings, and a simple estimator fest(·, ·, ·) based 1158

on a multilayer perceptron. For a source x, a candi- 1159

date hypothesis h, and support hypotheses hs ∈ S , 1160

COMET-based MBR first computes the source em- 1161

bedding xemb, the candidate hypothesis embedding 1162

hemb, and a set of support hypotheses embeddings 1163
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Decoding method En→De Zh→En

|C| |S| BLEU↑ XCOMET↑ MetricX↓ BLEU↑ XCOMET↑ MetricX↓

w/ beam search TowerInstruct-13B

MAP 5 – 39.75 87.11 2.47 24.94 89.13 2.13
MBR 5 5 39.84 87.29 2.46 25.00 89.14 2.13
MAP 128 – 40.04 87.07 2.44 24.96 89.12 2.14
QE reranking 128 1 40.11 87.35 2.40 24.96 89.22 2.11
MBR 128 128 40.07 87.29 2.41 25.00 89.17 2.13
MBR 128 17 40.14 87.19 2.41 24.96 89.13 2.14
sMBR-PP 128 17 40.15 87.45† 2.36 24.93 89.28† 2.10
sMBR-BT 128 17 40.18 87.39 2.37 24.90 89.21 2.11

w/ top-k sampling

MAP 5 – 28.12 84.85 3.31 19.94 88.14 2.42
MBR 5 5 25.52 86.12 3.12 18.52 88.82 2.31
MAP 128 – 32.13†† 86.17 3.30 21.90†† 88.56 2.22
QE reranking 128 1 27.56 88.09 2.73 19.07 90.10 1.93
MBR 128 128 28.28† 88.68†† 2.56† 21.19†† 90.23 1.94
MBR 128 17 30.66†† 88.76†† 2.59 22.40†† 90.47†† 1.87
sMBR-PP 128 17 25.20 89.05†† 2.47†† 18.85 90.19 1.91
sMBR-BT 128 17 27.13 88.48 2.65 18.87 89.82 2.03

w/ ancestral sampling

MAP 5 – 26.29 83.20 4.00 19.07 87.21 2.62
MBR 5 5 24.20 84.67 3.62 17.97 87.79 2.52
MAP 128 – 30.81†† 85.76 3.42 21.86†† 88.57 2.32
QE reranking 128 1 27.10 87.57 2.89 18.67 89.69 2.07
MBR 128 128 26.88 87.59 2.75 20.65†† 89.65 2.03
MBR 128 17 28.64†† 87.50 2.78 21.72†† 90.02† 1.97
sMBR-PP 128 17 25.78 87.91† 2.86 18.29 89.70 2.08
sMBR-BT 128 17 26.78 87.79 2.84 18.40 89.41 2.13

w/ epsilon sampling

MAP 5 – 30.24 86.06 3.32 20.73 88.15 2.41
MBR 5 5 28.10 87.30 2.95 19.74 88.96 2.20
MAP 128 – 32.64†† 86.43 3.22 23.12†† 89.14 2.20
QE reranking 128 1 29.40 88.76 2.56 19.88 90.64 1.89
MBR 128 128 29.84 89.19† 2.46†† 22.01†† 90.39 1.90
MBR 128 17 31.93†† 88.83 2.60 23.34†† 90.43 1.87
sMBR-PP 128 17 27.19 89.47†† 2.44†† 19.87 90.70† 1.87
sMBR-BT 128 17 28.73 89.04 2.50 19.77 90.38 1.98

Table 9: Compares sMBR with other decision rules for En→De and Zh→En in the LLM setup. |C| and |S|
indicate the number of candidate hypotheses and supportive hypotheses, respectively. For sMBR, we used |S| = 17
“support hypotheses” (1 original source + 16 quasi-sources). We performed paired bootstrap resampling; † and ††
indicate significantly better than QE reranking within groups (p < 0.05 and p < 0.01, respectively; Multiple testing
correction is not applied). The best in each group is marked in bold.

Semb , using femb. Then, the MBR score of h1164

scoreMBR
h can then be computed as:1165

scoreMBR
h =

1

|S|
∑

hemb
s ∈Semb

fest(x
emb, hs

emb, hemb).

(13)

1166

When S = C, the cost of computing utility for all 1167

candidate hypotheses in a naive MBR implementa- 1168

tion is O(|C|2), implying a quadratic cost for both 1169

femb and fest(·, ·, ·). 1170

However, MBR-fast optimizes embedding com- 1171

putation by recognizing that the embedding any 1172
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Decoding method En→Ru

|C| |S| BLEU↑ XCOMET↑ MetricX↓

w/ beam search TowerInstruct-13B

MAP 5 – 29.46 89.51 3.00
MBR 5 5 29.33 89.61 2.96
MAP 128 – 29.50† 89.58 3.00
QE reranking 128 1 29.33 89.65 2.97
MBR 128 128 29.38 89.69 2.97
MBR 128 17 29.52†† 89.57 3.00
sMBR-PP 128 17 29.36 89.77† 2.96
sMBR-BT 128 17 29.39 89.69 2.96

w/ top-k sampling

MAP 5 – 23.22 86.79 3.69
MBR 5 5 21.23 87.02 3.53
MAP 128 – 28.07†† 89.30 2.97
QE reranking 128 1 22.02 91.37 2.45
MBR 128 128 24.24†† 91.26 2.48
MBR 128 17 27.47†† 91.36 2.41
sMBR-PP 128 17 20.24 91.49†† 2.40
sMBR-BT 128 17 21.27 90.80 2.51

w/ ancestral sampling

MAP 5 – 23.28 86.79 3.69
MBR 5 5 21.12 87.18 3.51
MAP 128 – 28.32†† 89.27 3.01
QE reranking 128 1 21.35 90.96 2.55
MBR 128 128 23.77†† 90.98 2.53
MBR 128 17 26.55†† 91.23†† 2.47
sMBR-PP 128 17 20.52 90.99 2.50
sMBR-BT 128 17 21.63 90.78 2.57

w/ epsilon sampling

MAP 5 – 26.19 88.53 3.20
MBR 5 5 23.92 89.56 2.87
MAP 128 – 29.61†† 89.68 2.97
QE reranking 128 1 22.35 91.67 2.34
MBR 128 128 25.90†† 91.33 2.35
MBR 128 17 28.94†† 91.54 2.40
sMBR-PP 128 17 21.26 92.12†† 2.20††

sMBR-BT 128 17 22.47 91.68 2.38

Table 10: Compares sMBR with other decision rules for En→Ru, the NMT model is TowerInstruct-13B. |C| and
|S| indicate the number of candidate hypotheses and supportive hypotheses, respectively. For sMBR, we used |S| =
17 support hypotheses (1 original source + 16 quasi-sources). We performed paired bootstrap resampling; † and ††
indicate significantly better than QE reranking within groups (p < 0.05 and p < 0.01, respectively; Multiple testing
correction is not applied). The best in each group is marked in bold.
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sentence in a triple (x, h, hs) is independent of the1173

other elements. By pre-computing sentence embed-1174

dings independently for all sources and hypotheses,1175

MBR-fast avoids duplicate femb computations and1176

reduces its cost to O(|C|) when S = C. The esti-1177

mator fest(·, ·, ·) still has a quadratic cost O(|C|2)1178

since the order of elements within the triple affects1179

the output, but it is computationally cheaper com-1180

pared to a femb consisting of multiple transformer1181

blocks. Note that this optimization is not univer-1182

sal due to the fact that it takes advantage of the1183

particular architecture of COMET.1184

In contrast, the COMET-QE model used in1185

sMBR consists of an encoder fQE
emb that takes the1186

concatenated source and hypothesis as input and1187

outputs their joint embedding, and an estimator1188

fQE
est . The joint embeddings must be computed sep-1189

arately for each source-hypothesis pair, resulting1190

in a cost of O(K × |C|) for both fQE
emb and fQE

est .1191

Table 11 shows the measurement results. sMBR1192

is faster than the naive implementation of MBR be-1193

cause it uses a smaller number of support hypothe-1194

ses. However, it is much slower than the optimized1195

implementation of MBR due to the difficulty of1196

further optimizing its utility function itself.1197

In summary, while sMBR-PP significantly im-1198

proves translation quality compared to QE rerank-1199

ing and has competitive performance to MBR, there1200

is still room for improving its efficiency to match1201

optimized COMET-based MBR decoding.1202

MBR MBR-fast sMBR-PP

Decision time 135.29 s 0.32 s 3.56 ( + 0.13) s

Table 11: Decision time for translating a sentence: mea-
sured on newstest2020 in En→De. For sMBR-PP, the
number in parentheses is the quasi-source generation
time. The batch size is 256.

G Impact of the number of candidate1203

hypotheses1204

We explored the impact of the number of candi-1205

date hypotheses on the evaluation metrics in an1206

En→De high resource setting. Figure 3 shows the1207

results. We find that 400 is an appropriate number,1208

as more candidate hypotheses bring small perfor-1209

mance gains and lead to higher costs.1210

H Using LLM to generate quasi-sources 1211

for sMBR-PP 1212

We show in the results of investigating the nature 1213

of quasi-sources in sMBR-PP and sMBR-BT based 1214

on Self-BLEU and semantic similarity. These re- 1215

sults suggest that quasi-sources with richer surface 1216

forms and greater semantic similarity to the orig- 1217

inal source may lead to better translation quality. 1218

In fact, during the early stages of this research, 1219

we tried using GPT4-0125 (Achiam et al., 2023), 1220

the state-of-the-art LLM at the time, to generate 1221

quasi-sources for sMBR-PP. 1222

XCOMET↑ MetricX↓

sMBR-PP (T5) 86.52 4.14
sMBR-PP (GPT4) 87.10 4.09

Table 12: Comparison of sMBR-PP performance based
on different paraphrase generators: Experiments con-
ducted on high-resource sub-setup, En→Ru language
pair, using beam search to generate candidate hypothe-
ses.

Table 12 shows our results on the classic setup, 1223

En→Ru language pair, high-resource sub-setup, us- 1224

ing beam search to generate candidate hypotheses. 1225

We found that sMBR-PP based on GPT4-0125 1226

achieved better performance on both XCOMET 1227

and MetricX. 1228

Self-BLEU↓ Semantic Similarity↑

sMBR-PP (T5) 45.95 92.83
sMBR-PP (GPT4) 18.67 93.46

Table 13: Analyzing of quasi-sources: analyzed on the
En→Ru generaltest2023, high resource. Lower Self-
BLEU means richer surface diversity; higher semantic
similarity means closer semantics to the original source.

We investigated the properties of quasi-sources 1229

generated by GPT4-0125 using the same method as 1230

in , and the results are presented in Table 13. 1231

We observed that quasi-sources generated by 1232

GPT4-0125 had lower Self-BLEU than those gen- 1233

erated by T5, while maintaining similar semantic 1234

similarity. This indicates that quasi-sources gener- 1235

ated by GPT4-0125 have richer surface forms. 1236

Therefore, we believe that using paraphrases 1237

with richer surface forms as quasi-sources can in- 1238

deed improve the performance of sMBR-PP. How- 1239

ever, considering that research based on non-open 1240

models like GPT4-0125 would make our work dif- 1241

ficult to reproduce—after all, GPT4-0125 produces 1242
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Figure 3: Impact of the number of candidate hypotheses on the evaluation metrics: in the En→De high resource
setup. The horizontal axis indicates the number of candidate hypotheses and the vertical axis indicates the evaluation
indicators.

different outputs for identical inputs even with a1243

specified random seed or temperature of 0, and1244

GPT4-0125 may not be accessible in the future. On1245

the other hand, although sMBR-PP based on T51246

doesn’t perform as well on XCOMET and MetricX1247

as sMBR-PP based on GPT4-0125, T5 is an open1248

model that allows us to ensure the reproducibility1249

of our research and support our conclusions. There-1250

fore, we chose T5-based sMBR-PP as our main1251

experimental setup. Nevertheless, recent research1252

on open LLMs has made significant progress, and1253

we will explore using open LLMs as alternative1254

experimental setups for sMBR-PP in future work.1255

I Generating quasi-sources for sMBR-PP1256

with diverse beam search1257

The analysis results in suggest that the poor per-1258

formance of sMBR-BT may be due to the lack of1259

diversity in the surface form of the quasi-source.1260

This could be because we used simple beam search1261

to generate the quasi-source.1262

Diverse Beam Search (DBS) (Vijayakumar et al.,1263

2017) is an improved beam search method that can1264

generate more diverse text. We tried using different1265

beam search methods to generate quasi-sources for 1266

sMBR-BT in the classic setup. 1267

XCOMET↑ MetricX↓

QE ranking 86.48 3.22
sMBR-BT (BS) 86.17 3.33
sMBR-BT (DBS) 86.19 3.29

Table 14: Comparison of sMBR-BT performance based
on different search methods: Experiments conducted on
high-resource sub-setup, En→De language pair, using
beam search to generate candidate hypotheses.

Table 14 shows the experimental results for the 1268

En→De task (classic setting, high-resource sub- 1269

set, using beam search to generate candidate hy- 1270

potheses), where sMBR-BT (BS) indicates using 1271

simple beam search to generate the quasi-source, 1272

while sMBR-BT (DBS) indicates using DBS. We 1273

found that using DBS to generate quasi-sources 1274

only slightly improved the performance of sMBR- 1275

BT, but it was still worse than QE reranking. 1276

We will attempt to use more improved methods 1277

(such as sampling-based generation methods) to 1278

generate quasi-sources to enhance the performance 1279
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of sMBR-BT as future work.1280
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