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ABSTRACT

Opponent modeling is essential to exploit sub-optimal opponents in strategic inter-
actions. Most previous works focus on building explicit models to directly predict
the opponents’ styles or strategies, which require a large amount of data to train
the model and lack adaptability to unknown opponents. In this work, we propose
a novel Learning to Exploit (L2E) framework for implicit opponent modeling.
L2E acquires the ability to exploit opponents by a few interactions with diverse
opponents during training, thus can adapt to new opponents with unknown styles
during testing quickly. We propose a novel opponent strategy generation algo-
rithm that produces effective opponents for training automatically. We evaluate
L2E on two poker games (i.e., Leduc and Limit Texas Hold’em), a grid-world
soccer environment, and a 3D simulated robot environment, which are very chal-
lenging benchmarks for opponent modeling. Comprehensive experimental results
indicate that L2E quickly adapts to diverse styles of unknown opponents.

1 INTRODUCTION

One core research topic in modern artificial intelligence is creating agents that can interact effec-
tively with their opponents in different scenarios. To achieve this goal, the agents should have the
ability to reason about their opponents’ behaviors, goals, and beliefs. Opponent modeling has been
extensively studied in past decades (Albrecht & Stone, 2018) and many different approaches have
been proposed. These methods have achieved great success in many practical applications, such
as dialogue systems (Grosz & Sidner, 1986), intelligent tutor systems (McCalla et al., 2000), and
security systems (Jarvis et al., 2005).

The existing opponent modeling algorithms vary greatly in their underlying assumptions and
methodology. For example, policy reconstruction based methods (Powers & Shoham, 2005;
Banerjee & Sen, 2007) explicitly fit an opponent model to reflect the opponent’s observed be-
haviors. Type reasoning based methods (Dekel et al., 2004; Nachbar, 2005) reuse pre-learned
models of several known opponents by finding the one that most resembles the current oppo-
nent’s behavior. Classification based methods (Huynh et al., 2006; Sukthankar & Sycara, 2007)
build models that predict the opponent’s play style, and employ the counter-strategy, which is ef-
fective against that particular style. Some recent works combine opponent modeling with deep

Figure 1: The overview of our proposed L2E framework.

learning or reinforcement learning (He
et al., 2016; Foerster et al., 2018; Wen
et al., 2018). Although these algo-
rithms have achieved some success, they
also have two obvious disadvantages: 1)
constructing accurate opponent models
requires a lot of data, which is problem-
atic since the agent may not have the
time or opportunity to collect enough
data about its opponent in most real ap-
plications; and 2) most of these algo-
rithms perform well only when the op-
ponents during testing are similar to the
ones used for training, thus it is difficult
for them to adapt to opponents with new
styles.
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To overcome these shortcomings, we propose a novel Learning to Exploit (L2E) framework for im-
plicit opponent modeling, which has two desirable advantages. First, L2E does not build an explicit
model for the opponent, so it does not require a large amount of interactive data and simultaneously
eliminates the modeling errors. Second, L2E can quickly adapt to new opponents with unknown
styles, with only a few interactions with them. L2E’s key idea is to train a base policy to exploit
various opponents of different styles by using only a few interactions between them during training,
such that it acquires the ability to exploit different opponents quickly during testing. As shown in
Fig. 1, the base policy training part (Section 3.1) maximizes the base policy’s adaptability by con-
tinually interacting with automatically generated opponents from the opponent strategy generation
(OSG) part. The OSG part first generates hard-to-exploit opponents for the current base policy
(Hard-OSG, Section 3.2.1), then generates diverse opponent policies to improve the generalization
ability of the base policy (Diverse-OSG, Section 3.2.2). The resulting base policy can fast adapt to
completely new opponents with only a few interactions with them.

The main contributions of this paper are:

• We present a novel L2E framework to exploit sub-optimal opponents without explicitly building
opponent models. It quickly adapts to unknown opponents using only a few interactions.

• We propose an adversarial training procedure to generate challenging opponents automatically.
These hard-to-exploit opponents help L2E eliminate the weakness in its adaptability effectively.

• We design a diversity-regularized policy optimization procedure to automatically generate diverse
opponents, improving L2E’s generalization ability significantly.

We conduct extensive experiments to evaluate L2E in a diverse set of challenging environments.
Comprehensive experimental results demonstrate that the base policy trained with L2E quickly ex-
ploits a wide range of opponents compared to other competitive baseline algorithms.

2 RELATED WORK

Opponent modeling The main goal of opponent modeling is to interact more effectively with other
agents by building models to reason about their intentions, predicting their next moves or other prop-
erties (Brown, 1951; Albrecht & Stone, 2018). The commonly used opponent modeling methods
can be roughly divided into the following four categories. Policy reconstruction methods (Mealing
& Shapiro, 2015) reconstruct the opponents’ decision-making process by building models that make
explicit predictions about their actions. Classification methods (Weber & Mateas, 2009; Synnaeve &
Bessiere, 2011) produce models that assign class labels to the opponent and employ a precomputed
strategy that is effective against that particular class of opponent. Type-based reasoning methods (He
et al., 2016; Albrecht & Stone, 2017) assume that the opponent has one of several known types and
update the belief using the new observations obtained during the real-time interactions. Recursive
reasoning methods (Muise et al., 2015; de Weerd et al., 2017) model the nested beliefs and simulate
the opponents’ reasoning processes to predict their actions. Unlike these existing methods, L2E does
not explicitly model the opponent and acquires the ability to exploit different opponents by training
with limited interactions with different styles of opponents.

Meta-Learning Meta-learning is a new trend of research in the machine learning community that
tackles learning to learn (Hospedales et al., 2020). It leverages experiences in the training phase to
learn how to learn, acquiring the ability to generalize to new environments or new tasks. Recent
progress in meta-learning has achieved impressive results ranging from classification and regression
in supervised learning (Finn et al., 2017; Nichol et al., 2018) to new task adaption in reinforce-
ment learning (Wang et al., 2016; Xu et al., 2018). Some recent works have also initially explored
the application of meta-learning in opponent modeling. For example, the theory of mind network
(ToMnet) (Rabinowitz et al., 2018) uses meta-learning to improve the predictions about the op-
ponents’ future behaviors. Another related work (Al-Shedivat et al., 2018) uses meta-learning to
handle the non-stationarity problem in multi-agent interactions. Unlike these methods, we focus on
improving the agents’ ability to quickly adapt to different unknown opponents. L2E can be seen as
a particular case of meta-learning. The meta-learning algorithm, such as MAML (Finn et al., 2017),
is initially designed for single-agent environments. It requires the manual design of training tasks,
and the final performance largely depends on the user-specified training task distribution. The L2E
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framework is designed explicitly for multi-agent competitive environments, which automatically
generates effective training tasks (opponents).

Strategy Generation The automatic generation of effective opponents for training is a critical step
in L2E. How to generate diverse strategies has been preliminarily studied in the reinforcement learn-
ing community. In specific, diverse strategies can be obtained in various ways, including adding
some diversity regularization to the optimization objective (Abdullah et al., 2019), randomly search-
ing in some diverse parameter space (Plappert et al., 2018; Fortunato et al., 2018), using information-
based strategy proposal (Eysenbach et al., 2018; Gupta et al., 2018), and searching diverse strategies
with evolutionary algorithms (Agapitos et al., 2008; Wang et al., 2019; Jaderberg et al., 2017; 2019).
More recently, researchers from DeepMind propose a league training paradigm to obtain a Grand-
master level StarCraft II AI (i.e., AlphaStar) by training a diverse league of continually adapting
strategies and counter-strategies (Vinyals et al., 2019). Unlike these methods, L2E uses adversarial
training and diversity-regularized policy optimization to produce challenging and diverse opponents
automatically.

3 METHOD

We propose a novel L2E framework to endow the agents with the ability to adapt to its opponents
quickly. As shown in Fig. 1, L2E mainly consists of two modules, i.e., the base policy training
part and the opponent strategy generation part. The opponent strategy generation part provides the
base policy training part with challenging and diverse training opponents automatically. Next, we
introduce these two modules in detail.

3.1 BASE POLICY TRAINING

Algorithm 1 L2E’s base policy training part.
Input: Step size hyper parameters α, β;
base policy B with parameters θ;
opponent policy O with parameters φ.
Output: An adaptive base policy B.
Randomly initialize θ, φ;
Initialize policy poolM = {O};
for 1 ≤ e ≤ epochs do
O = Hard-OSG(B); . 3.2.1
P =Diverse-OSG(B,O,N ); . 3.2.2
Update opponent poolM =M∪P;
Sample a batch of opponents Oi ∼M;
for Each opponent Oi do

Construct a single-player MDP MOi
B ;

Use Eq. (2) to obtain BOi ;
end for
Update B’s parameters θ according to
Eq. (5).

end for

Our goal is to find a base policy B that can
fast adapt to an unknown opponent O by up-
dating B’s parameters using only a few inter-
actions between B and O. The key idea is to
train B against many opponents to maximize
its payoffs by using only a small amount of in-
teractive data, such that it acquires the ability to
exploit different opponents quickly. In effect,
L2E treats each opponent as a training exam-
ple. After training, the resulting base policy B
can quickly adapt to new opponents using only
a few interactions.

Without loss of generality, the base policy B
is modeled by a deep neural network, i.e.,
a parameterized function πθ with parameters
θ. Similarly, the opponent O for training is
also a deep neural network πφ with parame-
ters φ. We model the base policy as playing
against an opponent in a two-player Markov
game (Shapley, 1953). This Markov game
M = (S, (AB , AO), T, (RB , RO)) consists of the state space S, the action space AB and AO,
and a state transition function T : S×AB ×AO → ∆ (S) where ∆ (S) is a probability distribution
on S. The reward function Ri : S × AB × AO × S → R for each player i ∈ {B,O} depends on
the current state, the next state and both players’ actions. Given a training opponent O whose policy
is known and fixed, this two-player Markov game M reduces to a single-player Markov Decision
Process (MDP), i.e., MO

B = (S,AB , T
O
B , R

O
B). The state and action space of MO

B are the same as in
M . The transition and reward functions have the opponent policy embedded:

TOB (s, aB) = T (s, aB , aO), ROB(s, aB , s
′) = RB(s, aB , aO, s

′), (1)

where the opponent’s action is sampled from its policy aO ∼ πφ(· | s). Throughout the paper, MY
X

represents a single-player MDP, which is reduced from a two-player Markov game (i.e., player X
and player Y ). In this MDP, the player Y is fixed and can be regarded as part of the environment.
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Suppose a set of training opponents {Oi}Ni=1 is given. For each training opponentOi, an MDPMOi
B

can be constructed as described above. The base policy B, i.e., πθ is allowed to query a limited
number of sample trajectories τ to adapt to Oi. In our method, the adapted parameters θOi of the
base policy are computed using one or more gradient descent updates with the sample trajectories
τ . For example, when using one gradient update:

θOi = θ − α∇θLOiB (πθ), (2)

LOiB (πθ) = −E
τ∼MOi

B

[
∑

t
γtROiB (s(t), a

(t)
B , s(t+1))]. (3)

τ ∼ MOi
B represents that the trajectory τ = {s(1), a(1)B , s(2), . . . , s(t), a

(t)
B , s(t+1), . . .} is sampled

from the MDP MOi
B , where s(t+1) ∼ TOiB (s(t), a

(t)
B ) and a(t)B ∼ πθ(· | s(t)).

We use BOi to denote the updated base policy, i.e., πθOi . BOi can be seen as an opponent-specific
policy, which is updated from the base policy through fast adaptation. Our goal is to find a gener-
alizable base policy whose opponent-specific policy BOi can exploit its opponent Oi as much as
possible. To this end, we optimize the parameters θ of the base policy to maximize the rewards that
BOi gets when interacting with Oi. More concretely, the learning to exploit objective function is:

min
θ

∑N

i=1
LOi
BOi

(πθOi ) = min
θ

∑N

i=1
LOi
BOi

(π
θ−α∇θL

Oi
B (πθ)

). (4)

It is worth noting that the optimization is performed over the base policy’s parameters θ, whereas
the objective is computed using the adapted based policy’s parameters θOi . The parameters θ of the
base policy are updated as follows:

θ = θ − β∇θ
∑N

i=1
LOi
BOi

(πθOi ). (5)

In effect, our L2E framework aims to find a base policy that can significantly exploit the opponent
with only a few interactions with it (i.e., with a few gradient steps). The resulting base policy has
learned how to adapt to different opponents and exploit them quickly. An overall description of the
base policy training procedure is shown in Alg. 1 which consists of three main steps. First, gener-
ating hard-to-exploit opponents through the Hard-OSG module (Section 3.2.1). Second, generating
diverse opponent policies through the Diverse-OSG module (Section 3.2.2). Third, training the base
policy with these opponents to obtain fast adaptability. When facing a new opponent Oi after train-
ing, base policy πθ is allowed to query a limited number of sample trajectories τ to adapt to Oi. The
adapted parameters θOi of the base policy are computed using one or more gradient descent updates
with τ using Eqn. 2. The pseudo-code of the testing procedure is in Appendix B.3.

3.2 AUTOMATIC OPPONENT GENERATION

Previously, we assumed that the set of opponents had been given. How to automatically gener-
ate effective opponents for training is the key to the success of our L2E framework. The training
opponents should be challenging enough (i.e., hard to exploit). By learning to exploit these hard-
to-exploit opponents, the base policy B can eliminate the weakness in its adaptability and become
more robust. Besides, they should be sufficiently diverse. The more diverse they are, the stronger the
generalization ability of the resulting base policy. We propose a novel opponent strategy generation
(OSG) algorithm to achieve these goals.

3.2.1 HARD-TO-EXPLOIT OPPONENTS GENERATION

We use the idea of adversarial learning to generate challenging training opponents for the base
policy B. From the perspective of the base policy B, giving an opponent O, B first adjusts itself
to obtain an adapted policy, i.e., the opponent-specific policy BO, the base policy is then optimized
to maximize the rewards that BO gets when interacting with O. Contrary to the base policy’s goal,
we want to find a hard-to-exploit opponent Ô for the current base policy B, such that even if B
adapts to Ô, the adapted policy BÔ cannot take advantage of Ô. In other words, the hard-to-exploit
opponent Ô is trained to minimize the rewards that BÔ gets when interacting with Ô. The base
policy attempts to increase its adaptability by learning to exploit different opponents, while the hard-
to-exploit opponent adversarially tries to minimize the base policy’s adaptability, i.e., maximize its
counter-adaptability.
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More concretely, the hard-to-exploit opponent Ô is also a deep neural network πφ̂ with randomly

initialized parameters φ̂. At each training iteration, an MDPM Ô
B can be constructed. The base policy

B first query a limited number of trajectories to adapt to Ô. The parameters θÔ of the adapted policy
BÔ are computed using one gradient descent update,

θÔ = θ − α∇θLÔB(πθ). (6)

LÔB(πθ) = −E
τ∼MÔ

B
[
∑

t
γtRÔB(s(t), a

(t)
B , s(t+1))]. (7)

Ô’s parameters φ̂ are optimized to minimize the rewards that BÔ gets when interacting with Ô.
This is equivalent to maximizing the rewards that Ô gets since we consider the two-player zero-sum
competitive setting in this work. More concretely, the parameters φ̂ are updated as follows:

φ̂ = φ̂− α∇φ̂L
BÔ

Ô
(πφ̂) (8)

LB
Ô

Ô
(πφ̂) = −E

τ ′∼MBÔ

Ô

[
∑

t
γtRB

Ô

Ô
(s(t), a

(t)

Ô
, s(t+1))]. (9)

After several rounds of iteration, we can obtain a hard-to-exploit opponent πφ̂ for the current base
policyB. The pseudo code of this hard-to-exploit opponent generation algorithm is in Appendix B.1.

3.2.2 DIVERSE OPPONENTS GENERATION

Training an effective base policy requires not only the hard-to-exploit opponents but also diverse
opponents of different styles. From a human player’s perspective, the opponent style is usually
defined as different types, and the most significant difference between different types of opponents
lies in the actions taken in the same state. Based on the above analysis, we formalize the difference
between opponent policies as the difference between the distribution of trajectories induced by each
policy when interacting with the base policy. We use the Maximum Mean Discrepancy (MMD)
metric (Gretton et al., 2007) to measure the differences between trajectory distributions.

Definition 1 Let F be a function space f : X → R. Suppose we have two distributions p and q,
X := {x1, ..., xm} ∼ p, Y := {y1, ..., yn} ∼ q. Then MMD and its empirical estimate are defined
as:

MMD[F , p, q] := sup
f∈F

(Ex∼p[f(x)]−Ey∼q[f(y)]) . (10)

MMD[F , X, Y ] := sup
f∈F

(
1/m

∑m

i=1
f(xi)− 1/n

∑n

i=1
f(yi)

)
. (11)

By picking a suitable function space F , we get the following important theorem (Gretton et al.,
2007).

Theorem 1 Let F = {f | ‖f‖H ≤ 1} be a unit ball in Reproducing Kernel Hilbert Space H, with
associated kernel k(·, ·). Then MMD[F , p, q] = 0 if and only if p = q.

Intuitively, we can expect MMD[F , X, Y ] to be small if p = q, and the quantity to be large if
distributions are far apart. Thus, MMD is a suitable metric which can act as a regularization term
to generate strategies with diverse styles. Formally, given a base policy B, i.e., πθ and an opponent
policy Oi, i.e., πφi , our goal is to generate a new opponent Oj , i.e., πφj whose style is different
from Oi. We first construct two MDPs, i.e., MB

Oi
and MB

Oj
, and then sample two sets of trajectories,

i.e., Ti = {τ ∼ MB
Oi
} and Tj = {υ ∼ MB

Oj
} from this two MDPs. The overall objective of our

proposed diversity-regularized policy optimization algorithm is:

Lφi(φj) = −Eτ∼MB
Oj

[
∑

t
γtRBOj (s

(t), a
(t)
Oj
, s(t+1))]− αmmd MMD2[F ,Ti,Tj ]. (12)

The first term in Eq.( 12) is to maximize the rewards that Oj gets when interacting with the base
policyB. The second one measures the difference betweenOj and the existing opponentOi. By this
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diversity-regularized policy optimization, the resulting opponentOj is not only good in performance
but also diverse relative to the existing policy.

Remark 1 Computing the derivative of the MMD metric between trajectories with respect to the
policy parameters is tractable.

Based on Remark 1, the objective function in Eqn. 12 can be optimized via gradient descent. Ap-
pendix A details the gradient calculation of the MMD term, i.e., MMD2[F ,Ti,Tj ] in Eqn. 12.

We can iteratively apply the above algorithm to find a set of N distinct and diverse opponents.
In specific, subsequent opponents are learned by encouraging diversity with respect to previously
generated opponent set S. The distance between an opponent Om and an opponent set S is defined
by the distance between Om and On, where On ∈ S is the most similar policy to Om. Suppose we
have obtained a set of opponents S = {Om}Mm=1,M < N . The M+1-th opponent, i.e., πφM+1

can
be obtained by optimizing:

LS(φM+1) = −αmmd minOi∈S MMD2[F ,Ti,TM+1]− Eτ∼MB
OM+1

[
∑
t γ

tRBOM+1
(s(t), a

(t)
OM+1

, s(t+1))].

(13)
By doing so, the resulting M+1-th opponent remains diverse relative to the opponent set S. Ap-
pendix B.2 provides the pseudo code of the diverse training opponent generation algorithm.

4 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate L2E. We first verify that the trained
base policy using L2E quickly exploit a wide range of opponents with only a few gradient updates.
Then, we compare with other state-of-the-art baseline methods to show L2E’s superiority. Finally,
we conduct a series of ablation experiments to demonstrate the effectiveness of L2E’s key modules.
Specifically, we evaluate L2E’s performance on the Leduc poker (Southey et al., 2005) and a Grid
Soccer environment (He et al., 2016), which are the commonly used benchmarks for opponent mod-
eling. Moreover, we also validate L2E’s generalization ability on more complex and challenging
environments, i.e., the Limit Texas Hold’em poker (Bowling et al., 2015) and a 3D RoboSumo1

simulation game (Bansal et al., 2017). Details of each environment’s state, action space representa-
tion, and reward design are described in Appendix B.2. We report most of the low-level details of
the training and adaptation process in Appendix D.

4.1 RAPID ADAPTABILITY

In this section, we first verify the trained base policy’s ability to quickly adapt to different oppo-
nents in the Leduc poker environment. We provide a series of opponents with different styles and
strengths. 1) The Random opponent randomly takes actions whose strategy is relatively weak and
does not have an evident decision-making style. 2) The Call opponent makes decisions not based on
its hand strength but always takes the call action. 3) The Bluff opponent takes actions usually based
on its hand strength, but it also bluffs. This opponent is relatively strong and hard to exploit. 4) The
NFSP (Heinrich & Silver, 2016) opponent is an approximate Nash equilibrium strategy generated
by fictitious self-play with deep reinforcement learning. 5) The CFR (Zinkevich et al., 2008) oppo-
nent is also an approximate Nash equilibrium strategy generated iteratively by the CFR algorithm.

As shown in Fig. 2(a), L2E achieves a rapid increase in its performance with a few gradient updates
against all opponents. The base policy can quickly approximate the best response strategies for the
Call and the Random opponents with relatively weak strength or monotonous styles. For the Bluff
and the CFR opponents that are difficult to exploit, L2E can also quickly improve its average returns.

Moreover, we use a larger and more challenging Limit Texas Hold’em (LHE) poker game to fur-
ther verify L2E’s effectiveness on large-scale problems. We provide three different types of high-
performance opponents, i.e., the LooseAggressive (LA) opponent, the TightAggressive (TA) op-
ponent, and the LoosePassive (LP) opponent (Appendix C.1). These opponents are designed by
some skilled Texas Hold’em player which can handle lots of different scenarios that are likely to

1https://github.com/openai/robosumo
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(a) Leduc poker (b) Limit Texas Hold’em poker

Figure 2: L2E’s base policy can quickly adapt to various opponents of different styles and strengths.
The red dashed line represents the approximate best response for a given fixed opponent. The
blue dashed line represents the base policy before adaptation. Shaded regions are 95% confidence
intervals.

occur in the real play of LHE. Fig. 2(b) shows that L2E can also quickly exploit challenging op-
ponents in large-scale complex problem like LHE. In the high-dimensional continuous RoboSumo
environment, the base policy quickly adapt to the opponent’s attack style and successfully force the
opponent out of the arena2. In the grid soccer environment, L2E can also quickly adapt to opponents
with aggressive and defensive styles (Appendix E.1).

4.2 COMPARISONS WITH OTHER BASELINE METHODS

As discussed in Section 1, most previous opponent modeling methods require constructing explicit
opponent models from a large amount of data before learning to adapt to new opponents. To the
best of our knowledge, L2E is the first attempt which learns to exploit opponents without building
explicit opponent models. To demonstrate L2E’s superiority, we design several competitive baseline
methods. 1) MAML. The seminal meta-learning algorithm MAML (Finn et al., 2017) is designed
for single-agent environments. We have redesigned and reimplemented the MAML algorithm for
the two-player competitive environments. The MAML baseline trains a base policy by continually
sampling the opponent’s strategies, either manually specified or randomly generated. 2) DRON.
The DRON baseline (He et al., 2016) combines opponent modeling with deep reinforcement learn-
ing to infer and exploit the opponents. 3) EOM. The Explicit Opponent Modeling (EOM) base-
line (Albrecht & Stone, 2018) collects interaction data during the adaptation process to explicitly
fit an opponent model MO. The best response trained for MO is used to interact with the oppo-
nent again to evaluate EOM’s performance. We also add two additional Nash equilibrium baselines.
4) CFR. CFR (Zinkevich et al., 2008) is a popular equilibrium finding algorithm based on regret-
minimization. 5) NFSP. NFSP (Heinrich & Silver, 2016) is a scalable end-to-end approach to learn-
ing approximate Nash equilibrium based on fictitious self-play and deep reinforcement learning. 6)
Oracle. The Oracle represents each opponent’s approximate best response which are obtained using
the DQN (Mnih et al., 2015) algorithm trained separately with each fixed opponent. Oracle’s result
represents the upper bound of the performance.

As shown in Table 1(a), compared with MAML which is trained by using manually specified or
randomly generated opponents, L2E achieves better performance in most cases thanks to its carefully
designed opponent generation module. Different from the explicit opponent modeling baselines (i.e.,
DRON and EOM) which require a lot of data to construct accurate opponent models to achieve good
performance, L2E requires far less data (i.e., using three gradient updates) to achieve comparable or
better results. Meanwhile, L2E can exploit suboptimal opponents and obtain more payoffs compared
to the equilibrium finding baselines, i.e., CFR and NFSP. Moreover, L2E can quickly adjust its
strategy to avoid being severely exploited by the approximate equilibrium opponents. Table 1(b)
demonstrates that L2E also shows superiority in the more challenging LHE environment. Next,

2The corresponding video is available at https://imgur.com/a/YbYgn0f
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Table 1: The average return of L2E and baseline methods when adapting different opponents. The
± shows the standard deviation across 3 random seeds, evaluated 10k hands each time.

(a) Leduc poker

Method
Opponent

Random Call Bluff NFSP CFR

L2E 1.362±0.063 0.657±0.070 0.601±0.082 0.313±0.023 -0.147±0.071
MAML 1.372±0.028 0.328±0.013 0.323±0.044 0.089±0.051 -0.409±0.010
DRON 1.323±0.014 0.418±0.011 0.409±0.052 0.212±0.080 -0.347±0.031
EOM 1.348±0.015 0.635±0.007 0.444±0.024 -0.012±0.023 -0.270±0.042
CFR 0.749±0.014 0.364±0.010 0.283±0.028 0.144±0.007 0.010±0.024
NFSP 0.780±0.019 0.132±0.024 0.029±0.022 0.011±0.027 -0.412±0.040
Oracle 1.373±0.007 0.662±0.014 0.727±0.012 0.338±0.041 -0.089±0.016

(b) Limit Texas Hold’em poker

Method
Opponent

Random LA TA LP

L2E 2.657±0.084 0.394±0.031 0.501±0.102 0.212±0.045
MAML 2.633±0.035 0.037±0.047 0.231±0.057 0.089±0.051
DRON 2.131±0.672 -0.609±0.176 0.294±0.057 0.022±0.028
EOM 2.555±0.020 -0.014± 0.013 0.237±0.023 0.203±0.089
NFSP 1.342±0.033 -0.947± 0.012 -0.352±0.094 0.144±0.128
Oracle 2.682±0.033 0.513±0.009 0.624±0.011 0.270±0.026

we conduct some ablation experiments to analyze each component of L2E and its convergence
properties.

4.3 EFFECTS OF THE DIVERSITY-REGULARIZED POLICY OPTIMIZATION

(a) Visualization of the styles of the strategies gen-
erated with or without the MMD regularization
term in Leduc poker.

(b) t-SNE visualizes the policies generated by
Diverse-OSG in RoboSumo, each point represents
a state in a trajectory.

Figure 3: Visualization of policies generated by Diverse-OSG.

In this section, we verify whether our proposed diversity-regularized policy optimization algorithm
can effectively generate policies with different styles. In Leduc poker, hand-action pairs represent
different combinations of hands and actions. In the pre-flop phase, each player’s hand has three
possibilities, i.e., J, Q, and K. Meanwhile, each player also has three optional actions, i.e., Call (c),
Rise (r), and Fold (f). For example, ‘Jc’ means to call when getting the jack. Action probability is the
probability that a player will take a corresponding action with a particular hand. Fig. 3(a) shows that
without the MMD regularization term, the generated strategies have similar styles. By optimizing
with the MMD regularization term, the generated strategies are diverse enough which cover a wide
range of different states and actions. In RoboSumo, considering its huge state and action spaces, it
is no longer feasible to visualize the state-action probabilities. Instead, we use the t-SNE (Van der
Maaten & Hinton, 2008) technique to visualize the strategies generated by Diverse-OSG. Fig. 3(b)
visualizes the trajectories generated by three strategies interacting with the pre-trained opponent for
2000 steps in RoboSumo. It is clear that the generated opponents are also diverse in the larger
RoboSumo environment. We further analysis the effect of the hyperparameter αmmd in Eqn. 13 on

8
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L2E’s final performance at Appendix E.2. L2E can achieve good performance as long as αmmd is
not too large or too small.

4.4 EFFECTS OF THE HARD-OSG AND THE DIVERSE-OSG

Figure 4: Each curve shows the aver-
age normalized returns of the base policy
trained with different variants of L2E in the
grid soccer environment. Shaded regions
are 95% confidence intervals.

A crucial step in L2E is the automatic generation of
training opponents. The Hard-OSG and Diverse-OSG
modules are used to generate opponents that are diffi-
cult to exploit and diverse in styles. Fig. 4 shows the
impact of each module on L2E’s performance. ‘L2E-
H’ is L2E without the Hard-OSG module, ‘L2E-D’ is
L2E without the Diverse-OSG module, and ‘L2E-HD’
removes both modules altogether. The results show
that both Hard-OSG and Diverse-OSG have a crucial
influence on L2E’s performance. It is clear that the
Hard-OSG module helps to enhance the stability of the
base policy, and the Diverse-OSG module can further
improve the base policy’s performance. Specifically,
the performance of ‘L2E-HD’ is unstable, e.g., its two-
step adaptation performance is roughly the same as its
one-step adaptation performance. With the addition
of Hard-OSG, ‘L2E-D’ alleviates this problem. By
further incorporating Diverse-OSG, L2E achieves the
best performance.

4.5 CONVERGENCE ANALYSIS

Figure 5: L2E’s performance converges after a certain number of iterations in Leduc poker.

One may wonder whether L2E is supposed to converge at all. If L2E can converge, what is the rela-
tionship between the obtained base policy and the equilibrium concepts, such as Nash equilibrium?
Since convergence is difficult to analyze theoretically, we have designed a series of experiments to
empirically analyze L2E’s convergence properties. From the experimental results in Fig. 5, it can be
seen that as the training progresses, L2E’s adaptability becomes stronger and stronger. After reach-
ing a certain number of iterations, the improvement eventually reaches a plateau, which provides
some empirical evidence for the convergence of L2E. Compared to the approximate Nash equilib-
rium policy obtained by the CFR method, the base policy can achieve higher average returns against
different stationary opponents. Similar performance convergence curves can also be observed in
LHE poker and RoboSumo game (Appendix E.3).

5 CONCLUSION

We propose a Learning to Exploit (L2E) framework to exploit sub-optimal opponents without build-
ing explicit opponent models. L2E acquires the ability to exploit opponents by a few interactions
with different opponents during training to adapt to new opponents during testing quickly. We pro-
pose a novel opponent strategy generation algorithm that produces challenging and diverse training
opponents for L2E automatically. Detailed experimental results in four challenging environments
demonstrate the effectiveness of the proposed L2E framework.

9



Under review as a conference paper at ICLR 2022

6 REPRODUCIBILITY STATEMENT

We report all the low-level details that contribute to reproducibility for the training and adapta-
tion process in Appendix D. The anonymous source code is available at https://anonymous.
4open.science/r/L2E-ACD0/.
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A GRADIENT CALCULATION OF MMD

Computing MMD is tractable when the function spaceF is a unit-ball in a reproducing kernel hilbert
space defined by a kernel k(·, ·) and is given by:

MMD2[F , p, q] = Ex,x′∼p[k(x, x′)]− 2Ex∼p,y∼q[k(x, y)] + Ey,y′∼q[k(y, y′)], (14)

So, MMD2[F ,Ti,Tj ] in Eqn. 12 can be calculated as:

MMD2[F ,Ti,Tj ] = Eτ,τ ′∼MB
Oi

[k (τ, τ ′)]− 2Eτ∼MB
Oi
,υ∼MB

Oj

[k (τ, υ)] + Eυ,υ′∼MB
Oj

[k (υ, υ′)].

(15)

Here, we use the Gaussian radial basis function kernel, i.e., k is defined over a pair of trajectories
and is calculated as:

k(τ, υ) = exp(−‖g(τ)− g(υ)‖2

2h
). (16)

In our experiments, we found that simply setting the bandwidth h to 1 produced satisfactory results.
g stacks the states and actions of a trajectory into a vector. For trajectories with different length,
we clip the trajectories when both of them are longer than the minimum length L. Usually, the
trajectory’s length does not exceed L, and we apply the masking based on the done signal from the
environment to make them the same length.

The gradient of the MMD term with respect to the policy’s parameter φj can be calculated as follows:

∇φjMMD2(Ti,Tj) = ∇φjEτ,τ ′∼MB
Oi

[k (τ, τ ′)] ( 1©)

− 2∇φjEτ∼MB
Oi
,υ∼MB

Oj

[k (τ, υ)] ( 2©)

+∇φjEυ,υ′∼MB
Oj

[k (υ, υ′)] ( 3©)

= Eτ,τ ′∼MB
Oi

[k (τ, τ ′)∇φj log(p(τ)p(τ ′))] (from 1©)

− 2Eτ∼MB
Oi
,υ∼MB

Oj

[k (τ, υ)∇φj log(p(τ)p(υ))] (from 2©)

+ Eυ,υ′∼MB
Oj

[k (υ, υ′)∇φj log(p(υ)p(υ′))]. (from 3©)

where p(·) is the probability of the trajectory. The second equation is obtained by the policy gradient
theorem. Since Ti = {τ ∼ MB

Oi
}, Oi is the known opponent policy that has no dependence on φj .

The gradient with respect to the parameters φj in first term is 0. The gradient of the second and third
terms can be easily calculated as follows:

∇φj log(p(υ)) =
∑T

t=0
∇φj log πφj (at|st). (17)

B ALGORITHM

B.1 HARD-OSG

Alg. 2 is the overall description of the hard-to-exploit training opponent generation algorithm.

θÔ = θ − α∇θLÔB(πθ). (18)

LÔB(πθ) = −E
τ∼MÔ

B
[
∑

t
γtRÔB(s(t), a

(t)
B , s(t+1))]. (19)

φ̂ = φ̂− α∇φ̂L
BÔ

Ô
(πφ̂) (20)

LB
Ô

Ô
(πφ̂) = −E

τ ′∼MBÔ

Ô

[
∑

t
γtRB

Ô

Ô
(s(t), a

(t)

Ô
, s(t+1))]. (21)
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Algorithm 2 Hard-OSG, the hard-to-exploit training opponent generation algorithm.
Input: The latest base policy B with parameters θ.
Output: A hard-to-exploit opponent Ô for B.
Randomly initialize Ô’s parameters φ̂;
for 1 ≤ i ≤ epochs do

Construct a single-player MDP M Ô
B ;

Sample a small number of trajectories τ ∼M Ô
B using B against Ô;

Use Eq. 18 to update the parameters of B to obtain an adapted policy BÔ;
Sample trajectories τ ′ ∼MBÔ

Ô
using Ô against BÔ;

Update the parameters φ̂ of Ô according to Eq. 20.
end for

Algorithm 3 Diverse-OSG, the proposed diversity-regularized policy optimization algorithm to gen-
erate diverse training opponents.

Input: The latest base policy B, an existing opponent O1, the total number of opponents that to
be generated N .
Output: A set of diverse opponent S = {Om}Nm=1.
Initialize the opponent set S = {O1};
for i = 2 to N do

Randomly initialize an opponent Oi’s parameters φi;
for 1 ≤ t ≤ steps do

Calculate the objective function LS(φi) according to Eq. 22;
Calculate the gradient∇φiLS(φi);
Use this gradient to update φi;

end for
Update the opponent set S, i.e., S = S ∪Oi.

end for

B.2 DIVERSE-OSG

Alg. 3 is the overall description of the diverse training opponent generation algorithm.

LS(φM+1) = −αmmd minOi∈S MMD2[F ,Ti,TM+1]− Eτ∼MB
OM+1

[
∑
t γ

tRBOM+1
(s(t), a

(t)
OM+1

, s(t+1))].

(22)

B.3 L2E’S TESTING PROCEDURE

Alg. 4 is the testing procedure of our L2E framework.

θOi = θ − α∇θLOiB (πθ), (23)

Algorithm 4 The testing procedure of our L2E framework.
Input: Step size hyper-parameters α; The trained base policy B with parameters θ; An unknown
opponent O.
Output: The updated base policy BO that has been adapted to the opponent O.
Construct a single-player MDP MO

B ;
for 1 ≤ step ≤ steps do

Sample trajectories τ from the MDP MO
B ;

Update the parameters θ of B according to Eq. 23.
end for
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B.4 LIMITATIONS

Although L2E’s base policy can quickly adapt to the opponent with limited interaction data, its
payoff during the adaptation process is not guaranteed. Therefore, how to guarantee the base policy’s
payoff during the adaptation process is an important further work. One possible solution is to use
a Nash equilibrium strategy to collect data during the adaptation process, since Nash strategy is a
safe strategy which guarantees not to lose in expectation in two-player zero-sum games. Meanwhile,
the opponent’s strategy may change at any time, and how to deal with this problem is also a very
interesting research topic. One simple solution is to incorporate an off-the-shelf opponent strategy
change detection module (e.g., (Zheng et al., 2021)), when a change in the opponent’s strategy is
detected, the base policy then quickly re-adapt to it.

C ADDITIONAL DETAILS ON THE ENVIRONMENTS

C.1 POKER GAME

Leduc Poker The Leduc poker generally uses a deck of six cards that includes two suites, each with
three ranks (Jack, Queen, and King of Spades, Jack, Queen, and King of Hearts). The game has a
total of two rounds. Each player is dealt with a private card in the first round, with the opponent’s
deck information hidden. In the second round, another card is dealt with as a public card, and the
information about this card is open to both players. If a player’s private card is paired with the public
card, that player wins the game; otherwise, the player with the highest private card wins the game.
Both players bet one chip into the pot before the cards are dealt. The following two betting rounds,
with a maximum of two raises per round, whose values are 2 and 4 chips, respectively.

Limit Texas Hold’em Poker We use a larger and more challenging Limit Texas Hold’em (LHE)
poker to further verify the effectiveness of our L2E framework. LHE is a poker game of real-world
scale with a card deck of 52 cards. LHE has a total of four rounds. Each player is dealt with two
private cards in the first round, and then three public cards are dealt in three stages (the flop, the turn,
and the river). The raise amount in LHE is fixed to the big blind for the first two rounds and doubled
for the second two rounds, and the maximum number of raises per round is 4. There are four actions
in Leduc and LHE: call, check, raise and fold.

Environment Representation The states in Leduc and LHE are encoded in the same way as (Zha
et al., 2019). The states in Leduc are encoded as a vector of length 36, with the first six dimensions
corresponding to the private and public cards, respectively. The final 30 dimensions correspond to
the number of chips of both players. Similarly, an information state of LHE can be encoded as a
vector of length 72. The first 52 dimensions represent cards, and the last 20 dimensions correspond
to the betting history. The reward is measured in big-blinds won per hand, i.e., bb/h. To provide
some intuition for win rates in LHE, a player that always folds will lose -0.7 bb/h.

We provide three different types of high-performance opponents in the LHE poker based on the
PokerStove3. We use the hand equities’ cache matrix to calculate the winning probability, i.e.,
the expected percentage of the time each hand wins at showdown. The LA opponent takes an
aggressive strategy in a relatively large winning range. The TA opponent raises only in a relatively
small winning range, while there is also bluffing. The LP opponent takes a defensive strategy in
a relatively large winning range. The specific winning range boundaries and rules are designed by
some skilled Texas Hold’em player.

C.2 GRID SOCCER

This game contains a board with a 6 × 9 grid, two players, and their respective target areas. The
position of the target area is fixed, and the two players appear randomly in their respective areas at
the start of the game. One of the two players randomly has the ball. The goal of all players is to
move the ball to the other player’s target position. When the two players move to the same grid, the
player with the ball loses the ball. Players gain one point for moving the ball to the opponent’s area.

3PokerStove is a highly hand optimized C++ poker hand evaluation library: https://github.com/
andrewprock/pokerstove
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Figure 6: Illustrations of the two-player zero-sum games we use for evaluation. Left: Leduc Poker
and Limit Texas Hold’em Poker. Middle: Grid Soccer. Right: RoboSumo Ants.

The player can move in all four directions within the grid, and action is invalid when it moves to the
boundary.

We train the L2E algorithm in this soccer environment in which both players are modeled by a neural
network. Inputs to the network include information about the position of both players, the position
of the ball, and the boundary. We provide two types of opponents to test the effectiveness of the
resulting base policy. 1) A defensive opponent who adopts a strategy of not leaving the target area
and preventing opposing players from attacking. 2) An aggressive opponent who adopts a strategy
of continually stealing the ball and approaching the target area with the ball. Facing a defensive
opponent will not lose points, but the agent must learn to carry the ball and avoid the opponent
moving to the target area to score points. Against an aggressive opponent, the agent must learn to
defend at the target area to avoid losing points.

C.3 ROBOSUMO ANTS

RoboSumo Ants is a high-dimensional continuous simulated robot environment (Bansal et al.,
2017), where two Ants wrestle in an arena. The Ants compete against each other, and the side
that forces its opponent out of the arena wins. If the time limit is reached, the game will end in a tie.
Both agents observed the position, speed, and contact forces of the joints in their bodies, as well as
the position of their opponent’s joints. We initialize the base policy using a set of pre-trained policy
weights published in the agent zoo (Bansal et al., 2017), and the rest of the sets are used as adapted
opponents of the base policy after training.

D IMPLEMENTATION DETAILS

D.1 NETWORK ARCHITECTURES AND HYPERPARAMETERS

Following the MAML paper (Finn et al., 2017), we use TRPO (Schulman et al., 2015a) with Gener-
alized Advantage Estimation (Schulman et al., 2015b) as the meta-optimizer and used a 2-layer fully
connected network with ReLU nonlinearities for function approximation. The experiments in LHE
poker and RoboSumo involve more complex neural network architectures and parameter designs
than Leduc poker and Grid Soccer. For RoboSumo game, we utilized PPO (Schulman et al., 2017)
as the meta-optimizer, and used a 2-layer fully connected network of size 128. All experiments are
conducted on a machine with NVIDIA TITAN Xp GPU and 20 CPU cores (Intel(R) Xeon(R) CPU
E5-2630 v4 @ 2.20GHz). For the selection of hyperparameters, we first search randomly in a coarse
range and then do a grid search in a smaller hyperparameter space. The other detailed hyperparame-
ters are listed in Table 2. Opponents-batch-size refers to “number of opponents sampled per batch”.
Trajectories-batch-size refers to “number of trajectories to sample for each opponent”.

D.2 BASELINE IMPLEMENTATION DETAILS

Table 3 shows the details of the critical parameters of the baseline methods. As discussed in Sec-
tion 4.2, we define each individual static opponent policy as a task and fuse the opponent and en-
vironment into a single MDP for MAML training. Both DRON and Oracle use DQN as the basic
reinforcement learning algorithm. Following the original paper, DRON uses the DRON-Concat
network architecture for extracting and fusing opponent features. For a fair comparison, the param-
eters of MAML were set the same as L2E. And the baselines that require online adaptation, such as
MAML and EOM, use the same amount of sampled data as L2E shown in Table 2.
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Table 2: Hyperparameters of L2E.
Module Parameter Leduc Soccer LHE RoboSumo

Input Dimension 36 15 72 120
Output Dimension 4 5 4 8
Policy network size [64,64] [64,64] [128,128] [128,128]

Training

Training step size α 0.1 0.1 0.05 0.001
Training step size β 0.01 0.01 0.01 5e-4
Discount factor γ 0.99 0.99 0.995 0.995
GAE λ 1.0 1.0 0.99 0.98
Opponents-batch-size 20 20 40 40
Trajectories-batch-size 20 20 200 200
Gradient steps in training 1 1 1 1

Testing
Testing step size γ 0.1 0.1 0.05 0.001
Gradient steps in testing 3 3 3 3
Trajectories-batch-size in testing 10 10 20 20

OSG

Hard-OSG training epochs 5 5 20 20
Hard-OSG learning rate 1e-2 1e-2 1e-3 1e-3
Sample size 20 20 100 100
Diverse-OSG training epochs 10 10 20 20
Weight of the MMD term αmmd 1.0 1.0 1.2 1.2
Bandwidth of RBF kernel 1 1 1 1

Table 3: Hyperparameters of Baseline.
Baseline Parameter Leduc LHE

NFSP

RL learning rate 0.1 0.01
SL learning rate 5e-3 1e-3
Optimizer Adam Adam
Reservoir buffer size 30k 200k
Anticipatory parameter 0.1 0.1

Oracle&DRON

RL learning rate 5e-5 1e-5
Buffer size 30k 200k
Optimizer Adam Adam
Architecture in DRON DRON-Concat DRON-Concat

MAML

Step size α 0.1 0.05
Step size β 0.01 0.01
Adapt learning rate 0.1 0.05
Meta batch size 20 40
Trajectory batch size 20 200
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E ADDITIONAL RESULTS

E.1 RAPID ADAPTABILITY

Fig. 7 shows the comparisons between L2E, MAML, and TRPO. L2E adapts quickly to both types of
opponents; TRPO works well against defensive opponents but loses many points against aggressive
opponents; MAML is unstable due to its reliance on task specification during the training process.

Figure 7: The trained base policy using L2E can quickly adapt to opponents with different styles in
the Grid Soccer environment.

The average win rates of L2E against different opponents in RoboSumo before and after training are
given in Table 4. As discussed in Appendix C.3, L2E uses the pre-training weights of AgentZoo1 to
initialize the base policy, and the rest of the weight sets are used as adapted opponents for the base
policy after training.

Table 4: Average win-rates (95% CI) of 500-rounds between L2E and different opponents in Robo-
Sumo Ants.

Method
Opponent AgentZoo1 AgentZoo2 AgentZoo3

Initial 53.3±3.6% 42.7±5.9% 45.7±9.0%
L2E 86.4±3.1% 69.2±4.6% 73.6±6.8%

E.2 EFFECTS OF THE HYPERPARAMETER αMMD

(a) Effects of the hyperparameter αmmd on L2E’s
final performance in Leduc poker.

(b) t-SNE (Van der Maaten & Hinton, 2008) vi-
sualizes the policies generated by Diverse-OSG in
LHE poker, each point represents a state in a tra-
jectory.

Figure 8: The effects of the hyperparameter αmmd.

The hyperparameter αmmd in Eq.( 12) controls the generated policies’ diversity, with larger αmmd
corresponding to policies with more diverse styles. Fig. 8(a) demonstrates that αmmd has a significant
impact on L2E’s final performance. When αmmd is in a reasonable range, L2E’s performance is
improved as αmmd increases. When αmmd is too large, it will adversely affect L2E’s performance.
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In our experiments, we found that L2E performs best when αmmd is around 1. Fig. 8(b) visualize
the trajectories generated by three strategies interacting with the random opponent for 1000 steps,
respectively.

E.3 L2E’S PERFORMANCE CONVERGENCE CURVES

Fig. 9 shows the full results of L2E’s performance convergence curves.

Figure 9: The solid line shows L2E’s adaptability in all environments.
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