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Abstract

Large language models often hallucinate, creating trust and safety concerns in1

high-stakes settings. We present a generation-time, zero-resource framework2

for hallucination detection that unifies black-box, white-box, and judge signals.3

Heterogeneous outputs are standardized to a shared 0 to 1 confidence scale for4

ranking and thresholding. To enhance flexibility, we introduce a simple, extensible5

ensemble with non-negative weights tuned on a graded set of LLM responses.6

Across six QA benchmarks and four generators, the ensemble outperforms the7

best individual scorer in 18 of 24 AUROC cases and 16 of 24 F1 cases. Among8

non-ensemble scorers, entailment-style black-box methods are strong baselines,9

although they incur higher generation costs and lack effectiveness when variation10

in sampled responses is low. The framework supports practical actions such as11

blocking low-confidence responses or routing to human review. We release an open-12

source Python library providing ready-to-use implementations of all methods.13

1 Introduction14

Large language models (LLMs) are increasingly deployed in production applications, including high-15

stakes domains such as healthcare and finance. Monitoring the accuracy and factuality of generated16

outputs is therefore essential. Hallucination, where outputs sound plausible yet contain incorrect17

content, remains a central reliability risk. Pre-deployment evaluations that compare generated text to18

ground truth are valuable but do not support real-time monitoring of deployed systems. In contrast,19

generation-time methods that quantify uncertainty can score each response at inference time.20

Uncertainty quantification (UQ) spans black-box uncertainty from variation across sampled responses21

[Cole et al., 2023, Manakul et al., 2023, Lin et al., 2024, Kuhn et al., 2023, Kossen et al., 2024,22

Farquhar et al., 2024, Zhang et al., 2024, Qiu and Miikkulainen, 2024], white-box token-probability23

signals such as negative log probability, perplexity, entropy, and geometric means [Manakul et al.,24

2023, Fadeeva et al., 2024, Malinin and Gales, 2021], and LLM-as-a-judge scoring [Chen and Mueller,25

2023, Kadavath et al., 2022, Xiong et al., 2024]. Surveys provide broader coverage [Huang et al.,26

2023, Tonmoy et al., 2024, Shorinwa et al., 2024, Huang et al., 2024]. Prior work often assesses a27

single family or considers heterogeneous signals without a shared output space.128

This paper presents a generation-time, zero-resource framework for hallucination detection that unifies29

diverse uncertainty signals. We adapt black-box methods that exploit response variation, white-box30

methods that use token probabilities, and LLM-as-a-judge methods. We then apply a standardization31

protocol that maps heterogeneous outputs to a common confidence scale in [0, 1], where higher values32

1We provide a detailed overview of related work in Appendix A.
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indicate higher confidence that a response is correct. The standardized scores enable ranking and33

thresholding for practical actions: block low-confidence responses, route uncertain cases to human34

review, or attach a low-confidence disclaimer. Building on these scores, we introduce a lightweight35

ensemble that combines multiple signals with non-negative weights learned on a graded set of LLM36

responses. The ensemble design is extensible, so new scorers can be added without redesign. Finally,37

our framework is complemented by uqlm, our open-source Python package that provides ready-to-use38

implementations of all uncertainty quantification methods presented and evaluated in this work.239

2 Hallucination Detection Methods40

2.1 Problem Statement41

We study binary detection of hallucinations in LLM outputs. For a prompt xi and its original response42

yi ∈ Y , let a confidence scorer be a function ŝ : Y → [0, 1] that maps yi to a confidence score, where43

larger values indicate higher confidence that yi is correct. Given a threshold τ ∈ [0, 1], define the44

binary predictor ĥ : Y → {0, 1} by ĥ(yi; θ, τ) = I(ŝ(yi; θ) < τ), where θ denotes scorer-specific45

inputs (e.g., multiple responses generated from xi).46

2.2 UQ-Based Confidence Scorers47

We group scorers into three families. Black-box scorers exploit variation across multiple responses to48

the same prompt. White-box scorers use token probabilities associated with the generated response.49

Judge-based scorers prompt an LLM to rate the correctness of a question-response concatenation. All50

raw outputs are standardized to [0, 1] so that larger values indicate higher confidence. Standardization51

applies direction alignment and a bounded monotone transform when needed. Concise scorer52

definitions are presented in Table 1 and detailed definitions are contained in Appendix B. A detailed53

description of the uqlm software is contained in Appendix C.54

Scorer Family Definition (sketch) Extra inputs

EMR Black-box 1
m

∑m
j=1 I(yi = ỹij) m candidates

BSC Black-box 1
m

∑m
j=1 BERTF1(yi, ỹij) m candidates, token-level embeddings

NCS Black-box 1
m

∑m
j=1

1+cos(V (yi),V (ỹij))

2
m candidates, sentence-level embeddings

NCP Black-box 1− 1
m

∑m
j=1

η(yi,ỹij)+η(ỹij ,yi)

2
m candidates, NLI model

NSN Black-box 1− SE(yi; ỹi)/ log(m+1) m candidates, NLI model

LNTP White-box
∏

t∈yi
p
1/Li
t token probabilities

MTP White-box mint∈yi pt token probabilities

Judge LLM-as-judge scorejudge(xi, yi)/100 judge model

Ensemble Meta Optimized combination of scorers tuning data, component inputs
Table 1: Scorers at a glance: standardized [0, 1] confidence; higher implies lower hallucination risk.

Black-Box UQ. For a prompt xi, black-box UQ methods generate m candidates ỹi =55

{ỹi1, . . . , ỹim} at nonzero temperature and compare to the original response yi. Methods in-56

clude exact-match rate (EMR) [Cole et al., 2023, Chen and Mueller, 2023], semantic similarity57

via BERTScore confidence (BSC) [Manakul et al., 2023] or normalized cosine similarity (NCS)58

[Shorinwa et al., 2024], and entailment-based scorers including non-contradiction probability (NCP)59

[Chen and Mueller, 2023, Lin et al., 2024, Manakul et al., 2023] and semantic entropy [Farquhar60

et al., 2024, Kuhn et al., 2023] normalized to confidence, i.e., normalized semantic negentropy (NSN).61

These require additional generations and, for some variants, an encoder or a Natural Language62

Inference (NLI) model.63

White-Box UQ. White-box UQ methods use token probabilities of the generated response to64

measure uncertainty. These approaches have the advantage of adding no additional latency or65

2An anonymized GitHub repository with code and instructions is available at https://anonymous.4open.
science/r/uqlm-FBF3. A public link will be provided upon acceptance.
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generation costs, but are not compatible with all LLM APIs. We consider two white-box UQ scorers:66

length-normalized token probability (LNTP), computed as the geometric mean of token probabilities67

for a generated response, and minimum token probability (MTP). By construction, these two scorers68

are bounded with [0, 1] support and hence do not require normalization.69

LLM-as-a-judge. In this approach, we concatenate a question-response pair and pass it to an LLM70

with a carefully constructed instruction prompt that directs the model to evaluate the correctness71

of the response. We adapt our instruction prompt from Xiong et al. [2024], instructing the LLM to72

score responses on a 0-100 scale, where a higher score indicates a greater certainty that the provided73

response is correct. These scores are then normalized to a 0-to-1 scale to maintain consistency with74

our other confidence scoring methods. The complete prompt template is provided in Appendix B.4.75

Ensemble (meta-scorer). Lastly, we combine standardized scorers using non-negative weights76

learned on a graded set of LLM responses to optimize a chosen objective (e.g., AUROC). The77

ensemble outputs a single [0, 1] confidence score and remains interpretable; non-negative weights78

preserve monotonicity with respect to each component. Tuning details appear in Appendix B.5.79

3 Experiments80

Experimental Setup We evaluate hallucination detection across six QA benchmarks with diverse81

answer formats: numerical (GSM8K [Cobbe et al., 2021], SVAMP [Patel et al., 2021]), multiple-82

choice (CSQA [Talmor et al., 2022], AI2-ARC [Clark et al., 2018]), and open-text (PopQA [Mallen83

et al., 2023], NQ-Open [Lee et al., 2019]). We sample 1,000 questions per dataset and, for each84

prompt, generate one original response and m=15 candidates at temperature 1.0 using four LLMs:85

GPT-3.5 [OpenAI], GPT-4o [OpenAI], Gemini-1.0-Pro [Google], and Gemini-1.5-Flash [Google].86

Black-box scores for a response use the candidates produced by the same LLM. Judge scores are87

obtained from three judges (GPT-3.5, GPT-4o, Gemini-1.5-Flash); white-box scores are computed88

where token probabilities are available (GPT-4o, Gemini-1.0-Pro, Gemini-1.5-Flash).3 All scores are89

produced with our companion toolkit, uqlm.4 Supplemental figures displaying detailed experiment90

results are contained in Appendix D.91

Threshold-agnostic (AUROC). We evaluate each scorer as a ranker of incorrect responses using92

AUROC. The ensemble uses AUROC-optimized weights learned on the training fold with 5-fold93

cross-validation. Appendix Fig. 5 shows per-scorer AUROC across the 24 LLM–dataset scenarios,94

while Table 2 highlights the best scorer per scenario. Best-scorer AUROC ranges from 0.72 (GPT-3.595

on PopQA, NCS) to 0.93 (Gemini-1.5-Flash on AI2-ARC, LNTP), with 19 of 24 scenarios above 0.8,96

indicating strong overall hallucination detection performance. The ensemble outperforms individual97

components in 18 of 24 scenarios. NLI-based scorers (NSN, NCP) typically lead among black-box98

scorers (18 of 24 scenarios), GPT-4o is the strongest judge in 19 of 24 scenarios, and the two99

white-box scorers (LNTP and MTP) perform similarly.100

Table 2: Hallucination Detection AUROC (Higher is Better): Top Scorer by Dataset and Model
Dataset Gem.-1.0-Pro Gem.-1.5-Flash GPT-3.5 GPT-4o

AUROC Scorer AUROC Scorer AUROC Scorer AUROC Scorer

NQ-Open 0.84 Ensemble 0.79 Ensemble 0.76 Ensemble 0.73 Ensemble
PopQA 0.86 Ensemble 0.87 Ensemble 0.72 NCS 0.91 Ensemble
GSM8K 0.84 Ensemble 0.82 Ensemble 0.84 Ensemble 0.90 Ensemble
SVAMP 0.88 NSN 0.89 MTP 0.88 Ensemble 0.89 Ensemble
CSQA 0.87 GPT-4o 0.79 Ensemble 0.84 Ensemble 0.84 Ensemble
AI2-ARC 0.90 Ensemble 0.93 LNTP 0.91 Ensemble 0.86 LNTP

3Our GPT-3.5 instance did not expose token probabilities. Gemini-1.0-Pro was retired during the study and
is unavailable as a judge.

4Using an n1-standard-16 machine (16 vCPU, 8 core, 60 GB memory) with a single NVIDIA T4 GPU
attached, our experiments took approximately 0.5-3 hours per LLM-dataset combination to complete.
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Threshold-optimized (F1). We jointly tune ensemble weights and the decision threshold with101

F1 as the objective (per-scorer thresholds via grid search), reporting 5-fold cross-validated test F1.102

Appendix Fig. 6 shows per-scorer F1, while Table 3 summarizes the top scorer per scenario. Results103

mirror AUROC: the ensemble is best in 16 of 24 scenarios, NSN/NCP dominate among black-box104

scorers (19 of 24), and GPT-4o is the strongest judge (22 of 24). GPT-4o’s judging strength aligns105

with its higher baseline answer accuracy relative to GPT-3.5 and Gemini models (Appendix Fig. 7).106

Table 3: Hallucination Detection F1 (Higher is Better): Top Scorer by Dataset and Model
Dataset Gem.-1.0-Pro Gem.-1.5-Fl. GPT-3.5 GPT-4o

F1 Scorer F1 Scorer F1 Scorer F1 Scorer

NQ-Open 0.62 EMR 0.67 Ensemble 0.68 Ensemble 0.75 Ensemble
PopQA 0.54 NSN 0.66 GPT-4o 0.42 Ensemble 0.75 Ensemble
GSM8K 0.63 Ensemble 0.70 NCP 0.60 Ensemble 0.85 Ensemble
SVAMP 0.89 NSN 0.93 NCP 0.89 Ensemble 0.97 Ensemble
CSQA 0.89 GPT-4o 0.90 Ensemble 0.90 Ensemble 0.91 NCP
AI2-ARC 0.97 Ensemble 0.97 Ensemble 0.97 Ensemble 0.99 Ensemble

Filtered Accuracy@τ . We report accuracy on the subset of responses with confidence ≥ τ for107

τ ∈ {0, 0.1, . . . , 0.9}. Appendix Fig. 7 plots the best white-box, black-box, judge, and ensemble per108

scenario. Accuracy generally increases with τ . For example, filtering Gemini-1.0-Pro on PopQA with109

the top black-box scorer raises accuracy from 0.15 to 0.69 at τ=0.6; filtering GPT-4o on GSM8K110

with a white-box scorer yields 0.81 at τ=0.6 vs 0.55 baseline. A notable exception is black-box111

scoring on Gemini-1.5-Flash for CSQA and AI2-ARC, where filtering does not improve accuracy.112

Effect of Candidate Count (m) on Black-Box Scorers We recompute black-box scores for113

m ∈ {1, 3, 5, 10, 15} across 24 LLM–dataset scenarios (holding the original response fixed) and114

report AUROC (Fig. 8). Performance generally rises with m with diminishing returns [Kuhn et al.,115

2023, Manakul et al., 2023, Lin et al., 2024, Farquhar et al., 2024]. We find two exceptions: (i) BSC116

shows weaker gains with larger m, as also observed by Manakul et al. [2023]; (ii) for Gemini-1.5-117

Flash on AI2-ARC and CSQA, black-box AUROC is low (0.46–0.56) and flat because candidates are118

near-duplicates (EMR=1.00, 0.99). More broadly, Gemini-1.5-Flash exhibits higher EMR than other119

LLMs, underscoring that black-box effectiveness is limited by candidate diversity [Kuhn et al., 2023].120

4 Conclusion121

Discussion and Conclusion. Selecting a confidence scorer depends on API access, latency, model122

behavior, and the availability of a small graded set for tuning. If token probabilities are available,123

white-box scorers add no latency or generation costs and are competitive. Without token probabilities,124

black-box and judge-based scorers are the practical options. For low-latency applications, prefer125

faster black-box methods or a judge; when latency is less constrained, NLI-based black-box scorers126

(NSN, NCP) typically perform best. Black-box methods can struggle when sampled responses lack127

diversity. In such cases, white-box or judge-based signals are preferable (Fig. 8). Increasing the128

number of candidates m offers limited gains once diversity saturates, which provides a budget-aware129

guideline for black-box settings. For judge selection, a simple heuristic works well in our experiments:130

models with higher task accuracy tend to be better judges of answers on that task. When a graded set131

of LLM responses is available, a tuned ensemble over standardized scorers improves robustness over132

individual methods and remains extensible as new scorers appear. Practically, standardized scores133

enable thresholded actions: block low-confidence responses, route uncertain cases to human review,134

or attach a low-confidence disclaimer, with efficacy demonstrated in the filtered accuracy experiments135

(Fig. 7).136

Limitations and Future Work. While our evaluation covers six QA datasets and four LLMs, it is137

important to note that results may differ for different question types (e.g. long-form tasks), newer138

models, or alternative judge prompts. White-box behavior depends on token-probability availability,139

and black-box effectiveness depends on response diversity. Our ensemble experiments are limited to140

linear ensembles. For future work, we suggest exploring richer ensembling strategies, broader task141

families, and more recently released LLMs in experimental evaluations.142
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A Related Work306

Black-Box UQ Cole et al. [2023] propose evaluating similarity between an original response307

and candidate responses using exact match-based metrics. In particular, they propose two metrics:308

repetition, which measures the proportion of candidate responses that match the original response,309

and diversity, which penalizes a higher proportion of unique responses in the set of candidates. These310

metrics have the disadvantage of penalizing minor phrasing differences even if two responses have311

the same meaning. Text similarity metrics assess response consistency in a less stringent manner.312

Manakul et al. [2023] propose using n-gram-based evaluation to evaluate text similarity. Similar313

metrics such as ROUGE [Lin, 2004], BLEU [Papineni et al., 2002], and METEOR [Banerjee and314

Lavie, 2005] have also been proposed [Shorinwa et al., 2024]. These metrics, while widely adopted,315

have the disadvantage of being highly sensitive to token sequence orderings and often fail to detect316

semantic equivalence when two texts have different phrasing. Sentence embedding-based metrics317

such as cosine similarity [Qurashi et al., 2020], computed using a sentence transformer such as318

Sentence-Bert [Reimers and Gurevych, 2019], have also been proposed [Shorinwa et al., 2024].319

These metrics have the advantage of being able to detect semantic similarity in a pair of texts that are320

phrased differently. In a similar vein, Manakul et al. [2023] propose using BERTScore [Zhang et al.,321

2020], based on the maximum cosine similarity of contextualized word embeddings between token322

pairs in two candidate texts.323

Natural Language Inference (NLI) models are another popular method for evaluating similarity324

between an original response and candidate responses. These models classify a pair of texts as325

either entailment, contradiction, or neutral. Several studies propose using NLI estimates of 1 −326

P (contradiction) or P (entailment) between the original response and a set of candidate responses to327

quantify uncertainty [Chen and Mueller, 2023, Lin et al., 2024]. Zhang et al. [2024] follow a similar328

approach but instead average across sentences and exclude P (neutral) from their calculations.5 Other329

studies compute semantic entropy using NLI-based clustering [Kuhn et al., 2023, Kossen et al., 2024,330

Farquhar et al., 2024]. Qiu and Miikkulainen [2024] estimate density in semantic space for candidate331

responses.332

White-Box UQ Manakul et al. [2023] consider two scores for quantifying uncertainty with token333

probabilities: average negative log probability and maximum negative log probability. While these334

approaches effectively represent a measure of uncertainty, they lack ease of interpretation, are335

unbounded, and are more useful for ranking than interpreting a standalone score. Fadeeva et al.336

[2024] consider perplexity, calculated as the exponential of average negative log probability. Similar337

to average negative log probability, perplexity also has the disadvantage of being unbounded. They338

also consider response improbability, computed as the complement of the joint token probability339

of all tokens in the response. Although this metric is bounded and easy to interpret, it penalizes340

longer token sequences relative to semantically equivalent, shorter token sequences. Another popular341

metric is entropy, which considers token probabilities over all possible token choices in a pre-defined342

vocabulary [Malinin and Gales, 2021, Manakul et al., 2023]. Malinin and Gales [2021] also consider343

the geometric mean of token probabilities for a response, which has the advantage of being bounded344

and easy to interpret.6345

LLM-as-a-Judge For uncertainty quantification, several studies concatenate a question-answer346

pair and ask an LLM to score or classify the answer’s correctness. Chen and Mueller [2023] propose347

using an LLM for self-reflection certainty, where the same LLM is used to judge correctness of the348

response. Specifically, the LLM is asked to score the response as incorrect, uncertain, or correct,349

which map to scores of 0, 0.5, and 1, respectively. Similarly, Kadavath et al. [2022] ask the same350

LLM to state P (Correct) given a question-answer concatenation. Xiong et al. [2024] explore several351

variations of similar prompting strategies for LLM self-evaluation. More complex variations such as352

multiple choice question answering generation [Manakul et al., 2023], multi-LLM interaction [Cohen353

et al., 2023], and follow-up questions [Agrawal et al., 2024] have also been proposed.354

5Averaging across sentences is done to address long-form responses. Jiang et al. [2024] also address
long-form hallucination detection but follow a graph-based approach instead.

6For additional white-box uncertainty quantification techniques, we refer the reader to Ling et al. [2024],
Bakman et al. [2024], Guerreiro et al. [2023], Zhang et al. [2023], Varshney et al. [2023], Luo et al. [2023], Ren
et al. [2023], van der Poel et al. [2022], Wang et al. [2023].
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Ensemble Approaches Chen and Mueller [2023] propose a two-component ensemble for zero-355

resource hallucination known as BSDetector. The first component, known as observed consistency,356

computes a weighted average of two comparison scores between an original response and a set of357

candidate responses, one based on exact match, and another based on NLI-estimated contradiction358

probabilities. The second component is self-reflection certainty, which uses the same LLM to judge359

correctness of the response. In their ensemble, response-level confidence scores are computed using360

a weighted average of observed consistency and self-reflection certainty. Verga et al. [2024] propose361

using a Panel of LLM evaluators (PoLL) to assess LLM responses. Rather than using a single large362

LLM as a judge, their approach leverages a panel of smaller LLMs. Their experiments find that PoLL363

outperforms large LLM judges, having less intra-model bias in the judgments.364

B Scorer Definitions: Detailed View365

B.1 Problem Statement366

We aim to model the binary classification problem of whether an LLM response contains a hallucina-367

tion, which we define as any content that is nonfactual. To this end, we define a collection of binary368

classifiers, each of which map an LLM response yi ∈ Y , generated from prompt xi, to a ‘confidence369

score’ between 0 and 1, where Y is the set of possible LLM outputs. We denote a hallucination370

classifier as ŝ : Y −→ [0, 1].371

Given a classification threshold τ , we denote binary hallucination predictions from the classifier as372

ĥ : Y −→ {0, 1}. In particular, a hallucination is predicted if the confidence score is less than the373

threshold τ :374

ĥ(yi; θ, τ) = I(ŝ(yi; θ) < τ), (1)

where θ could include additional responses generated from xi or other parameters. Note that ĥ(·) = 1375

implies a hallucination is predicted. We denote the corresponding ground truth value, indicating376

whether or not the original response yi actually contains a hallucination, as h(yi), where h represents377

a process to ‘grade’ LLM responses:378

h(yi) =

{
1 yi contains a hallucination
0 otherwise.

(2)

We adapt our scorers from various techniques proposed in the literature. Each scorer outputs response-379

level confidence scores to be used for hallucination detection. We transform and normalize scorer380

outputs, if necessary, to ensure each confidence score ranges from 0 to 1 and higher values correspond381

to greater confidence.7 Below, we provide details of these various scorers.382

B.2 Black-Box UQ Scorers383

Black-box UQ scorers exploit variation in LLM responses to the same prompt to assess semantic384

consistency. For a given prompt xi, these approaches involve generating m candidate responses385

ỹi = {ỹi1, ..., ỹim}, using a non-zero temperature, from the same prompt and comparing these386

responses to the original response yi. We provide detailed descriptions of each below.387

Exact Match Rate. For LLM tasks that have a unique, closed-form answer, exact match rate can388

be a useful hallucination detection approach. Under this approach, an indicator function is used to389

score pairwise comparisons between the original response and the candidate responses. Given an390

original response yi and candidate responses ỹi, generated from prompt xi, exact match rate (EMR)391

is computed as follows:392

EMR(yi; ỹi) =
1

m

m∑
j=1

I(yi = ỹij). (3)

7Note that many of the scorers already have support of [0, 1] and hence do not require normalization.
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Non-Contradiction Probability. Non-contradiction probability (NCP) is a similar, but less strin-393

gent approach. NCP, a component of the BSDetector approach proposed by Chen and Mueller [2023],394

also conducts pairwise comparison between the original response and each candidate response. In395

particular, an NLI model is used to classify each pair (yi, ỹij) as entailment, neutral, or contradiction396

and contradiction probabilities are saved. NCP for original response yi is computed as the average397

NLI-based non-contradiction probability across pairings with all candidate responses:398

NCP (yi; ỹi) = 1− 1

m

m∑
j=1

η(yi, ỹij) + η(ỹij , yi)

2
(4)

Above, η(yi, ỹij) denotes the contradiction probability of (yi, ỹij) estimated by the NLI399

model. Following Chen and Mueller [2023] and Farquhar et al. [2024], we use400

microsoft/deberta-large-mnli for our NLI model.401

BERTScore. Another approach for measuring text similarity between two texts is BERTScore402

[Zhang et al., 2020]. Let a tokenized text sequence be denoted as t = {t1, ...tL} and the corresponding403

contextualized word embeddings as E = {e1, ..., eL}, where L is the number of tokens in the text.404

The BERTScore precision and recall scores between two tokenized texts t, t′ are respectively defined405

as follows:406

BertP (t, t′) =
1

|t|
∑
t∈t

max
t′∈t′

e · e′; BertR(t, t′) =
1

|t′|
∑
t′∈t′

max
t∈t

e · e′ (5)

where e, e′ respectively correspond to t, t′. We compute our BERTScore confidence (BSC) as follows:407

BSC(yi; ỹi) =
1

m

m∑
j=1

2
BertP (yi, ỹij)BertR(yi, ỹij)

BertP (yi, ỹij) +BertR(yi, ỹij)
, (6)

i.e. the average BERTScore F1 score across pairings of the original response with all candidate408

responses.409

Normalized Cosine Similarity. Normalized cosine similarity (NCS) leverages a sentence trans-410

former to map LLM outputs to an embedding space and measure similarity using those sentence411

embeddings. Let V : Y −→ Rd denote the sentence transformer, where d is the dimension of the412

embedding space. We define NCS as the average cosine similarity across pairings of the original413

response with all candidate responses, normalized by dividing by 2 and adding 1
2 :414

NCS(yi; ỹi) =
1

2m

m∑
j=1

V(yi) ·V(ỹij)

∥V(yi)∥∥V(ỹij)∥
+

1

2
. (7)

Normalized Semantic Negentropy. Semantic entropy (SE), proposed by Farquhar et al. [2024],415

exploits variation in multiple responses to compute a measure of response volatility. The SE approach416

clusters responses by mutual entailment and, like the NCP scorer, relies on an NLI model. However,417

in contrast to the aforementioned black-box UQ scorers, semantic entropy does not distinguish418

between an original response and candidate responses. Instead, it computes a single metric value on a419

list of responses generated from the same prompt. We consider the discrete version of SE, defined as420

follows:421

SE(yi; ỹi) = −
∑
C∈C

P (C|yi, ỹi) logP (C|yi, ỹi), (8)

where P (C|yi, ỹi) denotes the probability a randomly selected response y ∈ {yi, ỹi1, ..., ỹim}422

belongs to cluster C, and C denotes the full set of clusters of {yi, ỹi1, ..., ỹim}.8 To ensure that we423

8If token probabilities of the LLM responses are available, the values of P (C|yi, ỹi) can be instead estimated
using mean token probability. However, unlike the discrete case, this version of semantic entropy is unbounded
and hence does not lend itself well to normalization.
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have a normalized confidence score with [0, 1] support and with higher values corresponding to higher424

confidence, we implement the following normalization to arrive at Normalized Semantic Negentropy425

(NSN):426

NSN(yi; ỹi) = 1− SE(yi; ỹi)

log(m+ 1)
, (9)

where log(m+ 1) is included to normalize the support.427

B.3 White-Box UQ Scorers428

White-box UQ scorers leverage token probabilities of the LLM’s generated response to quantify429

uncertainty. We define two white-box UQ scorers below.430

Length-Normalized Token Probability. Let the tokenization of LLM response yi be denoted431

as {t1, ..., tLi
}, where Li denotes the number of tokens the response. Length-normalized token432

probability (LNTP) computes a length-normalized analog of joint token probability:433

LNTP (yi) =
∏
t∈yi

p
1
Li
t , (10)

where pt denotes the token probability for token t.9 Note that this score is equivalent to the geometric434

mean of token probabilities for response yi.435

Minimum Token Probability. Minimum token probability (MTP) uses the minimum among token436

probabilities for a given responses as a confidence score:437

MTP (yi) = min
t∈yi

pt, (11)

where t and pt follow the same definitions as above.438

B.4 LLM-as-a-Judge Scorers439

We employ LLM-as-a-Judge as an additional method for obtaining response-level confidence scores.440

LLM-as-a-judge scoring prompts a model to rate the correctness of a question–response concatenation.441

We adapt the instruction from Xiong et al. [2024] to return a 0–100 score and linearly map it to442

[0, 1] for consistency with other scorers. Our LLM-as-a-Judge scorer used the following instruction443

prompt:444

Question: [question], Proposed Answer: [answer].445

446

How likely is the above answer to be correct? Analyze the answer and447

give your confidence in this answer between 0 (lowest) and 100 (highest), with 100448

being certain the answer is correct, and 0 being certain the answer is incorrect.449

THE CONFIDENCE RATING YOU PROVIDE MUST BE BETWEEN 0 and 100.450

ONLY RETURN YOUR NUMERICAL SCORE WITH NO SURROUNDING451

TEXT OR EXPLANATION.452

453

# Example 1454

## Data to analyze455

Question: Who was the first president of the United States?, Proposed Answer:456

Benjamin Franklin.457

458

## Your response459

4 (highly certain the proposed answer is incorrect)460

461

462

9Although it is not reflected in our notation, the probability for a given token is conditional on the preceding
tokens.
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# Example 2463

## Data to analyze464

Question: What is 2+2?, Proposed Answer: 4465

466

## Your response467

99 (highly certain the proposed answer is correct)468

469

To ensure a normalized confidence score consistent with the other scorers, we normalize the value470

returned by the LLM judge to be between 0 and 1. The capitalization and repeated instructions,471

inspired by Wang et al. [2024], are included to ensure the LLM correctly follows instructions.472

B.5 Ensemble Scorer473

We introduce a tunable ensemble approach for hallucination detection. Specifically, our ensemble474

is a weighted average of K binary classifiers: ŝk : Y −→ [0, 1] for k = 1, ...,K. As several of475

our ensemble components exploit variation in LLM responses to the same prompt, our ensemble is476

conditional on (ỹi,w), where w denote the ensemble weights. For original response yi, we can write477

our ensemble classifier as follows:478

ŝ(yi; ỹi,w) =

K∑
k=1

wkŝk(yi; ỹi), (12)

where w = (w1, ..., wK),
∑K

k=1 wk = 1, and wk ∈ [0, 1] for k = 1, ...,K.10479

We outline a method for tuning ensemble weights for improved hallucination detection accuracy.480

This approach allows for customizable component-importance that can be optimized for a specific481

use case. In practice, tuning the ensemble weights requires having a ‘graded’ set of n original LLM482

responses which indicate whether a hallucination is present in each response.11 For a set of n prompts,483

we denote the vector of original responses as y484

y =


y1
y2
...
yn

 , (13)

and candidate responses across all prompts with the matrix Ỹ:485

Ỹ =


ỹ1

ỹ2

...
ỹn

 =


ỹ11 ỹ12 · · · ỹ1m
ỹ21 ỹ22 · · · ỹ2m

...
...

. . .
...

ỹn1 ỹn2 · · · ỹnm

 . (14)

Analogously, we denote the vectors of ensemble confidence scores, binary ensemble hallucination486

predictions, and corresponding ground truth values respectively as487

ŝ(y; Ỹ,w) =


ŝ(y1; ỹ1,w)
ŝ(y2; ỹ2,w)

...
ŝ(yn; ỹn,w)

 , (15)

488

ĥ(y; Ỹ,w, τ) =


ĥ(y1; ỹ1,w, τ)

ĥ(y2; ỹ2,w, τ)
...

ĥ(yn; ỹn,w, τ)

 , (16)

10Note that although we write each classifier to be conditional on the set of candidate responses, some of the
classifiers depend only on the original response.

11Grading responses may be accomplished computationally for certain tasks, e.g. multiple choice questions.
However, in many cases, this will require a human grader to manually evaluate the set of responses.
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and489

h(y) =


h(y1)
h(y2)

...
h(yn)

 . (17)

Modeling this problem as binary classification enables us to tune the weights of our ensemble490

classifier using standard classification objective functions. Following this approach, we consider491

two distinct strategies to tune ensemble weights w1, ..., wK : threshold-agnostic optimization and492

threshold-aware optimization.493

Threshold-Agnostic Weights Optimization. Our first ensemble tuning strategy uses a threshold-494

agnostic objective function for tuning the ensemble weights. Given a set of n prompts, corresponding495

original LLM responses and candidate responses, the optimal set of weights, w∗, is the solution to496

the following problem:497

w∗ = argmax
w∈W

S(ŝ(y; Ỹ,w),h(y)), (18)

where498

W = {(w1, ..., wK) :

K∑
k=1

wk = 1, wk ≥ 0 ∀ k = 1, ...,K} (19)

is the support of the ensemble weights and S is a threshold-agnostic classification performance metric,499

such as area under the receiver-operator characteristic curve (AUROC).500

After optimizing the weights, we subsequently tune the threshold using a threshold-dependent501

objective function. Hence, the optimal threshold, τ∗, is the solution to the following optimization502

problem:503

τ∗ = argmax
τ∈(0,1)

B(ĥ(y; Ỹ,w∗, τ),h(y)), (20)

where B is a threshold-dependent classification performance metric, such as F1-score.504

Threshold-Aware Weights Optimization. Alternatively, practitioners may wish jointly optimize505

ensemble weights and classification threshold using the same objective. This type of optimization506

relies on a threshold-dependent objective. We can write this optimization problem as follows:507

w∗, τ∗ = argmax
w∈W,τ∈(0,1)

B(ĥ(y; Ỹ,w, τ),h(y)), (21)

where B, ĥ, h, and W follow the same definitions as above.508

C Software Description: uqlm Library509

The uqlm library provides a collection of UQ-based scorers spanning four categories: black-box UQ,510

white-box UQ, LLM-as-a-Judge, and ensembles. The corresponding classes for these techniques511

are instantiated by passing an LLM object to the constructor.12 Each of these classes contains a512

generate_and_score method, which generates LLM responses to a user provided list of prompts513

and computes response-level confidence scores, which range from 0 to 1.514

12For the current version of uqlm, a LangChain BaseChatModel is required. Note that an LLM is not required
if users provide pre-generated responses and implement the score method.
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C.1 Comparison to Existing Toolkits515

Traditional grading toolkits (Evals [OpenAI, 2024], G-Eval [Liu et al., 2023]) require ground-truth516

answers; they are valuable pre-deployment but not usable at generation time. Source-comparison517

tools (Ragas [Es et al., 2023], Phoenix [Arize AI, 2025], DeepEval [Ip and Vongthongsri, 2025], and518

others [Hu et al., 2024, UpTrain AI Team, 2024, Zha et al., 2023, Asai et al., 2023]) assess agreement519

with provided context, yet can validate paraphrases of the prompt without verifying factuality and520

require sources to be available. Internet-grounded checkers (FacTool [Chern et al., 2023]) introduce521

latency and potential external errors and do not directly quantify model uncertainty. UQ offerings522

exist but are narrow or research-oriented: SelfCheckGPT [Manakul et al., 2023] includes a limited523

subset of scorers and separates generation from evaluation; LangKit [WhyLabs, 2025] and NeMo524

Guardrails [Rebedea et al., 2023] expose a few UQ signals; LM-Polygraph [Fadeeva et al., 2023] is525

comprehensive but geared toward research users. uqlm bridges these gaps: it provides a zero-resource,526

generation-time suite across black-box, white-box, and judge signals, standardizes outputs to [0, 1],527

offers a lightweight, extensible ensemble, and integrates generation and evaluation with a simple API.528

C.2 API and Usage529

Figure 1: Illustration of a Black-Box Scorer Workflow

C.2.1 Black-Box UQ530

Black-box UQ scorers are compatible with any LLM, but increase latency and generation531

costs. The corresponding class for this collection of scorers is BlackBoxUQ. To implement532

BlackBoxUQ.generate_and_score, users provide a list of prompts. For each prompt, an origi-533

nal response, along with additional candidate responses, are generated by the user-provided LLM,534

and consistency scores are computed using the specified scorers (see Figure 1).13 If users set535

use_best=True, the uncertainty-minimized response is selected.14 Below is a minimal example536

illustrating usage of BlackBoxUQ.537

from uqlm import BlackBoxUQ538
bbuq = BlackBoxUQ(llm=llm , scorers=["exact_match", "noncontradiction"])539
results = await bbuq.generate_and_score(prompts=prompts , num_responses=5, use_best=True)540

C.2.2 White-Box UQ541

White-box uncertainty quantification leverages token probabilities to compute uncertainty, as depicted542

in Figure 2. These approaches have the advantage of using the token probabilities associated with the543

generated response, meaning they do not add any latency or generation cost. However, because token544

probabilities are not accessible from all APIs, white-box scorers may not be compatible with all LLM545

applications. This collection of scorers can be implemented with the WhiteBoxUQ class. Below is a546

minimal example of WhiteBoxUQ usage.547

from uqlm import WhiteBoxUQ548
wbuq = WhiteBoxUQ(llm=llm , scorers=["min_probability"])549
results = await wbuq.generate_and_score(prompts=prompts)550

13Note that Figure 1 depicts the approach for all black-box UQ scorers except semantic entropy, which does
not designate an ‘original response’.

14Uncertainty-minimized response selection is based on semantic entropy [Farquhar et al., 2024].
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Figure 2: Illustration of a White-Box Scorer Workflow

C.2.3 LLM-as-a-Judge551

LLM-as-a-Judge uses an LLM to evaluate the correctness of a response to a particular question.552

To achieve this, a question-response concatenation is passed to one or more LLMs along with553

instructions to score the response’s correctness using the LLMPanel class (see Figure 3). In the554

constructor, users pass a list of LLM objects to the judges argument and specify one of four scoring555

templates for each judge with the scoring_templates argument. These four scoring templates556

are as follows: binary ({incorrect, correct} as {0, 1}), ternary ({incorrect, uncertain, correct} as557

{0, 0.5, 1}), continuous (any value between 0 and 1), and a 5-point Likert scale (0, 0.25, ..., 1).558

Implementing the generate_and_score method returns the score from each judge and aggregations559

of these scores, including minimum, maximum, average, and median. See below for a minimal560

example.561

Figure 3: Illustration of LLM-as-a-Judge Workflow

from uqlm import LLMPanel562
panel = LLMPanel(llm=llm1 , judges=[llm2 , llm3], scoring_templates=["continuous", "likert"])563
results = await panel.generate_and_score(prompts=prompts)564

C.2.4 Ensemble Approach565

Lastly, uqlm offers both tunable and off-the-shelf ensembles that leverage a weighted average566

of any combination of black-box UQ, white-box UQ, and LLM-as-a-Judge scorers. Similar to567

the aforementioned classes, UQEnsemble enables simultaneous generation and scoring with a568

generate_and_score method. Using the specified scorers, the ensemble score is computed as569

a weighted average of the individual confidence scores, where weights may be default weights,570

user-specified, or tuned. If no scorers are specified, the off-the-shelf implementation follows an571

ensemble of exact match, non-contradiction probability, and self-judge proposed by Chen and Mueller572

[2023].573

In order to tune the ensemble weights prior to using the generate_and_score method, users must574

provide a list of prompts and corresponding ideal responses to serve as an ‘answer key’. The LLM’s575

responses to the prompts are graded with a grader function that compares against the provided ideal576

responses. If a grader function is not provided by the user, the default grader function that leverages577

vectara/hallucination_evaluation_model is used.578
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Figure 4: Illustration of Ensemble Tuning

Once the binary grades (‘correct’ or ‘incorrect’) are obtained, an optimization routine solves for the579

optimal weights according to a specified classification objective. The objective function may be580

threshold-agnostic, such as ROC-AUC, or threshold-dependent, such as F1-score. After completing581

the optimization routine, the optimized weights are stored as class attributes to be used for subsequent582

scoring. Below is a minimal example illustrating this process.583

from uqlm import UQEnsemble584
## ---Option 1: Off-the-Shelf Ensemble (Chen & Mueller , 2023)---585
# uqe = UQEnsemble(llm=llm)586
# results = await uqe.generate_and_score(prompts=prompts , num_responses=5)587

588
## ---Option 2: Tuned Ensemble ---589
scorers = [ # specify which scorers to include590

"exact_match", "noncontradiction", # black -box scorers591
"min_probability", # white-box scorer592
llm # use same LLM as a judge593

]594
uqe = UQEnsemble(llm=llm , scorers=scorers)595

596
# Tune on tuning prompts with provided ground truth answers597
tune_results = await uqe.tune(598

prompts=tuning_prompts , ground_truth_answers=ground_truth_answers599
)600
# ensemble is now tuned - generate responses on new prompts601
results = await uqe.generate_and_score(prompts=prompts)602
results.to_df()603

D Additional Figures from Experiments604

Below we present additional figures and tables from our experiments: (i) scorer-specific AUROC, (ii)605

scorer-specific F1, (iii) filtered accuracy vs confidence threshold for the top scorer from each family,606

(iv) AUROC vs number of sampled candidates for all black-box scorers, and (v) Average exact match607

rate. Each figure and table covers all 24 LLM–dataset scenarios.608
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(a) NQ Open (b) PopQA

(c) GSM8K (d) SVAMP

(e) CSQA (f) AI2-ARC

Figure 5: Scorer-Specific AUROC Scores for Hallucination Detection by LLM and Dataset (Higher
is Better)
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(a) NQ Open (b) PopQA

(c) GSM8K (d) SVAMP

(e) CSQA (f) AI2-ARC

Figure 6: Scorer-Specific F1-Scores for Hallucination Detection by LLM and Dataset (Higher is
Better)
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Figure 7: Filtered LLM Accuracy vs. Confidence Threshold (Top per Scorer Type)
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Figure 8: Hallucination Detection AUROC by Number of Sampled Responses

Table 4: Average Exact Match Rate by LLM and Dataset
Model Used NQ-Open PopQA GSM8K SVAMP CSQA AI2-ARC

Gemini-1.5-Flash 0.81 0.79 0.83 0.96 0.99 1.00
Gemini-1.0-Pro 0.36 0.18 0.25 0.66 0.71 0.85
GPT-3.5 0.47 0.29 0.30 0.76 0.81 0.89
GPT-4o 0.44 0.35 0.63 0.91 0.90 0.81
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