© O N O g A~ W N =

w N = O

Uncertainty Quantification for Language Models:
Standardizing and Evaluating Black-Box, White-Box,
LLM Judge, and Ensemble Scorers

Anonymous Author(s)
Affiliation
Address

email

Abstract

Large language models often hallucinate, creating trust and safety concerns in
high-stakes settings. We present a generation-time, zero-resource framework
for hallucination detection that unifies black-box, white-box, and judge signals.
Heterogeneous outputs are standardized to a shared 0 to 1 confidence scale for
ranking and thresholding. To enhance flexibility, we introduce a simple, extensible
ensemble with non-negative weights tuned on a graded set of LLM responses.
Across six QA benchmarks and four generators, the ensemble outperforms the
best individual scorer in 18 of 24 AUROC cases and 16 of 24 F1 cases. Among
non-ensemble scorers, entailment-style black-box methods are strong baselines,
although they incur higher generation costs and lack effectiveness when variation
in sampled responses is low. The framework supports practical actions such as
blocking low-confidence responses or routing to human review. We release an open-
source Python library providing ready-to-use implementations of all methods.

1 Introduction

Large language models (LLMs) are increasingly deployed in production applications, including high-
stakes domains such as healthcare and finance. Monitoring the accuracy and factuality of generated
outputs is therefore essential. Hallucination, where outputs sound plausible yet contain incorrect
content, remains a central reliability risk. Pre-deployment evaluations that compare generated text to
ground truth are valuable but do not support real-time monitoring of deployed systems. In contrast,
generation-time methods that quantify uncertainty can score each response at inference time.

Uncertainty quantification (UQ) spans black-box uncertainty from variation across sampled responses
[[Cole et al., 2023, [Manakul et al., 2023/ [Lin et al., 2024, |[Kuhn et al., 2023, [Kossen et al., 2024}
Farquhar et al.,[2024] [Zhang et al.| 2024} |Qiu and Miikkulainen| |2024]], white-box token-probability
signals such as negative log probability, perplexity, entropy, and geometric means [Manakul et al.}
2023| [Fadeeva et al.| 2024, Malinin and Gales|2021]], and LL.M-as-a-judge scoring [Chen and Mueller}
2023|, |Kadavath et al.} 2022, |Xiong et al., [2024]]. Surveys provide broader coverage [Huang et al.,
2023| [Tonmoy et al.,|[2024} Shorinwa et al., 2024, [Huang et al., [2024]]. Prior work often assesses a
single family or considers heterogeneous signals without a shared output space

This paper presents a generation-time, zero-resource framework for hallucination detection that unifies
diverse uncertainty signals. We adapt black-box methods that exploit response variation, white-box
methods that use token probabilities, and LLM-as-a-judge methods. We then apply a standardization
protocol that maps heterogeneous outputs to a common confidence scale in [0, 1], where higher values

'We provide a detailed overview of related work in Appendix

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

33
34
35
36
37
38
39

40

41

42
43
44

45
46

47

48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63

64
65

indicate higher confidence that a response is correct. The standardized scores enable ranking and
thresholding for practical actions: block low-confidence responses, route uncertain cases to human
review, or attach a low-confidence disclaimer. Building on these scores, we introduce a lightweight
ensemble that combines multiple signals with non-negative weights learned on a graded set of LLM
responses. The ensemble design is extensible, so new scorers can be added without redesign. Finally,
our framework is complemented by uqlm, our open-source Python package that provides ready-to-use
implementations of all uncertainty quantification methods presented and evaluated in this WorkE]

2 Hallucination Detection Methods

2.1 Problem Statement

We study binary detection of hallucinations in LLM outputs. For a prompt z; and its original response
yi € Y, let a confidence scorer be a function § :) — [0, 1] that maps y; to a confidence score, where
larger values indicate higher confidence that y; is correct. Given a threshold 7 € [0, 1], define the
binary predictor & :) — {0,1} by h(y;; 0,7) = 1(3(y;) < 7), where 6 denotes scorer-specific
inputs (e.g., multiple responses generated from x;).

2.2 UQ-Based Confidence Scorers

We group scorers into three families. Black-box scorers exploit variation across multiple responses to
the same prompt. White-box scorers use token probabilities associated with the generated response.
Judge-based scorers prompt an LLM to rate the correctness of a question-response concatenation. All
raw outputs are standardized to [0, 1] so that larger values indicate higher confidence. Standardization
applies direction alignment and a bounded monotone transform when needed. Concise scorer
definitions are presented in Table[T|and detailed definitions are contained in Appendix [B] A detailed
description of the uglm software is contained in Appendix [C]

Scorer Family Definition (sketch) Extra inputs

EMR Black-box 1 >t Wy = 9i5) m candidates

BSC Black-box L >~y BERTF1(yi, §i;) m candidates, token-level embeddings
NCS Black-box % Tzl w m candidates, sentence-level embeddings
NCP Black-box 1-— %Z;”:l w m candidates, NLI model

NSN Black-box 1 — SE(ys;¥:)/ log(m+1) m candidates, NLI model

LNTP White-box [Lic,, p/ b token probabilities

MTP ‘White-box mingey,; pt token probabilities

Judge LLM-as-judge scorejuage (i, y:)/100 judge model

Ensemble Meta Optimized combination of scorers tuning data, component inputs

Table 1: Scorers at a glance: standardized [0, 1] confidence; higher implies lower hallucination risk.

Black-Box UQ. For a prompt x;, black-box UQ methods generate m candidates y; =
{¥i1,-.-,TUim} at nonzero temperature and compare to the original response y;. Methods in-
clude exact-match rate (EMR) [Cole et al., [2023| |Chen and Mueller, [2023]], semantic similarity
via BERTScore confidence (BSC) [Manakul et al.l 2023 or normalized cosine similarity (NCS)
[Shorinwa et al., 2024]], and entailment-based scorers including non-contradiction probability (NCP)
[Chen and Mueller, 2023| Lin et al., 2024, [Manakul et al.| [2023]] and semantic entropy [Farquhar
et al., 2024, |Kuhn et al., 2023 normalized to confidence, i.e., normalized semantic negentropy (NSN).
These require additional generations and, for some variants, an encoder or a Natural Language
Inference (NLI) model.

White-Box UQ. White-box UQ methods use token probabilities of the generated response to
measure uncertainty. These approaches have the advantage of adding no additional latency or

2An anonymized GitHub repository with code and instructions is available at https: //anonymous . 4open |
science/r/uqlm-FBF3. A public link will be provided upon acceptance.

https://anonymous.4open.science/r/uqlm-FBF3
https://anonymous.4open.science/r/uqlm-FBF3

66
67
68
69

70
71
72
73
74
75

76
77
78
79

80

81
82
83
84
85
86
87
88
89
90
91

92
93
94
95
96
97
98
99
100

generation costs, but are not compatible with all LLM APIs. We consider two white-box UQ scorers:
length-normalized token probability (LNTP), computed as the geometric mean of token probabilities
for a generated response, and minimum token probability (MTP). By construction, these two scorers
are bounded with [0, 1] support and hence do not require normalization.

LLM-as-a-judge. In this approach, we concatenate a question-response pair and pass it to an LLM
with a carefully constructed instruction prompt that directs the model to evaluate the correctness
of the response. We adapt our instruction prompt from Xiong et al. [2024]], instructing the LLM to
score responses on a 0-100 scale, where a higher score indicates a greater certainty that the provided
response is correct. These scores are then normalized to a 0-to-1 scale to maintain consistency with
our other confidence scoring methods. The complete prompt template is provided in Appendix

Ensemble (meta-scorer). Lastly, we combine standardized scorers using non-negative weights
learned on a graded set of LLM responses to optimize a chosen objective (e.g., AUROC). The
ensemble outputs a single [0, 1] confidence score and remains interpretable; non-negative weights
preserve monotonicity with respect to each component. Tuning details appear in Appendix [B.5]

3 Experiments

Experimental Setup We evaluate hallucination detection across six QA benchmarks with diverse
answer formats: numerical (GSM8K [Cobbe et al., 2021], SVAMP [Patel et al., 2021]), multiple-
choice (CSQA [Talmor et al.| 2022]], AI2-ARC [Clark et al., |2018]]), and open-text (PopQA [Mallen
et al.| |2023[], NO-Open [Lee et al., 2019]). We sample 1,000 questions per dataset and, for each
prompt, generate one original response and m=15 candidates at temperature 1.0 using four LLMs:
GPT-3.5 [OpenAl], GPT-40 [OpenAll, Gemini-1.0-Pro [[Google]], and Gemini-1.5-Flash [Google].
Black-box scores for a response use the candidates produced by the same LLM. Judge scores are
obtained from three judges (GPT-3.5, GPT-40, Gemini-1.5-Flash); white-box scores are computed
where token probabilities are available (GPT-40, Gemini-1.0-Pro, Gemini- 1 .S—Flash)E] All scores are
produced with our companion toolkit, uqlm Supplemental figures displaying detailed experiment
results are contained in Appendix [D}

Threshold-agnostic (AUROC). We evaluate each scorer as a ranker of incorrect responses using
AUROC. The ensemble uses AUROC-optimized weights learned on the training fold with 5-fold
cross-validation. Appendix Fig. [5|shows per-scorer AUROC across the 24 LLM—dataset scenarios,
while Table 2] highlights the best scorer per scenario. Best-scorer AUROC ranges from 0.72 (GPT-3.5
on PopQA, NCS) to 0.93 (Gemini-1.5-Flash on AI2-ARC, LNTP), with 19 of 24 scenarios above 0.8,
indicating strong overall hallucination detection performance. The ensemble outperforms individual
components in 18 of 24 scenarios. NLI-based scorers (NSN, NCP) typically lead among black-box
scorers (18 of 24 scenarios), GPT-40 is the strongest judge in 19 of 24 scenarios, and the two
white-box scorers (LNTP and MTP) perform similarly.

Table 2: Hallucination Detection AUROC (Higher is Better): Top Scorer by Dataset and Model

Dataset Gem.-1.0-Pro Gem.-1.5-Flash GPT-3.5 GPT-4o0
AUROC Scorer | AUROC Scorer | AUROC Scorer | AUROC Scorer

NQ-Open| 0.84 Ensemble | 0.79 Ensemble | 0.76 Ensemble | 0.73 Ensemble

PopQA 0.86 Ensemble | 0.87 Ensemble | 0.72 NCS 0.91 Ensemble
GSM8K 0.84 Ensemble 0.82 Ensemble 0.84 Ensemble 0.90 Ensemble
SVAMP 0.88 NSN 0.89 MTP 0.88 Ensemble 0.89 Ensemble
CSQA 0.87 GPT-40 0.79 Ensemble 0.84 Ensemble 0.84 Ensemble

AI2-ARC| 090 Ensemble | 0.93 LNTP 0.91 Ensemble | 0.86 LNTP

30ur GPT-3.5 instance did not expose token probabilities. Gemini-1.0-Pro was retired during the study and
is unavailable as a judge.

*Using an n1-standard-16 machine (16 vCPU, 8 core, 60 GB memory) with a single NVIDIA T4 GPU
attached, our experiments took approximately 0.5-3 hours per LLM-dataset combination to complete.

101
102
103
104
105
106

107
108
109
110
111
112

113
114
115
116
117
118
119
120

121

122
123
124
125
126
127
128
129
130
131
132
133
134

136

137
138
139
140
141
142

Threshold-optimized (F1). We jointly tune ensemble weights and the decision threshold with
F1 as the objective (per-scorer thresholds via grid search), reporting 5-fold cross-validated test F1.
Appendix Fig. [f] shows per-scorer F1, while Table [3]summarizes the top scorer per scenario. Results
mirror AUROC: the ensemble is best in 16 of 24 scenarios, NSN/NCP dominate among black-box
scorers (19 of 24), and GPT-4o is the strongest judge (22 of 24). GPT-40’s judging strength aligns
with its higher baseline answer accuracy relative to GPT-3.5 and Gemini models (Appendix Fig.[7).

Table 3: Hallucination Detection F1 (Higher is Better): Top Scorer by Dataset and Model

Dataset Gem.-1.0-Pro Gem.-1.5-FL. GPT-3.5 GPT-40
F1 Scorer F1 Scorer F1 Scorer F1 Scorer

NQ-Open | 0.62 EMR 0.67 Ensemble | 0.68 Ensemble | 0.75 Ensemble
PopQA 0.54 NSN 0.66 GPT-40 |0.42 Ensemble | 0.75 Ensemble
GSM8K | 0.63 Ensemble | 0.70 NCP 0.60 Ensemble | 0.85 Ensemble
SVAMP | 0.89 NSN 0.93 NCP 0.89 Ensemble | 0.97 Ensemble
CSQA 0.89 GPT-40 | 0.90 Ensemble | 0.90 Ensemble | 0.91 NCP

AI2-ARC | 0.97 Ensemble | 0.97 Ensemble | 0.97 Ensemble | 0.99 Ensemble

Filtered Accuracy@7. We report accuracy on the subset of responses with confidence > 7 for
7€ {0,0.1,...,0.9}. Appendix Fig. plots the best white-box, black-box, judge, and ensemble per
scenario. Accuracy generally increases with 7. For example, filtering Gemini-1.0-Pro on PopQA with
the top black-box scorer raises accuracy from 0.15 to 0.69 at 7=0.6; filtering GPT-40 on GSM8K
with a white-box scorer yields 0.81 at 7=0.6 vs 0.55 baseline. A notable exception is black-box
scoring on Gemini-1.5-Flash for CSQA and AI2-ARC, where filtering does not improve accuracy.

Effect of Candidate Count (m) on Black-Box Scorers We recompute black-box scores for
m € {1,3,5,10,15} across 24 LLM-dataset scenarios (holding the original response fixed) and
report AUROC (Fig.[8)). Performance generally rises with m with diminishing returns [Kuhn et al.,
2023, Manakul et al.,[2023| [Lin et al.| 2024} Farquhar et al.,[2024]]. We find two exceptions: (i) BSC
shows weaker gains with larger m, as also observed by Manakul et al.|[2023]]; (ii) for Gemini-1.5-
Flash on AI2-ARC and CSQA, black-box AUROC is low (0.46-0.56) and flat because candidates are
near-duplicates (EMR=1.00, 0.99). More broadly, Gemini-1.5-Flash exhibits higher EMR than other
LLMs, underscoring that black-box effectiveness is limited by candidate diversity [Kuhn et al., 2023].

4 Conclusion

Discussion and Conclusion. Selecting a confidence scorer depends on API access, latency, model
behavior, and the availability of a small graded set for tuning. If token probabilities are available,
white-box scorers add no latency or generation costs and are competitive. Without token probabilities,
black-box and judge-based scorers are the practical options. For low-latency applications, prefer
faster black-box methods or a judge; when latency is less constrained, NLI-based black-box scorers
(NSN, NCP) typically perform best. Black-box methods can struggle when sampled responses lack
diversity. In such cases, white-box or judge-based signals are preferable (Fig.[§). Increasing the
number of candidates m offers limited gains once diversity saturates, which provides a budget-aware
guideline for black-box settings. For judge selection, a simple heuristic works well in our experiments:
models with higher task accuracy tend to be better judges of answers on that task. When a graded set
of LLM responses is available, a tuned ensemble over standardized scorers improves robustness over
individual methods and remains extensible as new scorers appear. Practically, standardized scores
enable thresholded actions: block low-confidence responses, route uncertain cases to human review,
or attach a low-confidence disclaimer, with efficacy demonstrated in the filtered accuracy experiments

(Fig.[1).

Limitations and Future Work. While our evaluation covers six QA datasets and four LLMs, it is
important to note that results may differ for different question types (e.g. long-form tasks), newer
models, or alternative judge prompts. White-box behavior depends on token-probability availability,
and black-box effectiveness depends on response diversity. Our ensemble experiments are limited to
linear ensembles. For future work, we suggest exploring richer ensembling strategies, broader task
families, and more recently released LLMs in experimental evaluations.

143

144
145

146

147
148

149
150
151

152
153
154
155
156

157
158

159
160
161

162
163
164

165
166
167

168
169

170
171

172
173

174
175
176
177
178
179

180
181
182
183

184
185

187

188
189
190

References

A. Agrawal, M. Suzgun, L. Mackey, and A. T. Kalai. Do language models know when they’re
hallucinating references?, 2024. URL https://arxiv.org/abs/2305.18248|

Arize Al Phoenix, 2025. URL https://github.com/Arize-ai/phoenix.

A. Asai, Z. Wu, Y. Wang, A. Sil, and H. Hajishirzi. Self-rag: Learning to retrieve, generate, and
critique through self-reflection, 2023. URL https://arxiv.org/abs/2310.11511|

Y. F. Bakman, D. N. Yaldiz, B. Buyukates, C. Tao, D. Dimitriadis, and S. Avestimehr. Mars:
Meaning-aware response scoring for uncertainty estimation in generative llms, 2024. URL
https://arxiv.org/abs/2402.11756.

S. Banerjee and A. Laviee. METEOR: An automatic metric for MT evaluation with improved
correlation with human judgments. In J. Goldstein, A. Lavie, C.-Y. Lin, and C. Voss, editors,
Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine
Translation and/or Summarization, pages 65-72, Ann Arbor, Michigan, June 2005. Association
for Computational Linguistics. URL https://aclanthology.org/W05-0909/,

J. Chen and J. Mueller. Quantifying uncertainty in answers from any language model and enhancing
their trustworthiness, 2023. URL https://arxiv.org/abs/2308.16175.

[.-C. Chern, S. Chern, S. Chen, W. Yuan, K. Feng, C. Zhou, J. He, G. Neubig, P. Liu, et al. Factool:
Factuality detection in generative ai—a tool augmented framework for multi-task and multi-domain
scenarios. arXiv preprint arXiv:2307.13528, 2023. doi: 10.48550/arXiv.2307.13528.

P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think
you have solved question answering? try arc, the ai2 reasoning challenge, 2018. URL https
//arxiv.org/abs/1803.05457.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton,
R. Nakano, C. Hesse, and J. Schulman. Training verifiers to solve math word problems, 2021.
URL https://arxiv.org/abs/2110.14168,

R. Cohen, M. Hamri, M. Geva, and A. Globerson. Lm vs Im: Detecting factual errors via cross
examination, 2023. URL https://arxiv.org/abs/2305.13281.

J. R. Cole, M. J. Q. Zhang, D. Gillick, J. M. Eisenschlos, B. Dhingra, and J. Eisenstein. Selectively
answering ambiguous questions, 2023. URL https://arxiv.org/abs/2305.14613.

S. Es, J. James, L. Espinosa-Anke, and S. Schockaert. Ragas: Automated evaluation of retrieval
augmented generation, 2023. URL https://arxiv.org/abs/2309.15217.

E. Fadeeva, R. Vashurin, A. Tsvigun, A. Vazhentsev, S. Petrakov, K. Fedyanin, D. Vasilev, E. Gon-
charova, A. Panchenko, M. Panov, T. Baldwin, and A. Shelmanov. LM-polygraph: Uncertainty
estimation for language models. In Y. Feng and E. Lefever, editors, Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages
446461, Singapore, Dec. 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.emnlp-demo.41. URL https://aclanthology.org/2023.emnlp-demo.41,

E. Fadeeva, A. Rubashevskii, A. Shelmanov, S. Petrakov, H. Li, H. Mubarak, E. Tsymbalov,
G. Kuzmin, A. Panchenko, T. Baldwin, P. Nakov, and M. Panov. Fact-checking the out-
put of large language models via token-level uncertainty quantification, 2024. URL https:
//arxiv.org/abs/2403.04696.

S. Farquhar, J. Kossen, L. Kuhn, and Y. Gal. Detecting hallucinations in large language models
using semantic entropy. Nature, 630(8017):625-630, Jun 2024. ISSN 1476-4687. doi: 10.1038/
s41586-024-07421-0. URL https://doi.org/10.1038/s41586-024-07421-0.

Google. URL https://cloud.google.com/vertex-ai/generative-ai/docs/models.

N. M. Guerreiro, E. Voita, and A. F. T. Martins. Looking for a needle in a haystack: A comprehensive
study of hallucinations in neural machine translation, 2023. URL https://arxiv.org/abs/
2208.05309.

https://arxiv.org/abs/2305.18248
https://github.com/Arize-ai/phoenix
https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2402.11756
https://aclanthology.org/W05-0909/
https://arxiv.org/abs/2308.16175
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2305.13281
https://arxiv.org/abs/2305.14613
https://arxiv.org/abs/2309.15217
https://aclanthology.org/2023.emnlp-demo.41
https://arxiv.org/abs/2403.04696
https://arxiv.org/abs/2403.04696
https://arxiv.org/abs/2403.04696
https://doi.org/10.1038/s41586-024-07421-0
https://cloud.google.com/vertex-ai/generative-ai/docs/models
https://arxiv.org/abs/2208.05309
https://arxiv.org/abs/2208.05309
https://arxiv.org/abs/2208.05309

191
192
193

194
195

196
197
198

199
200

201
202

204
205
206
207
208

209
210

211
212

213
214

215
216
217

218
219

220
221
222

223
224
225
226
227

228
229

230
231

232
233
234

236
237

X. Hu, D. Ru, L. Qiu, Q. Guo, T. Zhang, Y. Xu, Y. Luo, P. Liu, Y. Zhang, and Z. Zhang. Refchecker:
Reference-based fine-grained hallucination checker and benchmark for large language models,
2024. URL https://arxiv.org/abs/2405.14486,

H.-Y. Huang, Y. Yang, Z. Zhang, S. Lee, and Y. Wu. A survey of uncertainty estimation in llms:
Theory meets practice, 2024. URL https://arxiv.org/abs/2410.15326.

L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen, W. Peng, X. Feng, B. Qin, and
T. Liu. A survey on hallucination in large language models: Principles, taxonomy, challenges, and
open questions, 2023. URL https://arxiv.org/abs/2311.05232,

J. Ip and K. Vongthongsri. deepeval, Mar. 2025. URL https://github.com/confident-ai/
deepeval.

M. Jiang, Y. Ruan, P. Sattigeri, S. Roukos, and T. Hashimoto. Graph-based uncertainty metrics for
long-form language model outputs, 2024. URL https://arxiv.org/abs/2410.20783.

S. Kadavath, T. Conerly, A. Askell, T. Henighan, D. Drain, E. Perez, N. Schiefer, Z. Hatfield-Dodds,
N. DasSarma, E. Tran-Johnson, S. Johnston, S. ElI-Showk, A. Jones, N. Elhage, T. Hume, A. Chen,
Y. Bai, S. Bowman, S. Fort, D. Ganguli, D. Hernandez, J. Jacobson, J. Kernion, S. Kravec,
L. Lovitt, K. Ndousse, C. Olsson, S. Ringer, D. Amodei, T. Brown, J. Clark, N. Joseph, B. Mann,
S. McCandlish, C. Olah, and J. Kaplan. Language models (mostly) know what they know, 2022.
URL https://arxiv.org/abs/2207.05221,

J. Kossen, J. Han, M. Razzak, L. Schut, S. Malik, and Y. Gal. Semantic entropy probes: Robust and
cheap hallucination detection in llms, 2024. URL https://arxiv.org/abs/2406.15927,

L. Kuhn, Y. Gal, and S. Farquhar. Semantic uncertainty: Linguistic invariances for uncertainty
estimation in natural language generation, 2023. URL https://arxiv.org/abs/2302.09664.

K. Lee, M.-W. Chang, and K. Toutanova. Latent retrieval for weakly supervised open domain question
answering, 2019. URL https://arxiv.org/abs/1906.00300.

C.-Y. Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pages 74-81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics. URL https://aclanthology.org/W04-1013/.

Z. Lin, S. Trivedi, and J. Sun. Generating with confidence: Uncertainty quantification for black-box
large language models, 2024. URL https://arxiv.org/abs/2305.19187.

C. Ling, X. Zhao, X. Zhang, W. Cheng, Y. Liu, Y. Sun, M. Oishi, T. Osaki, K. Matsuda, J. Ji, G. Bai,
L. Zhao, and H. Chen. Uncertainty quantification for in-context learning of large language models,
2024. URL https://arxiv.org/abs/2402.10189.

Y. Liu, D. Iter, Y. Xu, S. Wang, R. Xu, and C. Zhu. G-eval: NLG evaluation using gpt-4 with
better human alignment. In H. Bouamor, J. Pino, and K. Bali, editors, Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pages 2511-2522, Singapore,
Dec. 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.153.
URL https://aclanthology.org/2023.emnlp-main. 153/,

J. Luo, C. Xiao, and F. Ma. Zero-resource hallucination prevention for large language models, 2023.
URL https://arxiv.org/abs/2309.02654,

A. Malinin and M. Gales. Uncertainty estimation in autoregressive structured prediction, 2021. URL
https://arxiv.org/abs/2002.07650.

A. Mallen, A. Asai, V. Zhong, R. Das, D. Khashabi, and H. Hajishirzi. When not to trust language
models: Investigating effectiveness of parametric and non-parametric memories. In A. Rogers,
J. Boyd-Graber, and N. Okazaki, editors, Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 9802-9822, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.546. URL
https://aclanthology.org/2023.acl-long.546/|

https://arxiv.org/abs/2405.14486
https://arxiv.org/abs/2410.15326
https://arxiv.org/abs/2311.05232
https://github.com/confident-ai/deepeval
https://github.com/confident-ai/deepeval
https://github.com/confident-ai/deepeval
https://arxiv.org/abs/2410.20783
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2406.15927
https://arxiv.org/abs/2302.09664
https://arxiv.org/abs/1906.00300
https://aclanthology.org/W04-1013/
https://arxiv.org/abs/2305.19187
https://arxiv.org/abs/2402.10189
https://aclanthology.org/2023.emnlp-main.153/
https://arxiv.org/abs/2309.02654
https://arxiv.org/abs/2002.07650
https://aclanthology.org/2023.acl-long.546/

238
239
240

241

242

243
244
245
246

247
248

249
250
251

252
253
254

255
256
257
258
259
260

261
262

263
264

265
266
267

268
269
270

271
272
273

274

275
276

277
278
279

281
282

P. Manakul, A. Liusie, and M. J. F. Gales. Selfcheckgpt: Zero-resource black-box hallucination
detection for generative large language models, 2023. URL https://arxiv.org/abs/2303,
08896.

OpenAl. URL https://platform.openai.com/docs/models,
OpenAl. Evals, 2024. URL https://github.com/openai/evals,

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of
machine translation. In Proceedings of the 40th Annual Meeting on Association for Computational
Linguistics, ACL *02, page 311-318, USA, 2002. Association for Computational Linguistics. doi:
10.3115/1073083.1073135. URL https://doi.org/10.3115/1073083.1073135,

A. Patel, S. Bhattamishra, and N. Goyal. Are nlp models really able to solve simple math word
problems?, 2021. URL https://arxiv.org/abs/2103.07191l

X. Qiu and R. Miikkulainen. Semantic density: Uncertainty quantification for large language models
through confidence measurement in semantic space, 2024. URL https://arxiv.org/abs/
2405.13845.

A. W. Qurashi, V. Holmes, and A. P. Johnson. Document processing: Methods for semantic text
similarity analysis. In 2020 International Conference on INnovations in Intelligent SysTems and
Applications (INISTA), pages 1-6, 2020. doi: 10.1109/INISTA49547.2020.9194665.

T. Rebedea, R. Dinu, M. N. Sreedhar, C. Parisien, and J. Cohen. NeMo guardrails: A toolkit for
controllable and safe LLM applications with programmable rails. In Y. Feng and E. Lefever, editors,
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, pages 431-445, Singapore, Dec. 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-demo.40. URL https://aclanthology.org/2023!
emnlp-demo.40.

N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks,
2019. URL https://arxiv.org/abs/1908.10084,

J. Ren, Y. Zhao, T. Vu, P. J. Liu, and B. Lakshminarayanan. Self-evaluation improves selective
generation in large language models, 2023. URL https://arxiv.org/abs/2312.09300.

O. Shorinwa, Z. Mei, J. Lidard, A. Z. Ren, and A. Majumdar. A survey on uncertainty quantification
of large language models: Taxonomy, open research challenges, and future directions, 2024. URL
https://arxiv.org/abs/2412.05563

A. Talmor, O. Yoran, R. L. Bras, C. Bhagavatula, Y. Goldberg, Y. Choi, and J. Berant. Common-
senseqa 2.0: Exposing the limits of ai through gamification, 2022. URL https://arxiv.org/
abs/2201.05320.

S. M. T. I. Tonmoy, S. M. M. Zaman, V. Jain, A. Rani, V. Rawte, A. Chadha, and A. Das. A
comprehensive survey of hallucination mitigation techniques in large language models, 2024. URL
https://arxiv.org/abs/2401.01313

UpTrain Al Team. UpTrain, 2024. URL https://github.com/uptrain-ai/uptrain,

L. van der Poel, R. Cotterell, and C. Meister. Mutual information alleviates hallucinations in
abstractive summarization, 2022. URL https://arxiv.org/abs/2210.13210.

N. Varshney, W. Yao, H. Zhang, J. Chen, and D. Yu. A stitch in time saves nine: Detecting and
mitigating hallucinations of llms by validating low-confidence generation, 2023. URL https:
//arxiv.org/abs/2307.03987.

P. Verga, S. Hofstatter, S. Althammer, Y. Su, A. Piktus, A. Arkhangorodsky, M. Xu, N. White, and
P. Lewis. Replacing judges with juries: Evaluating llm generations with a panel of diverse models,
2024. URL https://arxiv.org/abs/2404.18796.

https://arxiv.org/abs/2303.08896
https://arxiv.org/abs/2303.08896
https://arxiv.org/abs/2303.08896
https://platform.openai.com/docs/models
https://github.com/openai/evals
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2103.07191
https://arxiv.org/abs/2405.13845
https://arxiv.org/abs/2405.13845
https://arxiv.org/abs/2405.13845
https://aclanthology.org/2023.emnlp-demo.40
https://aclanthology.org/2023.emnlp-demo.40
https://aclanthology.org/2023.emnlp-demo.40
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2312.09300
https://arxiv.org/abs/2412.05563
https://arxiv.org/abs/2201.05320
https://arxiv.org/abs/2201.05320
https://arxiv.org/abs/2201.05320
https://arxiv.org/abs/2401.01313
https://github.com/uptrain-ai/uptrain
https://arxiv.org/abs/2210.13210
https://arxiv.org/abs/2307.03987
https://arxiv.org/abs/2307.03987
https://arxiv.org/abs/2307.03987
https://arxiv.org/abs/2404.18796

283
284
285
286

287
288
289

290

291
292
293

294
295
296
297
298

299
300

301
302

303
304
305

B. Wang, W. Chen, H. Pei, C. Xie, M. Kang, C. Zhang, C. Xu, Z. Xiong, R. Dutta, R. Schaeffer,
S. T. Truong, S. Arora, M. Mazeika, D. Hendrycks, Z. Lin, Y. Cheng, S. Koyejo, D. Song, and
B. Li. Decodingtrust: A comprehensive assessment of trustworthiness in gpt models, 2024. URL
https://arxiv.org/abs/2306.11698.

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and D. Zhou. Self-
consistency improves chain of thought reasoning in language models, 2023. URL https://
arxiv.org/abs/2203.11171|

WhyLabs. langkit, 2025. URL https://github.com/whylabs/langkit.

M. Xiong, Z. Hu, X. Lu, Y. Li, J. Fu, J. He, and B. Hooi. Can llms express their uncertainty? an
empirical evaluation of confidence elicitation in 1lms, 2024. URL https://arxiv.org/abs/
2306.13063.

Y. Zha, Y. Yang, R. Li, and Z. Hu. AlignScore: Evaluating factual consistency with a unified
alignment function. In A. Rogers, J. Boyd-Graber, and N. Okazaki, editors, Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 11328-11348, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.634. URL https://aclanthology.org/2023.acl-1long.634/,

C. Zhang, F. Liu, M. Basaldella, and N. Collier. Luq: Long-text uncertainty quantification for llms,
2024. URL https://arxiv.org/abs/2403.20279,

T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi. Bertscore: Evaluating text generation
with bert, 2020. URL https://arxiv.org/abs/1904.09675.

T. Zhang, L. Qiu, Q. Guo, C. Deng, Y. Zhang, Z. Zhang, C. Zhou, X. Wang, and L. Fu. Enhancing
uncertainty-based hallucination detection with stronger focus, 2023. URL https://arxiv.org/
abs/2311.13230.

https://arxiv.org/abs/2306.11698
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://github.com/whylabs/langkit
https://arxiv.org/abs/2306.13063
https://arxiv.org/abs/2306.13063
https://arxiv.org/abs/2306.13063
https://aclanthology.org/2023.acl-long.634/
https://arxiv.org/abs/2403.20279
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/2311.13230
https://arxiv.org/abs/2311.13230
https://arxiv.org/abs/2311.13230

306

307
308

310
311
312
313
314
315

317
318
319
320
321
322
323

324
325
326
327
328
329
330
331
332

333
334
335
336
337
338
339
340
341
342
343
344

346
347
348
349
350
351
352
353
354

A Related Work

Black-Box UQ |Cole et al, [2023]] propose evaluating similarity between an original response
and candidate responses using exact match-based metrics. In particular, they propose two metrics:
repetition, which measures the proportion of candidate responses that match the original response,
and diversity, which penalizes a higher proportion of unique responses in the set of candidates. These
metrics have the disadvantage of penalizing minor phrasing differences even if two responses have
the same meaning. Text similarity metrics assess response consistency in a less stringent manner.
Manakul et al.|[2023]] propose using n-gram-based evaluation to evaluate text similarity. Similar
metrics such as ROUGE [Lin, |2004]], BLEU [Papinent et al., 2002]], and METEOR [Banerjee and
Laviel 2005] have also been proposed [Shorinwa et al.| 2024]]. These metrics, while widely adopted,
have the disadvantage of being highly sensitive to token sequence orderings and often fail to detect
semantic equivalence when two texts have different phrasing. Sentence embedding-based metrics
such as cosine similarity [|Qurashi et al., |2020]], computed using a sentence transformer such as
Sentence-Bert [Reimers and Gurevych, [2019]], have also been proposed [Shorinwa et al.l [2024].
These metrics have the advantage of being able to detect semantic similarity in a pair of texts that are
phrased differently. In a similar vein, Manakul et al.| [2023|] propose using BERTScore [Zhang et al.,
2020], based on the maximum cosine similarity of contextualized word embeddings between token
pairs in two candidate texts.

Natural Language Inference (NLI) models are another popular method for evaluating similarity
between an original response and candidate responses. These models classify a pair of texts as
either entailment, contradiction, or neutral. Several studies propose using NLI estimates of 1 —
P(contradiction) or P(entailment) between the original response and a set of candidate responses to
quantify uncertainty [[Chen and Mueller} 2023, |Lin et al.,[2024]). [Zhang et al.|[2024] follow a similar
approach but instead average across sentences and exclude P(neutral) from their calculationsE] Other
studies compute semantic entropy using NLI-based clustering [Kuhn et al.| 2023} [Kossen et al.| 2024}
Farquhar et al.,2024]). |Qiu and Miikkulainen| [2024]] estimate density in semantic space for candidate
responses.

White-Box UQ |Manakul et al.|[2023]] consider two scores for quantifying uncertainty with token
probabilities: average negative log probability and maximum negative log probability. While these
approaches effectively represent a measure of uncertainty, they lack ease of interpretation, are
unbounded, and are more useful for ranking than interpreting a standalone score. [Fadeeva et al.
[2024]] consider perplexity, calculated as the exponential of average negative log probability. Similar
to average negative log probability, perplexity also has the disadvantage of being unbounded. They
also consider response improbability, computed as the complement of the joint token probability
of all tokens in the response. Although this metric is bounded and easy to interpret, it penalizes
longer token sequences relative to semantically equivalent, shorter token sequences. Another popular
metric is entropy, which considers token probabilities over all possible token choices in a pre-defined
vocabulary [Malinin and Gales| 2021, Manakul et al., [2023]]. Malinin and Gales|[2021]] also consider
the geometric mean of token probabilities for a response, which has the advantage of being bounded
and easy to interpretE]

LLM-as-a-Judge For uncertainty quantification, several studies concatenate a question-answer
pair and ask an LLM to score or classify the answer’s correctness. |(Chen and Mueller|[2023]] propose
using an LLM for self-reflection certainty, where the same LLM is used to judge correctness of the
response. Specifically, the LLM is asked to score the response as incorrect, uncertain, or correct,
which map to scores of 0, 0.5, and 1, respectively. Similarly, |Kadavath et al.| [2022] ask the same
LLM to state P(Correct) given a question-answer concatenation. | Xiong et al.|[2024] explore several
variations of similar prompting strategies for LLM self-evaluation. More complex variations such as
multiple choice question answering generation [Manakul et al.| [2023]], multi-LLM interaction [[Cohen
et al.,[2023|], and follow-up questions [Agrawal et al.,|2024] have also been proposed.

3 Averaging across sentences is done to address long-form responses. [Jiang et al. [2024]] also address
long-form hallucination detection but follow a graph-based approach instead.

SFor additional white-box uncertainty quantification techniques, we refer the reader to [Ling et al|[2024]],
Bakman et al.|[2024], |Guerreiro et al|[2023]],|Zhang et al|[2023]], [Varshney et al.|[2023]], Luo et al.|[2023]], Ren
et al.|[2023], van der Poel et al.[[2022],[Wang et al.| [2023].

355
356
357
358
359
360
361
362
363
364

365

366

367
368
369
370
371

372

373
374

375
376
377
378

379
380
381
382

383

384
385
386
387

388

390
391
392

Ensemble Approaches |Chen and Mueller [2023]] propose a two-component ensemble for zero-
resource hallucination known as BSDetector. The first component, known as observed consistency,
computes a weighted average of two comparison scores between an original response and a set of
candidate responses, one based on exact match, and another based on NLI-estimated contradiction
probabilities. The second component is self-reflection certainty, which uses the same LLM to judge
correctness of the response. In their ensemble, response-level confidence scores are computed using
a weighted average of observed consistency and self-reflection certainty. [Verga et al.[[2024] propose
using a Panel of LLM evaluators (PoLL) to assess LLM responses. Rather than using a single large
LLM as a judge, their approach leverages a panel of smaller LLMs. Their experiments find that PoLL
outperforms large LLM judges, having less intra-model bias in the judgments.

B Scorer Definitions: Detailed View

B.1 Problem Statement

We aim to model the binary classification problem of whether an LLM response contains a hallucina-
tion, which we define as any content that is nonfactual. To this end, we define a collection of binary
classifiers, each of which map an LLM response y; €), generated from prompt x;, to a ‘confidence
score’ between 0 and 1, where) is the set of possible LLM outputs. We denote a hallucination
classifieras § :) — [0, 1].

Given a classification threshold 7, we denote binary hallucination predictions from the classifier as

h:y— {0,1}. In particular, a hallucination is predicted if the confidence score is less than the
threshold 7

I(yi; 0,7) = 1(3(yi; 0) < 7), (1)

where 6 could include additional responses generated from x; or other parameters. Note that A(-) = 1
implies a hallucination is predicted. We denote the corresponding ground truth value, indicating
whether or not the original response y; actually contains a hallucination, as h(y;), where h represents
a process to ‘grade’ LLM responses:

1 y; contains a hallucination
0 otherwise.

h(yi) = { @)

We adapt our scorers from various techniques proposed in the literature. Each scorer outputs response-
level confidence scores to be used for hallucination detection. We transform and normalize scorer
outputs, if necessary, to ensure each confidence score ranges from O to 1 and higher values correspond
to greater conﬁdence[] Below, we provide details of these various scorers.

B.2 Black-Box UQ Scorers

Black-box UQ scorers exploit variation in LLM responses to the same prompt to assess semantic
consistency. For a given prompt z;, these approaches involve generating m candidate responses
vi = {¥i1, -, Yim }> using a non-zero temperature, from the same prompt and comparing these
responses to the original response y;. We provide detailed descriptions of each below.

Exact Match Rate. For LLM tasks that have a unique, closed-form answer, exact match rate can
be a useful hallucination detection approach. Under this approach, an indicator function is used to
score pairwise comparisons between the original response and the candidate responses. Given an
original response y; and candidate responses y;, generated from prompt x;, exact match rate (EMR)
is computed as follows:

EMR(y;y:) = ZH(% = Jij)- 3)
=1

"Note that many of the scorers already have support of [0, 1] and hence do not require normalization.

10

393
394
395
396
397
398

399
400
401

402
403
404
405
406

407

408
409

410
411
412
413
414

415
416
417
418
419
420
421

422
423

Non-Contradiction Probability. Non-contradiction probability (NCP) is a similar, but less strin-
gent approach. NCP, a component of the BSDetector approach proposed by (Chen and Mueller| [2023]],
also conducts pairwise comparison between the original response and each candidate response. In
particular, an NLI model is used to classify each pair (y;, gjij) as entailment, neutral, or contradiction
and contradiction probabilities are saved. NCP for original response y; is computed as the average
NLI-based non-contradiction probability across pairings with all candidate responses:

Lo L o= (i, i) + 1(Fij vi)
NCP(y;;y:) =1 7n§; 5)

Above, 7(y;,¥;;) denotes the contradiction probability of (y;,7;;) estimated by the NLI
model. Following |(Chen and Mueller] [2023]] and |[Farquhar et al| [2024], we use
microsoft/deberta-large-mnli for our NLI model.

BERTScore. Another approach for measuring text similarity between two texts is BERTScore
[Zhang et al.||2020]. Let a tokenized text sequence be denoted as t = {¢1, ...t1, } and the corresponding
contextualized word embeddings as E = {ey, ..., ey }, where L is the number of tokens in the text.
The BERTScore precision and recall scores between two tokenized texts t, t’ are respectively defined
as follows:

1 1
BertP(t,t') = — Y maxe-€’; BertR(t,t') = ma

= maxe - e’ 5)
It| t'et
tet

where e, e’ respectively correspond to ¢, t'. We compute our BERTScore confidence (BSC) as follows:

1 < BertP(y;, i;;)BertR(y;, §i;
BSC(yi;yi) = — » 2 ertP(ys, §is) BertR(yi, §ij) ©
m j=1 Bertp(y’iv yzj) + BertR(yi, y”)
i.e. the average BERTScore F1 score across pairings of the original response with all candidate
responses.

Normalized Cosine Similarity. Normalized cosine similarity (NCS) leverages a sentence trans-
former to map LLM outputs to an embedding space and measure similarity using those sentence
embeddings. LetV :)Y — R< denote the sentence transformer, where d is the dimension of the
embedding space. We define NCS as the average cosine similarity across pairings of the original
response with all candidate responses, normalized by dividing by 2 and adding %:

oy b ~ V(i) V(i)
NOSWi3) = 3 2 W) TV G)

1
| +3 @)

Normalized Semantic Negentropy. Semantic entropy (SE), proposed by |[Farquhar et al.|[[2024]],
exploits variation in multiple responses to compute a measure of response volatility. The SE approach
clusters responses by mutual entailment and, like the NCP scorer, relies on an NLI model. However,
in contrast to the aforementioned black-box UQ scorers, semantic entropy does not distinguish
between an original response and candidate responses. Instead, it computes a single metric value on a
list of responses generated from the same prompt. We consider the discrete version of SE, defined as
follows:

SE(yi;3:) = — Y _ P(Cly;, i) log P(Cly;, 1), ®)
cecC

where P(Cly;,y:) denotes the probability a randomly selected response y € {y;, Gi1, .-, Jim
belongs to cluster C, and C denotes the full set of clusters of {y;, §:1, ..., §im } | To ensure that we

81f token probabilities of the LLM responses are available, the values of P(C'|y;, §;) can be instead estimated
using mean token probability. However, unlike the discrete case, this version of semantic entropy is unbounded
and hence does not lend itself well to normalization.

11

424
425
426

427

428

429
430

431
432

434
435

436
437

438

440
441
442
443
444

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

have a normalized confidence score with [0, 1] support and with higher values corresponding to higher
confidence, we implement the following normalization to arrive at Normalized Semantic Negentropy
(NSN):

SE(yi; ¥i)
log(m + 1)’

where log(m + 1) is included to normalize the support.

NSN(yi;y:) =1 - ©

B.3 White-Box UQ Scorers

White-box UQ scorers leverage token probabilities of the LLM’s generated response to quantify
uncertainty. We define two white-box UQ scorers below.

Length-Normalized Token Probability. Let the tokenization of LLM response y; be denoted
as {t1,...,tr, }, where L; denotes the number of tokens the response. Length-normalized token
probability (LNTP) computes a length-normalized analog of joint token probability:

LNTP(y:) = [[p, (10)

tey;

where p; denotes the token probability for token tﬂ Note that this score is equivalent to the geometric
mean of token probabilities for response y;.

Minimum Token Probability. Minimum token probability (MTP) uses the minimum among token
probabilities for a given responses as a confidence score:

MTP(y;) = min p, (11)
tE€Y;

where ¢ and p; follow the same definitions as above.

B.4 LLM-as-a-Judge Scorers

We employ LLM-as-a-Judge as an additional method for obtaining response-level confidence scores.
LLM-as-a-judge scoring prompts a model to rate the correctness of a question—response concatenation.
We adapt the instruction from |Xiong et al.| [2024]] to return a 0—100 score and linearly map it to
[0, 1] for consistency with other scorers. Our LLM-as-a-Judge scorer used the following instruction
prompt:

Question: [question], Proposed Answer: [answer].

How likely is the above answer to be correct? Analyze the answer and
give your confidence in this answer between 0 (lowest) and 100 (highest), with 100
being certain the answer is correct, and 0 being certain the answer is incorrect.
THE CONFIDENCE RATING YOU PROVIDE MUST BE BETWEEN 0 and 100.
ONLY RETURN YOUR NUMERICAL SCORE WITH NO SURROUNDING
TEXT OR EXPLANATION.

Example 1

Data to analyze

Question: Who was the first president of the United States?, Proposed Answer:
Benjamin Franklin.

Your response
4 (highly certain the proposed answer is incorrect)

°Although it is not reflected in our notation, the probability for a given token is conditional on the preceding
tokens.

12

463
464
465
466
467
468

470
471
472

473

474
475
476
477
478

479

481
482
483
484

486
487

Example 2
Data to analyze
Question: What is 2+27?, Proposed Answer: 4

Your response
99 (highly certain the proposed answer is correct)

To ensure a normalized confidence score consistent with the other scorers, we normalize the value
returned by the LLM judge to be between 0 and 1. The capitalization and repeated instructions,
inspired by [Wang et al.| [2024], are included to ensure the LLM correctly follows instructions.

B.5 Ensemble Scorer

We introduce a tunable ensemble approach for hallucination detection. Specifically, our ensemble
is a weighted average of K binary classifiers: §; : Y — [0,1] for k = 1,..., K. As several of
our ensemble components exploit variation in LLM responses to the same prompt, our ensemble is
conditional on (¥;, w), where w denote the ensemble weights. For original response y;, we can write
our ensemble classifier as follows:

K
$(yir ¥, w) = > wedk(yi; ¥i), (12)
k=1

where w = (wy, ...,wK),Zszl wg =1, and wy, € [0,1] for k =1, ...,K

We outline a method for tuning ensemble weights for improved hallucination detection accuracy.
This approach allows for customizable component-importance that can be optimized for a specific
use case. In practice, tuning the ensemble weights requires having a ‘graded’ set of n original LLM
responses which indicate whether a hallucination is present in each response For a set of n prompts,
we denote the vector of original responses as y

1
Y2
v=1|" |, (13)
Yn
and candidate responses across all prompts with the matrix Y:
Y1 Yy Y2 0 Yim
- y2 Y21 Y22 0 Yom
Y=]| . |=)) . . . (14)
yn gnl gnZ o gnm

Analogously, we denote the vectors of ensemble confidence scores, binary ensemble hallucination
predictions, and corresponding ground truth values respectively as
5(y1;51,w)
- 5(y2;y2, W)
. ; (15
(yn; Y, W)

(yl;ylvwaT)

;~7W7T
Bys ¥ow,r) — | WYL (16)

>

S S

h(yn§ Yn, W, T)

!Note that although we write each classifier to be conditional on the set of candidate responses, some of the
classifiers depend only on the original response.

"Grading responses may be accomplished computationally for certain tasks, e.g. multiple choice questions.
However, in many cases, this will require a human grader to manually evaluate the set of responses.

13

489

491
492
493

494
495
496
497

498

499
500

501
502
503

504

505
506
507

508

509

510
511
512
513
514

and

hy)=| . | (17)
h(yn)

Modeling this problem as binary classification enables us to tune the weights of our ensemble
classifier using standard classification objective functions. Following this approach, we consider
two distinct strategies to tune ensemble weights wy, ..., wx: threshold-agnostic optimization and
threshold-aware optimization.

Threshold-Agnostic Weights Optimization. Our first ensemble tuning strategy uses a threshold-
agnostic objective function for tuning the ensemble weights. Given a set of n prompts, corresponding
original LLM responses and candidate responses, the optimal set of weights, w*, is the solution to
the following problem:

w" = argmaxS(8(y; Y, w), h(y)), (18)
wew
where
K
W= {(wy,...wg) : Y wp=1w, >0Vk=1,.,K} (19)
k=1

is the support of the ensemble weights and S is a threshold-agnostic classification performance metric,
such as area under the receiver-operator characteristic curve (AUROC).

After optimizing the weights, we subsequently tune the threshold using a threshold-dependent
objective function. Hence, the optimal threshold, 7%, is the solution to the following optimization
problem:

7'>'< = arg maXB(fl(y;Y7W*aT)7h(y))a (20)
7€(0,1)

where B is a threshold-dependent classification performance metric, such as F1-score.

Threshold-Aware Weights Optimization. Alternatively, practitioners may wish jointly optimize
ensemble weights and classification threshold using the same objective. This type of optimization
relies on a threshold-dependent objective. We can write this optimization problem as follows:

w*, 7* = argmax B(fl(y;Y,w,T),h(y)), @1
wEW,T€(0,1)

where B, fl, h, and W follow the same definitions as above.

C Software Description: uqlm Library

The uqlm library provides a collection of UQ-based scorers spanning four categories: black-box UQ,
white-box UQ, LLM-as-a-Judge, and ensembles. The corresponding classes for these techniques
are instantiated by passing an LLM object to the constructorE] Each of these classes contains a
generate_and_score method, which generates LLM responses to a user provided list of prompts
and computes response-level confidence scores, which range from O to 1.

"2For the current version of uqlm, a LangChain BaseChatModel is required. Note that an LLM is not required
if users provide pre-generated responses and implement the score method.

14

515

516
517
518
519
520
521
522
523
524
525
526
527
528

529

530

531
532
533
534
535
536
537

538
539
540

541

542
543
544
545
546
547
548

549
550

C.1 Comparison to Existing Toolkits

Traditional grading toolkits (Evals [[OpenAll [2024]], G-Eval [Liu et al., | 2023|]) require ground-truth
answers; they are valuable pre-deployment but not usable at generation time. Source-comparison
tools (Ragas [Es et al.,|2023|], Phoenix [Arize AL 2025|, DeepEval [Ip and Vongthongsri} 2025, and
others [Hu et al., [2024, |[UpTrain Al Team) 2024, Zha et al., 2023 |Asai et al.,[2023]]) assess agreement
with provided context, yet can validate paraphrases of the prompt without verifying factuality and
require sources to be available. Internet-grounded checkers (FacTool [[Chern et al.l [2023]]) introduce
latency and potential external errors and do not directly quantify model uncertainty. UQ offerings
exist but are narrow or research-oriented: SelfCheckGPT [Manakul et al.l [2023]] includes a limited
subset of scorers and separates generation from evaluation; LangKit [WhyLabs| 2025]] and NeMo
Guardrails [Rebedea et al., 2023]] expose a few UQ signals; LM-Polygraph [Fadeeva et al.,[2023] is
comprehensive but geared toward research users. uqlm bridges these gaps: it provides a zero-resource,
generation-time suite across black-box, white-box, and judge signals, standardizes outputs to [0, 1],
offers a lightweight, extensible ensemble, and integrates generation and evaluation with a simple API.

C.2 API and Usage

Generate
Original

Response Compute Pairwise Similarity

similarity((_ Paris), (It's Paris))

Prompt/Question **

/ What is the capital h

of France? / LL M

N Confidence Score
Paris) - N
)

simitarity((_ Paris), (

(ETeT
\ (_It's Paris)
N e H :
4 s) s N ~

(_Paris) Similarity((_ Paris _),(_Rome)
Generate 8
Candidate
Responses

Figure 1: Ilustration of a Black-Box Scorer Workflow

C.2.1 Black-Box UQ

Black-box UQ scorers are compatible with any LLM, but increase latency and generation
costs. The corresponding class for this collection of scorers is BlackBoxUQ. To implement
BlackBoxUQ.generate_and_score, users provide a list of prompts. For each prompt, an origi-
nal response, along with additional candidate responses, are generated by the user-provided LLM,
and consistency scores are computed using the specified scorers (see Figure If users set
use_best=True, the uncertainty-minimized response is selected Below is a minimal example
illustrating usage of BlackBoxUQ.

from uqlm import BlackBoxUQ
bbuq = BlackBoxUQ(llm=11lm, scorers=["exact_match", "noncontradiction"])
results = await bbuq.generate_and_score(prompts=prompts, num_responses=5, use_best=True)

C.2.2 White-Box UQ

White-box uncertainty quantification leverages token probabilities to compute uncertainty, as depicted
in Figure[2] These approaches have the advantage of using the token probabilities associated with the
generated response, meaning they do not add any latency or generation cost. However, because token
probabilities are not accessible from all APIs, white-box scorers may not be compatible with all LLM
applications. This collection of scorers can be implemented with the WhiteBoxUQ class. Below is a
minimal example of WhiteBoxUQ usage.

from uqlm import WhiteBoxUQ

wbuq = WhiteBoxUQ(llm=11lm, scorers=["min_probability"])
results = await wbuq.generate_and_score (prompts=prompts)

3Note that FigureE]depicts the approach for all black-box UQ scorers except semantic entropy, which does
not designate an ‘original response’.
"“Uncertainty-minimized response selection is based on semantic entropy [Farquhar et al., [2024].

15

551

552
553
554
555
556
557
558
559
560

562
563
564

565

566

568
569
570
571
572

574
575
576
577
578

Generate Response
* LLM Response & Token Probabilities

Prompt/Question —_— —
/Who was the first presidenf\\ ’§ ‘// E..l
\ of the United States? / L L M \
N // \\

Figure 2: Illustration of a White-Box Scorer Workflow

C.2.3 LLM-as-a-Judge

LLM-as-a-Judge uses an LLM to evaluate the correctness of a response to a particular question.
To achieve this, a question-response concatenation is passed to one or more LLMs along with
instructions to score the response’s correctness using the LLMPanel class (see Figure [3). In the
constructor, users pass a list of LLM objects to the judges argument and specify one of four scoring
templates for each judge with the scoring_templates argument. These four scoring templates
are as follows: binary ({incorrect, correct} as {0, 1}), ternary ({incorrect, uncertain, correct} as
{0,0.5,1}), continuous (any value between 0 and 1), and a 5-point Likert scale (0,0.25, ..., 1).
Implementing the generate_and_score method returns the score from each judge and aggregations
of these scores, including minimum, maximum, average, and median. See below for a minimal
example.

** LM Numerical
h

Judgments Score
LLM (correct —=(10)
Judge 1 — S

Question-Answer
Original Concatenation

Prompt/Question ** LLM ** Confidence
U + Response Question: What IlM Score
What is the capital - — is the capital of) R v
{ — LLM Paris Incorrect —>(0.0
\ of France? / E - France? \ >/ \ J " Y,
- ‘[7 7 I Answer: Paris Judge 2 —
+
“*
LLM (correct)—=(1.0)
Judge K — —

Figure 3: Illustration of LLM-as-a-Judge Workflow

from uqlm import LLMPanel
panel = LLMPanel (1lm=11ml, judges=[11m2, 11m3], scoring_templates=["continuous", "likert"])
results = await panel.generate_and_score(prompts=prompts)

C.24 Ensemble Approach

Lastly, uglm offers both tunable and off-the-shelf ensembles that leverage a weighted average
of any combination of black-box UQ, white-box UQ, and LLM-as-a-Judge scorers. Similar to
the aforementioned classes, UQEnsemble enables simultaneous generation and scoring with a
generate_and_score method. Using the specified scorers, the ensemble score is computed as
a weighted average of the individual confidence scores, where weights may be default weights,
user-specified, or tuned. If no scorers are specified, the off-the-shelf implementation follows an
ensemble of exact match, non-contradiction probability, and self-judge proposed by |Chen and Mueller
[2023]].

In order to tune the ensemble weights prior to using the generate_and_score method, users must
provide a list of prompts and corresponding ideal responses to serve as an ‘answer key’. The LLM’s
responses to the prompts are graded with a grader function that compares against the provided ideal
responses. If a grader function is not provided by the user, the default grader function that leverages
vectara/hallucination_evaluation_model is used.

16

579
580
581
582
583

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603

604

605
606
607
608

| scoret | score2 | - | seorek

M
Response

+
‘* - User provides
LLM & prompts

LLM

{ Optimize Ensemble
: Weights

Sy

Generation + Scoring

‘ [Black-Box Scorers) |
] M —_—
i JLLM White-Box Scorers) |
i LLM Judge Scorers) |

What is the Capital of France?
How many r's in the word strawberry?

User provided
Who was the first president of the Grader Function
United States?

+
Answer Key

Figure 4: Illustration of Ensemble Tuning

Once the binary grades (‘correct’ or ‘incorrect’) are obtained, an optimization routine solves for the
optimal weights according to a specified classification objective. The objective function may be
threshold-agnostic, such as ROC-AUC, or threshold-dependent, such as F1-score. After completing
the optimization routine, the optimized weights are stored as class attributes to be used for subsequent
scoring. Below is a minimal example illustrating this process.

from uqlm import UQEnsemble

---Option 1: Off-the-Shelf Ensemble (Chen & Mueller, 2023)---
uge = UQEnsemble (llm=11m)
results = await uqe.generate_and_score(prompts=prompts, num_responses=5)
---Option 2: Tuned Ensemble---
scorers = [# specify which scorers to include
"exact_match", "noncontradiction", # black-box scorers
"min_probability", # white-box scorer

1llm # use same LLM as a judge
]

uqe = UQEnsemble (llm=11lm, scorers=scorers)

Tune on tuning prompts with provided ground truth answers
tune_results = await uqe.tune(
prompts=tuning_prompts, ground_truth_answers=ground_truth_answers

ensemble is now tuned - generate responses on new prompts
results = await uqe.generate_and_score(prompts=prompts)
results.to_df ()

D Additional Figures from Experiments

Below we present additional figures and tables from our experiments: (i) scorer-specific AUROC, (ii)
scorer-specific F1, (iii) filtered accuracy vs confidence threshold for the top scorer from each family,
(iv) AUROC vs number of sampled candidates for all black-box scorers, and (v) Average exact match
rate. Each figure and table covers all 24 LLM—dataset scenarios.

17

I Black-Box UQ

BN White-Box UQ

Ensemble
EM]

MTP
NSN
GPT-4o|
BSC

NC
LNTP
NCP
Gem-1.5
GPT-3.5

1% =
e
z
Q
fopppds
312355025
Z'u-ﬁﬁ'ﬂm'v-qq
| |
e
20
22 o
PrzEmizen
L533A82052
| ||

0.6
Gemini-1.0-Pro
Ensemble|
GPT-4o|
NCS
EMR
NCP
BSC
NSN
Gem-1.5
GPT-3.5

L

0.5 0.7

0.6
GPT-3.5

(a) NQ Open

Ensemble
GPT-40

5 0.6 0.7
Gemini-1.5-Flash

S
=

220 g
§3% o} &
?rHZwZzZZzZZ3
LLEARAS5EEE
LS ARSEE 2R

0. 0.7

5 0.6
GPT-40

Ensemble
NS]

§ 8. s
I 4=
= =
L8LZE3R557
| ||
e
S7gZzzzz
LPEAL
£5,82582333
=
ot
%

06 038
Gemini-1.0-Pro

o
280]
388 mopu8
SLPBZZZEE
GntARBSZE

Ensemble
LNTI

GPT3.5

06
Gemini-1.5-Flash
Ensemble

NSN

g
E mzS
TwzZZzZ
= =
£58053553
582
2i7825%
LnEARBSZ
zZzzZ
E47]
BR52033

GPT35

04 06 08 04 0.6 08
GPT-3.5 GPT-40
(c) GSM8K
GPT-40 Ensemble
Ensemble| GPT-40

o o
L= 3
T
A28 52330
} ||
)
g8 o
ZZZFZLIE2
B35235533
p ||
I
P4

0.6 0.
Gemini-1.0-Pro

Ensemble
GPT-4o!
Gem-1.5
NCP
NSN
EMR
NCS
BSC
GPT-3.5

.

0.6
GPT-3.5

4 0.6
Gemini-1.5-Flash

BS(
GPT-40
Gem-1.5
GPT-3.5

m
Z
c_8
zZzzzZ3
7k
BZ533352

S,
=

0.6 0.8
GPT-40

(e) CSQA

B LLM-as-a-Judge

N Ensemble UQ

Ensemble
NS]

.6 0.7 0.8
Gemini-1.0-Pro
NCS
Ensemble|
EMR
NCP
NSN
GPT-4o
BSC
GPT-3.5
Gem-1.5

Ml

S,
S
1=
Lo

0.7

%28

5
GPT-

(b) PopQA

0.

Ensemble

2 o
oy82539
ZpZ2zi=zod
PRZEZLEZ5E

06 . 038
Gemini-1.5-Flash
Ensemble
NC]
GPT-40
NSN
NCS
BSC
GPT-3.5
MTP

Q@
_
2i%
Tino s
=
[=)
%0

0.
GPT-40

NSN
NCP
Ensemble
EM]
LNTP/
MTP
NCS
Gem-1.5
GPT-40

BSC
GPT-3.5

1

0.4 0.8

0.6
Gemini-1.0-Pro

Ensemble

0.4 0.8

0.6
GPT-3.5

MTP

LNTP

Ensemble
NS]

NC:!
GPT-40
Gem-1.5
GPT-3.5

o,
=~

g2Z
PnORTZ

0.6 0.8
Gemini-1.5-Flash

Ensemble
LNTI

BS(
GPT-40
Gem-1.5
GPT-3.5

0.4

0.6 0.8
GPT-40

(d) SVAMP

rn
220 H

gFnsCzTzzz

BL553350028

§.9

iz7z%z

LB 8RZA

06 .. 08
Gemini-1.0-Pro

LNTP

MTP

Ensemble

GPT-3.5
BS

0.4 0.6 0.8
Gemini-1.5-Flash

Ensemble! LNTP
GPT-40 b Mg"’
NSN SeREN
Gem-1.5 GPT-3.5
NCP GPT-do
EMR] G Nf’;
NCS el
GPT-3.5 N
BSC BSC
0.6 0.8 0.4 0.6 0.8
GPT-3.5 GPT-40
(f) AI2-ARC

Figure 5: Scorer-Specific AUROC Scores for Hallucination Detection by LLM and Dataset (Higher

is Better)

18

B Black-Box UQ

Eml,mbh,_
Ao | S —

LNTP s —
Gem-1.5 [—— EMR [—
NCP | — C
GPT-3.5 [— Gem-1.5 EE———
0.3 0.4 0.5 0.6 0.4 0.5 0.6
Gemini-1.5-Flash

Gemini-1.0-Pro

Ensemble [—
GPT-do [S

Gem1'5 _
0.7

0.4 0.5 0.6
GPT-3.5

Ensemblc | ———
NSN I ———
MR

GPT-3.5
Gem-1.5 | ——
0.7

N White-Box UQ

0.5 0.6
GPT-40

(a) NQ Open

Enscmblc_

]
GPT-4o I ——
Gem-1.5 I— BSC I —
BSC — T-do —
GPT-3.5 I— GPT-3.5 I——
02 04 0.6 0.4 0.6
Gemini-1.5-Flash

Gemini-1.0-Pro

Ensemblc [—
NSN |

Ensemblc I ————
NCP

GPT-3.5 I—
0.8

0.6
GPT-40

EE———
NCS [
NCP E—— NCS
MTP —— LNTP e ——
LNTP M P —
NSN [— BSC e —
BSC —— Gem- 1.5 I —
GPT.3.5 E—— GPT.3.5 P ——
0.6 0.7 08 09 0.7 08 09
Gemini-1.0-Pro Gemini-1.5-Flash
NCP I ———
Ensemblc |
NS!\! s

Ensemblc [—
GP

Figure 6: Scorer-Specific F1-Scores for Hallucination Detection by LLM and Dataset (Higher is

Better)

0.9 0.6 0.7

(e) CSQA

BN | [M-as-a-Judge BN Ensemble UQ

NSN I ——— 40—
EMR S S — Ensemblc [
PT-do [— PT-3.5
Ensemblc I —— TP I —
(TP I ——— Gem-1.5 ——
NCS | — LNTP —
BSC I —— NCP I —
LNTP — EMR E——
GPT-3,5 I —— NSN [E—
NCP I —— NCS | ——
Gen-1.5 E— BSC —
0.4 0.5 0.4 0.
Gemini-1.5-Flash

03 X
Gemini-1.0-Pro

Ensemblc [| Ensemblc S —
NCS NCP

BSC [— .
e PT3. I——
Eﬁﬁ_ Gen 1.5 I—
ITP ———
GPT-3.5 I LNTP —
Gem-1.. 5_ EMR —
04 0.4 0.6
GPT-40

0.2
GPT—3.5

Gem-1.5 -
GPT-3.5 I —— .
0.9 0.4 0.6 0.8
Gemini-1.5-Flash
Ensemblc [—
NS | S

0.7 .
Gemini-1.0-Pro

Ensemblc [—
NSN [—

BSC [
Gem-1.5 |
GPT-3 5 I —
0.6 0.7 0.8 9 .00
GPT-3.5
Ensenblc ET—— | oot E—
GPT-40 I ——
- —————————— LNTP
NS I —— MTP
NCP I ——— NCS I ——
MTP e —— NSN
BSC I ——— NCP I —
LNTP —— EMR s —
NCS I —— BSC e ——
EMR e —— Gem-1.5 I ———
GPT-3.5 I —— GPT-3 5 ——
0.8 0.9 1.0 0.8 0.9 1.0
Gemini-1.0-Pro Gemini-1.5-Flash
Ensemblc NS | bl E—
GPT-do | I —
_—
Gem- 1.5 [G —
NCP NCP |
NSN S — LNTP e —
NCs MTP e ——
Hﬁ;_ GPT-do I ——
EMR|
DSC I — Gem-1.5 [——
GPT-3.5 I — GPT-35
0.8 0.9 1 08 0.9 1.0
GPT-40

(f) AI2-ARC

19

AI2-ARC SVAMP GSMSK POPQA NQ-Open

CSQA

0.8

0.6

0.4

0.75

0.50

0.25

0.75

0.50

0.25

0.85

0.9

0.8

0.7

Baseline LLM Accuracy —=— Black-Box UQ —— Judge —— White-Box UQ —+— Ensemble UQ
Gemini-1.0-Pro Gemini-1.5-Flash GPT-3.5 GPT-40
0.8 0.8 0.8
0.6 %;/:44 0.6 e
0.4 0.4
O,:)O 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75
0.75 0.75
0.50 0.50
0.25 =8 025 _/.—-——-"f.‘z
0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75
0.75 0.75 0.75
0.50 :ﬁ. 0.50 0.50
e sl — [0.25 0.25
000 025 050 075 000 025 050 075 000 025 050 075 000 025 050 075
0.9
0.8 0.8
0.7 0.7
000 025 050 075 000 025 050 075
1.00 1.00 Rm—
0.95 0.95
0.90 0.90
0.85 0.85 0.85
0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75
0.9 f_-_“// 0.9 0.9
0.8 i 0.8 0.8 M
0.7 0.7 0.7
0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75
Threshold Threshold Threshold Threshold

Figure 7: Filtered LLM Accuracy vs. Confidence Threshold (Top per Scorer Type)

20

NQ-Open
AUROC Score
£35S 5 8

>

PopQA

AUROC Score

=
>

5 5 B
8 & 8

GSM8K
AUROC Score

3 =
2 &

SVAMP
AUROC Score
S 3 E &8

2

Al2-ARC
AUROC Score

CSQA
AUROC Score

—— NCP -+ NSN —= NCS -+ EMR —— BSC
Gemini-1.0-Pro Gemini-1.5-Flash GPT-3.5 GPT-40
0.80 0.80 0.80
0.75 0.75 0.75
0.70 0.70 0.70
0.65 0.65 0.65
0.60 0.60 0.60
0.55 0.55 0.55
2 4 6 8 10 12 14 2 4 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
09 0.9 09
08 0.8 08
07 0.7 0.7
0.6 06 0.6 ////
2 4 6 8 10 12 14 2 4 8 10 12 14 2 4 6 8 10 1 14 2 4 6 8 10 12 14
0.90 0.90 0.90
0.85 0.85 0.85
0.80 0.80 0.80
0.75 0.75 0.75
0.70 0.70 0.70
0.65 0.65 0.65
0.60 0.60 0.60
2 4 6 8 10 12 14 2 4 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
0.90 0.90 0.90
0.85 0.85 0.85
0.80 0.80 0.80
0.75 0.75 0.75
0.70 0.70 0.70 /_'__—."’__‘
0.65 0.65 0.65
0.60 0.60 0.60
0.55 0.55 0.55
2 4 6 8 10 12 14 2 4 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
09 0.9 09
08 0.8 08
0.7 0.7 0.7
0.6 0.6 0.6
0s W 05 05
04 04 04
2 4 6 8 10 12 14 2 4 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
08 0.8 08
. o /:ﬂ%: 07
0.6 0.6 0.6
05 5 ! 0.5 05

2 6 8 10 12 14

4
Number of sampled responses

2

4 6
Number of sa

8 0 12

mpled responses

14

2 6 8 0 12 14

4
Number of sampled responses

2

4 6 8 10 1 u
Number of sampled responses

Figure 8: Hallucination Detection AUROC by Number of Sampled Responses

Table 4: Average Exact Match Rate by LLM and Dataset
PopQA GSMS8K SVAMP CSQA AI2-ARC

Model Used

NQ-Open

Gemini-1.5-Flash
Gemini-1.0-Pro
GPT-3.5

GPT-40

0.81
0.36
0.47
0.44

0.79
0.18
0.29
0.35

0.83
0.25
0.30
0.63

0.96
0.66
0.76
0.91

0.99
0.71
0.81
0.90

1.00
0.85
0.89
0.81

21

	Introduction
	Hallucination Detection Methods
	Problem Statement
	UQ-Based Confidence Scorers

	Experiments
	Conclusion
	Related Work
	Scorer Definitions: Detailed View
	Problem Statement
	Black-Box UQ Scorers
	White-Box UQ Scorers
	LLM-as-a-Judge Scorers
	Ensemble Scorer

	Software Description: uqlm Library
	Comparison to Existing Toolkits
	API and Usage
	Black-Box UQ
	White-Box UQ
	LLM-as-a-Judge
	Ensemble Approach

	Additional Figures from Experiments

