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Abstract

Spiking Neural Networks (SNNs) often suffer
from high time complexity O(T ) due to the se-
quential processing of T spikes, making training
computationally expensive. In this paper, we pro-
pose a novel Fixed-point Parallel Training (FPT)
method to accelerate SNN training without modi-
fying the network architecture or introducing ad-
ditional assumptions. FPT reduces the time com-
plexity to O(K), where K is a small constant
(usually K = 3), by using a fixed-point iteration
form of Leaky Integrate-and-Fire (LIF) neurons
for all T timesteps. We provide a theoretical con-
vergence analysis of FPT and demonstrate that
existing parallel spiking neurons can be viewed as
special cases of our proposed method. Experimen-
tal results show that FPT effectively simulates the
dynamics of original LIF neurons, significantly
reducing computational time without sacrificing
accuracy. This makes FPT a scalable and efficient
solution for real-world applications, particularly
for long-term tasks. Our code will be released at
https://github.com/WanjinVon/FPT.

1. Introduction
SNNs represent a biologically inspired evolution of artifi-
cial neural networks (ANNs) (Zhu et al., 2024; Zheng et al.,
2024). Unlike traditional ANNs that rely on continuous-
value propagation, SNNs utilize discrete spikes, mimicking
the way the brain processes information (Wang et al., 2024b).
This unique spike-based computation offers several advan-
tages, including improved energy efficiency through sparse
activation, robustness to noise, and the ability to process
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spatiotemporal data effectively (Ma et al., 2023; Singh et al.,
2022; Cao et al., 2015). Consequently, SNNs have emerged
as a promising bridge between neuroscience and computa-
tional science, gaining significant research interest in recent
years (Zhang et al., 2023b; Yin et al., 2023).

Despite their potential, SNNs often require a large number
of timesteps to achieve optimal performance (Ding et al.,
2024). For instance, neuromorphic benchmark datasets
such as HAR-DVS, DVS-CIFAR10, and DVS-Gesture typ-
ically need 10 or more timesteps to reach satisfactory ac-
curacy (Wang et al., 2024a; Zhuge et al., 2024; Jiang et al.,
2024). While longer timesteps enable the network to cap-
ture richer temporal information and improve accuracy, they
also introduce significant computational overhead (Zhang
et al., 2023a). The sequential processing of spikes across
T timesteps increases simulation time, slowing down both
training and inference, resulting in a time complexity of
O(T ) (Wang et al., 2023b; Kim et al., 2023b). Moreover,
traditional SNN training using BackPropagation Through
Time (BPTT) struggles to fully utilize the parallel process-
ing capabilities of modern hardware, such as GPUs, ex-
acerbating computational inefficiencies (Stan & Rhodes,
2024; Hu et al., 2024). This limitation becomes especially
pronounced in long-term tasks (Yao et al., 2023).

To address these challenges, we introduce the Fixed-point
Parallel Training (FPT) method, which leverages the parallel
processing capabilities of modern hardware to significantly
accelerate SNN training. By employing a fixed-point iter-
ation framework, FPT decouples sequential dependencies,
enabling simultaneous computation across all T timesteps.
This reduces the time complexity from O(T ) to O(K),
where K is the number of fixed-point iterations and typ-
ically a small constant. Importantly, FPT preserves essential
neural dynamics, including the reset mechanism, ensuring
both accuracy and biological interpretability during training.
We provide a theoretical analysis to prove the convergence
of FPT and demonstrate that existing parallel spiking neuron
models can be interpreted as specific instances of our frame-
work. Experimentally, FPT achieves better performance
while significantly reducing computational time, making it
a scalable and efficient solution for real-world applications.

The main contributions of this paper are as follows:
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• We propose a novel Fixed-point Parallel Training (FPT)
method that reduces the training time complexity of
SNNs from O(T ) to O(K), enabling efficient parallel
processing while preserving all neural dynamics.

• We provide a theoretical analysis proving the conver-
gence of FPT and demonstrate that existing parallel
spiking neuron models can be derived as special cases
of our method.

• Experimental results demonstrate that FPT retains the
dynamic properties of original LIF neurons, and sig-
nificantly reduces computational time, addressing the
bottlenecks of long-term SNN training.

2. Related Work
2.1. Training Acceleration for SNNs

Various approaches have been proposed to reduce the com-
putational complexity in SNNs. One common strategy is
to reduce the number of timesteps. This can be achieved
by dynamically adjusting the number of timesteps based on
input samples using confidence score thresholds (Li et al.,
2023a;b), dividing SNNs into multiple stages with progres-
sively shrinking timesteps (Ding et al., 2024), or introducing
stochastic latency training (Anumasa et al., 2024). Another
approach is online training, where the gradients of backprop-
agation are truncated or approximated along the temporal
axis (Xiao et al., 2022; Meng et al., 2022; Jiang et al., 2024).
A more direct method involves reducing surrogate gradi-
ents from multi-timestep to a single timestep (Suetake et al.,
2023). Additionally, SSF stabilizes input and output ac-
tivations by averaging them over time, reducing gradient
computation along the time dimension (Wang et al., 2023a).
T-RevSNN accelerates training by deactivating the temporal
dynamics of most spiking neurons and introducing multi-
level reversible interactions (Hu et al., 2024).

However, these methods often compromise accuracy (e.g.,
timestep compression, online training), rely on specific net-
work modifications (e.g., T-RevSNN) or assumptions about
stabilized spiking flow (e.g., SSF), and therefore lack gener-
ality, limiting their scalability to diverse tasks.

2.2. Parallel Spiking Neurons

Other approaches focus on developing spiking neuron mod-
els that enable parallel computation. For instance, by lever-
aging the absolute refractory period (ARP) of neurons, the
adaptive LIF model achieves constant sequential complex-
ity over the ARP simulation length (Taylor et al., 2023).
By separating the linear integration component from the
non-linear spiking function, SPSN allows parallel compu-
tation across timesteps (Yarga & Wood, 2023). The PSN
model further enhances parallelizability by eliminating the

reset mechanism, leading to faster simulation speeds (Fang
et al., 2023). Furthermore, PSU and its derivatives, IPSU
and RPSU, facilitate parallel computation by decoupling
integration and firing mechanisms (Li et al., 2024).

Despite their efficiency, these methods often rely on as-
sumptions, such as the presence of a refractory period or the
removal of the reset mechanism, which fail to fully capture
the dynamic behavior of LIF neurons. Moreover, models
like PSN and PSU introduce additional O(T 2) complex-
ity in learning parameters to maintain accuracy, making it
difficult to adapt them for sequential models that handle
variable-length sequences.

2.3. Fixed-point in Neural Networks

Fixed-point is crucial in neural network models, particularly
in implicit layers and recurrent networks, where it occurs
when outputs stabilize after multiple iterations (Bai et al.,
2019; El Ghaoui et al., 2021). Several studies have inte-
grated fixed-point conditions into RNNs to enhance training
efficiency and network stability (Wang & Ragni, 2021; Zhu
& Rosenbaum, 2024; Lim et al., 2024). In SNNs, feed-
back connections cause the average firing rates to evolve
toward an equilibrium state. Implicit differentiation of this
equilibrium equation allows gradient computation without
explicitly tracking the forward process (Xiao et al., 2021;
2023). However, this method requires a sufficient number
of timesteps for the model to reach equilibrium, and the
model’s expressive power is influenced by the depth of the
weight-tied block. Recent work, such as Cao et al. (2025),
introduces MPIS-SNNs, which also can be viewed as a
weight-tied block that leverages fixed-point theory.

Despite these advancements, fixed-point iterative training
methods in SNNs still heavily rely on specific network archi-
tectures. In particular, the possibility of reformulating the
dynamics of LIF neurons into a fixed-point iteration frame-
work—allowing parallel training across timesteps—has not
been explored. As a result, achieving an architecture-
independent fixed-point parallel training method for SNNs
remains an open problem.

3. Motivation
Spiking neurons are the fundamental components of SNNs.
Among these, Leaky Integrate-and-Fire (LIF) neurons are
widely used due to their simplicity in simulating the neu-
ronal behavior. The dynamics of an LIF neuron are de-
scribed by:

ut = λ(ut−1 − Vthst−1) + ct, (1)

where ut is the membrane potential at timestep t, λ < 1
is the decay factor, Vth is the threshold potential, st is the
binary spike output, and ct is the synaptic current. When the
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Figure 1. Comparison of the forward and backward procedures of BPTT and FPT. In BPTT, the neuron processes sequentially over T
timesteps, computing step-by-step through time. In contrast, FPT processes all timesteps simultaneously in K iterations, where K ≪ T .
Circles represent scalars, and rounded rectangles represent vectors.

membrane potential exceeds Vth, the neuron fires a spike:

st = H(ut − Vth), (2)

where H(·) is the Heaviside step function. LIF neurons
process inputs sequentially over discrete timesteps, as shown
in Figure 1(b).

To train SNNs, BPTT is used to backpropagate gradients
through the inverse process of Eq. (1) and (2). The gradients
for T timesteps are computed as:

∂ℓ

∂w
=

T∑
t=1

∂ℓ

∂st

∂st
∂ut

(
∂ut

∂w

+
∑
τ<t

t−1∏
i=τ

(
∂ui+1

∂ui
+

∂ui+1

∂si

∂si
∂ui

)
∂uτ

∂w
),

(3)

where w represents the network weights. However, ∂st
∂ut

is non-differentiable due to the discontinuity of H(·). To
address this, the surrogate gradient method is applied, using
functions like the sigmoid:

Sα(u) =
1

1 + e−αu
, (4)

where α controls the steepness of the approximation. As
α → ∞, Sα(·) approaches H(·), as shown in Figure 1(a).
The gradient of H(·) can be approximated as:

∂s

∂u
≈ ∂Sα(u)

∂u
= αSα(u)(1− Sα(u)), (5)

which smooths the optimization landscape, facilitating effec-
tive weight updates while preserving the spiking behavior
of the neuron.

Consequently, training and inference in SNNs scale linearly
with the number of timesteps T , resulting in a time com-
plexity of O(T ). This sequential nature poses challenges
for real-world applications requiring long temporal depen-
dencies or rapid decision-making.

4. FPT: Fixed-point Parallel Training
In this section, we introduce Fixed-point Parallel Training
(FPT) method, a novel approach aimed at improving the effi-
ciency of SNN training by leveraging fixed-point iterations
and parallel processing.

4.1. Fixed-point Mapping

To accelerate the training process of SNNs, a straightfor-
ward approach is to unroll the states across all timesteps
into vectors or matrices for parallel processing, thereby re-
ducing the time complexity. Specifically, assume the initial
membrane potential u0 = 0, the recursive updates for the
membrane potential over T timesteps can be approximated
as follows:



u1 = c1

u2 = λ (u1 − s1Vth) + c2

u3 = λ (u2 − s2Vth) + c3

...
uT = λ (uT−1 − sT−1Vth) + cT

(6)

Introducing vector and matrix notation, we define:

u =


u1

u2

...
uT

 , s =


s1
s2
...
sT

 , c =


c1
c2
...
cT

 , (7)

where u represents the membrane potentials at different
timesteps, s is the vector of spike outputs, and c denotes the
synaptic currents over time. To capture the influence of past
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inputs, we introduce the decay matrix Λ:

Λ =


λ0 0 · · · 0
λ1 λ0 · · · 0
...

...
. . .

...
λT−1 λT−2 · · · λ0

 . (8)

Here, Λ is a lower triangular matrix, where each element
in the i-th row and j-th column is λi−j for i ≥ j and 0
otherwise. This matrix models the exponential decay of the
past inputs on the current membrane potential, with λ being
the decay factor.

Using these notations, the membrane potential across all
timesteps for parallel iteration of LIF neurons can be com-
pactly represented as:{

u = −Vth(Λ− I)s+Λc,

s = H(u− Vth).
(9)

The corresponding fixed-point mapping is:

Φ(u) = −Vth(Λ− I)H(u− Vth) +Λc (10)

However, this cannot be directly used in optimization algo-
rithms due to the discontinuity introduced by the Heaviside
function H(·).

4.2. Surrogate Fixed-point Learning

To ensure smooth convergence of the fixed-point iterative
equation, we replace the Heaviside function H(·) with a
surrogate function, such as the sigmoid approximation:

Φ(u) ≈ Φ̂α(u) = −Vth(Λ− I)Sα(u− Vth) +Λc (11)

As α → ∞, Φ̂α(·) converges to Φ(·). However, for large
values of α, the function becomes too steep, which may hin-
der training due to sharp transitions. Drawing from the con-
cept of surrogate gradients, we use different approximation
factors α for the forward and backward passes. Specifically,
we use αf for the forward pass and αb for the backward
pass, ensuring αb ≤ αf . This ensures that the forward pass
provides a sufficiently approximation to Φ(·), while main-
taining a stable gradient in the backward pass, facilitating
more efficient learning.

4.3. Parallel Training

4.3.1. FORWARD PASS

During the forward pass, assuming convergence after K
iterations, the membrane potential vector u(K) converges
to an equilibrium point, denoted as u∗, where further iter-
ations produce negligible changes. The iterative forward

Algorithm 1 Forward Pass of FPT
Require: Input current c, threshold potential Vth, decay

factor λ, timesteps T
Ensure: Membrane potentials u∗, spike outputs s∗

1: Initialize u0 = s(0) = 0
2: Compute Λ based on Eq. (8).
3: for k = 1 to K do
4: Compute u(k) using:

u(k) = −Vth(Λ− I)s(k−1) +Λc

5: Compute s(k) using:

s(k) = Sαf
(u(k) − Vth)

6: end for
7: Set equilibrium membrane potential: u∗ = u(k)

8: Compute spike outputs s∗ based on Eq. (14) or (15)

propagation process is described as:
u(1) = Λc,

u(2) = −Vth(Λ− I)s(1) +Λc,

...
u(K) = −Vth(Λ− I)s(K−1) +Λc,

(12)

s(k) = Sαf
(u(k) − Vth), 1 ≤ k ≤ K. (13)

Here, s(k) represents the intermediate spike outputs during
the iterative process. As shown in Figure 1(c), this process
preserves the LIF neuron dynamics, particularly the reset
mechanism, which is absent in models like PSN (Fang et al.,
2023).

Upon convergence, the equilibrium membrane potential u∗
is computed, and the final spike outputs s∗ can be deter-
mined as follows:

s∗ = H(u∗ − Vth). (14)

Alternatively, a probabilistic firing mechanism that samples
once can also be used, as proposed in Ma et al. (2023):

s∗ ∼ Bernoulli(Sαf
(u∗ − Vth)). (15)

The forward propagation process is summarized in Algo-
rithm 1. It is worth noting that this forward algorithm can be
further improved in several ways, such as early termination
of iterations upon convergence or adapting αf dynamically
during the iterative process. Furthermore, αf can also be
learnable. Detailed implementations and discussions are
provided in the Appendix.

4.3.2. BACKWARD PASS

Due to the favorable convergence properties of LIF neu-
rons, we set K = 3 for most experiments, resulting in a
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minimal number of iterations. Unlike traditional deep equi-
librium models (Bai et al., 2019; Cao et al., 2025), which
rely on iterative methods to compute the inverse Jacobian
at equilibrium, our approach directly employs automatic
differentiation with surrogate gradients for backpropagation.
This is feasible due to the small value of K, simplifying the
implementation.

Specifically, the loss gradient with respect to network
weights w is:

∂ℓ

∂w
=

∂ℓ

∂s∗

∂s∗
∂u∗

∂u∗

∂w
=

∂ℓ

∂s∗

∂s∗
∂u∗

∂u(K)

∂w
. (16)

Here, whether the spike outputs s∗ are computed based on
Eq. (14) or (15), their surrogate gradients are:

∂s∗
∂u∗

←
∂Sαb

(u(K)−Vth
)

∂u(K)
(17)

For ∂u(K)

∂w , it can be computed iteratively over K steps as
follows:

∂u(1)

∂w
= Λ

∂c

∂w
,

∂u(2)

∂w
= −Vth(Λ− I)

∂s(1)

∂u(1)

∂u(1)

∂w
+Λ

∂c

∂w
,

...
∂u(K)

∂w
= −Vth(Λ− I)

∂s(K−1)

∂u(K−1)

∂u(K−1)

∂w
+Λ

∂c

∂w
.

(18)
The surrogate gradient method is applied as follows:

∂s(k)

∂u(k)
←

∂Sαb
(u(k) − Vth)

∂u(k)
(19)

The detailed backward propagation process is summarized
in Algorithm 2. The time complexity for both the forward
and backward passes of the FPT algorithm is O(K), com-
pared to the traditional O(T ) (K ≪ T ). This decoupling
from T makes FPT particularly efficient for long-term tasks,
enabling extended temporal processing at reduced computa-
tional costs. Moreover, automatic differentiation eliminates
the need to explicitly construct and invert Jacobian matrices,
simplifying implementation and making the approach more
practical.

5. Theoretical Analysis
In this section, we focus on three key research questions:
whether convergence can be guaranteed and at what rate,
how FPT relates to other parallel spiking neuron models,
and what its computational complexity is.

Algorithm 2 Backward Pass of FPT
Require: Input current c, threshold potential Vth, decay

factor λ, iterations K
Ensure: Compute the gradient ∂s∗

∂w

1: Compute the gradient ∂s∗
∂u∗
← ∂Sαb

(u(K)−Vth
)

∂u(K)

2: Initialize the gradient ∂u(1)

∂w ← Λ ∂c
∂w

3: for k = 2 to K do
4: Compute the gradient for the previous potential:

∂s(k−1)

∂u(k−1)
←

∂Sαb
(u(k−1) − Vth)

∂u(k−1)

5: Update the gradient for the current iteration:

∂u(k)

∂w
← −Vth(Λ− I)

∂s(k−1)

∂u(k−1)

∂u(k−1)

∂w
+Λ

∂c

∂w

6: end for
7: Compute the final gradient for the network weights:

∂s∗
∂w
← ∂s∗

∂u∗

∂u(K)

∂w

5.1. Analysis of Convergence Condition and Speed

Lemma 5.1. Assume the surrogate function Sα(·) is Lip-
schitz continuous with a constant Lα. If the condition
VthLα

λ(1−λT−1)
1−λ < 1, where 0 < λ < 1, is satisfied, then

the mapping Φ̂α(u) = −Vth(Λ− I)Sα(u− Vth) +Λc is
a contraction mapping under the 1-norm. Consequently, the
iterative scheme

u(k) = −Vth(Λ− I)Sα(u(k−1) − Vth) +Λc (20)

converges to a unique fixed point u∗.

To illustrate the convergence of the algorithm, consider the
typical values Vth = 1, λ = 0.25, and the sigmoid function
Sα(·), which is Lipschitz continuous with constant Lα = α

4 .
Substituting these values into the convergence condition:

VthLα
λ(1− λT−1)

1− λ
=

α(1− 0.25T−1)

12
≤ α

12
, (21)

We see that for any α < 12, this expression is always
less than 1, thereby satisfying the convergence condition.
Moreover, the convergence proof considers the worst-case
scenario. In practice, the actual convergence condition is
more relaxed due to the inherent sparsity of neural activity.
Additionally, this convergence condition also reflects the
rate of convergence: smaller α leads to faster convergence.

Furthermore, the matrix Λ − I is strictly lower triangular,
with a spectral radius of zero since all its eigenvalues are
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Table 1. Complexity Comparison of SNN Training Methods

Training Methods Memory Training Time Inference Energy Applicability

OTTT (Xiao et al., 2022) O(L) O(LT ) O(T ) Limited
SLTT-k (Meng et al., 2023) O(L) O(Lk) O(T ) Limited

T-RevSNN turn-off (Hu et al., 2024) O(L) O(L) O(1) Limited
T-RevSNN turn-on (Hu et al., 2024) O(L) O(T ) O(1) Limited

BPTT (Zheng et al., 2021) O(LT ) O(LT ) O(T ) Unlimited
FPT (Ours) O(LT ) + λO(LKT ) O(LK) O(T ) Unlimited

zero. This property ensures rapid convergence, as the iter-
ative process does not amplify errors through eigenvalues,
thereby maintaining stability and guaranteeing efficient con-
vergence. Importantly, Eq. (21) shows that the convergence
rate (or condition) can be decoupled from the timesteps T
by approximating the term 0.25T−1 as 0. This indicates
that the iteration is weakly influenced by T , ensuring rapid
convergence even for longer timesteps.

5.2. Comparison with Parallel Spiking Neuron

By modifying FPT slightly, we can adapt it to learnable
LIF neurons, with the update rule in Eq. (9) incorporating
learnable parameters as follows:{

u = −Vth(A− I)s+Ac

s = H(u−B)
(22)

Here, A ∈ RT×T is the learnable decay matrix, and B ∈
RT is the learnable threshold vector. This model can be
trained using a forward and backward propagation algorithm
similar to those in Eq. (12) and (18).

For a single fixed-point iteration, the update for the mem-
brane potential and spike output can be expressed as:{

u = Ac

s = H(u−B).
(23)

This formulation represents the standard Parallel Spiking
Neuron (PSN) (Fang et al., 2023). Unlike the traditional
LIF model, PSN removes the reset mechanism, which can
affect the algorithm’s accuracy and biological fidelity.

By setting the threshold vector in Eq. (22) to a fixed value
Vth and performing two iterations, the Parallel Spiking Unit
(PSU) model can be derived (Li et al., 2024):{

u = −Vth(A− I)Sα(Ac− Vth) +Ac

s = H(u− Vth),
(24)

which further simplifies to:

s = H(Ac−DSα(Ac− Vth)− Vth) (25)

where D = Vth(A − I). This formulation incorporates
feedback mechanisms where the previous state influences
the current potential. The term Sα(Ac − Vth) represents
an estimate of the spike output, used to adjust the mem-
brane potential. Therefore, PSN and PSU can be viewed as
intermediate forms of FPT for learnable LIF neurons.

However, it is important to note that convergence is not guar-
anteed with just one or two iterations. In these cases, the
fixed-point iteration may fail to reach an equilibrium point,
potentially leading to inaccurate simulations of LIF dynam-
ics and degraded performance. Additionally, PSN and PSU
introduce an extra O(T 2) learnable parameter complexity,
which limits their applicability to long sequences.

5.3. Analysis of Computational Complexity

Table 1 summarizes the theoretical complexity of various
SNN training approaches. Let L denote the number of net-
work layers, k the truncated temporal length in SLTT-k, and
K the number of fixed-point iterations used in FPT. Typ-
ically, K is a small constant (e.g., K = 3) and remains
independent of T , making its contribution negligible for
large T . Thus, space complexity O(LKT ) and time com-
plexity O(LK) can be approximated as O(LT ) and O(L),
respectively. The coefficient λ represents the fraction of
memory introduced by the LIF component, which is the
only part affected by FPT, while all other components of the
network remain unchanged.

Notably, methods like OTTT, SLTT, and T-RevSNN acceler-
ate training by truncating gradients or discarding temporal
dependencies. While effective, such strategies limit their
ability to model fine-grained temporal dynamics. In contrast,
FPT preserves complete neuronal dynamics and enables
efficient training without altering the model architecture,
thereby offering broader applicability across diverse SNN
models.

6. Experiments
This section answers three key questions: First, does the
equilibrium point of FPT converge to the original LIF dy-
namics? Second, can FPT improve training speed without
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(a) Error vs. Number of Iterations (b) Error vs. Approximation Factor (c) Error vs. Timesteps

Figure 2. Convergence and efficiency of the LIF neuron using our proposed FPT method. The absolute error in membrane potential, spike
firing error rate, and speedup factor relative to the original LIF are reported. Solid lines show the mean values across three experiments,
with shaded areas representing the standard deviation.

compromising accuracy? Finally, is it necessary to preserve
the complete neural dynamics of LIF neurons?

6.1. LIF Dynamics Simulation

In this section, we validate whether the equilibrium point
of the forward pass in FPT converges to the original LIF
dynamics. We used a LIF neuron with a decay coefficient
λ = 0.25, a threshold Vth = 1, and input currents drawn
from a Gaussian distribution with a mean of 0 and a variance
of 1. The experiments were conducted on an RTX 3060
laptop GPU and a 12th Gen Intel i7-12700H CPU.

As shown in Figure 2(a), with increasing iterations, the equi-
librium point of FPT quickly converges to the original LIF
dynamics, including both membrane potential and spike
behavior. This demonstrates the high biological fidelity of
FPT, retaining the key characteristics of the LIF neuron. For
K ≥ 3, changes in membrane potential and spike activity
become negligible, indicating equilibrium. Based on this
observation, we chose K = 3 for all subsequent experi-
ments. Figure 2(b) highlights the impact of the sigmoid
approximation parameter α on convergence. With a fixed
number of iterations, increasing α reduces the discrepancy
between the parallel and original LIF dynamics, approach-
ing zero. This aligns with Figure 1(a), showing that larger
α values improve approximation accuracy. Finally, Fig-
ure 2(c) demonstrates the time efficiency of FPT on GPU
and CPU platforms. As T increases, the GPU-based FPT
achieves linear speedup, outperforming traditional methods.
For T = 512 or longer, FPT-based LIF models achieve over
100× speedup on GPUs, underscoring the effectiveness of
FPT for long-term simulations.

6.2. General Classification Performance of FPT

To evaluate the effectiveness of FPT compared to differ-
ent training methods, we tested it on three datasets: the
dynamic DVS-CIFAR10 and DVS-Gesture datasets, and

Figure 3. Comparison of accuracy and speed between FPT and
the BPTT-like algorithm (LocalZO). Time indicates the average
training time per batch on a single RTX 3090 GPU, with both
models using the same architecture and hyperparameters.

the static ImageNet-100 dataset, as shown in Table 2. De-
tailed experimental settings are provided in the Appendix.
On the DVS-CIFAR10 dataset, FPT achieved an improve-
ment of over 3% in accuracy compared to the baselines.
In contrast, methods such as online training and timestep
shrinkage, which rely on gradient truncation or reducing
timesteps, yielded inferior accuracy. On the DVS-Gesture
dataset, our method achieved an accuracy comparable to
LocalZO. For the static ImageNet-100 dataset, FPT out-
performed LocalZO. This improvement in performance is
attributed to the enhanced generalization capability provided
by our surrogate fixed-point learning framework.

Figure 3 compares FPT with LocalZO in terms of both
accuracy and speed across the datasets. Since FPT reduces
time complexity from O(T ) to O(K), with K = 3, and it
also avoids the multiple sampling required by LocalZO. As
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Table 2. Comparison of FPT with previous SOTA training method. The average accuracy and standard deviation across three runs are
reported, with the highest accuracy from the three runs shown in parentheses.

Dataset Model Method Architecture Training Timestep Accuracy (%)

DVS-CIFAR10

OTTT (Xiao et al., 2022) Online training VGG-11 10 76.63
NDOT (Jiang et al., 2024) Online training VGG-11 10 77.40
SLTT (Meng et al., 2023) Timestep Shrinkage VGG-11 10 77.17
SEENN (Li et al., 2023b) Timestep Shrinkage VGG-16 10 82.70
SSNN (Ding et al., 2024) Timestep Shrinkage VGG-9 8 78.57

SLT (Anumasa et al., 2024) Timestep Shrinkage VGG-11 10 81.46
SSF (Wang et al., 2023a) Stabilized Spiking Flow VGG-11 20 78.00

T-RevSNN (Hu et al., 2024) Temporal Reversible ResNet-18 16 79.20
LocalZO (Mukhoty et al., 2023) Zeroth Order VGG-11 10 81.87

FPT (Ours) Parallel Training VGG-11 10 (K = 3) 85.50±0.22 (85.70)

DVS-Gesture

SLTT (Meng et al., 2023) Timestep Shrinkage VGG-11 20 97.92
SSNN (Ding et al., 2024) Timestep Shrinkage VGG-9 8 94.91

T-RevSNN (Hu et al., 2024) Temporal Reversible ResNet-18 16 97.90
LocalZO (Mukhoty et al., 2023) Zeroth Order VGG-11 10 98.43

FPT (Ours) Parallel Training VGG-11 20 (K = 3) 98.38±0.17 (98.61)

ImageNet-100
EfficientLIF-Net (Kim et al., 2023a) Normal BPPT ResNet-19 5 79.44

LocalZO (Mukhoty et al., 2023) Zeroth Order SEW-Resnet34 4 81.56
FPT (Ours) Parallel Training SEW-Resnet34 4 (K = 3) 83.27±0.16 (83.48)

a result, our algorithm achieved more than twice the speed
of LocalZO while maintaining comparable or even superior
performance.

6.3. Efficiency Comparison with BPTT

Table 3. Comparison of FPT and BPTT with different timesteps
T . The p-values from t-tests show that accuracy differences are
not statistically significant. FPT accuracy is reported across three
random trials. Time indicates the average training time per batch
on a single RTX 3090 GPU.

Method Timesteps Firing rate (%) Accuracy (%) Time (ms) P-value

BPTT
8 12.24±0.01 90.95±0.17 6.49 -

32 12.29±0.07 92.15±0.33 21.96 -
128 12.51±0.10 92.66±0.34 74.04 -

FPT
8 12.33±0.09 90.77±0.38 1.55 0.512

32 12.41±0.13 92.25±0.15 2.01 0.668
128 12.61±0.04 92.55±0.30 5.58 0.696

To further evaluate the efficiency of FPT across different
timesteps T , we conducted experiments comparing it with
the traditional BPTT on the Amazon Photos dataset using
DRSGNN, which incorporates a layer of LIF neurons. The
experiments were performed on a single RTX 3090 GPU,
with a batch size of 64. Except for the timesteps, all experi-
mental settings followed those in (Zhao et al., 2024).

As shown in Table 3, both FPT and BPTT demonstrate
improved accuracy as T increases, indicating that longer
timesteps allow the model to capture more temporal dynam-
ics and achieve better performance. However, the t-tests
reveal that the differences in accuracy between FPT and
BPTT are not statistically significant, with p-values consis-

tently greater than 0.05. Furthermore, regardless of whether
BPTT or FPT is used, the firing rate remains around 12%
across different timesteps. Notably, FPT exhibits a signifi-
cant efficiency advantage. For T ≥ 32, FPT is over 10 times
faster than BPTT. This demonstrates FPT’s ability to dra-
matically accelerate training while maintaining performance
comparable to that of BPTT.

6.4. Ablation Study

As introduced in Section 5.2, PSN and IPSU can be viewed
as intermediate results of our FPT with different values of
K. At the same time, they diminish the impact of the reset
mechanism, with PSN removing it entirely. To evaluate the
impact of the number of iterations K and the reset mecha-
nism, we conducted an ablation study comparing various
configurations of FPT, PSN, and IPSU on the sequential
CIFAR10 and CIFAR100 datasets. In these tasks, images
are processed column by column over 32 timesteps, and the
experimental settings follow those in (Fang et al., 2023).

As shown in Table 4, when the decay matrix A is fixed and
non-learnable, PSN0 exhibits approximately 2% lower ac-
curacy compared to LIF across both datasets, which aligns
with previous results reported for PSN (Fang et al., 2023).
The key distinction here is that PSN removes the reset mech-
anism, which is an essential feature in the traditional LIF
model. Akin to the forget gate in LSTM networks, it reg-
ulates the retention of historical information by discarding
past states after each spike.

In contrast, when the decay matrix A and the firing thresh-
old B are learnable, FPT consistently outperforms both PSN
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Table 4. Comparison on the sequential CIFAR datasets. The sub-
script 0 and symbol × indicate that the matrix A is set to Λ and
is non-learnable. √∖ denotes that only the lower triangular part of
the matrix A is learnable to avoid using future information. The
table reports the accuracy of FPT across three random trials. Other
results are taken from (Fang et al., 2023) and (Li et al., 2024).

Dataset Method Learnable Accuracy (%)

Sequential CIFAR10

LIF × 81.50
PSN0 × 79.80
FPT × 81.54±0.34
IPSU √∖ 87.28

Masked PSN √∖ 85.81
FPT w/ Masked A

√∖ 87.48±0.14
PSN ✓ 88.45

FPT w/ A ✓ 89.53±0.13

Sequential CIFAR100

LIF × 55.45
PSN0 × 53.12
FPT × 55.19±0.37
IPSU √∖ 59.76

Masked PSN √∖ 60.69
FPT w/ Masked A

√∖ 62.24 ±0.52
PSN ✓ 62.21

FPT w/ A ✓ 64.50±0.34

and IPSU, achieving optimal results across both datasets.
This suggests that FPT with K = 3 iterations outperform
the PSN and IPSU models, which can be considered as
having K = 1 or K = 2. Additionally, for FPT without
learnable parameters, the accuracies on both datasets are
nearly identical to those of the original LIF, indicating that
K = 3 is sufficient to ensure convergence. These find-
ings highlight the advantages of our approach, underscoring
the importance of both the reset mechanism and sufficient
iterations for maintaining model accuracy.

7. Conclusion
In this paper, we introduce the Fixed-point Parallel Training
(FPT) method, which significantly improves the efficiency
of training SNNs. By leveraging parallel fixed-point itera-
tions of LIF neurons, FPT reduces the time complexity from
O(T ) to O(K), where K is a small constant, leading to sub-
stantial speedup. We demonstrate that FPT preserves the bi-
ological dynamics of LIF neurons and effectively converges
to them in practical applications. This equivalence allows
for seamless conversion between sequential and parallel
training modes, making FPT ideal for parallel training and
subsequent deployment on neuromorphic devices, where
inputs can be processed sequentially. Furthermore, FPT out-
performs BPTT in computational efficiency, achieving up
to 100× speedup on GPUs for long-term tasks. Importantly,
FPT requires no modifications to the network architecture,
ensuring its broad applicability to a wide range of SNN
models. This makes FPT a highly scalable and adaptable
solution for efficient SNN training, especially in applica-

tions where performance, speed, and biological fidelity are
critical.
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A. Convergence Proof for FPT
Lemma A.1. Assume the substitution function Sα(·) is Lipschitz continuous with a constant Lα. If the condition
VthLα

λ(1−λT−1)
1−λ < 1, where 0 < λ < 1, is satisfied, then the mapping Φ̂α(u) = −Vth(Λ − I)Sα(u − Vth) + Λc

is a contraction mapping under the 1-norm. Consequently, the iterative scheme

u(k) = −Vth(Λ− I)Sα(u(k−1) − Vth) +Λc (26)

converges to a unique fixed point u∗.

Proof. Let u1,u2 ∈ RT . Considering the 1-norm, we have:

∥Φ̂α(u1)− Φ̂α(u2)∥1
= ∥ − Vth(Λ− I)Sα(u1 − Vth) +Λc− (−Vth(Λ− I)Sα(u2 − Vth) +Λc)∥1
= ∥ − Vth(Λ− I)(Sα(u1 − Vth)− Sα(u2 − Vth))∥1.

Since Sα(u) is Lipschitz continuous with a constant LH , we have:

∥Sα(u1 − Vth)− Sα(u2 − Vth)∥1 ≤ Lα∥u1 − u2∥1. (27)

Using Hölder’s inequality (Cheung, 2001), we get:

∥Φ̂α(u1)− Φ̂α(u2)∥1 ≤ Vth∥(Λ− I)∥∞ · Lα∥u1 − u2∥1 = L∥u1 − u2∥1, (28)

where L = VthLα∥(Λ− I)∥∞.

We use the maximum row sum norm (infinity norm) for Λ− I:

∥Λ− I∥∞ =

T−1∑
i=1

λi =
λ(1− λT−1)

1− λ
. (29)

According to the Banach fixed-point theorem, if the condition L = VthLH
λ(1−λT−1)

1−λ < 1 is satisfied, then Φ̂α(u) is a
contraction mapping (Shukla et al., 2016). Consequently, the iterative scheme

u(k) = −Vth(Λ− I)Sα(u(k−1) − Vth) +Λc (30)

converges to a unique fixed point u∗.

B. FPT Variants
In some cases, the LIF neuron does not require K iterations according to Eq. (30) to converge. Therefore, we introduce an
early stopping criterion based on the change in membrane potential, which can accelerate the training process, as shown in
Algorithm 3. Specifically, if the change in membrane potential between iterations falls below a certain threshold ϵ, the
iteration can be terminated early.

Additionally, based on the convergence theorem of FPT, we observe that smaller values of αf lead to faster convergence,
but with lower approximation accuracy. Conversely, larger values of αf provide more accurate approximations at the cost
of slower convergence. A natural strategy is to start the iteration with a smaller αf for a good initial approximation, and
then gradually increase αf for more accurate approximations, as shown in Algorithm 4, where {αf1 ≤ αf2 ≤ · · · ≤ αfK}.
Alternatively, αf could also be treated as a learnable parameter during training to dynamically adjust the balance between
convergence speed and approximation accuracy.
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Algorithm 3 Forward Pass of FPT with Early Stop for u
Require: Input current c, threshold potential Vth, decay factor λ, timesteps T , tolerance ϵ
Ensure: Membrane potentials u∗, spike outputs s∗

1: Initialize u0 = s(0) = 0
2: Compute Λ based on Eq. (8).
3: Set k = 1
4: while k ≤ K do
5: Compute u(k) using:

u(k) = −Vth(Λ− I)s(k−1) +Λc

6: Compute s(k) using:
s(k) = Sαf

(u(k) − Vth)

7: if ∥u(k) − u(k−1)∥2 < ϵ then
8: Break (early stop)
9: end if

10: Increment k ← k + 1
11: end while
12: Set equilibrium membrane potential: u∗ = u(k)

13: Compute spike outputs s∗ based on Eq. (14) or (15)

Algorithm 4 Forward Pass of FPT with Adaptive αf

Require: Input current c, threshold potential Vth, decay factor λ, timesteps T , list of αf values {αf1, αf2, . . . , αfK}
Ensure: Membrane potentials u∗, spike outputs s∗

1: Initialize u0 = s(0) = 0
2: Compute Λ based on Eq. (8).
3: Set k = 1
4: while k ≤ K do
5: Set αf = αfk (select αf from the predefined list)
6: Compute u(k) using:

u(k) = −Vth(Λ− I)s(k−1) +Λc

7: Compute s(k) using:
s(k) = Sαf

(u(k) − Vth)

8: Increment k ← k + 1
9: end while

10: Set equilibrium membrane potential: u∗ = u(k)

11: Compute spike outputs s∗ based on Eq. (14) or (15)

C. Experimental Setup
For the FPT experiment on the Amazon Photos dataset using DRSGNN, we set K = 3 and used Eq. (14) as the firing
function.

Table 5 provides the hyperparameter settings corresponding to Table 1 in the main text. The parameter αf represents the
incrementally increasing parameter used during each iteration. According to Lemma 5.1, when αf is relatively small, it
facilitates convergence during the first iteration. As the number of iterations increases, αf gradually approaches the step
function used by the LIF neuron. In the backward pass, αb = αf/3, which is one-third of the forward pass value, helps to
obtain a smoother gradient and avoid vanishing gradients.

As described in the PSN paper, the CIFAR dataset’s images are processed by the SNN one column at a time, similar to how
humans read from left to right. The corresponding hyperparameters are listed in Table 6.
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Table 5. Training parameters for FPT on various datasets. Optimizer: Adam with betas: (0.9, 0.999), Rate Scheduler: cosine annealing.

DVS-CIFAR-10 DVS-Gesture ImageNet-100

Number epochs 300 200 300
Mini batch size 32 32 64

T 10 20 4
λ 0.5 0.5 0.5
u0 0 0 0
Vth 1 1 1
αf 3, 12, 12 3, 12, 12 2, 6, 12
αb αf/3 αf/3 αf/3
K 3 3 3
λTET 0.05 0.05 1

Learning Rate 0.1 0.1 0.005
Optimizer SGD SGD SGD

Firing Mechanism Probabilistic firing Probabilistic firing Probabilistic firing

Table 6. Training parameters for FPT on Sequential CIFAR datasets.

Sequential CIFAR10 Sequential CIFAR100

Number epochs 256 256
Mini batch size 128 128

T 32 32
λ 0.5 0.5
u0 0 0
uth 1 1
αf 1, 3, 12 1, 3, 12
αb αf/3 αf/3
K 3 3

Learning Rate 0.1 0.1
Optimizer SGD SGD

Firing Mechanism Probabilistic firing Probabilistic firing

Table 7. Comparison between BPTT and FPT at Different Simulation Timesteps T

Method T Training Time (s) Inference Time (s) Memory (MB) Accuracy (%)

BPTT
8 0.0195 0.0042 600 97.75± 0.16

64 0.0835 0.0257 956 97.67± 0.17
512 1.701 0.2092 3238 97.84± 0.12

FPT
8 0.0096 0.0021 622 97.73± 0.23

64 0.0109 0.0021 1162 97.71± 0.11
512 0.0803 0.0021 4264 97.70± 0.22

D. Training and Inference Complexity Comparison
Our experiments focus on comparing the complexity of BPTT and FPT at different timesteps T , as shown in Table 7. We
conducted experiments on the MNIST dataset using a 3-layer MLP (784×256×128×10), with a batch size of 256, a learning
rate of 0.001, and 80 epochs.

Here, “Time” refers to the average running time per batch during training or inference on a single A100 GPU. As shown,
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both training and inference times for BPTT increase approximately linearly with T . In contrast, FPT’s training time increases
only slightly, while its inference time remains nearly constant. At T = 256, FPT achieves a 21× speedup over BPTT during
training.

FPT introduces only a slight increase in memory usage due to the LIF activation function during training, without impacting
other network components. For larger networks such as MS-ResNet-18, the relative increase in memory consumption is
even smaller.

E. Network Dynamics Across Long Timesteps

Table 8. Cosine Similarity (%) between Original and FPT Outputs under Different α and Simulation Timesteps T

α T = 8 T = 64 T = 512

5 99.89 99.55 99.53
7 99.90 99.49 99.47

We replaced the LIF neurons in a pre-trained 3-layer LIF-based MLP (784×256×128×10) trained on the MNIST dataset
with parallel LIF neurons based on FPT. Table 8 shows the cosine similarity (%) between the original and FPT-replaced
outputs for T=8, 64, and 512.

As T increases, the outputs of the FPT-based parallel LIF and the original LIF neurons show slight divergence due to error
accumulation, reducing the similarity of the final network outputs. However, even at T = 512, the similarity remains above
99.5%, demonstrating that FPT preserves a high degree of consistency in network dynamics. Furthermore, this minor
discrepancy can be effectively mitigated through light fine-tuning.

F. Learnable Decay Matrix Evaluation

Figure 4. Learned decay matrices for different parallel spiking neurons.

Figure 4 illustrates the final learned decay matrices of different parallel spiking neurons on the Sequential CIFAR10 dataset.
Although PSN achieved an accuracy of 88.45% on this dataset, it failed to learn an exponential decay time-dynamic pattern
similar to Λ, overly relying on future time information. Both IPSU and “FPT w/ Masked A” applied a lower triangular
mask during training to ensure that future information was not utilized. These models focused more on the present and
immediate past, neglecting older information. Notably, “FPT w/ Masked A” learned a more distinct exponential decay
pattern. For “FPT w/ A”, no constraints were imposed during training, resulting in a stronger focus on information from
adjacent timesteps. The comparison of PSN with “FPT w/ A” suggests that the reset mechanism favors learning reasonable

15



Efficient Parallel Training Methods for Spiking Neural Networks with Constant Time Complexity

temporal patterns rather than maintaining reliance on distant temporal information.

G. Ablation Study of K

Table 9. Effect of Different Iteration Counts K on the DVS-Gesture Dataset.

K = 3 K = 4 K = 5

DVS-Gesture 98.61 98.61 98.61

To evaluate whether increasing the number of iterations K improves performance, we conducted experiments with different
iteration counts under the same settings, including random seeds. The accuracy results on the DVS-Gesture dataset are
shown in Table 9. As seen, increasing the iteration count does not affect accuracy. This is because, for K ≥ 2, with α = 12,
the membrane potential u(K) converges by the time K = 3, and no significant changes occur with additional iterations.
Therefore, the accuracy remains unchanged.

H. Discussion and Limitation
Motivation: Our primary goal was to develop a parallel training approach that is independent of the model architecture,
ensuring that the neuronal dynamics remain unchanged throughout the training process.

Backward Process: The forward process in FPT is identical to the original LIF model, ensuring that the key dynamics are
retained. However, the backward process does not directly correspond to traditional BPTT.

Reset Mechanism: The reset mechanism is essential for certain tasks, especially those that require the network to focus on
the current input rather than be influenced by previous states. For example, in tasks where the input remains constant over
time, the reset mechanism might not be necessary. However, for tasks involving long-term dependencies or highly variable
inputs, retaining the reset mechanism becomes crucial. It allows the network to discard irrelevant past information and focus
on new, incoming data.

Flexibility and Compatibility: A key advantage of our algorithm is its flexibility. It imposes no restrictions on specific
network architectures and can be applied broadly across various SNN models. Importantly, since FPT preserves the original
neuron dynamics, models trained using FPT remain fully compatible with standard sequential SNN inference, allowing
seamless deployment on existing neuromorphic hardware without modification. This compatibility, combined with its
efficiency, makes FPT a practical and powerful approach for pretraining SNN models, bridging the gap between scalable
training and real-world application.

Limitations: One limitation of FPT, compared to traditional SNN models, is its inability to handle scenarios where there
is no time-dependent decay, as seen in Integrate-and-Fire models. However, more neuron models typically incorporate a
decay factor or gating mechanism, which ensures that the influence of past inputs diminishes over time. This allows the
model to focus on more recent data and prevents the accumulation of errors from earlier timesteps. Another limitation
of FPT lies in the memory usage associated with parallel processing. Since FPT processes all timesteps simultaneously,
it generally requires more memory than sequential training methods, as shown in Table 7. Future work could focus on
optimizing memory efficiency. For instance, leveraging the binary nature of spike events could lead to more efficient memory
compression techniques, enabling faster and more memory-efficient processing without sacrificing model performance.
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