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Abstract

Large language models often hallucinate, creating trust and safety concerns in
high-stakes settings. We present a generation-time, zero-resource framework
for hallucination detection that unifies black-box, white-box, and judge signals.
Heterogeneous outputs are standardized to a shared 0 to 1 confidence scale for
ranking and thresholding. To enhance flexibility, we introduce a simple, extensible
ensemble with non-negative weights tuned on a graded set of LLM responses.
Across six QA benchmarks and four generators, the ensemble outperforms the
best individual scorer in 18 of 24 AUROC cases and 16 of 24 F1 cases. Among
non-ensemble scorers, entailment-style black-box methods are strong baselines,
although they incur higher generation costs and lack effectiveness when variation
in sampled responses is low. The framework supports practical actions such as
blocking low-confidence responses or routing to human review. We release an open-
source Python library providing ready-to-use implementations of all methods.

1 Introduction

Large language models (LLMs) are increasingly deployed in production applications, including high-
stakes domains such as healthcare and finance. Monitoring the accuracy and factuality of generated
outputs is therefore essential. Hallucination, where outputs sound plausible yet contain incorrect
content, remains a central reliability risk. Pre-deployment evaluations that compare generated text to
ground truth are valuable but do not support real-time monitoring of deployed systems. In contrast,
generation-time methods that quantify uncertainty can score each response at inference time.

Uncertainty quantification (UQ) spans black-box uncertainty from variation across sampled responses
[[Cole et al., 2023, [Manakul et al., 2023/ [Lin et al., 2024, |[Kuhn et al., 2023, [Kossen et al., 2024}
Farquhar et al.,[2024] [Zhang et al.| 2024} |Qiu and Miikkulainen| |2024]], white-box token-probability
signals such as negative log probability, perplexity, entropy, and geometric means [Manakul et al.}
2023| [Fadeeva et al.| 2024, Malinin and Gales|2021]], and LL.M-as-a-judge scoring [Chen and Mueller}
2023|, |Kadavath et al.} 2022, |Xiong et al., [2024]]. Surveys provide broader coverage [Huang et al.,
2023| [Tonmoy et al.,|[2024} Shorinwa et al., 2024, [Huang et al., [2024]]. Prior work often assesses a
single family or considers heterogeneous signals without a shared output space

This paper presents a generation-time, zero-resource framework for hallucination detection that unifies
diverse uncertainty signals. We adapt black-box methods that exploit response variation, white-box
methods that use token probabilities, and LLM-as-a-judge methods. We then apply a standardization
protocol that maps heterogeneous outputs to a common confidence scale in [0, 1], where higher values

'We provide a detailed overview of related work in Appendix
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indicate higher confidence that a response is correct. The standardized scores enable ranking and
thresholding for practical actions: block low-confidence responses, route uncertain cases to human
review, or attach a low-confidence disclaimer. Building on these scores, we introduce a lightweight
ensemble that combines multiple signals with non-negative weights learned on a graded set of LLM
responses. The ensemble design is extensible, so new scorers can be added without redesign. Finally,
our framework is complemented by uqlm, our open-source Python package that provides ready-to-use
implementations of all uncertainty quantification methods presented and evaluated in this WorkE]

2 Hallucination Detection Methods

2.1 Problem Statement

We study binary detection of hallucinations in LLM outputs. For a prompt z; and its original response
yi € Y, let a confidence scorer be a function § : ) — [0, 1] that maps y; to a confidence score, where
larger values indicate higher confidence that y; is correct. Given a threshold 7 € [0, 1], define the
binary predictor & : ) — {0,1} by h(y;; 0,7) = 1(3(y; ) < 7), where 6 denotes scorer-specific
inputs (e.g., multiple responses generated from x;).

2.2 UQ-Based Confidence Scorers

We group scorers into three families. Black-box scorers exploit variation across multiple responses to
the same prompt. White-box scorers use token probabilities associated with the generated response.
Judge-based scorers prompt an LLM to rate the correctness of a question-response concatenation. All
raw outputs are standardized to [0, 1] so that larger values indicate higher confidence. Standardization
applies direction alignment and a bounded monotone transform when needed. Concise scorer
definitions are presented in Table[T|and detailed definitions are contained in Appendix [B] A detailed
description of the uglm software is contained in Appendix [C]

Scorer Family Definition (sketch) Extra inputs

EMR Black-box 1 >t Wy = 9i5) m candidates

BSC Black-box L >~y BERTF1(yi, §i;) m candidates, token-level embeddings
NCS Black-box % Tzl w m candidates, sentence-level embeddings
NCP Black-box 1-— %Z;”:l w m candidates, NLI model

NSN Black-box 1 — SE(ys;¥:)/ log(m+1) m candidates, NLI model

LNTP White-box [Lic,, p/ b token probabilities

MTP ‘White-box mingey,; pt token probabilities

Judge LLM-as-judge scorejuage (i, y:)/100 judge model

Ensemble Meta Optimized combination of scorers  tuning data, component inputs

Table 1: Scorers at a glance: standardized [0, 1] confidence; higher implies lower hallucination risk.

Black-Box UQ. For a prompt x;, black-box UQ methods generate m candidates y; =
{¥i1,-.-,TUim} at nonzero temperature and compare to the original response y;. Methods in-
clude exact-match rate (EMR) [Cole et al., [2023| |Chen and Mueller, [2023]], semantic similarity
via BERTScore confidence (BSC) [Manakul et al.l 2023 or normalized cosine similarity (NCS)
[Shorinwa et al., 2024]], and entailment-based scorers including non-contradiction probability (NCP)
[Chen and Mueller, 2023| Lin et al., 2024, [Manakul et al.| [2023]] and semantic entropy [Farquhar
et al., 2024, |Kuhn et al., 2023 normalized to confidence, i.e., normalized semantic negentropy (NSN).
These require additional generations and, for some variants, an encoder or a Natural Language
Inference (NLI) model.

White-Box UQ. White-box UQ methods use token probabilities of the generated response to
measure uncertainty. These approaches have the advantage of adding no additional latency or

2An anonymized GitHub repository with code and instructions is available at https: //anonymous . 4open |
science/r/uqlm-FBF3. A public link will be provided upon acceptance.
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generation costs, but are not compatible with all LLM APIs. We consider two white-box UQ scorers:
length-normalized token probability (LNTP), computed as the geometric mean of token probabilities
for a generated response, and minimum token probability (MTP). By construction, these two scorers
are bounded with [0, 1] support and hence do not require normalization.

LLM-as-a-judge. In this approach, we concatenate a question-response pair and pass it to an LLM
with a carefully constructed instruction prompt that directs the model to evaluate the correctness
of the response. We adapt our instruction prompt from Xiong et al. [2024]], instructing the LLM to
score responses on a 0-100 scale, where a higher score indicates a greater certainty that the provided
response is correct. These scores are then normalized to a 0-to-1 scale to maintain consistency with
our other confidence scoring methods. The complete prompt template is provided in Appendix

Ensemble (meta-scorer). Lastly, we combine standardized scorers using non-negative weights
learned on a graded set of LLM responses to optimize a chosen objective (e.g., AUROC). The
ensemble outputs a single [0, 1] confidence score and remains interpretable; non-negative weights
preserve monotonicity with respect to each component. Tuning details appear in Appendix [B.5]

3 Experiments

Experimental Setup We evaluate hallucination detection across six QA benchmarks with diverse
answer formats: numerical (GSM8K [Cobbe et al., 2021], SVAMP [Patel et al., 2021]), multiple-
choice (CSQA [Talmor et al.| 2022]], AI2-ARC [Clark et al., |2018]]), and open-text (PopQA [Mallen
et al.| |2023[], NO-Open [Lee et al., 2019]). We sample 1,000 questions per dataset and, for each
prompt, generate one original response and m=15 candidates at temperature 1.0 using four LLMs:
GPT-3.5 [OpenAl], GPT-40 [OpenAll, Gemini-1.0-Pro [[Google]], and Gemini-1.5-Flash [Google].
Black-box scores for a response use the candidates produced by the same LLM. Judge scores are
obtained from three judges (GPT-3.5, GPT-40, Gemini-1.5-Flash); white-box scores are computed
where token probabilities are available (GPT-40, Gemini-1.0-Pro, Gemini- 1 .S—Flash)E] All scores are
produced with our companion toolkit, uqlm Supplemental figures displaying detailed experiment
results are contained in Appendix [D}

Threshold-agnostic (AUROC). We evaluate each scorer as a ranker of incorrect responses using
AUROC. The ensemble uses AUROC-optimized weights learned on the training fold with 5-fold
cross-validation. Appendix Fig. [5|shows per-scorer AUROC across the 24 LLM—dataset scenarios,
while Table 2] highlights the best scorer per scenario. Best-scorer AUROC ranges from 0.72 (GPT-3.5
on PopQA, NCS) to 0.93 (Gemini-1.5-Flash on AI2-ARC, LNTP), with 19 of 24 scenarios above 0.8,
indicating strong overall hallucination detection performance. The ensemble outperforms individual
components in 18 of 24 scenarios. NLI-based scorers (NSN, NCP) typically lead among black-box
scorers (18 of 24 scenarios), GPT-40 is the strongest judge in 19 of 24 scenarios, and the two
white-box scorers (LNTP and MTP) perform similarly.

Table 2: Hallucination Detection AUROC (Higher is Better): Top Scorer by Dataset and Model

Dataset Gem.-1.0-Pro Gem.-1.5-Flash GPT-3.5 GPT-4o0
AUROC Scorer | AUROC Scorer | AUROC Scorer | AUROC Scorer

NQ-Open| 0.84  Ensemble | 0.79  Ensemble | 0.76  Ensemble | 0.73  Ensemble

PopQA 0.86  Ensemble | 0.87 Ensemble | 0.72 NCS 0.91 Ensemble
GSM8K 0.84 Ensemble 0.82 Ensemble 0.84 Ensemble 0.90 Ensemble
SVAMP 0.88 NSN 0.89 MTP 0.88 Ensemble 0.89 Ensemble
CSQA 0.87 GPT-40 0.79 Ensemble 0.84 Ensemble 0.84 Ensemble

AI2-ARC| 090  Ensemble | 0.93 LNTP 0.91 Ensemble | 0.86 LNTP

30ur GPT-3.5 instance did not expose token probabilities. Gemini-1.0-Pro was retired during the study and
is unavailable as a judge.

*Using an n1-standard-16 machine (16 vCPU, 8 core, 60 GB memory) with a single NVIDIA T4 GPU
attached, our experiments took approximately 0.5-3 hours per LLM-dataset combination to complete.
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Threshold-optimized (F1). We jointly tune ensemble weights and the decision threshold with
F1 as the objective (per-scorer thresholds via grid search), reporting 5-fold cross-validated test F1.
Appendix Fig. [f] shows per-scorer F1, while Table [3]summarizes the top scorer per scenario. Results
mirror AUROC: the ensemble is best in 16 of 24 scenarios, NSN/NCP dominate among black-box
scorers (19 of 24), and GPT-4o is the strongest judge (22 of 24). GPT-40’s judging strength aligns
with its higher baseline answer accuracy relative to GPT-3.5 and Gemini models (Appendix Fig.[7).

Table 3: Hallucination Detection F1 (Higher is Better): Top Scorer by Dataset and Model

Dataset Gem.-1.0-Pro Gem.-1.5-FL. GPT-3.5 GPT-40
F1 Scorer F1 Scorer F1 Scorer F1 Scorer

NQ-Open | 0.62 EMR 0.67 Ensemble | 0.68 Ensemble | 0.75 Ensemble
PopQA 0.54 NSN 0.66 GPT-40 |0.42 Ensemble | 0.75 Ensemble
GSM8K | 0.63 Ensemble | 0.70 NCP 0.60 Ensemble | 0.85 Ensemble
SVAMP | 0.89 NSN 0.93 NCP 0.89 Ensemble | 0.97 Ensemble
CSQA 0.89 GPT-40 | 0.90 Ensemble | 0.90 Ensemble | 0.91 NCP

AI2-ARC | 0.97 Ensemble | 0.97 Ensemble | 0.97 Ensemble | 0.99 Ensemble

Filtered Accuracy@7. We report accuracy on the subset of responses with confidence > 7 for
7€ {0,0.1,...,0.9}. Appendix Fig. plots the best white-box, black-box, judge, and ensemble per
scenario. Accuracy generally increases with 7. For example, filtering Gemini-1.0-Pro on PopQA with
the top black-box scorer raises accuracy from 0.15 to 0.69 at 7=0.6; filtering GPT-40 on GSM8K
with a white-box scorer yields 0.81 at 7=0.6 vs 0.55 baseline. A notable exception is black-box
scoring on Gemini-1.5-Flash for CSQA and AI2-ARC, where filtering does not improve accuracy.

Effect of Candidate Count (m) on Black-Box Scorers We recompute black-box scores for
m € {1,3,5,10,15} across 24 LLM-dataset scenarios (holding the original response fixed) and
report AUROC (Fig.[8)). Performance generally rises with m with diminishing returns [Kuhn et al.,
2023, Manakul et al.,[2023| [Lin et al.| 2024} Farquhar et al.,[2024]]. We find two exceptions: (i) BSC
shows weaker gains with larger m, as also observed by Manakul et al.|[2023]]; (ii) for Gemini-1.5-
Flash on AI2-ARC and CSQA, black-box AUROC is low (0.46-0.56) and flat because candidates are
near-duplicates (EMR=1.00, 0.99). More broadly, Gemini-1.5-Flash exhibits higher EMR than other
LLMs, underscoring that black-box effectiveness is limited by candidate diversity [Kuhn et al., 2023].

4 Conclusion

Discussion and Conclusion. Selecting a confidence scorer depends on API access, latency, model
behavior, and the availability of a small graded set for tuning. If token probabilities are available,
white-box scorers add no latency or generation costs and are competitive. Without token probabilities,
black-box and judge-based scorers are the practical options. For low-latency applications, prefer
faster black-box methods or a judge; when latency is less constrained, NLI-based black-box scorers
(NSN, NCP) typically perform best. Black-box methods can struggle when sampled responses lack
diversity. In such cases, white-box or judge-based signals are preferable (Fig.[§). Increasing the
number of candidates m offers limited gains once diversity saturates, which provides a budget-aware
guideline for black-box settings. For judge selection, a simple heuristic works well in our experiments:
models with higher task accuracy tend to be better judges of answers on that task. When a graded set
of LLM responses is available, a tuned ensemble over standardized scorers improves robustness over
individual methods and remains extensible as new scorers appear. Practically, standardized scores
enable thresholded actions: block low-confidence responses, route uncertain cases to human review,
or attach a low-confidence disclaimer, with efficacy demonstrated in the filtered accuracy experiments

(Fig.[1).

Limitations and Future Work. While our evaluation covers six QA datasets and four LLMs, it is
important to note that results may differ for different question types (e.g. long-form tasks), newer
models, or alternative judge prompts. White-box behavior depends on token-probability availability,
and black-box effectiveness depends on response diversity. Our ensemble experiments are limited to
linear ensembles. For future work, we suggest exploring richer ensembling strategies, broader task
families, and more recently released LLMs in experimental evaluations.
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A Related Work

Black-Box UQ |Cole et al, [2023]] propose evaluating similarity between an original response
and candidate responses using exact match-based metrics. In particular, they propose two metrics:
repetition, which measures the proportion of candidate responses that match the original response,
and diversity, which penalizes a higher proportion of unique responses in the set of candidates. These
metrics have the disadvantage of penalizing minor phrasing differences even if two responses have
the same meaning. Text similarity metrics assess response consistency in a less stringent manner.
Manakul et al.|[2023]] propose using n-gram-based evaluation to evaluate text similarity. Similar
metrics such as ROUGE [Lin, |2004]], BLEU [Papinent et al., 2002]], and METEOR [Banerjee and
Laviel 2005] have also been proposed [Shorinwa et al.| 2024]]. These metrics, while widely adopted,
have the disadvantage of being highly sensitive to token sequence orderings and often fail to detect
semantic equivalence when two texts have different phrasing. Sentence embedding-based metrics
such as cosine similarity [|Qurashi et al., |2020]], computed using a sentence transformer such as
Sentence-Bert [Reimers and Gurevych, [2019]], have also been proposed [Shorinwa et al.l [2024].
These metrics have the advantage of being able to detect semantic similarity in a pair of texts that are
phrased differently. In a similar vein, Manakul et al.| [2023|] propose using BERTScore [Zhang et al.,
2020], based on the maximum cosine similarity of contextualized word embeddings between token
pairs in two candidate texts.

Natural Language Inference (NLI) models are another popular method for evaluating similarity
between an original response and candidate responses. These models classify a pair of texts as
either entailment, contradiction, or neutral. Several studies propose using NLI estimates of 1 —
P(contradiction) or P(entailment) between the original response and a set of candidate responses to
quantify uncertainty [[Chen and Mueller} 2023, |Lin et al.,[2024]). [Zhang et al.|[2024] follow a similar
approach but instead average across sentences and exclude P(neutral) from their calculationsE] Other
studies compute semantic entropy using NLI-based clustering [Kuhn et al.| 2023} [Kossen et al.| 2024}
Farquhar et al.,2024]). |Qiu and Miikkulainen| [2024]] estimate density in semantic space for candidate
responses.

White-Box UQ |Manakul et al.|[2023]] consider two scores for quantifying uncertainty with token
probabilities: average negative log probability and maximum negative log probability. While these
approaches effectively represent a measure of uncertainty, they lack ease of interpretation, are
unbounded, and are more useful for ranking than interpreting a standalone score. [Fadeeva et al.
[2024]] consider perplexity, calculated as the exponential of average negative log probability. Similar
to average negative log probability, perplexity also has the disadvantage of being unbounded. They
also consider response improbability, computed as the complement of the joint token probability
of all tokens in the response. Although this metric is bounded and easy to interpret, it penalizes
longer token sequences relative to semantically equivalent, shorter token sequences. Another popular
metric is entropy, which considers token probabilities over all possible token choices in a pre-defined
vocabulary [Malinin and Gales| 2021, Manakul et al., [2023]]. Malinin and Gales|[2021]] also consider
the geometric mean of token probabilities for a response, which has the advantage of being bounded
and easy to interpretE]

LLM-as-a-Judge For uncertainty quantification, several studies concatenate a question-answer
pair and ask an LLM to score or classify the answer’s correctness. |(Chen and Mueller|[2023]] propose
using an LLM for self-reflection certainty, where the same LLM is used to judge correctness of the
response. Specifically, the LLM is asked to score the response as incorrect, uncertain, or correct,
which map to scores of 0, 0.5, and 1, respectively. Similarly, |Kadavath et al.| [2022] ask the same
LLM to state P(Correct) given a question-answer concatenation. | Xiong et al.|[2024] explore several
variations of similar prompting strategies for LLM self-evaluation. More complex variations such as
multiple choice question answering generation [Manakul et al.| [2023]], multi-LLM interaction [[Cohen
et al.,[2023|], and follow-up questions [Agrawal et al.,|2024] have also been proposed.

3 Averaging across sentences is done to address long-form responses. [Jiang et al. [2024]] also address
long-form hallucination detection but follow a graph-based approach instead.

SFor additional white-box uncertainty quantification techniques, we refer the reader to [Ling et al|[2024]],
Bakman et al.|[2024], |Guerreiro et al|[2023]],|Zhang et al|[2023]], [Varshney et al.|[2023]], Luo et al.|[2023]], Ren
et al.|[2023], van der Poel et al.[[2022],[Wang et al.| [2023].
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Ensemble Approaches |Chen and Mueller [2023]] propose a two-component ensemble for zero-
resource hallucination known as BSDetector. The first component, known as observed consistency,
computes a weighted average of two comparison scores between an original response and a set of
candidate responses, one based on exact match, and another based on NLI-estimated contradiction
probabilities. The second component is self-reflection certainty, which uses the same LLM to judge
correctness of the response. In their ensemble, response-level confidence scores are computed using
a weighted average of observed consistency and self-reflection certainty. [Verga et al.[[2024] propose
using a Panel of LLM evaluators (PoLL) to assess LLM responses. Rather than using a single large
LLM as a judge, their approach leverages a panel of smaller LLMs. Their experiments find that PoLL
outperforms large LLM judges, having less intra-model bias in the judgments.

B Scorer Definitions: Detailed View

B.1 Problem Statement

We aim to model the binary classification problem of whether an LLM response contains a hallucina-
tion, which we define as any content that is nonfactual. To this end, we define a collection of binary
classifiers, each of which map an LLM response y; € ), generated from prompt x;, to a ‘confidence
score’ between 0 and 1, where ) is the set of possible LLM outputs. We denote a hallucination
classifieras § : ) — [0, 1].

Given a classification threshold 7, we denote binary hallucination predictions from the classifier as

h:y— {0,1}. In particular, a hallucination is predicted if the confidence score is less than the
threshold 7

I(yi; 0,7) = 1(3(yi; 0) < 7), (1)

where 6 could include additional responses generated from x; or other parameters. Note that A(-) = 1
implies a hallucination is predicted. We denote the corresponding ground truth value, indicating
whether or not the original response y; actually contains a hallucination, as h(y;), where h represents
a process to ‘grade’ LLM responses:

1 y; contains a hallucination
0 otherwise.

h(yi) = { @)

We adapt our scorers from various techniques proposed in the literature. Each scorer outputs response-
level confidence scores to be used for hallucination detection. We transform and normalize scorer
outputs, if necessary, to ensure each confidence score ranges from O to 1 and higher values correspond
to greater conﬁdence[] Below, we provide details of these various scorers.

B.2 Black-Box UQ Scorers

Black-box UQ scorers exploit variation in LLM responses to the same prompt to assess semantic
consistency. For a given prompt z;, these approaches involve generating m candidate responses
vi = {¥i1, -, Yim }> using a non-zero temperature, from the same prompt and comparing these
responses to the original response y;. We provide detailed descriptions of each below.

Exact Match Rate. For LLM tasks that have a unique, closed-form answer, exact match rate can
be a useful hallucination detection approach. Under this approach, an indicator function is used to
score pairwise comparisons between the original response and the candidate responses. Given an
original response y; and candidate responses y;, generated from prompt x;, exact match rate (EMR)
is computed as follows:

EMR(y;y:) = ZH(% = Jij)- 3)
=1

"Note that many of the scorers already have support of [0, 1] and hence do not require normalization.
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Non-Contradiction Probability. Non-contradiction probability (NCP) is a similar, but less strin-
gent approach. NCP, a component of the BSDetector approach proposed by (Chen and Mueller| [2023]],
also conducts pairwise comparison between the original response and each candidate response. In
particular, an NLI model is used to classify each pair (y;, gjij) as entailment, neutral, or contradiction
and contradiction probabilities are saved. NCP for original response y; is computed as the average
NLI-based non-contradiction probability across pairings with all candidate responses:

Lo L o= (i, i) + 1(Fij vi)
NCP(y;;y:) =1 7n§; 5 )

Above, 7(y;,¥;;) denotes the contradiction probability of (y;,7;;) estimated by the NLI
model. Following |(Chen and Mueller] [2023]] and |[Farquhar et al| [2024], we use
microsoft/deberta-large-mnli for our NLI model.

BERTScore. Another approach for measuring text similarity between two texts is BERTScore
[Zhang et al.||2020]. Let a tokenized text sequence be denoted as t = {¢1, ...t1, } and the corresponding
contextualized word embeddings as E = {ey, ..., ey }, where L is the number of tokens in the text.
The BERTScore precision and recall scores between two tokenized texts t, t’ are respectively defined
as follows:

1 1
BertP(t,t') = — Y maxe-€’; BertR(t,t') = ma

= maxe - e’ 5)
It| t'et
tet

where e, e’ respectively correspond to ¢, t'. We compute our BERTScore confidence (BSC) as follows:

1 < BertP(y;, i;;)BertR(y;, §i;
BSC(yi;yi) = — » 2 ertP(ys, §is) BertR(yi, §ij) ©
m j=1 Bertp(y’iv yzj) + BertR(yi, y”)
i.e. the average BERTScore F1 score across pairings of the original response with all candidate
responses.

Normalized Cosine Similarity. Normalized cosine similarity (NCS) leverages a sentence trans-
former to map LLM outputs to an embedding space and measure similarity using those sentence
embeddings. LetV : )Y — R< denote the sentence transformer, where d is the dimension of the
embedding space. We define NCS as the average cosine similarity across pairings of the original
response with all candidate responses, normalized by dividing by 2 and adding %:

oy b ~ V(i) V(i)
NOSWi3) = 3 2 W) TV G )

1
| +3 @)

Normalized Semantic Negentropy. Semantic entropy (SE), proposed by |[Farquhar et al.|[[2024]],
exploits variation in multiple responses to compute a measure of response volatility. The SE approach
clusters responses by mutual entailment and, like the NCP scorer, relies on an NLI model. However,
in contrast to the aforementioned black-box UQ scorers, semantic entropy does not distinguish
between an original response and candidate responses. Instead, it computes a single metric value on a
list of responses generated from the same prompt. We consider the discrete version of SE, defined as
follows:

SE(yi;3:) = — Y _ P(Cly;, i) log P(Cly;, 1), ®)
cecC

where P(Cly;,y:) denotes the probability a randomly selected response y € {y;, Gi1, .-, Jim
belongs to cluster C, and C denotes the full set of clusters of {y;, §:1, ..., §im } | To ensure that we

81f token probabilities of the LLM responses are available, the values of P(C'|y;, §;) can be instead estimated
using mean token probability. However, unlike the discrete case, this version of semantic entropy is unbounded
and hence does not lend itself well to normalization.
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have a normalized confidence score with [0, 1] support and with higher values corresponding to higher
confidence, we implement the following normalization to arrive at Normalized Semantic Negentropy
(NSN):

SE(yi; ¥i)
log(m + 1)’

where log(m + 1) is included to normalize the support.

NSN(yi;y:) =1 - ©

B.3 White-Box UQ Scorers

White-box UQ scorers leverage token probabilities of the LLM’s generated response to quantify
uncertainty. We define two white-box UQ scorers below.

Length-Normalized Token Probability. Let the tokenization of LLM response y; be denoted
as {t1,...,tr, }, where L; denotes the number of tokens the response. Length-normalized token
probability (LNTP) computes a length-normalized analog of joint token probability:

LNTP(y:) = [[ p, (10)

tey;

where p; denotes the token probability for token tﬂ Note that this score is equivalent to the geometric
mean of token probabilities for response y;.

Minimum Token Probability. Minimum token probability (MTP) uses the minimum among token
probabilities for a given responses as a confidence score:

MTP(y;) = min p, (11)
tE€Y;

where ¢ and p; follow the same definitions as above.

B.4 LLM-as-a-Judge Scorers

We employ LLM-as-a-Judge as an additional method for obtaining response-level confidence scores.
LLM-as-a-judge scoring prompts a model to rate the correctness of a question—response concatenation.
We adapt the instruction from |Xiong et al.| [2024]] to return a 0—100 score and linearly map it to
[0, 1] for consistency with other scorers. Our LLM-as-a-Judge scorer used the following instruction
prompt:

Question: [question], Proposed Answer: [answer].

How likely is the above answer to be correct? Analyze the answer and
give your confidence in this answer between 0 (lowest) and 100 (highest), with 100
being certain the answer is correct, and 0 being certain the answer is incorrect.
THE CONFIDENCE RATING YOU PROVIDE MUST BE BETWEEN 0 and 100.
ONLY RETURN YOUR NUMERICAL SCORE WITH NO SURROUNDING
TEXT OR EXPLANATION.

# Example 1

## Data to analyze

Question: Who was the first president of the United States?, Proposed Answer:
Benjamin Franklin.

## Your response
4 (highly certain the proposed answer is incorrect)

°Although it is not reflected in our notation, the probability for a given token is conditional on the preceding
tokens.
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# Example 2
## Data to analyze
Question: What is 2+27?, Proposed Answer: 4

## Your response
99 (highly certain the proposed answer is correct)

To ensure a normalized confidence score consistent with the other scorers, we normalize the value
returned by the LLM judge to be between 0 and 1. The capitalization and repeated instructions,
inspired by [Wang et al.| [2024], are included to ensure the LLM correctly follows instructions.

B.5 Ensemble Scorer

We introduce a tunable ensemble approach for hallucination detection. Specifically, our ensemble
is a weighted average of K binary classifiers: §; : Y — [0,1] for k = 1,..., K. As several of
our ensemble components exploit variation in LLM responses to the same prompt, our ensemble is
conditional on (¥;, w), where w denote the ensemble weights. For original response y;, we can write
our ensemble classifier as follows:

K
$(yir ¥, w) = > wedk(yi; ¥i), (12)
k=1

where w = (wy, ...,wK),Zszl wg =1, and wy, € [0,1] for k =1, ...,K

We outline a method for tuning ensemble weights for improved hallucination detection accuracy.
This approach allows for customizable component-importance that can be optimized for a specific
use case. In practice, tuning the ensemble weights requires having a ‘graded’ set of n original LLM
responses which indicate whether a hallucination is present in each response For a set of n prompts,
we denote the vector of original responses as y

1
Y2
v=1|" |, (13)
Yn
and candidate responses across all prompts with the matrix Y:
Y1 Yy Y2 0 Yim
- y2 Y21 Y22 0 Yom
Y=]| . |= ) ) . . . (14)
yn gnl gnZ o gnm

Analogously, we denote the vectors of ensemble confidence scores, binary ensemble hallucination
predictions, and corresponding ground truth values respectively as
5(y1;51,w)
- 5(y2;y2, W)
. ; (15
(yn; Y, W)

(yl;ylvwaT)

;~7W7T
Bys ¥ow,r) — | WYL (16)

>

S S

h(yn§ Yn, W, T)

!Note that although we write each classifier to be conditional on the set of candidate responses, some of the
classifiers depend only on the original response.

"Grading responses may be accomplished computationally for certain tasks, e.g. multiple choice questions.
However, in many cases, this will require a human grader to manually evaluate the set of responses.
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and

hy)=| . | (17)
h(yn)

Modeling this problem as binary classification enables us to tune the weights of our ensemble
classifier using standard classification objective functions. Following this approach, we consider
two distinct strategies to tune ensemble weights wy, ..., wx: threshold-agnostic optimization and
threshold-aware optimization.

Threshold-Agnostic Weights Optimization. Our first ensemble tuning strategy uses a threshold-
agnostic objective function for tuning the ensemble weights. Given a set of n prompts, corresponding
original LLM responses and candidate responses, the optimal set of weights, w*, is the solution to
the following problem:

w" = argmaxS(8(y; Y, w), h(y)), (18)
wew
where
K
W= {(wy,...wg) : Y wp=1w, >0Vk=1,.,K} (19)
k=1

is the support of the ensemble weights and S is a threshold-agnostic classification performance metric,
such as area under the receiver-operator characteristic curve (AUROC).

After optimizing the weights, we subsequently tune the threshold using a threshold-dependent
objective function. Hence, the optimal threshold, 7%, is the solution to the following optimization
problem:

7'>'< = arg maXB(fl(y;Y7W*aT)7h(y))a (20)
7€(0,1)

where B is a threshold-dependent classification performance metric, such as F1-score.

Threshold-Aware Weights Optimization. Alternatively, practitioners may wish jointly optimize
ensemble weights and classification threshold using the same objective. This type of optimization
relies on a threshold-dependent objective. We can write this optimization problem as follows:

w*, 7* = argmax B(fl(y;Y,w,T),h(y)), @1
wEW,T€(0,1)

where B, fl, h, and W follow the same definitions as above.

C Software Description: uqlm Library

The uqlm library provides a collection of UQ-based scorers spanning four categories: black-box UQ,
white-box UQ, LLM-as-a-Judge, and ensembles. The corresponding classes for these techniques
are instantiated by passing an LLM object to the constructorE] Each of these classes contains a
generate_and_score method, which generates LLM responses to a user provided list of prompts
and computes response-level confidence scores, which range from O to 1.

"2For the current version of uqlm, a LangChain BaseChatModel is required. Note that an LLM is not required
if users provide pre-generated responses and implement the score method.
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C.1 Comparison to Existing Toolkits

Traditional grading toolkits (Evals [[OpenAll [2024]], G-Eval [Liu et al., | 2023|]) require ground-truth
answers; they are valuable pre-deployment but not usable at generation time. Source-comparison
tools (Ragas [Es et al.,|2023|], Phoenix [Arize AL 2025|, DeepEval [Ip and Vongthongsri} 2025, and
others [Hu et al., [2024, |[UpTrain Al Team) 2024, Zha et al., 2023 |Asai et al.,[2023]]) assess agreement
with provided context, yet can validate paraphrases of the prompt without verifying factuality and
require sources to be available. Internet-grounded checkers (FacTool [[Chern et al.l [2023]]) introduce
latency and potential external errors and do not directly quantify model uncertainty. UQ offerings
exist but are narrow or research-oriented: SelfCheckGPT [Manakul et al.l [2023]] includes a limited
subset of scorers and separates generation from evaluation; LangKit [WhyLabs| 2025]] and NeMo
Guardrails [Rebedea et al., 2023]] expose a few UQ signals; LM-Polygraph [Fadeeva et al.,[2023] is
comprehensive but geared toward research users. uqlm bridges these gaps: it provides a zero-resource,
generation-time suite across black-box, white-box, and judge signals, standardizes outputs to [0, 1],
offers a lightweight, extensible ensemble, and integrates generation and evaluation with a simple API.

C.2 API and Usage

Generate
Original

Response Compute Pairwise Similarity

similarity((_ Paris ), (It's Paris))

Prompt/Question **

/ What is the capital h

of France?  / LL M

N Confidence Score
Paris ) - N
)

simitarity((_ Paris ), (

(ETeT
\ (_It's Paris )
N e H :
4 s ) s N ~

(_Paris ) Similarity((_ Paris _),(_Rome )
Generate 8
Candidate
Responses

Figure 1: Ilustration of a Black-Box Scorer Workflow

C.2.1 Black-Box UQ

Black-box UQ scorers are compatible with any LLM, but increase latency and generation
costs. The corresponding class for this collection of scorers is BlackBoxUQ. To implement
BlackBoxUQ.generate_and_score, users provide a list of prompts. For each prompt, an origi-
nal response, along with additional candidate responses, are generated by the user-provided LLM,
and consistency scores are computed using the specified scorers (see Figure If users set
use_best=True, the uncertainty-minimized response is selected Below is a minimal example
illustrating usage of BlackBoxUQ.

from uqlm import BlackBoxUQ
bbuq = BlackBoxUQ(llm=11lm, scorers=["exact_match", "noncontradiction"])
results = await bbuq.generate_and_score(prompts=prompts, num_responses=5, use_best=True)

C.2.2 White-Box UQ

White-box uncertainty quantification leverages token probabilities to compute uncertainty, as depicted
in Figure[2] These approaches have the advantage of using the token probabilities associated with the
generated response, meaning they do not add any latency or generation cost. However, because token
probabilities are not accessible from all APIs, white-box scorers may not be compatible with all LLM
applications. This collection of scorers can be implemented with the WhiteBoxUQ class. Below is a
minimal example of WhiteBoxUQ usage.

from uqlm import WhiteBoxUQ

wbuq = WhiteBoxUQ(llm=11lm, scorers=["min_probability"])
results = await wbuq.generate_and_score (prompts=prompts)

3Note that FigureE]depicts the approach for all black-box UQ scorers except semantic entropy, which does
not designate an ‘original response’.
"“Uncertainty-minimized response selection is based on semantic entropy [Farquhar et al., [2024].
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Figure 2: Illustration of a White-Box Scorer Workflow

C.2.3 LLM-as-a-Judge

LLM-as-a-Judge uses an LLM to evaluate the correctness of a response to a particular question.
To achieve this, a question-response concatenation is passed to one or more LLMs along with
instructions to score the response’s correctness using the LLMPanel class (see Figure [3). In the
constructor, users pass a list of LLM objects to the judges argument and specify one of four scoring
templates for each judge with the scoring_templates argument. These four scoring templates
are as follows: binary ({incorrect, correct} as {0, 1}), ternary ({incorrect, uncertain, correct} as
{0,0.5,1}), continuous (any value between 0 and 1), and a 5-point Likert scale (0,0.25, ..., 1).
Implementing the generate_and_score method returns the score from each judge and aggregations
of these scores, including minimum, maximum, average, and median. See below for a minimal
example.

** LM Numerical
h

Judgments Score
LLM (correct —=( 10 )
Judge 1 — S

Question-Answer
Original Concatenation

Prompt/Question ** LLM ** Confidence
U + Response Question: What IlM Score
What is the capital - — is the capital of ) R v
{ — LLM Paris Incorrect —>( 0.0
\ of France? / E - France? \ >/ \ J " Y,
- ‘[7 7 I Answer: Paris Judge 2 —
+
“*
LLM (correct )—=( 1.0 )
Judge K — —

Figure 3: Illustration of LLM-as-a-Judge Workflow

from uqlm import LLMPanel
panel = LLMPanel (1lm=11ml, judges=[11m2, 11m3], scoring_templates=["continuous", "likert"])
results = await panel.generate_and_score(prompts=prompts)

C.24 Ensemble Approach

Lastly, uglm offers both tunable and off-the-shelf ensembles that leverage a weighted average
of any combination of black-box UQ, white-box UQ, and LLM-as-a-Judge scorers. Similar to
the aforementioned classes, UQEnsemble enables simultaneous generation and scoring with a
generate_and_score method. Using the specified scorers, the ensemble score is computed as
a weighted average of the individual confidence scores, where weights may be default weights,
user-specified, or tuned. If no scorers are specified, the off-the-shelf implementation follows an
ensemble of exact match, non-contradiction probability, and self-judge proposed by |Chen and Mueller
[2023]].

In order to tune the ensemble weights prior to using the generate_and_score method, users must
provide a list of prompts and corresponding ideal responses to serve as an ‘answer key’. The LLM’s
responses to the prompts are graded with a grader function that compares against the provided ideal
responses. If a grader function is not provided by the user, the default grader function that leverages
vectara/hallucination_evaluation_model is used.
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Figure 4: Illustration of Ensemble Tuning

Once the binary grades (‘correct’ or ‘incorrect’) are obtained, an optimization routine solves for the
optimal weights according to a specified classification objective. The objective function may be
threshold-agnostic, such as ROC-AUC, or threshold-dependent, such as F1-score. After completing
the optimization routine, the optimized weights are stored as class attributes to be used for subsequent
scoring. Below is a minimal example illustrating this process.

from uqlm import UQEnsemble

## ---Option 1: Off-the-Shelf Ensemble (Chen & Mueller, 2023)---
# uge = UQEnsemble (llm=11m)
# results = await uqe.generate_and_score(prompts=prompts, num_responses=5)
## ---Option 2: Tuned Ensemble---
scorers = [ # specify which scorers to include
"exact_match", "noncontradiction", # black-box scorers
"min_probability", # white-box scorer

1llm # use same LLM as a judge
]

uqe = UQEnsemble (llm=11lm, scorers=scorers)

# Tune on tuning prompts with provided ground truth answers
tune_results = await uqe.tune(
prompts=tuning_prompts, ground_truth_answers=ground_truth_answers

# ensemble is now tuned - generate responses on new prompts
results = await uqe.generate_and_score(prompts=prompts)
results.to_df ()

D Additional Figures from Experiments

Below we present additional figures and tables from our experiments: (i) scorer-specific AUROC, (ii)
scorer-specific F1, (iii) filtered accuracy vs confidence threshold for the top scorer from each family,
(iv) AUROC vs number of sampled candidates for all black-box scorers, and (v) Average exact match
rate. Each figure and table covers all 24 LLM—dataset scenarios.
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Figure 8: Hallucination Detection AUROC by Number of Sampled Responses

Table 4: Average Exact Match Rate by LLM and Dataset
PopQA  GSMS8K SVAMP CSQA AI2-ARC

Model Used

NQ-Open

Gemini-1.5-Flash
Gemini-1.0-Pro
GPT-3.5

GPT-40

0.81
0.36
0.47
0.44

0.79
0.18
0.29
0.35

0.83
0.25
0.30
0.63

0.96
0.66
0.76
0.91

0.99
0.71
0.81
0.90

1.00
0.85
0.89
0.81
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