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Abstract

In-context learning has emerged as a ground-001
breaking ability of Large Language Models002
(LLMs) and revolutionized various fields by003
providing a few task-relevant demonstrations004
in the prompt. However, trustworthy issues005
with LLM’s response, such as hallucination,006
have also been actively discussed. Existing007
works have been devoted to quantifying the008
uncertainty in LLM’s response, but they of-009
ten overlook the complex nature of LLMs010
and the uniqueness of in-context learning. In011
this work, we delve into the predictive un-012
certainty of LLMs associated with in-context013
learning, highlighting that such uncertainties014
may stem from both the provided demonstra-015
tions (aleatoric uncertainty) and ambiguities016
tied to the model’s configurations (epistemic017
uncertainty). We propose a novel formula-018
tion and corresponding estimation method to019
quantify both types of uncertainties. The pro-020
posed method offers an unsupervised way to021
understand the prediction of in-context learning022
in a plug-and-play fashion. Extensive experi-023
ments are conducted to demonstrate the effec-024
tiveness of the decomposition. The code and025
data are available at: anonymous.4open.026
science/r/UQ_ICL-6BF5.027

1 Introduction028

Large Language Models (LLMs) have revolution-029

ized diverse domains by serving as general task030

solvers, which can be largely attributed to the031

emerging capability: in-context learning. By pro-032

viding demonstrations of the task to LLMs as part033

of the prompt, LLMs can quickly grasp the inten-034

tion and make corresponding responses to the par-035

ticular task (Min et al., 2022). In this paradigm,036

LLMs can quickly adapt to solve new tasks at infer-037

ence time (without any changes to their weights).038

Advanced LLMs, e.g., GPT-4 and LLaMA, have039

achieved state-of-the-art results on LAMBADA040

(commonsense sentence completion), TriviaQA041

(question answering) (Xie et al., 2021), and many 042

tasks in other domains (Ling et al., 2023a). 043

While in-context learning has achieved notable 044

success, LLMs remain vulnerable to well-known 045

reliability issues like hallucination (Rawte et al., 046

2023). Uncertainty quantification has emerged 047

as a popular strategy to assess the reliability of 048

LLM responses. In the past two years, numerous 049

works (Xiao et al., 2022; Lin et al., 2023; Ling 050

et al., 2023b; Amayuelas et al., 2023; Kuhn et al., 051

2023) have been proposed to quantify the uncer- 052

tainty of LLM response. These approaches could 053

return a confidence score or directly compute vari- 054

ance/entropy across multiple LLM responses; how- 055

ever, they often overlook the complex nature of 056

LLMs and their reliance on provided demonstra- 057

tions in in-context learning, so that existing meth- 058

ods may not provide insights into the underlying 059

causes or the interactions among different factors 060

contributing to uncertainty. 061

A natural question therefore arises: when LLM 062

uses in-context learning to predict a wrong answer 063

with high uncertainty, can we indicate if it is caused 064

by the demonstration examples or by the model it- 065

self? Given LLM’s responses to a particular task, 066

it’s essential to decompose the uncertainty into its 067

primary sources to address the question. Specifi- 068

cally, Aleatoric Uncertainty (AU) refers to varia- 069

tions in the data, often linked to the demonstration 070

examples. As shown in Figure 1 (a), LLM’s output 071

can easily be disturbed by inappropriate demon- 072

strations since the provided demonstrations do not 073

cover all possible labels. The noise and potential 074

ambiguity of these demonstrations could bring un- 075

certainty, which, in turn, may hinder the accuracy 076

of the response. In contrast, Epistemic Uncertainty 077

(EU) stems from ambiguities related to the model 078

parameters or different configurations. As depicted 079

in Figure 1 (b), different decoding strategies (e.g., 080

beam search and greedy decoding) and their hyper- 081

parameter settings can have different decoding re- 082
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Example #1: I didn’t feel humiliated
Label: 0 Sadness
Example #2: I’m feeling a bit burdened 
Label: 0 Sadness
Example #3: I feel low energy
Label: 0 Sadness
Example #4: Dad will blow a fuse
Label: 3 Anger

Test: I have the feeling she was amused
LLM Prediction: [2: Love]
Ground Truth:  [1: Joy]

❌

(a) Inappropriate or insufficient few-shot
 demonstrations may cause uncertainty

(b) Various decoding strategies and parameter
 settings may cause uncertainty

Classify the sentiment of the text based on following categories: 
[0: Sadness; 1: Joy, 2: Love; 3: Anger].

Decoding Results
Beam Search
The answer is 1: Joy 

Greedy
The answer is 2

Top-K Sampling
[1: Joy], please let …

Parameter Setting

ngram_size,
# of beams, etc.

if_sampling,
seq_length, etc.

Prediction

top_k, top_p, etc.

1

2

1

❌

Figure 1: Uncertainty in LLM’s prediction can stem from two aspects: a) Demonstration Quality: LLMs are likely
to make wrong predictions if the demonstrations are inappropriate; b) Model Configuration: different decoding
strategies (e.g., beam_search and top_k sampling) and their parameter settings may return different predictions.

sults. Recognizing and quantifying the uncertainty083

from the model’s perspective can also be critical in084

evaluating the generated responses, which allows085

us to understand the model’s confidence level to-086

ward the task and make necessary adjustments (e.g.,087

choosing a more powerful model or conducting an088

ensemble prediction).089

Despite the strides made by existing works in090

understanding the total uncertainty, the decomposi-091

tion of uncertainty in the realm of in-context learn-092

ing remains under-explored. In this work, we pro-093

pose a novel framework for decomposing uncer-094

tainty in in-context learning to aleatoric and epis-095

temic components from the generated outputs. Our096

contributions are summarized as follows.097

• Problem. We formulate the problem of uncer-098

tainty decomposition that extracts epistemic and099

aleatoric uncertainties from the predictive distri-100

bution of LLMs with in-context learning.101

• Method. We propose quantifying both aleatoric102

and epistemic uncertainty from the mutual in-103

formation perspective. A novel entropy-based104

estimation method is also designed to handle the105

free-form outputs of LLMs.106

• Experiment. Extensive experiments are con-107

ducted to evaluate different aspects of uncertainty,108

followed by specific applications and case studies109

to show how two types of uncertainty influence110

the model’s performance.111

2 Uncertainty Decomposition of112

In-context Learning113

We first formulate the process of in-context learn-114

ing as Bayesian Neural Networks with latent vari-115

ables. Based on the formulation, we propose to116

decompose the predictive uncertainty into its epis- 117

temic and aleatoric components from the mutual 118

information perspective, followed by a novel way 119

to estimate both uncertainties based on the entropy 120

of the prediction’s distribution. 121

2.1 Background 122

LLMs are typically trained using maximum like- 123

lihood estimation on a large corpus of text. 124

The training goal is to maximize the likeli- 125

hood of the observed data under the model: 126

L(Θ) =
∏

i≤N p(ωi|ω1, ω2, . . . , ωi−1; Θ), where 127

each ωi ∈ x is a token in a sentence x = 128

[ω1, . . . , ωN ], and Θ denotes the set of parameters. 129

Latent Concept. From the Bayesian point of 130

view, LLM’s in-context learning ability is obtained 131

by mapping the training token sequence x to a la- 132

tent concept z (Xie et al., 2021). The concept z is a 133

latent variable sampled from a space of concepts Z , 134

which defines a distribution over observed tokens 135

ωi from a training context x: 136

p(ω1, . . . , ωN ) =

∫
z∈Z

p(ω1, . . . , ωN |z)p(z)dz. 137

The concept can be interpreted as various 138

document-level statistics, such as the general sub- 139

ject matter of the text, the structure/complexity of 140

the text, the overall emotional tone of the text, etc. 141

In-context Learning. Given a list of indepen- 142

dent and identically distributed (i.i.d.) in-context 143

demonstrations (contain both question and answer) 144

[x1, . . . ,xT−1] concatenated with a test question 145

(without the task answer) xT as prompt. Each 146

demonstration xi in the prompt is drawn as a se- 147

quence conditioned on the same concept z and 148

describes the task to be learned. LLMs generate a 149
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response yT to the test question xT based on the150

aggregated prompt x1:T :151

p(yT |x1:T ) =

∫
z∈Z

p(yT |x1:T , z)p(z|x1:T )dz.152

In-context learning can be interpreted as locating153

a pre-existing concept z based on the provided154

demonstrations x1:T−1, which is then employed to155

tackle a new task xT . Including more high-quality156

demonstrations within the prompt can help refine157

the focus on the relevant concept, enabling its selec-158

tion through the marginalization term p(z|x1:T ).159

In this work, we focus on quantifying the pre-160

dictive uncertainty of LLMs in deterministic NLP161

tasks, such as text classification. Specifically, we162

address tasks where the training dataset D =163

{X ,Y} consists of token sequences X = {x} and164

their corresponding target outputs Y = {y}. For165

LLMs, the generation process is defined by the166

function y = f(x, z; Θ), where f : X × Z → Y167

is a deterministic function. The output y ex-168

hibits stochastic behavior, influenced by the latent169

concept z ∼ p(z|x1:T ) and the model parame-170

ters/configurations Θ (e.g., temperature, etc.).171

2.2 Predictive Uncertainty Formulation of172

In-context Learning173

We formulate the predictive distribution of in-174

context learning for predicting yT given few-shot175

demonstrations x1:T−1 and a test case xT as:176

p(yT |x1:T ) ≈
∫

p(yT |Θ,x1:T , z) (1)177

· p(z|x1:T )q(Θ)dz dΘ,178

where p(yT |Θ,x1:T , z) is approximated by a179

Bayesian Neural Network-based likelihood func-180

tion N (f(x1:T , z),Σ), and Σ is the covariance181

matrix contains the variances and covariances asso-182

ciated with LLM parameters. q(Θ) is the approx-183

imated posterior of the LLM’s parameters Θ. Eq.184

(1) serves as an initial framework for generating185

predictions based on input data and accompany-186

ing demonstrations: p(yT |x1:T ), which entangles187

different types of uncertainties. We first present188

the overall pipeline of our uncertainty quantifica-189

tion framework, followed by formulation on de-190

composing the total uncertainty based on mutual191

information (Sec. 2.3) and a novel way to estimate192

the uncertainty (Sec. 2.4). Note that LLMs can be193

categorized into white-box and black-box models194

(Ling et al., 2023a) based on their transparency.195

LLM

Input
𝒙!

Training Set

𝒙":!$" ∼ 𝝌

Θ% ∼ 𝑞(Θ)

Output 𝒚!"
Θ"

Θ&
𝝌

𝒚!" ∼ 𝑝(𝒚!|Θ" , 	 𝒙#:! , 𝑧	)

𝑧 ∼ 𝑝(𝑧|𝒙":!)

Output 𝒚!"

Figure 2: Uncertainty Quantification of In-context
Learning Pipeline: we want to quantify the uncertainty
that comes from 1) different in-context demonstrations
x1:T ; and 2) different model configurations Θl.

Quantifying mutual information involves accessing 196

the probability of generated tokens, which is not 197

applicable to black-box LLMs. In this study, we 198

also provide a decomposition way from the vari- 199

ance perspective for black-box LLMs. Due to the 200

space limit, the variance-based decomposition can 201

be found in Appendix A.1. 202

Framework Pipeline. In this work, we employ 203

a Bayesian framework to quantify the predictive 204

uncertainty from LLMs, and the overall pipeline 205

is visualized in Figure 2. Specifically, the input 206

x1:T is composed of a test query xT and a set of 207

demonstrations x1:T−1 sampled from X . By sam- 208

pling different model parameters/configurations 209

Θl ∼ q(Θ), LLM can return different outputs 210

yl
T ∈ [y1

T , · · · ,yL
T ] based on the conditional prob- 211

ability p(yT |Θl,x1:T , z). The collection of outputs 212

[y1
T , · · · ,yL

T ] records the total uncertainty regard- 213

ing Θl and demonstrations x1:T−1. 214

2.3 Entropy-based Decomposition 215

As a widely adopted measure of uncertainty, en- 216

tropy provides a quantifiable and interpretable met- 217

ric to assess the degree of confidence in the model’s 218

predictions (Malinin and Gales, 2020). Since white- 219

box LLMs can return the probability of each to- 220

ken in the generated sequence, it naturally makes 221

entropy-based uncertainty measures applicable uni- 222

formly across different types of white-box LLMs. 223

Epistemic Uncertainty (EU). Let H(·) be the 224

differential entropy of a probability distribution, 225

the total uncertainty in Eq. (1) can be quantified as 226

H (yT |x1:T ), which entangles both aleatoric (i.e., 227

demonstration x1:T−1) and epistemic (i.e., model 228

parameter Θ) uncertainties. To estimate the EU, 229

we condition Eq. (1) on a specific realization of 230

the model parameter Θ, yielding p(yT |x1:T ,Θ) = 231∫
p(yT |x1:T , z,Θ)p(z|x1:T )dz with an associated 232

entropy H(yT |x1:T , z,Θ). The expected value 233

of this entropy under different demonstration sets 234
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Classify the sentiment of the text based on following categories: 
[0: Sadness; 1: Joy, 2: Love; 3: Anger].
Sentence 𝒙𝑻: I have the feeling she was amused .

0 1 2 3

0.89 + 0.73 = 1.62

0.81

0
0.65

Answer Distribution
of Demonstration Set #1

Demo 
Set #1

Demo 
Set #2

Demo 
Set #3

0 1.62 2.57 0.97

1 0.81 0.59 1.65

2 0.65 0.23 0.38

3 0 0 0.67
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Sampling

LLM

Decoded Sequences Answer Probability

The answer is 
0 , because …

𝑃 ′0′ = 0.89

Based on the 
context, we 
should choose 0 . 𝑃 ′0′ = 0.73

Based on the 
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should choose 2 .
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𝑃 ′1′ = 0.81
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Total 
Uncertainty
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Uncertainty

Probability Matrix

Aleatoric 
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Figure 3: Framework of entropy-based uncertainty estimation, which consists of 1) generating M sequences based
on a set of x1:T−1; 2) selecting token(s) that is relevant to the answer and extract the probabilities; 3) aggregating
the token probabilities of M sequences into a distribution of predicted labels; 4) iterating the process L times
corresponding to L different demonstration sets and form a probability matrix M, where the column denotes
different demonstration sets and the row denotes labels of the dataset.

can be expressed as Ez [H(yT |x1:T , z,Θ)], which235

serves as a metric to quantify the EU in Eq. (1).236

Aleatoric Uncertainty (AU). In terms of AU, the237

randomness comes from different sets of demon-238

stration x1:T−1 and their corresponding latent con-239

cept z. To estimate AU, we can quantify the mu-240

tual information between yT and latent concept241

z, which can often be leveraged as an evaluation242

metric of AU (Wimmer et al., 2023). As we have243

already obtained the EU, AU can subsequently be244

calculated as the discrepancy between the total un-245

certainty and the epistemic uncertainty:246

I(yT , z|Θ) =H (yT |x1:T ,Θ) (2)247

− Ez [H(yT |x1:T , z,Θ)] .248

The entropy H (yT |x1:T ,Θ) can be approximately249

calculated as −
∑

t

[
p(ωyT

t ) · log p
(
ωyT
t

)]
, where250

p(ωyT
t ) represents the probability of each possi-251

ble next token ωyT
t given the input prompt x1:T .252

Therefore, the AU in Eq. (2) can be approximated253

by sampling many z (by sampling different sets254

of demonstrations) to obtain different yT condi-255

tioning on one set of parameters Θ. The group of256

yT can then be used to approximate the respective257

entropies for each group of demonstrations x1:T−1:258

I(yT , z|Θ) (3)259

= H (yT |x1:T ,Θ)− Ez [H(yT |x1:T , z,Θ)]260

≈
M×L∑

H(yT )−
1

M

M∑
m=1

L∑
l=1

[
H(yΘm,l

T )
]
,261

where [yΘm,l
T ] are obtained corresponding to dif- 262

ferent demonstrations [x1
1:T−1, . . . ,x

L
1:T−1], and 263

[Θ1, . . . ,ΘM ] are sampled from q(Θ). For some 264

LLMs that do not allow sampling different sets 265

of parameters from the learned q(Θ) as a stan- 266

dard Bayesian Neural Network, we can instead 267

leverage different decoding strategies (e.g., Beam- 268

search or Multinomial sampling) in order to en- 269

able stochastic output from LLMs. In addition, 270

since calculating the entropy H (yT ) entails to ob- 271

tain the joint probability of the generated tokens 272

p(yT ) = (ωyT
1 , . . . , ωyT

T ), entropy-based method 273

may only be applicable to white-box LLMs. 274

2.4 Entropy Approximation 275

In some cases, the generation of LLMs is free- 276

form, which makes the uncertainty estimation for 277

in-context learning is still different from well- 278

studied classification models that have specific la- 279

bels. Specifically, not only may the LLM not al- 280

ways be able to return an expected answer, but the 281

generated sequence may also consist of placeholder 282

tokens. Calculating the entropy of the whole gen- 283

erated sequence would involve redundant tokens. 284

Therefore, in this work, we propose to approximate 285

the entropy of the output H(yT ), and the process 286

is summarized in Figure 3. 287

Given the probability distributions of the gener- 288

ated tokens p(yT ) for one set of demonstrations, 289

we only select token(s) ωyT
t that directly answer 290

the provided question. Taking the text classifica- 291
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tion task as an example, LLM is asked to directly292

output a numerical value standing for a predefined293

category (e.g., 0: Sadness, 1: Joy, etc.). The proba-294

bility of the token ωyT
t that represents the numer-295

ical value is then leveraged to denote the overall296

distribution of p(yT ). We aggregate the answer297

probabilities from all M decoded sequences and298

transform them as an answer distribution (as shown299

in the top right corner in Figure 3). After repeat-300

ing the process L times, where L corresponds to L301

different sets of demonstrations, we have a matrix302

M recording the answer distributions of choosing303

different demonstrations and model configurations304

(as shown in the lower right corner in Figure 3).305

The EU and AU can then be approximated as:306

EU =
1

L

∑
H (σ(M:,j)) ,307

AU = H
(
σ
(∑

[M:,j ]
))

− 1

L

∑
H (σ (M:,j)) ,308

where σ(·) normalizes the column M:,j into a prob-309

ability distribution, and entropy H(·) can be calcu-310

lated as −
∑K

k=1 (p(Mk,j) ∗ log(p(Mk,j))) if the311

number of labels is K.312

3 Related Works313

Uncertainty Quantification and Decomposition.314

Uncertainty quantification aims to measure the con-315

fidence of models’ predictions, which has drawn316

attention from various domains (Zhao et al., 2020;317

Ling et al., 2022; Malo et al., 2014). Measuring318

uncertainty is essential in many real-world NLP ap-319

plications where making a wrong prediction with320

high confidence can be disastrous (e.g., assess-321

ing the confidence in a translation or a generated322

piece of information). This is especially impor-323

tant in foundation models since we do not have324

enough resources to finetune the model (Abdar325

et al., 2021). To better understand the uncertainty,326

the primary focus is on understanding and cate-327

gorizing the sources of uncertainty for interpret-328

ing the models’ outputs more effectively. The out-329

put uncertainty can typically be categorized into330

Aleatoric Uncertainty that arises from the inherent331

noise in the data, and Epistemic Uncertainty that332

arises due to inappropriate model architecture or333

overfitted/underfitted parameters. Existing meth-334

ods (Chowdhary and Dupuis, 2013; Depeweg et al.,335

2017; Malinin and Gales, 2020) have come up with336

various methods (e.g., Bayesian neural network,337

Deep Ensembles, and Monte Carlo Dropout) to338

decompose the uncertainty.339

Uncertainty in Language Models. Earlier 340

works (Xiao and Wang, 2019; Desai and Durrett, 341

2020; Jiang et al., 2021) on uncertainty in language 342

models have focused on the calibration of classi- 343

fiers (e.g., applying dropout to the model parame- 344

ters or leveraging ensemble voting) to better assess 345

the confidence of the generated output. When it 346

comes to the era of LLMs, multiple works (Xiao 347

and Wang, 2021; Xiao et al., 2022; Lin et al., 2022; 348

Yu et al., 2022; Lin et al., 2023; Kuhn et al., 2023; 349

Fadeeva et al., 2023) have been proposed to mea- 350

sure the uncertainty of LLM’s prediction in mul- 351

tiple aspects (e.g., lexical uncertainty, text uncer- 352

tainty, and semantic uncertainty) for multiple NLP 353

tasks. Another line of works (Kadavath et al., 2022; 354

Zhou et al., 2023; Amayuelas et al., 2023) instead 355

tries to analyze how to extract knowledge from a 356

language model correctly and self-evaluate the cor- 357

rectness with a confidence score. However, despite 358

these commendable efforts, existing methods still 359

lack an effective way to directly quantify and de- 360

compose the uncertainty inherent in the outputs of 361

LLMs with in-context learning. 362

4 Experiments 363

We evaluate the uncertainty decomposition proce- 364

dure on realistic natural language understanding 365

problems. By comparing state-of-the-art uncer- 366

tainty quantification methods, we aim to examine 367

what type of uncertainty is the most promising in- 368

dicator of high confidence for LLMs. In addition, 369

we also provide generalization analysis and two 370

specific out-of-distribution detection applications. 371

Due to the space limit, extra experiments and ex- 372

periment settings are provided in the Appendix. 373

4.1 Experiment Setup 374

We evaluate the decomposed uncertainties on open- 375

source LLMs with different model sizes. We lever- 376

age LLAMA-2 (Touvron et al., 2023), which is the 377

most widely applied open LLM, with its 7B, 13B, 378

and 70B model sizes. The primary experiments are 379

conducted with LLAMA-2 models. In order to fur- 380

ther demonstrate the generalization ability of our 381

method, we apply our uncertainty quantification 382

method on OPT-13B (Zhang et al., 2022). 383

Data. We consider different Natural Language Un- 384

derstanding tasks. 1) Sentiment Analysis: EMO- 385

TION (Saravia et al., 2018) contains 2, 000 test 386

cases and six classes; Financial Phrasebank (Fi- 387

nancial) (Malo et al., 2014) contains 850 financial 388
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news and three sentiment classes; Stanford Sen-389

timent Treebank v2 (SST2) (Socher et al., 2013)390

consists of 872 sentences from movie reviews and391

two classes. 2) Linguistic Acceptability. The Cor-392

pus of Linguistic Acceptability (COLA) (Warstadt393

et al., 2019) is about English acceptability judg-394

ments, which has 1, 040 test cases and two classes.395

3) Topic Classification. AG_News (Zhang et al.,396

2015) contains 1, 160 test cases and four classes.397

Demonstration & Model Configuration Sam-398

pling. We evaluate each method on the testing399

set of each dataset and choose two strategies to ran-400

domly sample in-context learning demonstrations.401

1) Random: we randomly sample demonstrations402

(training instances with labels) from the training403

set regardless their labels. 2) Class: we randomly404

sample demonstrations but ensure there is at least405

one demonstration per label class. To generate var-406

ious sequences based on one set of demonstrations,407

we adopt Beam Search with beam width = 10 to408

approximate the sampling process of Θ ∼ q(Θ).409

Comparison Methods. Our study also evaluates410

the following baseline uncertainty estimation meth-411

ods: 1) Likelihood-based Uncertainty (Likelihood)412

(Malinin and Gales, 2020) calculates the sum of413

log probabilities of all tokens generated from lan-414

guage models and normalizes it by the sequence415

length. 2) Entropy-based Uncertainty (Entropy)416

(Xiao and Wang, 2019) calculates the entropy of417

the probability distributions of the generated to-418

kens. 3) Semantic Uncertainty (Semantic) (Kuhn419

et al., 2023) is the most advanced entropy-based420

uncertainty estimation method, which groups gen-421

erated sequences into clusters according to their422

semantic embeddings. The average entropy across423

all groups is viewed as the uncertainty score.424

Evaluation Metrics. We show the prediction accu-425

racy of each dataset. In addition, we leverage two426

standard metrics: the Area under Precision-Recall427

Curve (AUPR) and AUROC (ROC) to evaluate the428

uncertainty. AUPR calculates the area under the429

Precision-Recall curve. AP is high when both pre-430

cision and recall are high, and low when either of431

them is low across a range of confidence thresholds.432

ROC represents the likelihood that a correct answer433

is selected. An ideal ROC rating is 1, whereas a ran-434

dom uncertainty estimate would yield ROC = 0.5.435

4.2 Quantitative Analysis436

We compare the performance of different methods437

in assessing the misclassification samples based on438

their perspective uncertainty scores. Intuitively, 439

misclassified samples should have larger uncer- 440

tainty scores. The results are shown in Table 1. 441

Note that our proposed method can decompose the 442

uncertainty into epistemic uncertainty (EU) and 443

aleatoric uncertainty (AU), we thus show the per- 444

formance of EU and AU separately. 445

As shown in the table, in most cases, our pro- 446

posed methods (EU and AU) consistently show 447

higher AUPR and ROC scores across all datasets, 448

which indicates a better performance in assess- 449

ing misclassification samples based on uncertainty 450

scores. Moreover, we also draw some observa- 451

tions from the table. 1. Class Sampling Strat- 452

egy Proves Superior: The class sampling strategy 453

generally yields higher AUPR and ROC scores 454

across datasets, which proves it is more effective 455

than random demonstration sampling. Class sam- 456

pling ensures that each class is represented in the 457

sample and reduces sampling bias, which is cru- 458

cial in scenarios where the dataset might be im- 459

balanced or where certain classes are underrepre- 460

sented. 2) Increasing Model Size Enhances Perfor- 461

mance: Larger models (moving from 7B to 70B) 462

tend to have better performance in terms of AUPR 463

and ROC. Specifically, there’s a general trend of 464

increasing AUPR and ROC scores as model size 465

increases from 7B to 13B to 70B for all compar- 466

ison methods. Some datasets and metrics do not 467

strictly follow this trend. For instance, in the EMO- 468

TION dataset, the 70B model sometimes shows a 469

slight decrease in performance compared to the 470

13B model. The inconsistencies in performance 471

improvement with larger models, especially for 472

EU, hint at the complexity of uncertainty assess- 473

ment in different contexts and datasets. 3. Treating 474

all tokens equally can be harmful in uncertainty 475

quantification: both Likelihood and Entropy Un- 476

certainty treat all tokens equally. However, some 477

tokens carry greater relevance and representative- 478

ness than others, owing to the phenomenon of “lin- 479

guistic redundancy”. However, most uncertainty 480

estimation methods treat all tokens with equal im- 481

portance when estimating uncertainty, disregarding 482

these inherent generative inequalities. 483

4.3 Generalization Capability 484

In this work, we also show how our method per- 485

forms when applied to different LLMs. We com- 486

pare the performance of misclassification rate when 487

using OPT-13B and LLAMA-2-13B. We com- 488
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Inference
Model

ACC
Likelihood Entropy Semantic Ours (EU) Ours (AU)

AUPR ROC AUPR ROC AUPR ROC AUPR ROC AUPR ROC
E

m
ot

io
n

LLAMA-7B-RANDOM 0.407 0.423 0.426 0.448 0.501 0.598 0.607 0.688 0.667 0.625 0.579
LLAMA-7B-CLASS 0.411 0.562 0.423 0.657 0.538 0.697 0.653 0.745 0.696 0.691 0.601
LLAMA-13B-RANDOM 0.501 0.597 0.613 0.584 0.503 0.612 0.625 0.645 0.681 0.559 0.585
LLAMA-13B-CLASS 0.533 0.641 0.578 0.593 0.554 0.652 0.701 0.622 0.686 0.526 0.599
LLAMA-70B-RANDOM 0.584 0.512 0.462 0.491 0.452 0.657 0.696 0.667 0.713 0.531 0.663
LLAMA-70B-CLASS 0.592 0.537 0.484 0.469 0.442 0.622 0.689 0.659 0.721 0.612 0.693

Fi
na

nc
ia

l

LLAMA-7B-RANDOM 0.379 0.821 0.532 0.728 0.438 0.715 0.624 0.731 0.672 0.669 0.582
LLAMA-7B-CLASS 0.397 0.593 0.505 0.548 0.362 0.732 0.699 0.803 0.711 0.753 0.589
LLAMA-13B-RANDOM 0.476 0.894 0.571 0.652 0.463 0.705 0.545 0.718 0.512 0.729 0.573
LLAMA-13B-CLASS 0.477 0.752 0.594 0.692 0.531 0.694 0.543 0.765 0.610 0.758 0.592
LLAMA-70B-RANDOM 0.530 0.816 0.509 0.754 0.493 0.679 0.688 0.779 0.754 0.734 0.642
LLAMA-70B-CLASS 0.537 0.668 0.469 0.623 0.439 0.774 0.649 0.893 0.804 0.739 0.659

SS
T-

2

LLAMA-7B-RANDOM 0.856 0.149 0.636 0.135 0.587 0.244 0.593 0.286 0.683 0.205 0.702
LLAMA-7B-CLASS 0.897 0.230 0.666 0.196 0.579 0.253 0.577 0.248 0.701 0.302 0.673
LLAMA-13B-RANDOM 0.866 0.268 0.472 0.204 0.467 0.355 0.712 0.314 0.677 0.326 0.816
LLAMA-13B-CLASS 0.928 0.178 0.425 0.113 0.439 0.343 0.631 0.397 0.836 0.367 0.639
LLAMA-70B-RANDOM 0.932 0.091 0.597 0.137 0.475 0.258 0.565 0.318 0.764 0.298 0.571
LLAMA-70B-CLASS 0.938 0.132 0.552 0.185 0.531 0.312 0.679 0.331 0.851 0.362 0.697

C
O

L
A

LLAMA-7B-RANDOM 0.599 0.388 0.557 0.329 0.443 0.358 0.502 0.416 0.562 0.377 0.517
LLAMA-7B-CLASS 0.639 0.392 0.523 0.381 0.478 0.425 0.526 0.473 0.587 0.401 0.506
LLAMA-13B-RANDOM 0.652 0.389 0.498 0.287 0.512 0.433 0.562 0.469 0.572 0.488 0.565
LLAMA-13B-CLASS 0.649 0.412 0.418 0.342 0.517 0.426 0.548 0.456 0.568 0.523 0.641
LLAMA-70B-RANDOM 0.826 0.481 0.599 0.312 0.471 0.372 0.625 0.317 0.716 0.329 0.676
LLAMA-70B-CLASS 0.852 0.357 0.612 0.397 0.588 0.397 0.613 0.389 0.727 0.425 0.682

A
G

_N
ew

s

LLAMA-7B-RANDOM 0.646 0.238 0.472 0.265 0.463 0.312 0.612 0.448 0.634 0.361 0.537
LLAMA-7B-CLASS 0.679 0.267 0.505 0.372 0.523 0.378 0.562 0.384 0.627 0.326 0.538
LLAMA-13B-RANDOM 0.685 0.365 0.517 0.364 0.522 0.374 0.548 0.395 0.648 0.378 0.552
LLAMA-13B-CLASS 0.685 0.378 0.528 0.359 0.413 0.411 0.566 0.429 0.654 0.401 0.569
LLAMA-70B-RANDOM 0.792 0.311 0.478 0.316 0.498 0.401 0.552 0.309 0.635 0.319 0.543
LLAMA-70B-CLASS 0.838 0.302 0.511 0.271 0.528 0.354 0.532 0.274 0.662 0.283 0.571

Table 1: The performance comparison on the misclassification rate based on the uncertainty score from each
approach. For each dataset, correct predictions are labeled as 0 and incorrect ones are labeled as 1. We show the
AUPR and ROC (the higher the better) based on the uncertainty score and misclassification rate with two types of
demonstration selection strategy: RANDOM and CLASS as well as three LLAMA model sizes: 7B, 13B, and 70B.

pute the precision-recall (PR) curve and ROC489

curve using two backbone LLMs on the EMOTION490

dataset, and the results are shown in Figure 4.491

As shown in Figure 4, our method exhibits con-492

sistent trends across different LLMs. The precision-493

recall curves of both uncertainties (Figure 4 (a) and494

4 (b)) between the two methods are almost identi-495

cal, and the model’s capability between two LLMs496

is also reflected in the PR curves of EU. Further-497

more, by comparing Figure 4 (c) and 4 (d), the ROC498

curves of both LLMs show a similar pattern, with499

the AUC scores not deviating significantly. Specifi-500

cally, both OPT-13B and LLAMA-2-13B exhibit501

the same Area Under ROC (AUROC) curve = 0.68502

for AU. Since LLAMA-2-13B is a more powerful503

LLM than OPT-13B, our method can quantify that504

EU of LLAMA-2-13B (AUROC = 0.59) is better 505

than OPT-13B (AUROC = 0.55). This finding 506

further supports our method maintains its perfor- 507

mance irrespective of the underlying model and its 508

robust generalization capability. 509

4.4 Out-of-domain Demonstration Detection 510

Out-of-domain (OOD) demonstration refers to cou- 511

pling a test instance with less relevant or OOD 512

demonstrations, potentially leading the model to 513

be misled and handle the test instance unreli- 514

ably. In this study, we investigate whether uncer- 515

tainty scores can effectively distinguish between 516

in-domain and OOD demonstrations. In our label- 517

ing scheme, in-domain demonstrations are labeled 518

as 0, while OOD demonstrations are labeled as 519
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(a) PR by OPT-13B
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(b) PR by LLAMA-2-13B
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(c) ROC by OPT-13B
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(d) ROC by LLAMA-2-13B
Figure 4: The performance of misclassification rate using two backbone LLMs: OPT-13B and LLAMA-2-13B on
EMOTION dataset. (a) and (b) demonstrate the precision-recall curves (x-axis is the recall and y-axis is the precision)
for OPT-13B and LLAMA-2-13B; (c) and (d) demonstrate the ROC curve (x-axis is the false positive rate and
y-axis is the true positive rate) for OPT-13B and LLAMA-2-13B, respectively.

Semantic Ours (EU) Ours (AU)

AUPR ROC AUPR ROC AUPR ROC

Relevant
Demo

0.702 0.644 0.742 0.935 0.657 0.682

OOD
Demo

0.698 0.712 0.784 0.941 0.773 0.607

Table 2: Out-of-domain demonstration detection con-
ducted with LLAMA-2-13B on EMOTION Dataset.

1. AUPR and ROC analyses are performed based520

on the labels and uncertainty scores, with results521

summarized in Table 2. Specifically, we conduct522

experiments on the EMOTION dataset, involving523

two scenarios: in-domain demonstrations (sam-524

pled from its training set) and relevant demonstra-525

tions (sampled from Finance Phrasebank, a three-526

class sentiment analysis task). Additionally, we527

compare in-domain demonstrations with complete528

OOD demonstrations (sampled from COLA, a bi-529

nary linguistic acceptability task).530

As shown in Table 2, compared to the state-of-531

the-art Semantic Uncertainty and the AU, the EU532

demonstrates the best indicator to detect both less533

relevant and OOD demonstrations. Intuitively, the534

model’s predictions would be impacted by irrele-535

vant and OOD demonstrations and exhibit large536

variance. AU is less effective than EU in detect-537

ing OOD demonstrations since the demonstrations538

already have large inherent variability. Semantic539

Uncertainty instead cannot really distinguish what540

is the root cause of the predictive uncertainty.541

4.5 Semantic Out-of-distribution Detection542

Semantic out-of-distribution (SOOD) detection543

refers to distinguishing test samples with seman-544

tic shifts from the given demonstrations and the545

prompt. In this study, we mask out a few classes546

and ask LLMs to classify test samples into the rest547

of the classes. The method is expected to return548

a higher uncertainty score of SOOD test samples.549

Semantic Ours (EU) Ours (AU)

AUPR ROC AUPR ROC AUPR ROC

7B 0.477 0.532 0.548 0.658 0.461 0.570
13B 0.417 0.468 0.525 0.592 0.414 0.437

Table 3: Semantic out-of-distribution detection using
LLAMA-2 7B and 13B on EMOTION Dataset.

Specifically, we mask two classes 1: sadness and 2: 550

anger out of six classes from the EMOTION dataset 551

and ask LLM to categorize a given test sample only 552

into the rest four classes. The SOOD samples are 553

labeled as 1 and in-distribution samples are labeled 554

as 0. Results of AUPR and ROC are recorded in 555

Table 3 in terms of different model sizes. 556

As shown in the table, EU still performs the best 557

as a better indicator to recognize SOOD samples 558

across different model sizes. SOOD samples are 559

semantically different from the provided demon- 560

strations, and the task description also masks out 561

the correct class of these SOOD samples, lead- 562

ing to higher uncertainty in the model’s predic- 563

tions. Given the inappropriate task description and 564

demonstrations, AU may not necessarily perform 565

better in the presence of SOOD samples. 566

5 Conclusion 567

To better understand and quantify the inherent un- 568

certainties associated with LLM’s in-context learn- 569

ing, we provide a novel approach to decompose the 570

predictive uncertainty into its aleatoric and epis- 571

temic perspectives from the Bayesian perspective. 572

We also provide novel approximation methods to 573

quantify different uncertainties based on the de- 574

composition. Extensive experiments are conducted 575

to verify the effectiveness and better performance 576

of the proposed method than others. We believe 577

this research stands as a significant stride toward 578

harnessing the full potential of LLMs while being 579

acutely aware of their performance boundaries. 580
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Broader Impact581

The broader impact of this work can be considered582

from several perspectives, particularly in building a583

trustworthy LLM environment. Specifically, by de-584

composing uncertainty into aleatoric and epistemic585

components, this work can significantly contribute586

to increasing the reliability and trustworthiness of587

LLMs. Users and developers can better understand588

when and why an LLM might fail or provide inac-589

curate responses. This understanding is crucial for590

critical applications where reliability is paramount,591

such as in healthcare, legal advice, or educational592

tools.593

Limitations594

The proposed work aims at quantifying predictive595

uncertainty and decomposing the value into its596

aleatoric and epistemic components. While we can597

achieve the best result compared to other methods,598

the proposed framework may only be applied in nat-599

ural language understanding tasks (e.g., multiple-600

choice QA, text classification, linguistics accept-601

ability, etc.). The proposed uncertainty estimation602

algorithm may have limited usage in quantifying603

uncertainties of generation tasks since we cannot604

tell which part of the generated sequence is seman-605

tically important.606
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A Appendix 764

A.1 Variance-based Decomposition 765

Alternatively, we can use the variance as a measure 766

of uncertainty. Let σ2(·) compute the variance of 767

a probability distribution, and the total uncertainty 768

present in Eq. (1) is then σ2(yT |x1:T ). This quan- 769

tity can then be decomposed using the law of total 770

variance: 771

σ2(yT |x1:T ) =σ2
q(Θ) (E[yT |x1:T ,Θ]) (4) 772

+ Eq(Θ)

[
σ2(yT |x1:T ,Θ)

]
. 773

where E[yT |x1:T ,Θ] and σ2(yT |x1:T ,Θ) are 774

mean and variance of yT given p (yT |x1:T ,Θ). 775

σ2
q(Θ) (E[yT |x1:T ,Θ]) represents the variance of 776

E[yT |x1:T ,Θ] when Θ ∼ q(Θ), which indicates 777

the epistemic uncertainty since it ignores the contri- 778

bution of z. In contrast, Eq(Θ)

[
σ2(yT |x1:T ,Θ)

]
in 779

Eq. (4) represents the aleatoric uncertainty since it 780

denotes the average value of σ2(yT |x1:T ,Θ) with 781

Θ ∼ p(Θ) and ingores the contribution of Θ to 782

yT . Note that variance-based uncertainty decom- 783

position does not involve the probability of the 784

generated tokens, which is applicable to black-box 785

LLMs (e.g., GPT models). 786
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Variance Approximation. In practice, when we787

are dealing with black-box LLMs (e.g., Chat-788

GPT), there are multiple hyperparameters (e.g.,789

temperature and top_p) allowing to return790

different responses. Specifically, [y1
T , . . . ,y

L
T ] can791

be obtained through querying the LLM with differ-792

ent demonstrations [x1
1:T−1, . . . ,x

L
1:T−1] L times.793

The different set of parameter configurations are794

denoted as [Θ1, . . . ,ΘM ]. The E[yT |x1:T ,Θ] can795

then be calculated as the expected model output796

given the input data and the model parameters Θ.797

Calculate the variance of this expectation with re-798

spect to a set of model configurations over all sets799

of demonstrations gives the epistemic uncertainty.800

The variance σ2(yT ) can also be obtained given801

a set of few-shot demonstrations over all model802

parameters. Finally, average this variance over the803

certain model configuration to obtain the aleatoric804

uncertainty.805

A.2 Dataset Description806

Sentiment Analysis. 1) EMOTION (Saravia et al.,807

2018) contains 2, 000 test cases, where LLMs are808

asked to classify a given sentence with six cate-809

gories: sadness, joy, love, anger, fear, surprise.810

2) Financial Phrasebank (Financial) (Malo et al.,811

2014) contains 850 test cases, where LLMs are812

asked to classify a given financial news with three813

categories: negative, neutral, positive. 3) Stanford814

Sentiment Treebank v2 (SST2) (Socher et al., 2013)815

consists of 872 sentences from movie reviews and816

human annotations of their sentiment, where the817

language model is asked to predict the sentiment818

from two classes: positive and negative.819

Linguistic Acceptability. 1) The Corpus of Lin-820

guistic Acceptability (COLA) (Warstadt et al.,821

2019) is about English acceptability judgments822

drawn from books and journal articles on linguistic823

theory. Each example is a sequence of words an-824

notated with whether it is a grammatical English825

sentence, and there are 1, 040 test cases in total.826

Topic Classification. TC aims at categorizing the827

given sentence into predefined topics. We adopt828

AG_News (Zhang et al., 2015) is a dataset that829

collects more than 1 million news articles, where830

LLMs are asked to classify a given news into four831

categories: World, Sports, Business, and Sci/Tech.832

There are 1, 160 test cases in total.833

A.3 Experiment Setup834

We conduct experiments primarily on LLAMA-835

2-7B-CHAT-HF, LLAMA-2-13B-CHAT-HF, and836

LLAMA-2-70B-CHAT-HF, where the model 837

weights are downloaded from the website1. Since 838

we cannot actually “sample” model weights as 839

Bayesian Neural Networks, in order to let LLMs 840

return different outputs, we leverage Beam Search 841

since it considers multiple best options based on 842

beam width using conditional probability, which 843

is better than the sub-optimal Greedy search. The 844

beam search is conducted with the beam size 10 845

and the max number of new tokens is set to be 846

16 uniformly across all datasets. We choose a 847

different number of demonstrations (details are 848

recorded in Table 4) to allow the LLM to achieve 849

the best performance on each dataset, and we 850

sample demonstrations four times uniformly across 851

all datasets. 852

Random Class

Emotion 6 1 per class
Financial 6 2 per class
SST2 4 2 per class
COLA 2 1 per class
AG_News 4 1 per class

Table 4: The number of demonstrations selected in each
dataset.

A.4 Prompt Template 853

In this work, we uniformly apply the following 854

prompt template for all datasets. Take the EMO- 855

TION dataset as an example, we summarize the 856

prompt in Table 5. Note that all datasets use the 857

same template, small modifications are made on 858

the actual label information and different demon- 859

stration numbers of different datasets. 860

A.5 Misclassification Rate with Out of 861

Domain Demonstration 862

Out-of-domain in-context Demonstration refers to 863

the test instance being coupled with less relevant 864

or out-of-domain demonstrations, which the model 865

may be misled and not handle the test instance 866

reliably. In this work, we analyze the misclassi- 867

fication rate of out-of-domain Demonstration in 868

the EMOTION dataset (six-class sentiment analysis 869

task) by providing LLMs with relevant demonstra- 870

tions (sampled from Finance Phrasebank which 871

is a three-class sentiment analysis task) and com- 872

plete out-of-domain demonstrations (sampled from 873

1https://ai.meta.com/resources/models-and-
libraries/llama-downloads/
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System Prompt ### Below is an instruction that describes a task. Clearly follow the instruction and write a short
response to answer it.

Task Description
### Instruction: Classify the sentiment in the following text based on the six categories:
[0: Sadness; 1: Joy, 2: Love; 3: Anger; 4: Fear, 5: Surprise]. Provide the information in a
structured format WITHOUT additional comments, I just want the numerical label for each text.

Demonstrations

### Here are some examples:
Example 1: Sentence: {i didnt feel humiliated} Category: {0: Sadness}
Example 2: Sentence: {im grabbing a minute to post i feel greedy wrong} Category: {3: anger}
Example 3: Sentence: {i have the feeling she was amused and delighted} Category: {1: joy}
Example 4: Sentence: {i feel more superior dead chicken or grieving child} Category: {1: joy}
Example 5: Sentence: {i get giddy over feeling elegant in a pencil skirt} Category: {1: joy}
...

Test Query ### Test
Sentence: {} Category:

Table 5: Prompt Template consists of four parts: 1) System Prompt aims at providing a basic hint of the task; 2) Task
Description provides some details of the task, e.g., if it is a sentiment analysis task or how many labels are there; 3)
Few-shot Demonstrations are leveraged to give LLMs some basic formats of how the returned responses can be
constructed; and 4) Test Query is the final test query that we want LLMs to classify/categorize, and the LLM is only
expected to return an exact answer to solve the given question.

COLA which is a binary linguistic acceptability874

task). We conduct the task with two demonstration875

selection strategies, and the results are provided in876

Table 6.877

LLaMA-13B-Random LLaMA-13B-Class

EU AU EU AU

Original
Demo

0.681 0.585 0.686 0.599

Relevant
Demo

0.688
(+1.0%)

0.541
(−7.5%)

0.671
(−2.2%)

0.524
(−12.5%)

OOD
Demo

0.671
(−1.4%)

0.501
(−13.3%)

0.673
(−1.8%)

0.497
(−17.0%)

Table 6: Comparison of AUROC in misclassificatin rate
on EMOTION dataset, where “Original Demo” indicates
we sample demonstrations from its original training set,
“Relevant Demo” indicates we sample demonstrations
from Finance Phrasebank Dataset (a relevant sentiment
analysis task, and “OOD Demo” indicates we sample
demonstrations from an irrelevant dataset: COLA.

As shown in the table, changes in the perfor-878

mance of the EU are relatively minor under all con-879

ditions, suggesting that the model is more stable or880

less sensitive to the changes in demonstration data881

within this metric. In contrast, the AU shows more882

significant fluctuations, which implies that the AU883

is more sensitive to the quality and relevance of884

demonstration data. When relevant demonstrations885

from the Finance Phrasebank sentiment analysis886

dataset are used, there’s a slight improvement or a887

minor decrease in EU, but a notable decrease in AU. 888

This suggests that even relevant but not identical 889

data can confuse the model, especially for the AU. 890

With out-of-domain demonstrations from COLA, 891

the model’s performance drops more significantly, 892

with the AU metric showing a dramatic decrease of 893

up to 17.0%, which indicates that the model strug- 894

gles significantly when the demonstrations are not 895

relevant to the task it’s being tested on. 896

A.6 Case Study 897

Table 7 demonstrates the actual changes in AU and 898

EU when presenting LLMs with different sizes and 899

different demonstrations. Given the test query is: 900

I had stated to her the reason I feel so fearful is 901

because I feel unsafe with the ground truth label 902

is (4: fear), which is a sentence with negative feel- 903

ing. For LLAMA-2-7B, by presenting LLMs with 904

more diverse demonstrations (contain both positive 905

and negative sentences), the results would be more 906

diverse between different beam search returned se- 907

quences, leading to a relatively higher AU than EU. 908

For LLAMA-2-70B with a lerger parameter space 909

and model capability, 910
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Testing Query:
I had stated to her the reason I feel so fearful is because I feel unsafe (4: fear)

Extracted
Predictions

EU AU

LLaMA-2-7B

1. i felt anger when at the end of a telephone call (3: anger)
2. i feel a little mellow today (1: joy)
3. i don t feel particularly agitated (4: fear)
4. i hate it when i feel fearful for absolutely no reason (4: fear)
5. im updating my blog because i feel shitty (0: sadness)

0, 0, 0, 1, 3
4, 3, 4, 4, 4

0.171 0.372

1. i am feeling outraged it shows everywhere (4: fear)
2. i do feel insecure sometimes but who doesnt (4: fear)
3. i start to feel emotional (0: sadness)
4. i feel so cold a href http irish (3: anger)
5. i feel i have to agree with her even though i can imagine
some rather unpleasant possible cases (0: sadness)

4, 4, 1, 3, 4
4, 4, 4, 5, 4

0.163 0.189

LLaMA-2-70B

1. i felt anger when at the end of a telephone call (3: anger)
2. i feel a little mellow today (1: joy)
3. i don t feel particularly agitated (4: fear)
4. i hate it when i feel fearful for absolutely no reason (4: fear)
5. im updating my blog because i feel shitty (0: sadness)

4, 3, 4, 3, 4
4, 4, 2, 4, 4

0.012 0.079

1. i am feeling outraged it shows everywhere (4: fear)
2. i do feel insecure sometimes but who doesnt (4: fear)
3. i start to feel emotional (0: sadness)
4. i feel so cold a href http irish (3: anger)
5. i feel i have to agree with her even though i can imagine
some rather unpleasant possible cases (0: sadness)

4, 4, 4, 4, 4
4, 4, 4, 4, 4

0.004 0.009

Table 7: Case study on the actual EU and AU decomposed from the predictive uncertainty

13


	Introduction
	Uncertainty Decomposition of In-context Learning
	Background
	Predictive Uncertainty Formulation of In-context Learning
	Entropy-based Decomposition
	Entropy Approximation

	Related Works
	Experiments
	Experiment Setup
	Quantitative Analysis
	Generalization Capability
	Out-of-domain Demonstration Detection
	Semantic Out-of-distribution Detection

	Conclusion
	Appendix
	Variance-based Decomposition
	Dataset Description
	Experiment Setup
	Prompt Template
	Misclassification Rate with Out of Domain Demonstration
	Case Study


