
When No Paths Lead to Rome: Benchmarking
Systematic Neural Relational Reasoning

Anirban Das∗
Cardiff University

dasa8@cardiff.ac.uk

Irtaza Khalid∗

Cardiff University
khalidmi@cardiff.ac.uk

Rafael Peñaloza
University of Milano-Bicocca

rafael.penalozanyssen@unimib.it

Steven Schockaert
Cardiff University

schockaerts1@cardiff.ac.uk

Abstract

Designing models that can learn to reason in a systematic way is an important
and long-standing challenge. In recent years, a wide range of solutions have been
proposed for the specific case of systematic relational reasoning, including Neuro-
Symbolic approaches, variants of the Transformer architecture, and specialised
Graph Neural Networks. However, existing benchmarks for systematic relational
reasoning focus on an overly simplified setting, based on the assumption that
reasoning can be reduced to composing relational paths. In fact, this assumption is
hard-baked into the architecture of several recent models, leading to approaches
that can perform well on existing benchmarks but are difficult to generalise to other
settings. To support further progress in the field of systematic relational reasoning
with neural networks, we introduce NoRA, a new benchmark which adds several
levels of difficulty and requires models to go beyond path-based reasoning.

1 Introduction

The problem of relational reasoning involves predicting relationships between entities that are
entailed from a given set of facts (expressing properties of different entities and how they are related).
Entailment arises from a set of rules that a model must learn from examples. The central challenge
lies in designing models capable of systematic reasoning, a concept closely linked to compositional
generalization [Hupkes et al., 2020]. This means that models should be able to solve test cases
by applying the rules they have learned in novel ways. Recently, various neural network models
have been proposed for this purpose, including neuro-symbolic approaches [Minervini et al., 2020],
path-based methods [Cheng et al., 2023b], transformer variants [Bergen et al., 2021], and graph
neural networks (GNNs) [Khalid and Schockaert, 2025].

Two significant problems are the lack of datasets that adequately test for systematicity, and the fact
that state-of-the-art models heavily leverage the structure of existing benchmarks. CLUTRR [Sinha
et al., 2019], the most popular benchmark for assessing systematicity, focuses on inferring family
relationships. While all CLUTRR training examples can be solved in at most four inference steps, the
test examples may require up to ten. Standard GNNs struggle with this kind of length generalization.
Furthermore, the most successful neural methods exploit a specific characteristic of CLUTRR: the
reasoning process reduces to composing relations along a single path connecting the target and source

∗Equal contribution.
Data generation code is available at https://github.com/axd353/WhenNoPathsLeadToRome/
Eval code is available at https://github.com/erg0dic/WhenNoPathsLeadToRome/

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/axd353/WhenNoPathsLeadToRome/
https://github.com/erg0dic/WhenNoPathsLeadToRome/

wes todd

ann

grandparent_of

au
nt
_o
f

no_daughters

wes is the grandparent of todd
wes is daughter-less
⇒ wes is the paternal grandparent of todd

ann is an aunt of todd
wes is daughter-less
⇒ ann is not from wes’s side of the family
⇒ ann is the maternal aunt of todd

Figure 1: Example where path-based reasoning fails: to derive that ann is todd’s maternal aunt, one
must consider wes, who is not on any connecting path between ann and todd.

entities, where the relational facts are viewed as a knowledge graph. For example, given the path

a
brother-of−−−−−→ b

daughter-of−−−−−−→ c
brother-of−−−−−→ d, one can infer that d is the uncle of a by composing the relations

brother-of, daughter-of, and brother-of. We refer to this style of reasoning as path-based reasoning.
Relational reasoning often requires going beyond path-based reasoning, but this is not reflected in
existing benchmarks. The only exception is STaR [Khalid and Schockaert, 2025], which focuses on
temporal and spatial reasoning, and requires combining the predictions of multiple relational paths.
However, the main style of reasoning that is tested by this benchmark is still path-based.

In this paper, we introduce NoRA (Non-Path Reasoning with Ambiguous Facts), a new benchmark
which challenges state-of-the-art neural models for relational reasoning. NoRA is inspired by
CLUTRR, but it intentionally breaks many of the structural assumptions in CLUTRR that state-of-the-
art models are hard-coded to exploit. Like CLUTRR, the rules to be learned in NoRA are intuitive and
grounded in everyday relationships—ones that humans and large language models (LLMs) naturally
accept as plausible or true. However, NoRA differs from CLUTRR in three key ways.

First, NoRA is specifically designed to break the path-based inductive bias that many existing
relational reasoning models rely on. To this end, NoRA considers a richer set of relationships,
including more fine-grained, gender-specific family roles such as maternal aunt of, and everyday
relations such as is schoolmates with and lives in the same place as, which often require models to go
beyond path-based reasoning. Figure 1 illustrates such a case. In this example, we can infer that ann
is the maternal aunt of todd, as explained in the figure, but to arrive at this conclusion, the reasoning
must detour through the node wes, which is not on a path between ann and todd in the graph.

A second notable feature of NoRA is that multiple relationships may hold between a given pair of
entities. These may be hierarchical (e.g. ann is both the aunt and the maternal_aunt of todd) or
independent (e.g. a person’s brother can also be their schoolmate).

Finally, NoRA incorporates a small number of ambiguous facts in its problem instances, for instance
expressing that a is the father_of either b or c. We argue that neural relational reasoning models
should be equipped to handle such ambiguity, given its ubiquity in real-world text-based reasoning.
To resolve ambiguities, a model must learn to reason with constraints: the model must evaluate
multiple possibilities and then (i) eliminate any possibilities that violate constraints and (ii) determine
whether a given relationship holds across all the remaining possibilities.

We make the following contributions:

• We introduce NoRA, a benchmark for systematic neural relational reasoning.
• We measure the difficulty of NoRA problem instances along a number of dimensions,

corresponding to the length of inference chains, the amount of ambiguity, and the extent to
which the required form of reasoning goes beyond path-based reasoning.

• We empirically show that state-of-the-art neural models for systematic reasoning struggle
on NoRA, highlighting the need for new approaches.

2 Related work

The problem of learning to reason has traditionally been studied in Inductive Logic Programming
[Muggleton and Raedt, 1994] (ILP). Formally, given a background theory B and sets of positive and
negative examples, ILP considers the problem of finding a set of clauses H such that B ∪H logically

2

entails every positive example and none of the negative examples. While important contributions
in ILP continue to be made [Cropper et al., 2022], in recent years the focus has mostly shifted to
neuro-symbolic methods, which try to solve the problem of learning to reasoning with a differentiable
objective, for instance by simulating logic programming using tensor multiplication [Yang et al.,
2017, Sadeghian et al., 2019, Dong et al., 2019], by interpreting logical connectives using fuzzy
logic [Evans and Grefenstette, 2018, Sourek et al., 2018, Badreddine et al., 2022], or by using a
probabilistic semantics [Manhaeve et al., 2021]. However, these approaches are mostly designed for
injecting background knowledge into the training process of a neural network model, or for making
one-off predictions (e.g. for knowledge graph completion), rather than for systematic reasoning.

Systematic reasoning tasks require models to learn to compose logical rules to infer conclusions. The
difficulty stems from the fact that the derivations (i.e. the specific sequences of rule applications) that
are needed for solving test instances differ from those in the training data, even if the training data
contains sufficient information to learn all the required rules individually. Existing benchmarks that
test for systematic reasoning include CLUTRR [Sinha et al., 2019], which involves predicting family
relationships, GraphLog [Cohen, 2019], which involves reasoning about synthetically generated
knowledge graphs, and STaR [Khalid and Schockaert, 2025], which involves qualitative temporal
and spatial reasoning. CLUTRR and GraphLog can be solved by path-based reasoning, i.e. the target
relationship can be inferred by selecting a single relational path between the two target nodes and
composing the relations along that path. STaR requires models to compose relationships among
multiple paths and then taking the intersection of the resulting predictions. Reasoning is thus more
involved, although still mainly path-based. Nonetheless, these benchmarks are already challenging
for most approaches. Conditional Theorem Provers (CTPs) [Minervini et al., 2020] were one of the
first methods to achieve a near-perfect accuracy on CLUTRR. CTPs use a form of differentiable logic
programming based on a soft unification mechanism. An important drawback of CTPs is that they are
computationally expensive, which makes them impractical for many applications. Recently, a number
of more efficient approaches for systematic reasoning have been proposed, such as R5 [Lu et al.,
2022] and NCRL [Cheng et al., 2023a]. For benchmarks that only require path-based reasoning, these
approaches can be effective, but they cannot be used in more general settings such as STaR and our
proposed benchmark. Edge transformers [Bergen et al., 2021] are a modification of the transformer
architecture, with a triangular attention mechanism that is designed to facilitate relational reasoning.
They perform well on path-based benchmarks such as CLUTRR, albeit somewhat worse than CTPs,
R5 and NCRL. In contrast to the aforementioned methods, their architecture does not constrain them
to path-based reasoning. They also performed reasonably well on STaR. Finally, EpiGNNs [Khalid
and Schockaert, 2025] are a type of GNN model with an inductive bias for systematic relational
reasoning. Their architecture is designed to support reasoning tasks where the predictions of multiple
paths need to be combined, and are thus well-suited to benchmarks such as STaR.

The problem of systematic relational learning is fundamentally different from knowledge graph (KG)
completion, despite the close similarities in the format of both tasks. KG completion often requires
making predictions that cannot be logically entailed, by exploiting statistical biases. Because KG
completion models have to capture such biases, they typically perform poorly on systematic general-
ization tasks. Conversely, models that are designed for systematic reasoning tend to underperform
on KG completion benchmarks; see e.g. the comparison between NBFNet [Zhu et al., 2021] and
EpiGNN by Khalid and Schockaert [2025]). Interestingly, the fact that path-based reasoning is not
always sufficient has also been highlighted in the context of KG completion [Sun et al., 2024].

3 Problem setting

Before introducing the NoRA benchmark, we introduce the problem setting and some notations.

Stories We consider the problem of reasoning about stories, which in this context are sets of
facts. Stories may contain three types of facts. First, we have binary facts, expressing a relationship
between two entities, e.g. school_mates_with(ram, irfan). Second, we have unary facts, e.g.
underage(ryan), expressing a property of a single entity. Finally, we also have facts encoding
ambiguous relationships. We use the syntax of Answer Set Programming (ASP [Gelfond and Lifschitz,

3

1988]) to encode such facts.2. The general form of an ambiguous fact is as follows:
l {r1(x1, y1), ..., rn(xn, yn)}u

It expresses that between l and u of the binary facts r1(x1, y1), ..., rn(xn, yn) are true. We will
specifically use such facts to encode relationships where one of the arguments is ambiguous, e.g.:

1 {r(x, y1), r(x, y2)} 1 (1)
This encodes that x is in relationship r with either y1 or y2 (not both). Such ambiguities often arise
when reasoning about information coming from text, for instance because of ambiguous coreferences.

World rules All the stories in our dataset satisfy some regularities, which are formalized using
definite rules and constraint rules. We will together refer to them as the world rules and again use
ASP syntax. Definite rules allow us to infer relational facts from a given set of facts, e.g.:

living_in_same_place(X,Z) :- living_in_same_place(X,Y), living_in_same_place(Y,Z).
underage(X) :- school_mates_with(X,U).

Uppercase arguments like X denote variables. The head (left side of a rule) specifies what is
inferred, while the body (right side) specifies the conditions. The first rule expresses that the
living_in_same_place relation is transitive. The second rule expresses that if somebody is school
mates with somebody else, then they must be underage. Constraint rules specify that some sets of
facts can never be true at the same time. They are encoded as rules with an empty head, e.g.:

:- underage(X), parent_of(X, Y).
This constraint expresses that underage people cannot be parents.

Answer sets The world rules allow us to reason about the facts that are specified in a given story S .
This process serves two purposes. First, the facts in the story are incomplete, in the sense that we
can infer additional facts by applying the definite rules. Second, the constraints allow us to eliminate
some of the ambiguity. To formally define the reasoning process, we need the concept of answer
set.3 For a story S without ambiguity, its answer set contains all facts inferrable from S via definite
rules. If constraints are violated by this set, S has no answer set; otherwise, A = ans(S) denotes S’s
answer set. Now consider a story S that contains the ambiguous fact (1). There are two possibilities:
either r(x, y1) is true or r(x, y2) is true. Accordingly, we may consider two alternatives: the story S ′

in which the ambiguous fact (1) is replaced by r(x, y1), and the story S ′′ in which the ambiguous
fact is instead replaced by r(x, y2). We can repeat this process for all the ambiguous facts, leading to
a set of unambiguous stories S1, ...,Sk. We will refer to these stories as the refinements of S. Then
we say that A is an answer set of S if there is an i ∈ {1, ..., k} such that A = ans(Si). A story with
ambiguous facts may thus have 0, 1 or multiple answer sets. Let us write ref+(S) for the refinements
of S which have an answer set (i.e. the different ways in which the ambiguities can be resolved
without violating any constraints) and let ref−(S) denote the other refinements (i.e. those where the
inferred facts violate some constraints).

Problem formulation The training data consists of tuples (S, x, y,R), where S is a story, x and y
are entities that appear in S, and R is the set of relationships that can be inferred to hold between x
and y. Formally, let us write rels(x, y,A) for the set of relationships that are asserted to hold between
x and y in a given answer set A:

rels(x, y,A) = {r | r(x, y) ∈ A)

then we have:
R =

⋂
{rels(x, y,A) | A is an answer set of S}

The dataset is generated such that every story S has at least one answer set, i.e. there is always a way
to resolve the ambiguities which is consistent with the constraints of the world. Test instances are
queries of the form (S, x, y, ?), i.e. given a story and two designated entities x (source) and y (target),
the task is to predict all relationships that can be inferred to hold between x and y. The world rules
are fixed across all training and test examples. The model is thus required to induce the world rules
from the training examples, and to learn to apply them in a systematic way.

2More precisely, we use the syntax of Clingo: https://github.com/potassco.
3In general, answer sets are defined in terms of the so-called Gelfond-Lifschitz reduct [Gelfond and Lifschitz,

1988]. For the simplified setting here, answer sets can be defined more straightforwardly.

4

https://github.com/potassco

Example Suppose we have a story S consisting of the following facts. 4:

child_of(john,mary) colleague_of(mary,bob) 1{living_in(bob,paris), living_in(bob,rome)}1
living_in(john,rome) school_mate_with(john,eve) 1{child_of(eve,ann), child_of(eve,paul)}1

There are two ambiguous facts, which means that there may be up to four answer sets. However,
from school_mate_with(john,eve) we infer that john is underage. We have a world rule which states
that underage children live in the same place as their parents. Together with living_in(john,rome) we
infer living_in(mary,rome). We have a rule that colleagues live in the same place, allowing us to infer
living_in(bob,rome). The option living_in(bob,paris) is thus not consistent with the available facts
(we have a constraint stating that people cannot live in two different places). The other ambiguity
cannot be resolved, so the story has two answer sets. For the query (S,mary, rome, ?) the answer
is thus R = {living_in}, as living_in(mary,rome) is included in both answer sets. For the query
(S, eve, ann, ?) the answer is R = ∅, as child_of(eve,ann) is only included in one of the answer sets.

4 Dataset construction

We now present the details of our benchmark and introduce a number of metrics for measuring
different aspects of problem difficulty. These difficulty measures are then used for creating systematic
test splits, which will allow us to evaluate different aspects of compositional generalization.

4.1 Data generation process

We generate a story by randomly generating story facts. We use Clingo 5.7.1 [Gebser et al., 2011] to
obtain the answer sets. An entailed atom is an atom that appears in all the answer sets of the story but
is not explicitly provided as a story fact. The entailed atoms are used to construct the queries in our
benchmark. We only retain stories that have at least one answer set and at least one entailed atom.
We generate many stories, where each story includes a different set of story facts, while the world
rules remain constant across all generated stories for a dataset. Details regarding the exact world
rules, types of ambiguous facts considered, and the sampling process are in Appendix D.

4.2 Measuring problem difficulty

We propose a number of metrics for measuring the difficulty of a given problem instance. These
metrics serve two purposes. First, since we want to test for systematicity, we will consider test
instances that are strictly harder than the training instances. To solve such test instances, models need
to learn to compose the knowledge they have learned in novel ways (rather than learning shortcuts or
memorizing computation graphs). Second, the proposed difficulty metrics will allow us to analyze
model performance in a more fine-grained way.

Reasoning depth A standard notion of difficulty is the number of inference steps that are needed
to infer the answer (i.e. the number of rule applications). Let S be a given story, and let S1, ...,Sk

be the refinements of S that are consistent with the constraints. The answer sets of S are then
given by A1, ...,Ak with Ai = ans(Si). Let r(a, b) be a fact that is included in Ai. We define the
reasoning depth of r(a, b) in Si, written depth(r(a, b),Si), as the minimum number of inference
steps that are needed to infer r(a, b) from Si. For instance, if r(a, b) is included in Si, we have
depth(r(a, b),Si) = 0. Similarly, if Si if a refinement that violates the constraints, we write
depth(⊥,Si) for the minimum number of inference steps that are needed to establish that the
constraints are violated. The maximum reasoning depth of a problem instance (S, a, b,R) is then
computed as follows:

max-depth(S, a, b,R) = max
(
{depth(r(a, b),Si) | Si ∈ ref+(S), r ∈ R}
∪ {depth(⊥,Si) | Si ∈ ref−(S)}

)
The reasoning depth is determined by the hardest relation in R and the hardest answer set.

4More elaborate examples can be found in the Appendix C.

5

Reasoning width Intuitively, the more ambiguity in a given problem instance, the harder it is
to solve, all things being equal. We can straightforwardly measure the amount of ambiguity by
computing the number of possible refinements of a story S. If each ambiguous fact introduces two
possibilities, then the number of possible refinements is 2N , with N the number of ambiguous facts.5
However, some ambiguous fact may not play any role in the derivation of the query, so simply
counting the number of refinements may be misleading. As an alternative, we therefore focus on
counting the number of unique derivations. In particular, we define the reasoning width of a fact
r(a, b) w.r.t. a story S as:

width(r(a, b),S) =|{proof(r(a, b),Si) | Si ∈ ref+(S)}|+ |{proof(⊥,Si) | Si ∈ ref−(S)}|

where we write proof(r(a, b),Si) for the derivation which proves that r(a, b) can be derived from
Si. If there are multiple proofs, we fix proof(r(a, b),Si) to be the shortest one, with ties broken
arbitrarily. Similarly, proof(⊥,Si) denotes a minimal proof that Si violates the constraints. In other
words, the width of r(a, b) is the sum of the number of distinct derivations of r(a, b), across all the
answer sets of S , and the number of distinct derivations of constraint violation, across all refinements
of S without an answer set. The maximal width of a problem instance (S, a, b,R) is then computed
as the reasoning width for the hardest relation in R:

max-width(S, a, b,R) = max{width(r(a, b),S) | r ∈ R}

Non-path reasoning In the case of CLUTRR, all the required rules are of the following form

r(X,Z):-r1(X,Y), r2(Y, Z) (2)

If all rules are like this, then the problem of inferring a relational fact s(a, b) boils down to (i)
finding an informative path connecting a and b (where we view the facts as the edges of a knowledge
graph), and (ii) repeatedly applying rules of the form (2) to replace two adjacent edges by a single
edge (representing the composition of the two given relations), until we end up with a single edge
connecting a and b.6 Many approaches for systematic relational reasoning are closely aligned with
this idea. As such, problem instances that require going beyond this kind of path-based reasoning can
be expected to present difficulties for many models. We introduce two metrics to measure the extent
to which a problem instance requires going beyond path-based reasoning.

The first metric, backtrack load (BL), is based on the observation that for path-based derivations,
the number of inference steps is always one less than the number of entities involved in the derivation.
In contrast, for more complex derivations, we often see a higher number of inference steps, relative to
the number of entities. We thus define BL(τ) for a derivation τ as the ratio of the number of inference
steps to the number of entities involved. The maximum backtrack load of a problem instance is then:

max-BL(S, a, b,R) = max{BL(proof(r(a, b),Si)) | Si ∈ ref+(S), r ∈ R}

The second metric is called off-path edge count (OPEC). For a given derivation τ of a fact r(a, b),
we define OPEC(τ) as the number of edges that appear in τ which are not on any direct path between
a and b (if we view relational facts as the edges of a knowledge graph). We then define the maximal
OPEC of a problem instance as:

max-OPEC(S, a, b,R) = max{OPEC(proof(r(a, b),Si)) | Si ∈ ref+(S), r ∈ R}

We drop the prefix max- and refer to these objects as BL and OPEC. Figure 2 illustrates how OPEC
measures the extent of non-path reasoning.

These two metrics are complementary. BL captures whether the reasoning process needs to go
back-and-forth along a given relational path. This back-and-forth reasoning is often required for the
problems in our benchmark, even when all the edges involved are on a single path between the two
query entities. We expect this to be challenging for many approaches, especially methods such as
NCRL and R5 which by design only make a single pass over a given path. OPEC captures whether
any off-path reasoning is required. Path-based models typically ignore any edges that are not on a
direct path between the two query entities. For more discussion see Appendix I.

4.3 Training distribution and held-out test sets

5This follows because the alternatives occurring in different ambiguous facts never overlap in our dataset.
6See [Khalid and Schockaert, 2025] for a formal proof of this claim.

6

bill

sam

ty

joe
grandparent_of

sister_of

paternal_grandma_of

maternal_grandma_of

(i)

ty1 joe1

bob1

grandparent_of

maternal_grandma_of

wife_of

no_sons

(ii)

bill2

sam2

ty2

joe2

bob2

grandparent_of

wife_of
no_sons

grandparent_of

paternal_grandma_of

sister_of

(iii) ty2 is the wife of bob2, bob2 is son-less
⇒ ty2 is female and has no sons.

ty2 is a son-less female grandparent of joe2
⇒ ty2 is the maternal_grandma of joe2.

sam2 is a sister of bill2
⇒ sam2 is female.

sam2 is a female grandparent of joe2, ty2 is the
maternal_grandma of joe2
⇒ sam2 is the paternal_grandma of joe2.

(iv)

Figure 2: Source entities are sam, ty1, and sam2, while target entities are joe, joe1, and joe2 for the
queries accompanying stories (i), (ii) and (iii), respectively. Solid edges represent the relationships
explicitly in the story. Dashed edges are entailed relationships between source–target pairs. Pink
edges indicate edges that do not lie on any path between the source and target. Panel (iv) illustrates a
derivation of the entailed fact in story (iii). It uses all four off-path edges, hence the query from story
(iii) has an OPEC value of 4. The queries in stories (i) and (ii) each have an OPEC value of 2.

Table 1: Overview of the dataset splits. Values that
require the model to generalize from the training
distributions are highlighted in red.

Name Depth Width BL OPEC

Train-a ≤ 6 ≤ 5 ≤ 1.5 ≤ 2
Train-na ≤ 6 1 ≤ 1.5 ≤ 2

Test-D > 6 ≤ 5 ≤ 1.5 ≤ 2
Test-W ≤ 6 > 5 ≤ 1.5 ≤ 2
Test-BL ≤ 6 ≤ 5 > 1.5 -
Test-OPEC - - - ≥ 3
Test-In-dist ≤ 6 ≤ 5 ≤ 1.5 ≤ 2

Test-D-na > 6 1 ≤ 1.5 ≤ 2
Test-BL-na ≤ 6 1 > 1.5 -
Test-OPEC-na - 1 - ≥ 3
Test-In-dist-na ≤ 6 1 ≤ 1.5 ≤ 2

The training set for NoRA contains examples
whose difficulty, according to the four proposed
metrics, is controlled: reasoning depth ≤ 6, rea-
soning width ≤ 5, BL ≤ 1.5 and OPEC ≤ 2.
The marginal distribution of these four metrics
within the training dataset covers a variety of ex-
amples (Appendix 9), which is essential for en-
abling models to generalize systematically. We
have also created a separate training set which is
free of ambiguity, i.e. where all examples have
reasoning width 1. To rigorously test general-
ization, we define several held-out evaluation
subsets, each focused on specific types of rea-
soning that go beyond what the model encoun-
ters during training. We have four such out-
of-distribution test sets involving ambiguities
and three which do not. Each of these out-of-
distribution test sets extends the difficulty level
of the problem instances according to one of the considered difficulty metrics. Finally, we also created
in-distribution test sets, containing unseen problem instances with similar characteristics as those
from the training set. An overview of the different datasets is shown in Table 1.

5 Experiments

We evaluate a number of state-of-the-art models on NoRA. Pure path-based methods, such as NCRL
and R5, are limited to path-based inference by design, and are thus not suitable. CTPs are too
inefficient to handle the large number of rules that needs to be learned for NoRA, and they cannot
model constraints. We therefore focus our analysis on the following methods. Edge Transformers
(ETs) [Bergen et al., 2021] are more versatile than other methods for systematic reasoning, and
thus a natural candidate for the more challenging setting presented by NoRA. However, they cannot
naturally model multiple relationships between the same entities (i.e. the edge index cannot have
degeneracies). We therefore consider two versions of ETs: a vanilla ET, where a single relationship is
chosen for each entity pair, arbitrarily, and others are simply ignored (single-edge) and a modified ET

7

Table 2: Results of state-of-the-art models for systematic reasoning on the NoRA test sets.
Trained with ambiguity Trained without ambiguity

In-dist D W BL OPEC In-dist-na D-na BL-na OPEC-na
E

xa
ct

-m
at

ch
A

cc
ur

ac
y ET (single-edge) 0.885 0.741 0.703 0.245 0.060 0.800 0.822 0.104 0.110

ET (multi-edge) 0.900 0.493 0.790 0.785 0.037 0.800 0.494 0.056 0.077
RAT (single-edge) 0.721 0.494 0.615 0.234 0.042 0.800 0.493 0.092 0.094
RAT (multi-edge) 0.900 0.676 0.668 0.540 0.028 0.827 0.768 0.023 0.017
EpiGNN-min (margin) 0.334 0.491 0.176 0.000 0.000 0.208 0.485 0.000 0.000
EpiGNN-min (BCE) 0.451 0.665 0.456 0.154 0.005 0.475 0.488 0.008 0.025
EpiGNN-mul (BCE) 0.520 0.604 0.491 0.156 0.009 0.539 0.716 0.027 0.045
NBFNet (margin) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NBFNet (BCE) 0.576 0.531 0.460 0.153 0.009 0.679 0.764 0.012 0.043
R-GCN 0.347 0.672 0.283 0.051 0.032 0.579 0.740 0.018 0.012

in which the edge embeddings are averaged if there are multiple relationships (multi-edge). We also
evaluate transformers with relation-aware self attention (RAT) [Shaw et al., 2018], as a precursor
to ETs. Next, we evaluate EpiGNNs [Khalid and Schockaert, 2025], which are the state-of-the-art
on STaR (the only existing benchmark that goes beyond path-based systematic reasoning). We
consider two variants: one with the original margin loss and one with a binary cross-entropy loss,
with the latter intuitively being more suitable for the multi-label setting. We consider both minimum
and multiplication for aggregation. Finally, we evaluate NBFNet [Zhu et al., 2021] and R-GCNs
[Schlichtkrull et al., 2018] as representative GNN models. To evaluate these models, we encode
ambiguities in the graph representation of stories using special edges (Appendix J).

Main results The results are shown in Table 2, in terms of exact-match accuracy (i.e. we measure
if the model’s prediction of the relation set R exactly matches the ground truth). Models trained on
Train-a are evaluated on the test sets with ambiguity, while models trained on Train-na are evaluated
on the remaining test sets. ETs emerge as the best-performing model. All models perform poorly on
OPEC, BL-na and OPEC-na. Surprisingly, for most models, performance on test-W is reasonable.
Furthermore, all models perform better on BL than on BL-na, despite the fact that BL was assumed
to be harder. Further analysis has shown that models are exploiting shortcuts to solve the majority of
ambiguous problems (see Appendix K). The GNN methods all perform poorly on the BL and OPEC
test sets, which can be explained by their strong alignment with path-based reasoning. In fact, the
GNN models are even performing poorly on the in-distribution test sets, for the same reason. Among
the GNN models, EpiGNNs with BCE loss and multiplication-based aggregation perform better. The
results also confirm that the margin-based loss is unsuitable for the multi-label setting.

Analysis of ET performance Figure 3 breaks down the performance of the Edge Transformer on
test-D, test-W and test-OPEC. Surprisingly, the performance decline is minimal along the considered
difficulty axes. For instance, in the case of Test-D, the results for reasoning depth 12 are almost as
good as those for reasoning depth 7, for the vanilla model. Similarly, apart from the dip at depth
7, the multi-edge model performs similarly between depths 8 to 12. However, these results have
to be interpreted with caution. Recall that the test problems were obtained by random sampling.
Obtaining hard instances in this way is difficult, meaning that we cannot easily test how the model
would perform when the reasoning depth is higher than 12 or OPEC is higher than 4, for instance.
This is something that we have addressed by introducing a variant of our benchmark, called NoRA
v1.1, as explained below. Another consequence of the fact that randomly sampled problem instances
are rarely hard relates to the correlations between the difficulty metrics. For instance, a problem with
high reasoning depth will typically have low OPEC, and a problem with high OPEC will typically
have low reasoning depth. Problems with high reasoning depth may thus be solved well because they
are easier in other respects, rather than because the generalization abilities of the model. We analyze
this in Figure 4a, where we show the performance for different reasoning depths, while controlling
for both BL and reasoning width. In this case, we can see a dramatic decline in performance when
going from reasoning depth 4 (where the multi-edge ET achieves accuracies above 0.8) to reasoning
depth 6 (where the performance varies from around 0.2 to 0.6). Interestingly, in this analysis, the
multi-edge variant also clearly outperforms the single-edge variant. This reflects the need for more
informationally complete input representations for problems with higher BL.

8

7 8 9 10 11 12
Reasoning Depth

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

(a) Test-D

6 7 8 9 10 11 12
Reasoning Width

0.0

0.2

0.4

0.6

0.8

1.0
(b) Test-W

OPEC 3 OPEC 4 OPEC 3 OPEC 4
0.0

0.2

0.4

0.6

0.8

1.0

0.03

0.29

0.08 0.09
0.06

0.14
0.11

0.14

ambiguity no ambiguity

(c) Test-OPEC

multi-edge vanilla

ambiguity+multi-edge ambiguity+vanilla no ambiguity+multi-edge no ambiguity+vanilla

Figure 3: Analysis of the performance of ETs on various splits of the dataset.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Reasoning Width

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

Test-BL: BL 1.95

Multi-Edge D=4
Single-Edge D=4

Multi-Edge D=5
Single-Edge D=5

Multi-Edge D=6
Single-Edge D=6

(a) (b) (c)

Figure 4: (a) Breakdown of the performance of edge transformers on Test-D; (b) analysis of o3 on
non-ambiguous stories; (c) a comparison between o3 and o4-mini on non-ambiguous stories.

Evaluating Large Reasoning Models NoRA was designed to test the compositional generalization
abilities of neural systematic reasoning models. The defined NoRA world rules are realistic, as
most humans and large language models would deem them true or likely (see Appendix E). This
is a desirable property for evaluating the systematic generalization and rule learning capabilities of
Large Reasoning Models (LRMs) [Zhu et al., 2023]. We also evaluated the LRMs o3 and o4-mini
on a subset of NoRA problems, when explicitly given the entire set of world rules (only in the LRM
experiments are the rules explicitly provided; in all other settings, they must be induced by the model).
Being able to apply the correct rules is clearly a prerequisite for solving the considered learning tasks.
For this experiment (details in Appendix G), we only consider problem instances without ambiguity,
as we want to focus on the extent to which these models can deal with off-path reasoning, and we
only consider problem instances where there is a single best label. We provide the models with two
in-context demonstrations. Success is measured by exact match with the ground truth label. The
results for o3 are shown in Figure 4b. While the model achieves near-perfect accuracy for problem
instances with OPEC 0, the performance drops dramatically for OPEC 3, where none of the problem
instances of reasoning depth 7 were answered correctly. Even when the world rules are explicitly
provided—and are rules the LRM is already familiar with through pretraining—the model fails to
apply them correctly to problem instances, highlighting the inherent difficulty of off-path reasoning
tasks. Surprisingly, for higher inference depths, the performance is slightly better. This is due to the
presence of instances where the LRM can apply shortcuts (Appendix H). As shown in Figure 4c, the
performance of o4-mini is slightly worse than that of o3. This non-path-based reasoning analysis
aligns with findings from Dziri et al. [2023] on pure reasoning tasks. As an auxiliary task, we tested
the model’s ability to recover the necessary world rules for solving the task (Appendix G).

Additional datasets: NoRA v1.1 and HetioNet To further support future work on neural relational
reasoning, we introduce two additional datasets. First, we introduce a variant of NoRA, called NoRA
v1.1, where problem instances are sampled in a more systematic way, using the recursive subgraph
expansion technique [Khalid and Schockaert, 2025]. This has two consequences. First, it means that
we can easily create problem instances with larger OPEC, reasoning depth, and BL values. As a result,
we can include examples with higher structural complexity in the training set (e.g. allowing OPEC

9

4 5 6 7 8 9 10 11 12
OPEC

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(a) Test-OPEC

7 8 9 10 11 12 13 14 15
Reasoning Depth

0.0

0.2

0.4

0.6

0.8

1.0 (b) Test-D

1.50 1.67 2.00
BL

0.0

0.2

0.4

0.6

0.8

1.0 (c) Test-BL

ET (single-edge) ET (multi-edge) RAT (single-edge) RAT (multi-edge) R-GCN NBFNet (BCE) EpiGNN-min (BCE) EpiGNN-mul (BCE)

Figure 5: Results for the expanded version of NoRA (v1.1) that uses recursive subgraph expansion to
generate harder splits along the axes: (a) OPEC, (b) Reasoning Depth (c) BL.

values up to 3), and include much harder problem instances in the test sets. Second, by generating
the problem instances in this way, we can guarantee that every test example can be obtained by
a stitching together process of multiple training examples. As a result, we are guaranteed that a
model which achieves compositional generalization can solve every test instance. To illustrate this
stitching together process, consider Figure 2: panels (i) and (ii) depict training instances with OPEC 2.
These are combined by (a) deleting the fact maternal_grandma_of(ty, joe) from story (i), (b)
renaming entities in story (ii) to align with those in story (i) (joe1-> joe etc), and (c) adding the story
facts from (ii) to (i). Finally renaming all entities, we obtain story (iii), which is a problem instance
with OPEC 4 and is included in the test set. For NoRA v1.1 we did not include any problems with
ambiguity. Figure 5 shows the performance of models on NoRA v1.1. The main conclusions from
Table 2 remain valid. This demonstrates that the inability of models to handle off-path reasoning
remains robust to variations in how the problem instances are generated.

We also introduce another dataset, called HetioNet, which was inspired by Himmelstein et al. [2023].
This dataset is based on a completely different set of world rules, unrelated to family relationships.
Here, entities correspond to diseases, genes, and drugs, and relations capture biological phenomena.
Moreover, the kinds of regularities that models are expected to learn are rather different. For instance,
while families are organized into hierarchical structures, no such structure exists in the case of
HetioNet. A detailed analysis of HetioNet is provided in Appendix B.2. It shows that, even after this
shift in relational regularity, most models continue to struggle on tasks that require off-path reasoning.
Surprisingly, however, the EpiGNN outperforms ETs on the test-OPEC split of HetioNet. Further
work is needed to better understand the kinds of regularities that different models are able to capture.

6 Conclusions

We have introduced a new benchmark for systematic relational reasoning, called NoRA. It has three
core features which makes it more challenging than existing benchmarks: the need for off-path
reasoning, the presence of ambiguities, and the fact that entities can be simultaneously related in
different ways. We found all methods to struggle significantly with off-path reasoning, suggesting
that fundamentally different architectures may be needed to push forward the state-of-the-art in
neural relational reasoning. Interestingly, Large Reasoning Models such as o3 were not able to solve
problem instances that require off-path reasoning either, even when explicitly given all the required
rules. Surprisingly, the presence of ambiguity did not pose any particular challenges for the tested
models. However, further analysis revealed this to be due to the presence of shortcuts, allowing
models to solve these problem instances without actually needing to reason about ambiguity. This
highlights the challenge in generating hard problem instances. Finally, to test the robustness of our
findings, we introduced two additional datasets: NoRA v1.1 and HetioNet.

Limitations The ability to measure the difficulty of problem instances is important for testing
models in a systematic way. However, metrics such as reasoning depth and BL are sensitive to the
way in which the knowledge base has been encoded. In the experiments with o3 we saw examples
where the “true” reasoning depth was lower than that measured by the metric. All ambiguities are not
equally challenging, which is something that reasoning width only partially captures.

10

Acknowledgements This work was supported by EPSRC grant EP/W003309/1.

References
Samy Badreddine, Artur S. d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic tensor

networks. Artif. Intell., 303:103649, 2022. doi: 10.1016/J.ARTINT.2021.103649. URL https:
//doi.org/10.1016/j.artint.2021.103649.

Leon Bergen, Timothy J. O’Donnell, and Dzmitry Bahdanau. Systematic generalization with edge
transformers. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and
Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-
14, 2021, virtual, pages 1390–1402, 2021. URL https://proceedings.neurips.cc/paper/
2021/hash/0a4dc6dae338c9cb08947c07581f77a2-Abstract.html.

Kewei Cheng, Nesreen K. Ahmed, and Yizhou Sun. Neural compositional rule learning for knowledge
graph reasoning. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023a. URL https://openreview.
net/pdf?id=F8VKQyDgRVj.

Kewei Cheng, Nesreen K. Ahmed, and Yizhou Sun. Neural compositional rule learning for knowledge
graph reasoning. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023b. URL https://openreview.
net/forum?id=F8VKQyDgRVj.

William W. Cohen. Graphlog: A benchmark for logical learning on graphs. In Proceedings of the
2019 International Symposium on Inductive Logic Programming, 2019.

Andrew Cropper, Sebastijan Dumancic, Richard Evans, and Stephen H. Muggleton. Inductive logic
programming at 30. Mach. Learn., 111(1):147–172, 2022. doi: 10.1007/S10994-021-06089-1.
URL https://doi.org/10.1007/s10994-021-06089-1.

Anirban Das, Manfred Denker, Anna Levina, and Lucia Tabacu. A monte carlo algorithm for multiple
stochastic integrals of stable processes. Stochastics & Dynamics, 22(8), 2022.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=
B1xY-hRctX.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36:70293–
70332, 2023.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. J. Artif. Intell.
Res., 61:1–64, 2018. doi: 10.1613/JAIR.5714. URL https://doi.org/10.1613/jair.5714.

Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten Schaub, and Marius
Schneider. Potassco: The potsdam answer set solving collection. Ai Communications, 24(2):
107–124, 2011.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. In
Robert A. Kowalski and Kenneth A. Bowen, editors, Logic Programming, Proceedings of the
Fifth International Conference and Symposium, Seattle, Washington, USA, August 15-19, 1988 (2
Volumes), pages 1070–1080. MIT Press, 1988.

Daniel S Himmelstein, Michael Zietz, Vincent Rubinetti, Kyle Kloster, Benjamin J Heil, Faisal
Alquaddoomi, Dongbo Hu, David N Nicholson, Yun Hao, Blair D Sullivan, et al. Hetnet connec-
tivity search provides rapid insights into how biomedical entities are related. GigaScience, 12:
giad047, 2023.

11

https://doi.org/10.1016/j.artint.2021.103649
https://doi.org/10.1016/j.artint.2021.103649
https://proceedings.neurips.cc/paper/2021/hash/0a4dc6dae338c9cb08947c07581f77a2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/0a4dc6dae338c9cb08947c07581f77a2-Abstract.html
https://openreview.net/pdf?id=F8VKQyDgRVj
https://openreview.net/pdf?id=F8VKQyDgRVj
https://openreview.net/forum?id=F8VKQyDgRVj
https://openreview.net/forum?id=F8VKQyDgRVj
https://doi.org/10.1007/s10994-021-06089-1
https://openreview.net/forum?id=B1xY-hRctX
https://openreview.net/forum?id=B1xY-hRctX
https://doi.org/10.1613/jair.5714

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How
do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795, 2020.

Muhammad Khalid and Steven Schockaert. Systematic relational reasoning with epistemic graph
neural networks. The Thirteenth International Conference on Learning Representations, 2025.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 2017.

Anna Levina and Viola Priesemann. Subsampling scaling. Nature communications, 8(1):15140,
2017.

Vladimir Lifschitz. Twelve definitions of a stable model. In International Conference on Logic
Programming, pages 37–51. Springer, 2008.

Shengyao Lu, Bang Liu, Keith G. Mills, Shangling Jui, and Di Niu. R5: rule discovery with
reinforced and recurrent relational reasoning. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=2eXhNpHeW6E.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Neural probabilistic logic programming in deepproblog. Artif. Intell., 298:103504, 2021. doi: 10.
1016/J.ARTINT.2021.103504. URL https://doi.org/10.1016/j.artint.2021.103504.

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, Edward Grefenstette, and Tim Rocktäschel.
Learning reasoning strategies in end-to-end differentiable proving. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pages 6938–6949. PMLR, 2020. URL
http://proceedings.mlr.press/v119/minervini20a.html.

Stephen H. Muggleton and Luc De Raedt. Inductive logic programming: Theory and methods.
J. Log. Program., 19/20:629–679, 1994. doi: 10.1016/0743-1066(94)90035-3. URL https:
//doi.org/10.1016/0743-1066(94)90035-3.

Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. DRUM: end-to-
end differentiable rule mining on knowledge graphs. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 15321–15331, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
0c72cb7ee1512f800abe27823a792d03-Abstract.html.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In Aldo Gangemi,
Roberto Navigli, Maria-Esther Vidal, Pascal Hitzler, Raphaël Troncy, Laura Hollink, Anna Tordai,
and Mehwish Alam, editors, The Semantic Web - 15th International Conference, ESWC 2018,
Heraklion, Crete, Greece, June 3-7, 2018, Proceedings, volume 10843 of Lecture Notes in Com-
puter Science, pages 593–607. Springer, 2018. doi: 10.1007/978-3-319-93417-4_38. URL
https://doi.org/10.1007/978-3-319-93417-4_38.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
In Marilyn A. Walker, Heng Ji, and Amanda Stent, editors, Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 2 (Short
Papers), pages 464–468. Association for Computational Linguistics, 2018. doi: 10.18653/V1/
N18-2074. URL https://doi.org/10.18653/v1/n18-2074.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. Clutrr: A
diagnostic benchmark for inductive reasoning from text. In Proceedings of EMNLP-IJCNLP, pages
4505–4514. Association for Computational Linguistics, 2019. doi: 10.18653/V1/D19-1458. URL
https://doi.org/10.18653/v1/D19-1458.

Gustav Sourek, Vojtech Aschenbrenner, Filip Zelezný, Steven Schockaert, and Ondrej Kuzelka. Lifted
relational neural networks: Efficient learning of latent relational structures. J. Artif. Intell. Res., 62:
69–100, 2018. doi: 10.1613/JAIR.1.11203. URL https://doi.org/10.1613/jair.1.11203.

12

https://openreview.net/forum?id=2eXhNpHeW6E
https://doi.org/10.1016/j.artint.2021.103504
http://proceedings.mlr.press/v119/minervini20a.html
https://doi.org/10.1016/0743-1066(94)90035-3
https://doi.org/10.1016/0743-1066(94)90035-3
https://proceedings.neurips.cc/paper/2019/hash/0c72cb7ee1512f800abe27823a792d03-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0c72cb7ee1512f800abe27823a792d03-Abstract.html
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.18653/v1/n18-2074
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.1613/jair.1.11203

Wangtao Sun, Shizhu He, Jun Zhao, and Kang Liu. From chain to tree: Refining chain-like rules into
tree-like rules on knowledge graphs. CoRR, abs/2403.05130, 2024. doi: 10.48550/ARXIV.2403.
05130. URL https://doi.org/10.48550/arXiv.2403.05130.

Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules for knowledge
base reasoning. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, De-
cember 4-9, 2017, Long Beach, CA, USA, pages 2319–2328, 2017. URL https://proceedings.
neurips.cc/paper/2017/hash/0e55666a4ad822e0e34299df3591d979-Abstract.html.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural Bellman-Ford
networks: A general graph neural network framework for link prediction. Advances in neural
information processing systems, 34:29476–29490, 2021.

Zhaocheng Zhu, Yuan Xue, Xinyun Chen, Denny Zhou, Jian Tang, Dale Schuurmans, and Hanjun
Dai. Large language models can learn rules. arXiv preprint arXiv:2310.07064, 2023.

13

https://doi.org/10.48550/arXiv.2403.05130
https://proceedings.neurips.cc/paper/2017/hash/0e55666a4ad822e0e34299df3591d979-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/0e55666a4ad822e0e34299df3591d979-Abstract.html

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper and the abstract are aligned in content and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: There is a paragraph discussing the limitations at the end of the conclusions
section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof? [NA]
Answer: [NA]

14

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The details of the dataset generation process, as well as the complete descrip-
tion of our evaluation methodology, are provided in the appendix materials. The training
and held-out test datasets are publicly accessible via Hugging Face. As stated during the
initial submission, both the dataset URL and the corresponding Croissant metadata file
were included. The code used for data generation was also shared at that time and includes
straightforward execution instructions. All datasets, along with the code used to generate
them, are publicly available. In addition, the code for training and evaluating the models is
hosted in a public repository. Links to all these resources are provided directly within the
paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

15

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The dataset has been shared. The code used for generating and evaluating the
dataset was also shared, with instructions for creating environment and running the python
code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Broad details are provided in the main paper. The full details are included in
Appendix. Code is available publicly.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: This information is in the supplementary materials.
Guidelines:

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: specifics are included in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper fully conforms with the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We foresee no immediate scope for potential malicious or unintended uses,
fairness considerations, privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No pretrained language models, image generators, or scraped datasets are
created.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Clingo (version 5.7.1): We used the Clingo ASP solver [Gebser et al.,
2011], available at https://potassco.org/clingo/. The source code is available at
https://github.com/potassco/clingo and the Python package at https://pypi.
org/project/clingo/. Clingo is distributed under the MIT License.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

18

https://potassco.org/clingo/
https://github.com/potassco/clingo
https://pypi.org/project/clingo/
https://pypi.org/project/clingo/

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The datasets corresponding to the three reasoning worlds—NORA, NORA-
1.1, and INSPIREDFROMHETIONET—are hosted publicly on Hugging Face. Each
dataset is accompanied by a validated Croissant metadata file, following the NeurIPS
2025 Datasets and Benchmarks guidelines (https://neurips.cc/Conferences/2025/
DatasetsBenchmarks-FAQ). The three Croissant files were individually validated, pack-
aged into a single ZIP archive, and uploaded as required. A central Hugging Face landing
page provides unified access to all three datasets. In addition, the code used to generate the
datasets is openly available in a public GitHub repository.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:[NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

19

paperswithcode.com/datasets
https://neurips.cc/Conferences/2025/DatasetsBenchmarks-FAQ
https://neurips.cc/Conferences/2025/DatasetsBenchmarks-FAQ

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Code and Resources

The codebase used for generating examples with ASP (Answer Set Programming) is publicly available
at: https://github.com/axd353/WhenNoPathsLeadToRome.git. The code for conducting
experiments with models such as ET, RAT, and EPIGNN—used to produce the results in Table 2—is
available at: https://github.com/erg0dic/whennopathsleadtorome.

The datasets corresponding to the three reasoning worlds (NORA, NORA-1.1 and INSPIRED-
FROMHETIONET) can be accessed collectively at: https://huggingface.co/datasets/
axd353/When-No-Paths-Lead-to-Rome.

For reference, the complete world-rule specifications for each of these worlds are
provided at: https://github.com/axd353/WhenNoPathsLeadToRome/tree/main/
ExplicitWorldRuleFilesForReference.

B Additional experimental results

B.1 Main results

In the main paper, we reported results in terms of exact match (Table 2). In Table 3, we complement
this analysis by reporting the results in terms of weighted F1. The weighted F1-score is calculated as
the macro F1-score for each label, aggregated using a weighted mean (based on their frequency in the
dataset). Exact-match accuracy requires models to predict all labels correctly when multiple labels
are true. The weighted F1 metric still provides positive contribution when at least some labels are
predicted correctly accounting for class imbalances. Consequently, this metric can often yield higher
scores. This is evident, for instance, in the test-OPEC dataset, where multiple target relations have to
be predicted. For example, if the target relations are “aunt” and “maternal aunt”, it may be the case
that we only need off-path reasoning for predicting “maternal aunt”. A model that is not capable of
off-path reasoning but that can correctly predict “aunt” would thus still be partially rewarded.

Table 3: Results of state-of-the-art models for systematic reasoning on the NoRA test sets.
Trained with ambiguity Trained without ambiguity

D W BL OPEC D-na BL-na OPEC-na

W
ei

gh
te

d
F1

ET (single-edge) 0.740 0.814 0.432 0.413 0.816 0.233 0.410
ET (multi-edge) 0.335 0.860 0.888 0.504 0.336 0.120 0.394
RAT (single-edge) 0.329 0.744 0.437 0.399 0.333 0.188 0.383
RAT (multi-edge) 0.677 0.766 0.747 0.457 0.759 0.067 0.294
EpiGNN-min (margin) 0.326 0.296 0.082 0.116 0.326 0.112 0.206
EpiGNN-min (BCE) 0.625 0.633 0.316 0.180 0.319 0.049 0.218
EpiGNN-mul (BCE) 0.554 0.667 0.320 0.185 0.717 0.076 0.249
NBFNet (margin) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NBFNet (BCE) 0.646 0.665 0.347 0.225 0.775 0.083 0.261
R-GCN 0.691 0.455 0.189 0.286 0.704 0.122 0.195

B.2 HetioNet

To analyze how the results generalize to other datasets, we present results for another world, in
addition to NoRA. This world is called Hetionet and is inspired by Himmelstein et al. [2023].

In the HetioNet world, there are three kinds of entities: compounds, diseases, and genes. Compounds
and genes can palliate a disease. Compounds can be used to treat a disease, or they can be marked as
unusable for treating a disease. Off-path reasoning emerges because, to be used to treat a disease, a
compound must both palliate that disease and have no side effects. Compounds and genes can also
upregulate a gene; if an entity upregulates a gene that palliates a disease, then the entity itself palliates
that disease. Compounds can be similar to each other in three different ways:

• ss2(c1, c2) means that c1 and c2 palliate the same diseases;

• ss3(c1, c2) means that c1 and c2 either both have side effects or neither has side effects;

• ss1(c1, c2) means that c1 and c2 have the same regulatory properties towards genes.

21

https://github.com/axd353/WhenNoPathsLeadToRome.git
https://github.com/erg0dic/whennopathsleadtorome
https://huggingface.co/datasets/axd353/When-No-Paths-Lead-to-Rome
https://huggingface.co/datasets/axd353/When-No-Paths-Lead-to-Rome
https://github.com/axd353/WhenNoPathsLeadToRome/tree/main/ExplicitWorldRuleFilesForReference
https://github.com/axd353/WhenNoPathsLeadToRome/tree/main/ExplicitWorldRuleFilesForReference

HetioNet has a significantly different regularity than the NoRA world, particularly because there is
no hierarchical tree-like structure—two compounds can be related in multiple ways concurrently
(whereas in NoRA, your uncle cannot be your brother). We created training sets, test-D, and test-
OPEC-na in a similar way to NoRA. As for NoRA v1.1, all examples observed during testing are
stitched-up versions of one or more examples that were seen during training. The data are split as
follows: OPEC < 3, BL < 1.33, D < 6 for the train splits and OPEC = 3 for Test-OPEC, D = 7 for
Test-D. There are no problem instances with ambiguitiy in the case of HetioNet.

The HetioNet world contains far fewer rules (55) compared to NoRA (284). Moreover, only two to
three types of relations can exist between entities of two types—for example, a compound may either
upregulate or downregulate a gene. In contrast, numerous types of relationships can hold between
two entities that are persons in NoRA. Consequently, HetioNet represents a much simpler and more
easily solvable world for most models.

The results for state-of-the-art models are shown in Table 4. In line with the results for NoRA, the
edge transformer emerges as the best performing model for the in-distribution set set and the Test-D
test set. However, the EpiGNN-min model has the best performance on Test-OPEC, presumably due
to the strong inductive bias of the min pooling operator in this world.

Table 4: Results of state-of-the-art models on the HetioNet test sets.
Accuracy (Exact Match) Weighted F1

In dist. D OPEC In dist. D OPEC

ET (single-edge) 0.838 0.907 0.495 0.936 0.958 0.721
ET (multi-edge) 0.725 0.845 0.486 0.857 0.887 0.680
RAT (single-edge) 0.657 0.756 0.466 0.831 0.811 0.687
RAT (multi-edge) 0.784 0.671 0.641 0.908 0.785 0.768
R-GCN 0.712 0.356 0.541 0.901 0.500 0.847
NBFNet (BCE) 0.742 0.428 0.576 0.879 0.571 0.757
EpiGNN-min (BCE) 0.714 0.351 0.772 0.837 0.365 0.863
EpiGNN-mul (BCE) 0.704 0.499 0.624 0.832 0.615 0.812

B.3 In-depth analyses for other baselines

We provide further analysis for a GNN (EpiGNN) in Figure 6 and for RAT in Figure 7, to complement
the analysis of edge transformers in the main text. Broadly, the trends observed in the main text
hold for other models with respect to length and width generalization. For RAT, the single-edge or
vanilla model has a higher OPEC performance than it multi-edge counterpart in Figure 7(c). Also,
the multi-edge RAT is better at width generalization in figures 7(d)-(f). We also show a weighted F1
that overcomes class imbalances for some figures which highlights a similar trend to the accuracy
curves. For the EpiGNN, the mul aggregation function does notably better than min for OPEC in
figures 6(c) and also on the Test-D split in figures 6(a).

C Notation and task: Intuitive walkthrough

Here we give an intuitive overview using examples instead of formal definitions for the notations
introduced formally in the main paper. We focus on stories without ambiguity, as ambiguity is
discussed in detail in Appendix J. We use Answer Set Programming (ASP) as the underlying
language to encode problem instances in NoRA.

The dataset is composed of three parts: world rules, stories, and entailed atoms. The world rules
define the underlying regularity of relationships in a given universe. These rules are not exposed to
the model. The goal of learning models is to infer these hidden rules through example instances and
apply them to reasoning tasks. We consider two sets of world rules (i.e. two worlds):

NoRA-mini: A simplified world used for illustrative purposes.

NoRA-full: A richer and more fine-grained world with a broader set of rules, used to generate the
full benchmark.

22

7 8 9 10 11 12
Reasoning Depth

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

(a) Test-D

6 7 8 9 10 11 12
Reasoning Width

0.0

0.2

0.4

0.6

0.8

1.0
(b) Test-W

OPEC 3 OPEC 4 OPEC 3 OPEC 4
0.0

0.2

0.4

0.6

0.8

1.0

0.005 0.000 0.025 0.0290.005

0.143

0.041

0.129

ambiguity no ambiguity

(c) Test-OPEC

min mul

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Reasoning Width

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

(d) Test-BL: D=4, BL 1.95

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Reasoning Width

0.0

0.2

0.4

0.6

0.8

1.0
(e) Test-BL: D=5, BL 1.95

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Reasoning Width

0.0

0.2

0.4

0.6

0.8

1.0
(f) Test-BL: D=6, BL 1.95

ambiguity+min ambiguity+mul no ambiguity+min no ambiguity+mul

Figure 6: Analysis of the performance of EpiGNN on various splits of the dataset. Weighted F1
scores per class are computed to avoid class imbalances affecting the metric score for the various test
splits.

7 8 9 10 11 12
Reasoning Depth

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

(a) Test-D

6 7 8 9 10 11 12
Reasoning Width

0.0

0.2

0.4

0.6

0.8

1.0
(b) Test-W

OPEC 3 OPEC 4 OPEC 3 OPEC 4
0.0

0.2

0.4

0.6

0.8

1.0

0.03
0.00 0.02 0.030.04

0.14
0.09

0.19

ambiguity no ambiguity

(c) Test-OPEC

multi-edge vanilla

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Reasoning Width

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

(d) Test-BL: D=4, BL 1.95

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Reasoning Width

0.0

0.2

0.4

0.6

0.8

1.0
(e) Test-BL: D=5, BL 1.95

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Reasoning Width

0.0

0.2

0.4

0.6

0.8

1.0
(f) Test-BL: D=6, BL 1.95

ambiguity+multi-edge ambiguity+vanilla no ambiguity+multi-edge no ambiguity+vanilla

Figure 7: Analysis of the performance of RAT on various splits of the dataset. Weighted F1 scores
per class are computed to avoid class imbalances affecting the metric score for the various test splits.

23

World rules Figure 8(a) shows an example of the world rules in NoRA-mini. These rules fall into
three categories: definite rules, constraints and facts.

A definite rule consists of a body and a head. The body is a conjunction of one or more atoms; the
head is a single atom. In the absence of constraints, we can think of these rules in terms of standard
implication: if all atoms in the body are true, then the head must also be true. For example, consider
the following rule from Figure 8(a):

living_in_same_place(X,Z) :-living_in_same_place(X,Y),
living_in_same_place(Y,Z).

This rule states: for any entities X, Y, and Z, if X lives in the same place as Y, and Y lives in the same
place as Z, then X also lives in the same place as Z.

Constraints are rules without a head. They specify sets of atoms that are not allowed to be simulta-
neously true. For example:

:- belongs_to(X, underage), parent_of(X, Y).

This constraint expresses that an underage person cannot be a parent. Note, in our notation, rel(X,
Y) means X is rel of Y. So, parent_of(X, Y) means X is the parent of Y.

Facts are atoms that are always true. They are rules without a body and are often used to declare
properties of constants. For example:

is_agegroup(underage).

Stories Each story consists of a set of story facts, which are grounded atoms, i.e., they contain no
variables. For example, in Figure 8(b), the fact:

school_mates_with(ram, irfan).

states that ram and irfan are schoolmates. Combining the story facts with the fixed world rules one
obtains a logic program. Abusing terminology, we sometimes call this logic program the story.

Entailed atoms via stable models Stable models/answer sets are the solution of a logic program.
Intuitively, they are a minimal set of atoms/facts that follow from the logic program (see Section N
for formal definitions). A stable model includes both the explicitly stated story facts and additional
possible atoms that follow logically. These additional atoms are called entailed atoms. Figure 8(c)
shows the stable model of the story from Figure 8(b). The entailed atoms are highlighted. If an
entailed atom has a binary predicate (relationship), its first argument is called the source entity and its
second argument the target entity.

Example format and reasoning task While the world rules are kept fixed, multiple logic pro-
grams are generated by randomly sampling many sets of story facts. For each such program, the
corresponding entailed atoms are computed.

An individual example in the dataset consists of:

• The story facts (input), encoded as a graph.

• The target and source entities of an entailed atom, which define the query.

Let a and b be the atoms defined in the query. The task is to predict all relations r such that
r(a, b) can be entailed from the story facts. For the example in Figure 8(d), the entailed atom
is living_in_same_place(irfan, lola). A model attempting to solve NoRA will be shown
the story-facts, the source entity irfan, and the target entity lola, and it must infer all predi-
cates/relationships (including missing ones which is only living_in_same_place in this case)
between source and target . In NoRA-full, multiple relationships/predicates might be true between
the same two entities.

24

(a) World Rules
Definite Rules
living_in_same_place(Y, X) :-
school_mates_with(Y, X).
living_in_same_place(Y, X) :-
belongs_to(X, underage), parent_of(Y,
X).
living_in_same_place(Y, X) :-
living_in_same_place(X, Y).
living_in(Y, Z) :-
living_in_same_place(X, Y), living_in(X,
Z).
belongs_to(X, underage) :-
school_mates_with(X, U).
living_in_same_place(X,Z) :-
living_in_same_place(X,Y),
living_in_same_place(Y,Z).
Constraint
:- belongs_to(X, underage), parent_of(X,
Y).
Facts
is_agegroup(underage).

(b) Story Facts
school_mates_with(ram, irfan).
parent_of(lola, ram).
living_in(irfan, calcutta).

(c) Stable Model
living_in_same_place(ram, irfan),
living_in_same_place(lola, ram),
living_in_same_place(ram, lola),
living_in_same_place(irfan, ram),
living_in_same_place(lola, irfan),
living_in_same_place(irfan, lola),
living_in_same_place(ram, ram),
living_in_same_place(lola, lola),
living_in_same_place(irfan, irfan),
school_mates_with(ram, irfan),
parent_of(lola, ram),
belongs_to(ram, underage),
living_in(irfan, calcutta),
living_in(ram, calcutta),
living_in(lola, calcutta),
is_agegroup(underage).

(d) Visualizing the Reasoning Task

Lola Ram Irfan Calcutta

parent_of school_mates_with

living_in_same_place

living_in

(e) Derivation for living_in_same_place(irfan, lola)

Fact: school_mates_with(ram, irfan)
1. living_in_same_place(ram, irfan) :- school_mates_with(ram, irfan).

2. living_in_same_place(irfan, ram) :- living_in_same_place(ram, irfan).

3. belongs_to(ram, underage) :- school_mates_with(ram, irfan).

Fact: parent_of(lola, ram)
4. living_in_same_place(lola, ram) :- belongs_to(ram, underage),

parent_of(lola, ram).

5. living_in_same_place(ram, lola) :- living_in_same_place(lola, ram).

6. living_in_same_place(irfan, lola) :- living_in_same_place(irfan, ram),
living_in_same_place(ram, lola).

Figure 8: Illustration of (a) world rules, (b) story facts, (c) stable model with entailed atoms in red,
and (d) visual reasoning task: What is the relationship between Lola and Irfan? Correct answer:
living_in_same_place. (e) Reasoning depth for the entailed atom in d.

Reasoning depth The difficulty of deriving an entailed atom is influenced by the number of
reasoning steps required to reach it, excluding the direct use of story-facts. For example, Figure 8(e)
shows that for the given story in NoRA-mini, deriving living_in_same_place(irfan, lola)
requires six inference steps. Since derivations may not be unique, we use derivations that are minimal
(in a sense) to calculate the metric called reasoning depth.

D Data generation and sampling

Data generation process We generate approximately 500,000 example instances by repeatedly
sampling random story facts, as detailed below. The same set of world rules is used for all sto-
ries (see https://huggingface.co/datasets/axd353/When-No-Paths-Lead-to-Rome for

25

https://huggingface.co/datasets/axd353/When-No-Paths-Lead-to-Rome

the full set of NoRA rules). A single logic program may have multiple entailed atoms, and hence
gives rise to multiple example instances in the final dataset. Each story contains two types of entities:
persons and places. First, all entities are generated and assigned a type (person or place). This
assignment is governed by a parameter called person_percent, which determines the probability
that an entity is a person. Higher values of person_percent result in more persons, while lower
values yield more places. The value of person_percent for each story is recorded and included in
the dataset. When a person entity is introduced, its gender is either assigned (male or female) or left
unspecified. This is controlled by a per-story parameter called no_gender_assign, which captures
the proportion of person entities with unspecified gender.

Relationships are sampled from the list of binary predicates defined in the world rules . For each story
fact, a predicate is sampled and applied to a randomly chosen pair of entities, resulting in a fact of
the form rel(e1,e2) being added to the story. After each fact is added, the resulting logic program
is solved to ensure that at least one answer set exists—i.e., that the story remains consistent. If the
added fact introduces a contradiction, it is discarded and a new one is sampled instead. The number
of entities per story is sampled uniformly between 20 and 50, and the total number of story facts per
instance ranges from 30 to 75. Details of how ambiguous facts are introduced into the stories are
provided in Section J.

While there are many possible relationships that can hold between two people, we only consider
one relationship between people and places, namely living_in. We thus need to make sure that
queries where the source entity is a person and the target entity is a place are not trivial to answer,
i.e. that models cannot rely on the shortcut that in such cases the answer is always the singleton
{living_in}. To this end, we have introduced an additional predicate not_living_in, which is
inferred by the following rule, encoding the fact that a person can only live in one place:

not_living_in(X,Z) :- living_in(X,Y), Y ̸= Z

Dataset construction From this pool of example instances, we construct training and testing
datasets under the constraint that all target query relationships in the test sets must appear in the
training data. To balance the distribution of problem difficulty in the training set, we use inverse
transform sampling. A general discussion of the nuances of re-sampling techniques can be found
in [Levina and Priesemann, 2017, Das et al., 2022]. We use rejections sampling, enabling stratified
sampling via quantile functions to obtain the training set. See discussion below:

Difficulty stratification Examples are binned by four metrics:

• Reasoning Depth (3 bins uniformly covering the range),

• Reasoning Width (3 bins uniformly covering the range),

• Branching Length (BL) (2 bins uniformly covering the range),

• OPEC (2 bins: 0 vs. 1–2).

The sampling process follows a rejection-based strategy, beginning with a large pool of candidate
examples and iteratively removing samples to achieve a balanced marginal distribution over difficulty
metrics. We aim to balance the dataset along several predefined difficulty axes, denoted as Sdiff. Each
axis in Sdiff corresponds to a difficulty metric—such as reasoning depth, branching length (BL), or
OPEC—and is associated with a specific number of target bins.

Sampling proceeds in multiple passes (up to a maximum of max_p), terminating early if a satisfactory
balance is achieved. In each pass, the following steps are performed:

1. Score Initialization: Initialize a removal score of zero for all examples.

2. Metric-wise Imbalance Scoring: For each difficulty metric pdm ∈ Sdiff, bin the dataset into
num_bins[pdm] quantile-based bins. Identify the over-represented bins (i.e., bins whose
sample count exceeds the target). For every example in an over-represented bin, increment
its score by one.

3. Overrepresentation Removal: After processing all metrics, make a second pass over Sdiff.
For each over-represented bin, identify examples with the highest accumulated scores and
remove them first.

26

Training Data distributions This two-pass process, repeated across sampling rounds, ensures
that examples contributing disproportionately to skewed distributions are pruned while maintaining
as much diversity and coverage as possible. Figures 9 show the difficulty metric distributions for
Train-A (ambiguous) and Train-NA (non-ambiguous) sets.

(a) Train-A (with ambiguity)

(b) Train-NA (no ambiguity)

Figure 9: Distributions of difficulty metrics across training sets.

Held-out test data As mentioned in the main text, we evaluate on various held-out test datasets,
where each test dataset is designed to be hard according to one difficulty metric while remaining
in-distribution (compared to the training set) in terms of other difficulty metrics. For the test datasets
with ambiguity:

• For Test-D, we ensure that a positive refinement (refinements that have an answer set) has a
reasoning depth greater than 6. This is to ensure the problem is actually difficult, as models
often take shortcuts by ignoring the derivation of the contradiction in other refinements.

• Likewise, for Test-BL and Test-OPEC, we make sure a positive refinement has BL > 1.5
and OPEC ≥ 3, respectively.

E NoRA rules reflect real-world intuitions

We contend that the world rules from NoRA are realistic, in that human beings are able to intuitively
accept them to be true (or at least plausible). We believe this is a useful feature of our dataset, as it
makes it easier to compare neural reasoning models, such as the ones we discuss in this paper, with
LLM based approaches. To test our hypothesis that the rules are realistic, we used an LLM, namely
o4-mini, to complete the 284 rules with zero-shot prompting in an open-ended question answering
format. Specifically, given the body of a rule, we asked the model the predict the head.

Here are the results for the three types of NoRA rules:

• Rule type: constraint 89.0/90.0 (98.9%) correct
• Rule type: definite_rule 184.0/194.0 (94.8%) correct
• Overall accuracy: 96.1%

The prompt we used first defines all predicates:

27

Here are some Predicate Definitions:
- "child_of(X,Y)": "X is a child of Y. Order matters: the first argument is

the child, the second is the parent"
...
[all predicates are likewise described]

The next part of the prompt differs for rules and constraints. For definite rules, where the head is a
binary predicate, we use the following prompt:

Given that all of the following atoms are true:
grandparent_of(X,Y), belongs_to_group(X, male)

What is the relationship between X, Y?
Provide only the predicate with variables in exactly this format:
rel(X,Y)
What is the predicate name that should replace ‘rel’? Your response should
be rel(X,Y), where rel is your guess. If you think multiple predicates
could work, you must choose the most specific one. For example:
- If both brother and sibling are suitable, choose brother as it’s more
specific.

For a constraint, we instead use the following prompt:

Given that all of the following atoms are true:
has_property(Y, no_daughters), daughter_of(X,Y)

Can this combination of facts logically exist?
Answer exactly one of:
[Possible] [Impossible] [Inevitable]

As a sanity check, we also tested the LRM (o4-mini) with 90 random constraints not in the NoRA rules,
but which use the same predicates. Each of these non-world constraints is a slight modification of
NoRA constraints. For example, while “:- aunt_or_uncle_of(Y,X), grandchild_of(Y,X).”
is a NoRA constraint stating someone’s aunt cannot also be their grandchild, we modified it to
the non-world constraint “:- aunt_or_uncle_of(Y,X), grandchild_of(U,V).” This should
be possible as U,V and X,Y can be different pairs of people, and thus in the real world there is no
obstruction for this to be true. We note the o4-model’s response with the same constraint prompts as
above for these non-world constraints: the model always responded with “[Possible]”.

F Experiments with trainable relational reasoning models

F.1 Loss functions

Margin loss Let us write xi to denote the prediction that is obtained by the model for training
example i, and let ri denote the embedding of relation ri. We write r′i to denote some negative
example, i.e. r′i for some r′i ∈ R \ {ri}, the set of all possible relations in NoRA. In the case of
multiple target relation vectors, ri, we take the average, r̄i. The overall loss function is:

Lmargin =
∑
i∈D

max
(
0,CE(xi, r̄i)− CE(xi, r

′
i) + ∆

)
(3)

where CE is the cross entropy function and ∆ is the margin value that is set to 1.0 after hyperparameter
tuning. The margin loss over multiple models involves an additional sum over the cross entropy
differences predicted target relation per model inside the max. At inference time, the target relation is
predicted using the negative cross entropy as a score function, with respect to every relation vector in
R.

Multi-label binary cross entropy We use a multi-label version of the Binary Cross Entropy (BCE)
loss for the multi-label classification setting for all NoRA problems. The logits for each class are

28

Figure 10: Performance of OpenAI’s o3 model on Query Completion and Rule Recovery Tasks.
Results separated according to OPEC and the reasoning depth of examples.

transformed using a sigmoid function and then the problem is treated as a binary classification
problem with a multi-hot target binary vector.

LBCE =
∑

i∈D,j∈R
CE(σ(xij), yij) (4)

where i is the sample index, j is the relation index, xij is the predicted logit and the yij is the one-hot
target class label.

F.2 Initialization and compute

All trainable parameters for the models are uniformly initialized. All baseline results that were
obtained by us were hyperparameter-tuned using grid search, as detailed below. All experiments were
conducted using RTX 4090 GPUs. A single experiment using the trainable models can be conducted
within a few minutes to 1 hour on a single GPU. This includes training and testing a single model
on any test split of NoRA. A single hyperparameter set evaluation is done on about 20% of the total
epochs and training data compared to a full experiment and would take a commensurate amount of
time.

F.3 Hyperparameter settings

We use the Adam optimizer [Kingma and Ba, 2017]. All the models were hyperparameter tuned
using an economical grid search over key parameters. For ET and RAT, a grid search was performed
over the number of attention heads, hidden dimension size, the number of message passing rounds,
and dropout rate. For the GNNs, we grid searched over the hidden dimension size, the number of
message passing rounds. In addition for EpiGNN, we also tuned the number of facets. All the optimal
hyperparameters are available in the companion code with the manuscript.

G Experiments with large reasoning models

Rule recovery task In addition to the results presented in Section 5 of the main paper on the
performance of Large Reasoning Models (LRMs), we evaluate LRM models on a second diagnostic
task. Since all NoRA world rules are provided to the model, we additionally task the LRM with
outputting the complete set of world rules it used to solve the given query completion task. We call
this the Rule Recovery Task. Successful completion of the query completion task without correct
rule recovery indicates that the model may be taking shortcuts to arrive at the correct answer without
following the intended reasoning steps.

29

Figure 10 presents our results side-by-side with the query completion results (a copy of Figure 4b
from the main paper), for easy comparison. This parallel presentation is particularly informative as
both tasks are evaluated on identical example instances. The results reveal that while models may
have good precision on the rule recovery task, recalling all applicable rules proves substantially more
difficult, especially in cases requiring reasoning with significant off-path complexity. The models are
evaluated on examples such as those in Figure 4b of the main paper.

For Figure 4b in the main paper, the mean success rate and its 95% confidence interval are estimated
using bootstrapping. For Figure 4, the performance of the o3 variant is assessed across different rea-
soning depths. Mean success rates are computed as sample averages, with confidence intervals derived
via normal approximation using standard deviation estimates from a Binomial parameterization.

Prompt format for query completion and rule recovery tasks

The large reasoning model (LRM) is prompted with the following structure for both the query
completion and rule recovery tasks:

Section 1: Predicate definitions Here are some Predicate Definitions:

• grandparent_of(X,Y): X is a grandparent of Y. Order matters: the first argument is the
grandparent, the second is the grandchild.

• ... [Additional predicate definitions follow in the actual prompt]

Section 2: World rules There are three types of rules:

• A. Definite Rule: Has a head and a body. It means if all atoms in the body are true, then the
head is true.

• B. Constraint: Has only a body. It states that the atoms in the body cannot all be true at the
same time.

• C. Fact: Has only a head. This atom is always true.

Variables are capitalized and rules with variables hold universally for all substitutions.

Here are the NoRA world rules. Rules are indexed and follow the format:

Head :- Body.

Example:

1: grandparent_of(Y,X) :- grandchild_of(X,Y).

[All world rules are then enumerated by index.]

Section 3: Two exemplars TASK: You will be given a story made up of predicates describing
relationships between entities ...

Example 1:

0 is a is_person.
0 is a is_female.
1 is a is_place.
2 is a is_person.
3 is a is_person.
... [more story facts]

Query: What is the relation between 11 and 23? What are the indexes of the world rules you will
need to derive this?

Response:

• query_label: niece_of

30

• rules_used: {192, 64, 194, 46, 23}

• reasoning:
From story fact 23, we know that individual 23 is the maternal aunt of individual 11.
Applying world rule 192, we deduce that 23 is the maternal aunt or uncle of 11. Rule
194 generalizes this to aunt_or_uncle_of. Rule 23 inverts this relation to yield that 11
is a nibling of 23. The story also indicates that 37 is the parent of 11 and has no sons.
Applying rule 64, we infer that 11 is female. Rule 46 finally allows us to conclude that 11 is
the niece of 23.

Example 2:

[Another guided exemplar with similar format]

Section 4: Actual problem instance STORY:

0 is a is_person.
1 is a is_person.
1 is a is_male.
2 is a is_person.
... [More story facts]

QUERY:

What is the predicate between 35 and 6? If a relationship between 35 and 6 is
explicitly given in the story facts, and there is some other relationship that is also
true, you need to uncover the unstated predicate. If multiple predicates capture the
relationship between 35 and 6, choose the most specific one.
What are the indexes of the world rules you will need to derive this?

Expected Output:

• query_label: ...
• rules_used: {...}

• reasoning: ...

H Large reasoning models use shortcuts

In the NoRA world rules, the knowledge that “a sibling of my sibling is also my sibling” is not
explicitly encoded as a definite rule. To prove it, one has to chain through the parent–child relations,
repeatedly applying the following three world rules:

(W1) child_of(Y,X) :- child_of(Z_1,X), sibling_of(Y,Z_1).

(W2) parent_of(Y,X) :- sibling_of(Z_1,X), parent_of(Y,Z_1).

(W3) sibling_of(Y,X) :- parent_of(Z_1,X), child_of(Y,Z_1), Y ̸= X.

Even before normalising gendered relations, establishing sibling transitivity therefore demands at
least four inference steps. In contrast, LRMs have internalized the following direct rule:

(S) sibling_of(X,Z) :- sibling_of(X,Y), sibling_of(Y,Z).

Rule (S) is not a NoRA world rule, yet LRMs (like o3) can apply it, collapsing a multi-hop proof
into a single step. Consequently, these tasks that need high reasoning depth are effectively much
shallower for such models. Every test instance that o3 solved at a reasoning depth > 9 contained
sibling transitivity as a sub-problem, so the model’s actual reasoning depth was far lower than our
theoretical estimate. An example instance with OPEC > 9 that the o3 model predicts correctly is
shown in 11.

31

219 8 12 16
child_of brother_of sister_of sibling_of

is_male
sister_of

Figure 11: Illustrative fragment of the NoRA graph. Solid edges follow world rules (W1–W3); the
dotted edge shows the shortcut (S) inferred by the LRM.

I Comparing BL and OPEC as measures of non-path reasoning

The Backtrack Load (BL) is the ratio of the number of inference steps to the number of entities
involved. As noted in Section M, the number of derivation steps is dependent on the way the world
rules are set up. Since we have avoided including redundant rules when specifying the world rules,
many problems have a large number of derivation steps. BL is therefore susceptible to overestimating
non-path difficulty. An important advantage of BL, however, is that it is capable of identifying
non-path reasoning even in cases without off-path edges. On the other hand, OPEC can only identify
non-path reasoning when there are off-path edges (i.e. edges which are not on any path between
source and target), but it is not dependent on how the world rules are encoded.

BL and OPEC can be controlled independently. For the Test-D, Test-OPEC, and training datasets (as
mentioned in the paper), we explicitly control these difficulty metrics to take values within certain
limits. To investigate the true correlation between these two difficulty metrics, we explore the stories
generated by ASP before sampling to curate datasets.

For the dataset with ambiguity, we observe a Pearson correlation coefficient between OPEC and BL
of 0.321 (95% confidence interval via bootstrap: [0.3086, 0.3359]). For the dataset without ambiguity,
we observe a Pearson correlation coefficient between OPEC and BL of 0.4650 (95% confidence
interval via bootstrap: [0.4503, 0.4840]). Figure 12 breaks down this data.

Figure 12: Illustration of the correlation between OPEC and BL using box plots of BL distributions
for various OPEC values. The top panel shows data generated with ambiguous facts, and the bottom
panel shows data generated without ambiguous facts.

32

(a) Ambiguous Story Facts
belongs_to(ryan, underage). 1{living_in(cole, east_rock);
school_mates_with(cole, will). living_in(cole, dwight)}1.
living_in_same_place(sheila, lalit). 1{child_of(ryan, brutus);
living_in(lalit, kgp). child_of(ryan, cole)}1.
living_in(phil, kgp). 1{colleague_of(brutus, phil);

colleague_of(brutus, sheila)}1.

(b) Refinements and Derivations
(i)
colleague_of(brutus, phil),
child_of(ryan, brutus),
living_in(cole, east_rock)

living_in(brutus, kgp) :-
colleague_of(brutus, phil),
living_in(phil, kgp).
living_in(ryan, kgp) :-
belongs_to(ryan, underage),
parent_of(brutus, ryan),
living_in(brutus, kgp).

(ii)
colleague_of(brutus, phil),
child_of(ryan, brutus),
living_in(cole, dwight)

Same derivation as (i).

(iii)
colleague_of(brutus, sheila),
child_of(ryan, brutus),
living_in(cole, east_rock)

living_in(sheila, kgp) :-
living_in_same_place(sheila, lalit),
living_in(lalit, kgp).
living_in(brutus, kgp) :-
colleague_of(brutus, sheila),
living_in(sheila, kgp).
living_in(ryan, kgp) :-
belongs_to(ryan, underage),
parent_of(brutus, ryan),
living_in(brutus, kgp).

(iv)
colleague_of(brutus, sheila),
child_of(ryan, brutus),
living_in(cole, dwight)

Same derivation as (iii).

(v)
child_of(ryan, cole), living_in(cole,
east_rock),
colleague_of(brutus, sheila)

belongs_to(cole, underage) :-
school_mates_with(cole, will).
:- belongs_to(cole, underage),
parent_of(cole, ryan).
Contradiction.

(vi)
child_of(ryan, cole), living_in(cole,
dwight),
colleague_of(brutus, phil)

Same contradiction as (v).

(vii)
child_of(ryan, cole), living_in(cole,
east_rock),
colleague_of(brutus, phil)

Same contradiction as (v).

(viii)
child_of(ryan, cole), living_in(cole,
dwight),
colleague_of(brutus, sheila)

Same contradiction as (v).

Figure 13: (a) An ambiguous story in NoRA, with three cardinality-based facts (highlighted in blue).
(b) Each numbered box corresponds to a refinement. The top rectangle in each branch highlights the
specific choices made for ambiguous facts, and the body shows the derivation of the entailed atom
living_in(ryan, kgp) or the contradiction that arises.

J Ambiguous facts, story encodings and reasoning width

Real-world text is often ambiguous or incomplete. One motivation for including ambiguity in NoRA
is that relation extraction pipelines based on coreference resolution can introduce noise or uncertainty.
To reflect such real-world uncertainty, NoRA includes ambiguous story-facts encoded in ASP using
cardinality facts of the form l{atom1; atom2; ...; atomk}u, which indicates that the number
of true atoms in the set {atom1, atom2, ..., atomk} lies between l and u (both inclusive).

33

Once such ambiguous facts are introduced into a story, the resulting logic program may admit multiple
stable models. An entailed atom in this setting is defined as an atom that is part of every stable
model but is not explicitly listed as a story fact. Figure 13(a) shows an ambiguous story in NoRA
that contains three ambiguous facts. These yield 23 = 8 possible refinements, of which four result
in contradictions, leaving four consistent stable models. A common atom across all four models is
living_in(ryan, kgp), which is thus considered an entailed atom and may be used to construct a
dataset example instance.

Ambiguity introduces a new notion of difficulty. For the entailed atom living_in(ryan, kgp),
Figure 13(b) shows eight refinements (i–viii), of which v–viii lead to contradictions and share the
same structure. Among the positive refinements, refinement i and ii yield identical derivations, as do
iii and iv. Intuitively, the reasoning width of a query is the sum of:

• the number of distinct derivations/proofs that yield the entailed atom across all stable models,
and

• the number of distinct derivations/proofs that lead to contradiction in the remaining refine-
ments.

For the example in Figure 13 (with story facts in 2a and the entailed atom living_in(ryan, kgp)),
this number is 3. A formal definition of reasoning width is provided in the main text.

In the stories of NoRA, only specific types of ambiguous facts are used. These follow the ASP
cardinality format:

l{atom1; atom2; ...; atomk}u

where k ∈ {2, 3}, and either u = l = 1 (meaning exactly one atom is true), or l = 1 and u = k
(meaning at least one atom is true). The atoms used in such ambiguous facts are of the following
types:

1. living_in(a, bi), where a is a person and bi are different possible locations. The same
a appears in all atoms of the ambiguous fact, i.e., the ambiguity is over which location a
lives in.

2. rel(a, bi), where a and bi are persons, and rel is a binary predicate over people (e.g.,
grandparent_of, sibling_of). The same a and the same rel are used in all atoms of
the ambiguous fact, i.e., the ambiguity is over whom a stands in relation to.

Graph encoding of story facts. When story facts are provided to a GNN, they must be converted
into directed graphs. For non-ambiguous facts of the form rel(a,b), we follow the standard
convention: draw a directed edge from a to b with edge label rel. Special entities like male in
relationships such as belongs_to_group(sam,male) are encoded as self-loops (e.g., sam → sam
labeled is_male), since neural models using these graphs rely solely on edge labels and cannot learn
from node labels.

For ambiguous facts, a dedicated ambiguous node is introduced to maintain the structure and support
model interpretability. Two types of constructions are used:

• For ambiguous facts of the form 1{rel(a,b1); rel(a,b2); ...; rel(a,bk)}k, where
at least one relation is true:

Add an edge from a to a newly created node p_amb_node with label rel, and
edges from p_amb_node to each bi labeled amb, at least 1 is true.

• For ambiguous facts of the form 1{rel(a,b1); rel(a,b2); ...; rel(a,bk)}1, where
exactly one relation is true:

Add an edge from a to p_amb_node labeled rel, and edges from p_amb_node
to each bi labeled amb, exactly 1 is true.

Each ambiguous fact introduces exactly one such p_amb_node. This design allows GNN-based
models to reason over ambiguous structures using only edge labels (see 14).

34

(a) Story Facts in ASP Syntax

1{sibling_of(tim,lisa); sibling_of(tim,aby); sibling_of(tim,fin)}3.
1{living_in(lisa,kgp); living_in(lisa,rome)}1.
living_in(fin,kgp).
belongs_to_group(tim,male).

(b) Graph Encoding of Story Facts

tim

amb1

lisa

aby

fin

amb2

kgp

rome

sibling_of amb
(at

lea
st

one
)

amb (at least
one)

amb (at least one)

living_in

amb (exactly one)

amb
(exa

ctly
one)

living_in

is_male

Figure 14: (a) An example story in ASP syntax with two ambiguous facts. (b) Corresponding graph
encoding: ambiguous facts are handled via auxiliary nodes with labeled ambiguity constraints on
edges.

K Diagnosing model performance on ambiguous stories

We initially expected that handling ambiguous stories would pose a significant challenge for the
models. However, to our surprise, most models performed nearly as well on the Test-W split as on
the training splits. Upon further investigation, we identified that the metric we designed to measure
reasoning difficulty—the reasoning width—does not fully capture some shortcuts that models can
exploit to achieve high performance.

A problem instance (S, a, b, R) with high reasoning width is difficult only if the solver adheres to
the ideal reasoning process. However, models can take shortcuts that still very often lead to correct
answers. For some instances, these shortcuts fail to yield correct predictions, and in such cases,
the performance of the Edge Transformer model deteriorates substantially. Unfortunately, these
challenging examples represent only a small fraction of the Test-W dataset.

K.1 Illustrative example of ambiguity

To illustrate this issue, consider the ambiguous story shown in Figure 15. This story contains one
ambiguous fact—whether Sean or Shah is the colleague of Rob. This ambiguity gives rise to two
refinements.

35

Query 1: rob is (brother, sibling) of
daisy

• Refinement 1: {sean is colleague of rob}
Derivation: rob is a male sibling of daisy →
brother relationship established.

• Refinement 2: {shah is colleague of rob}
Derivation: shah is underage → cannot be
colleague. Contradiction. Negative refinement.

Query 2: rob lives in U

• Refinement 1: {sean is colleague of rob}
Derivation: sean lives in U→ colleague re-
lationship suggests rob lives in U.

• Refinement 2: {shah is colleague of rob}
Derivation: shah is underage → cannot be
colleague. Contradiction. Negative refinement.

Figure 16: Two queries derived from the ambiguous story, both with reasoning width 2. The first
query can be solved even if the ambiguity is ignored; the second requires handling the ambiguity
explicitly.

rob amb1

shah

sean U

V

daisy
colleague_of

exactly_one

exac
tly_

one
living_in

living_in

is_underage

is_male

sibling_of

Figure 15: Example ambiguous story containing one ambiguous fact: whether Sean or Shah is the
colleague of Rob.

From this story, we derive two entailed facts that can each be turned into problem instances of
reasoning width 2, shown in Figure 16. For the first query, an ideal reasoner would identify that the
second refinement leads to a contradiction and reason accordingly, yielding two valid proofs—one
per refinement—and thus a reasoning width of 2. However, a shortcut reasoner could ignore the
ambiguous part of the story and solve the problem without learning and applying the contradiction
rule that underage individuals cannot be colleagues. The second query also has reasoning width 2,
but here it is essential to apply the contradiction and disprove the second refinement.

K.2 Defining hard ambiguous instances in Test-W

To obtain problem instances with ambiguity that are harder to solve, we devise an auxiliary criterion
to distinguish the two types of ambiguous problem instances in Test-W.

Definition 1 (Hard Ambiguous Problem Instances). A problem instance in Test-W is labeled hard
if:

(i) An ambiguous fact is used in the derivation of the entailed fact.

(ii) The entailed fact cannot be derived for all the possible resolutions of the ambiguous fact (i.e.
some of the possible resolutions need to be excluded based on the fact that they violate the
constraints).

To illustrate condition (ii), consider the story graph in Figure 17.

36

Table 5: Edge Transformer performance on Test-W subsets. For comparison, the in-distribution
accuracy (same difficulty metric as training) is 90%.

Examples Exact Match Accuracy

Hard Ambiguous Instances 390 51%
Non-Hard 6062 81%

seandaisy amb1

lee

joe

parent_of brother_of
exac

tly_
one

exactly_one

Figure 17: Story graph illustrating an example that satisfies condition (i) but not condition (ii) from
Definition 1.

The entailed fact father_of(sean,daisy) can be derived as follows:

• Refinement 1: From brother_of(sean,lee) we derive is_male(sean)

• Refinement 2: from brother_of(sean,joe) we derive is_male(sean)

For either resolution of the ambiguous fact we thus obtain is_male(sean). Together with
parent_of(sean,daisy) we thus derive father_of(sean,daisy).

This instance satisfies condition (i) but not condition (ii) of Definition 1.

K.3 Performance on hard ambiguous instances

The truly challenging examples in Test-W (i.e., those satisfying Definition 1) are rare. However, for
these examples, the accuracy of the Edge Transformer is substantially lower, as shown in Table 5.

L NoRA v1.1

The world rules for NORA-1.1 are largely the same as those used in NORA. We introduced a few
targeted adjustments to address shortcut behaviors identified in Appendix H. In addition, NORA-
1.1 does not include stories with ambiguity. For reference, the complete world-rule specifications
for NORA-1.1, NORA, and INSPIREDFROMHETIONET are available at: https://github.com/
axd353/WhenNoPathsLeadToRome/tree/main/ExplicitWorldRuleFilesForReference.

The training split and the various test splits for NORA-1.1 are organized as shown in Table 6. Figure
18 shows some basic statistics of the NoRA v1.1 training set.

37

https://github.com/axd353/WhenNoPathsLeadToRome/tree/main/ExplicitWorldRuleFilesForReference
https://github.com/axd353/WhenNoPathsLeadToRome/tree/main/ExplicitWorldRuleFilesForReference

Table 6: Overview of the NoRA v1.1 dataset splits. Values that require generalization beyond the
training distribution are highlighted in red.

Name Depth Width BL OPEC

Train-na ≤ 6 1 < 1.5 ≤ 3

Test-D-na > 6 1 < 1.5 ≤ 3
Test-BL-na ≤ 6 1 ≥ 1.5 ≤ 3
Test-OPEC-na – 1 – ≥ 3
Test-In-dist-na ≤ 6 1 < 1.5 ≤ 3

(a) Distribution of predicates/relationships in the NORA-1.1 training set.

(b) Distribution of difficulty metrics for problem instances in the NORA-1.1 training split.

Figure 18: NORA-1.1 training-set statistics. Top: predicate/relationship frequencies. Bottom:
difficulty-metric distribution for training instances.

M Derivation step sensitivity

The number of derivation steps is sensitive to the precise way in which world rules are framed.
To illustrate this, consider our NoRA world rules, which are designed to be minimal and avoid
redundancy. These rules imply certain relationships (which are not explicit in the world rules). A
model could also memorize these implied rules. This would result in shorter derivations but would
necessitate memorizing a larger number of rules.

Consider the example in Figure 19. Using the NoRA rules, entailing that Mona is the daughter of
Tim requires six derivation steps. However, a rule not explicitly stated in the NoRA world rules, but

38

(a) Story Facts (b) NoRA World Rules (c) Derivation

Tim

Lisa

Mona

father_of

si
st

er
_o

fda
ug

ht
er

_o
f

• parent_of(X,Y) :- father_of(X,Y).
• child_of(Y,X) :- parent_of(X,Y).
• sibling_of(X,Y) :- sister_of(X,Y).
• child_of(Y,X) :- child_of(Z,X),

sibling_of(Y,Z).
• belongs_to_group(X,female) :-

sister_of(X,Y).
• daughter_of(Y,X) :- child_of(Y,X),

belongs_to_group(Y,female).

1. parent_of(tim,lisa) :-
father_of(tim,lisa).

2. child_of(lisa,tim) :-
parent_of(tim,lisa).

3. sibling_of(mona,lisa) :-
sister_of(mona,lisa).

4. child_of(mona,tim) :-
child_of(lisa,tim),
sibling_of(mona,lisa).

5. belongs_to_group(mona,female) :-
sister_of(mona,lisa).

6. daughter_of(mona,tim)
:- child_of(mona,tim),
belongs_to_group(mona,female).

Figure 19: Example showing a derivation using a minimal number of rules.

implied by them, is:

daughter_of(Z,Y) :- father_of(X,Y), sister_of(Z,Y).

If models were to learn such implied rules directly, the derivation for the same entailment would be
reduced to a single step.

CLUTRR does not count inverse relationships, such as parent_of(X,Y) :- child_of(Y,X), as
derivation steps, whereas such steps are counted in NoRA. Since we have diverse types of rules in
NoRA, making a judgment on what counts as a derivation step requires more consideration.

N Stable models

Solving a logic program involves computing its stable models, which are also known as answer sets
[Lifschitz, 2008]. First note that while we usually specify ASP programs using rules with variables,
the semantics of answer sets is defined w.r.t. the grounding of such programs. A ground rule is
obtained by replacing the variables in an ASP rule by constants that appear in the program. The
grounding of an ASP program consists of all the possible ground rules that we can obtain from its
rules. Let us now assume that P is a ground program (i.e. the grounding of an ASP program).

In the absence of rules without negation-as-failure, a stable model of P is a minimal set of atoms,
such that:

1. If we assign true to every atom in the set, and false to all other possible atoms, then all
rules in P are satisfied.

2. No strict subset of the model satisfies the above condition.

For rules with negation-as-failure, answer sets are defined in terms of the Gelfond-Lifchitz reduct.
While we do not explicitly rely on negation-as-failure in our encoding, for ambiguous facts (see
below), we use a language construct that under the hood is translated to such rules. Some of the rules
then have conditions with negation-as-failure, of the form not r(a, b). Such conditions are intuitively
satisfied unless r(a, b) can be inferred. The Gelfond-Lifschitz reduct of a logic program P w.r.t. the
answer set A is the logic program PA that we obtain as follows:

• Any rule with a condition of the form not r(a, b) such that r(a, b) ∈ A is removed from the
program.

• Every condition of the form not r(a, b) such that r(a, b) /∈ A is removed from the body of
the rule in which it occurs.

39

Note that the reduct PA no longer contains negation-as-failure. We then say that A is an answer set
of P iff it is an answer set of the reduct PA.

Intuitively, a stable model includes both the explicitly stated story facts and additional atoms that
follow logically.

40

	Introduction
	Related work
	Problem setting
	Dataset construction
	Data generation process
	Measuring problem difficulty
	Training distribution and held-out test sets

	Experiments
	Conclusions
	Code and Resources
	Additional experimental results
	Main results
	HetioNet
	In-depth analyses for other baselines

	Notation and task: Intuitive walkthrough
	Data generation and sampling
	NoRA rules reflect real-world intuitions
	Experiments with trainable relational reasoning models
	Loss functions
	Initialization and compute
	Hyperparameter settings

	Experiments with large reasoning models
	Large reasoning models use shortcuts
	Comparing BL and OPEC as measures of non-path reasoning
	Ambiguous facts, story encodings and reasoning width
	Diagnosing model performance on ambiguous stories
	Illustrative example of ambiguity
	Defining hard ambiguous instances in Test-W
	Performance on hard ambiguous instances

	NoRA v1.1
	Derivation step sensitivity
	Stable models

