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ABSTRACT

As large language models (LLMs) are increasingly deployed worldwide, ensur-
ing their fair and comprehensive cultural understanding is important. However,
LLMs exhibit cultural bias and limited awareness of underrepresented cultures,
while the mechanisms underlying their cultural understanding remain underex-
plored. To fill this gap, we conduct a neuron-level analysis to identify neurons
that drive cultural behavior, introducing a gradient-based scoring method with ad-
ditional filtering for precise refinement. We identify both culture-general neurons
contributing to cultural understanding regardless of cultures, and culture-specific
neurons tied to an individual culture. These neurons account for less than 1% of
all neurons and are concentrated in shallow to middle MLP layers. We validate
their role by showing that suppressing them substantially degrades performance
on cultural benchmarks (by up to 30%), while performance on general natural lan-
guage understanding (NLU) benchmarks remains largely unaffected. Moreover,
we show that culture-specific neurons support knowledge of not only the target
culture, but also related cultures. Finally, we demonstrate that training on NLU
benchmarks can diminish models’ cultural understanding when we update mod-
ules containing many culture-general neurons. These findings provide insights
into the internal mechanisms of LLMs and offer practical guidance for model
training and engineering.

1 INTRODUCTION

LLMs are rapidly spreading throughout the world with their ability to solve various tasks. Our world
is culturally diverse, and our knowledge, commonsense, and values are not always universal. LLMs
must possess cultural understanding to be deployed fairly and prevent cultural inequity. However,
several studies have pointed out that LLMs, which are mainly trained on English-dominant corpora,
often exhibit culture-related biases, generating outputs skewed toward certain highly represented
cultures (Naous et al., 2024; [Myung et al.| 2024} Sukiennik et al., [2025). In order to evaluate the
cultural understanding of LLMs, a number of benchmarks have been constructed (Myung et al.,
2024; Chiu et al.,|2025}; Rao et al.,|2025; |Zhao et al., [2024), inter alia). Additionally, some methods
have been proposed to enhance cultural awareness of LLMs (Li et al., [2024ajb; Liu et al., [2025)).
Nonetheless, the mechanisms behind the cultural understanding of LLMs have not been well in-
vestigated. In order to improve the cultural understanding of LLMs efficiently and robustly, it is
desirable to elucidate the inner workings by which LLMs perform culture-related inference.

Previous studies have applied neuron-level analysis to investigate various properties of LLMs, such
as social bias (Yang et al., 2024) and personality (Deng et al., [2025). Regarding cultural mecha-
nisms, |Y1ing et al.| (2025)) analyzed neurons activated most strongly when the prompt language aligns
with the cultural content. In addition, Namazifard & Galke| (2025)) proposed a method to disentan-
gle culture neurons from language neurons. These studies primarily examine culture in relation to
language, rather than the mechanisms by which LLMs shape their behavior based on cultural infor-
mation. Moreover, they rely on activation-based methods, which can be imprecise because cultural
representations are not necessarily encoded in every token of culturally relevant texts.

In this paper, we explore three research questions: (i) the existence and distribution of culture-
general neurons that contribute to cultural understanding across cultures, (ii) the differences of
culture-specific neurons across cultures and the correlation between these neurons and cultural re-
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Figure 1: An overview of CULNIG when identifying culture-general neurons. We first select the top
t% of the neurons ranked by gradient-based attribution scores on BLEnD ey, — BLEND i1 (Speur —
Sctr1) to find neurons contributing to cultural mechanisms. By subtracting s.q1, we exclude neurons
facilitating task understanding. We then remove the top % of the neurons on CRC,; to filter out
superficial neurons activated by country names.

lations, and (iii) the potential engineering applications of our neuron analysis. We interpret cultural
understanding along two dimensions: (a) knowledge specific to particular cultures and (b) the ability
to capture differences in values across cultural backgrounds. To address these questions, we intro-
duce CULture Neuron Identification Pipeline with Gradient-based Scoring (CULNIG, [Figure T)), a
method to accurately identify neurons that contribute to the cultural understanding of LLMs. CUL-
NIG employs gradient-based attribution scores to rank neurons and a control dataset to exclude
neurons associated with task understanding. We also construct the CountryRC (Country Reading
Comprehension, CRC) dataset to filter out superficial neurons.

We comprehensively evaluate identified neurons using both cultural benchmarks and general natural
language understanding (NLU) benchmarks that do not necessarily require cultural understanding.
As a result, masking culture-general neurons significantly degrades the cultural understanding of
LLMs while having only minor impacts on the performance in NLU benchmarks. Importantly,
although CULNIG leverages problems from only a subset of cultural knowledge categories, the
identified neurons generalize to broader cultural mechanisms, encompassing different knowledge
domains, cultural values, and multilingual settings. Culture-general neurons account for fewer than
1% of all neurons and are concentrated in MLP modules of shallow to middle layers. We further
show that masking culture-specific neurons leads to LLMs losing cultural knowledge of the target
and related cultures. Moreover, we demonstrate that when we fine-tune a model with NLU datasets,
updating modules containing many culture-general neurons can cause greater degradation of cultural
understanding after training. These findings illustrate how insights into the inner workings of LLMs
can inform practical engineering decisions.

2 RELATED WORK

2.1 EVALUATING CULTURAL UNDERSTANDING OF LLMS

Several cultural benchmarks have been developed to measure the cultural understanding of LLMs.
BLEnD (Myung et all 2024) covers everyday knowledge across 16 cultures in six categories,
with multilingual short answer questions and English multiple-choice questions (MCQs). Cultur-
alBench (Chiu et al.} |2025) is an MCQ benchmark of cultural knowledge spanning 45 countries.
NormAd (Rao et al., [2025) evaluates cultural etiquette through daily-life scenarios, asking whether
the behaviors are acceptable in the target country. WorldValuesBench (Zhao et al.| [2024), derived
from World Values Survey (WVS) Wave 7 (Haerpfer et al., 2020), assesses understanding of cultural
values by a prediction task of survey responses based on demographic attributes.

Prior studies have pointed out that LLMs often exhibit cultural biases toward highly represented
cultures in training corpora (Naous et al., [2024; Myung et al., 2024} |Sukiennik et al., |2025). [Ying
et al.| (2025) demonstrates Cultural-Linguistic Synergy, a phenomenon where the performance of
LLMs on cultural benchmarks improves when the prompt language agrees with the cultural content.
In contrast, Myung et al.[| (2024) reports that Cultural-Linguistic Synergy does not always appear
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for low-resource languages, where limited language proficiency may act as a bottleneck. Building
on these studies, we analyze the cultural understanding and behavior of LLMs at the neuron level,
utilizing existing cultural benchmarks.

2.2 NEURON-BASED INTERPRETABILITY ANALYSIS

Mechanistic interpretability attempts to uncover the internal mechanisms of black-box LLMs, with
many studies focusing on neurons as the unit of analysis. [Dai et al.[(2022) proposed a gradient-based
attribution method to identify neurons that express a certain knowledge. They show that only a few
knowledge neurons in deep layers support factual recall in BERT (Devlin et al.,2019). Using similar
gradient-based attribution, |Chen et al.|(2025) located query-relevant neurons that facilitate question
answering, and |Yang et al.|(2024) found bias neurons and mitigated bias by pruning them.

Moreover, many methods have been proposed to identify neurons based on their activation probabil-
ity. Tang et al.|(2024)) and |[Kojima et al.|(2024) identified language-specific neurons that are activated
when LLMs are prompted in a specific language, with the former introducing LAPE (Language Ac-
tivation Probability Entropy). Regarding cultural understanding, |Ying et al.|(2025) analyzed neurons
underlying Culture-Linguistic Synergy. Namazifard & Galke|(2025) proposed CAPE (Culture Ac-
tivation Probability Entropy) to isolate culture neurons from language-specific neurons of LAPE,
using a dataset of culturally diverse texts and entropy measures.

However, these methods often lack comprehensive evaluation across multiple cultural understanding
benchmarks. Moreover, although both positive and negative activations encode useful information,
activation-based approaches consider only positive activations, while clipping negative activations
to zero activation probability. Thus, activation-based methods are typically limited to modules with
nonlinear activation functions where negative values are clipped to zero. Also, since cultural content
is not necessarily expressed in every token, unlike languages, activation probabilities may not be
suitable for identifying culture neurons. Therefore, we adopt a gradient-based attribution approach
and validate identified neurons across multiple benchmarks spanning different cultural attributes.

3 METHODS

In this section, we introduce CULNIG to identify culture-general and culture-specific neurons that
directly support cultural understanding. Removing these neurons is expected to substantially al-
ter model behavior on cultural benchmarks, unlike neurons that merely respond to culture-related
tokens.

3.1 NEURONS IN LLMs

Each layer of a neural network can be represented as a hidden vector whose dimensions correspond

to neurons. For the concept of neurons in an LLM, we follow [Yu & Ananiadoul d2024l). Let h;l)
denote the hidden vector of the i-th token at the /-th layer. In transformer-based LLMs (Vaswani

et all 2017), the I-th layer transforms its input as h’ = h- 4 a‘ 4+ f‘, where a‘ and f.(l)
denote the outputs of the attention and MLP modules, respectively.

In (multi-head) attention layers, query, key, and value vectors are first computed as qgl) :Wq(l) hEl_l),
ki”:Wk(,l)hl(.l_l), and vi(l)zwv(l)hgl_l), where Wq(l), Wk(l), W e RPH*A denote query, key,
and value matrices. D is the head dimension and H is the number of heads. Then, each vector is
split into H heads, and the outputs for each head h are calculated as follows:

' 1 )
Al _ softmax(\/;(qi“h) g kM) (1)
0 = 3ol ®
j=1
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Head outputs are gathered with the output matrices Wo(l’h) € R¥*P o obtain the final output as:

H
al’) =y WMol 3)
h=1

In MLP layers, recent LLMs commonly employ gated linear unit (Shazeer, 2020), expressed as:
l l l -1 l -1 l
£ = Wi (c(WR! ™ +a) o WP RV +a")) o)

Wi, Wiy € R4 W)

down € RN are projection matrices, ¢ is the activation function, and N
is the intermediate size.

Geva et al.[(2021) show that MLP modules can be interpreted as key-value memories. The output

fi(l) is expressed as a weighted sum of the column vectors of Wd((f\)m (subvalues), and the weights

are computed as the inner products of the inputs and the row vectors of W;jl)e and Wu(é) (subkeys).

The k-th neuron in the [-th layer gate projection is given by néﬁ;t’;) = (Wgt)e(h(l’l) + aW))y,

which functions as a weight for the corresponding subvalue. By analyzing the contribution of these
intermediate neurons, MLP outputs can be decomposed into a sum of subvalues. For MLPs, we
focus on neurons in the gate projection, since the gate and up projections share the same subvalue,
and gate neurons play a role as a gate to determine whether they pass the weights. Similarly, the
output of an attention module can be decomposed into a weighted sum of the column vectors of

O(l’h), and the weights are determined by query, key, and value vectors. Thus, we search for
neurons from the query, key, and value modules.

3.2 NEURON ATTRIBUTION SCORES

In order to quantify the importance of each neuron on a given instance, we adopt the method based
on |Yang et al[(2024). Let P(y|x) denote the probability of the output sequence y assigned by the
model when given an input sequence x. The attribution score of the neuron n(“*:%) at the i-th token
position is calculated using the following formula:

OP(y])

(l,k,3) — p(Lk0)
sEED () =m0 xS 5)
We then take the maximum score across token positions:
s (2, ) = maxsWH (2, y) (6)

Note that can be viewed as a first-order approximation of the causal effect of neuron

nF9) Let P(y|z, n*% = u) denote the output probability when the activation value of n(“:*%) is

u, and @ denote the actual activation. The causal effect of n(“*%) on probability is P(y|z, n(lF =

@) — P(y|z,n%) = 0). Here, we expand P(y|x, n“*%) = ) around @ using the Taylor expansion

as follows:

OP(ylz,nbFD) = @)
ou

P(yle,n®*) = u) ~ P(ylz,n"") = a) + x (u—a) (7)

When we set u = 0, we obtain the following formula:
P (yle,n+9 = a)
ou
To calculate the causal effects of all neurons, we have to run the inference by masking each neu-

ron one-at-a-time, which requires an enormous computational cost because LLMs typically contain
millions of neurons (Table 12). In contrast, we can efficiently calculate s("*?) (z,y) in a single run.

sERD (2 ) =@ x ~ P(yle,n®F) = @) — P(ylez,n®*D =0)  (8)

We aggregate the score on a dataset D with () instances as the weighted sum over the exact proba-
bility:

Q
stH(D) = ZP@q‘xq) x S(l’k)(mquq) ©)
q=1
This is because when the model predicts the correct answer with higher confidence, it should contain
more reliable information.
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3.3 NEURON SELECTION

To identify culture-general and culture-specific neurons, we use the MCQs from BLEnD, which
provide sufficient instances and reduce the risk of overfitting to individual examples. BLEnD covers
16 countries and six categories, ensuring diversity in cultural topics. To test whether identified
neurons generalize across different domains of cultural knowledge, we split BLEnD by category:
three categories (food, work-life, sport) for neuron identification (BLEnDy,,,) and the remaining
three (education, family, holidays/celebrations/leisure) for evaluation (BLEnD\y). BLEnD provides
500 questions, and each question has multiple instances derived from different answer choices. We
sample up to five instances per question to balance the number of instances of each question, yielding
12,701 instances in BLEnD,¢,r and 10,331 in BLEnD .

Moreover, we prepare BLEnDy; to isolate neurons that contribute purely to cultural inference. In
BLEnD,, the question content is removed, leaving only the answer choices and the instruction for
the answer format (Table 4). Neuron scores are calculated as s("*) (BLEND eyr) — 5**) (BLEND¢y1),
so that we can exclude neurons related to other properties, such as task understanding.

Table 1: An example of the CountryRC (CRC) dataset.

Passage | Question

Matthew applied for internships in both {country_A} and
{country_B}, but only the company in {country_A} responded. He
accepted and worked there over the summer.

Which country did Matthew go
to for his internship? A. ...

Since BLEnD evaluates culturally dependent knowledge, all the problems explicitly include country
names. Thus, the top-scoring neurons on BLEnD,,, may contain superficial neurons that simply
respond to tokens of country names rather than cultural content. To filter out such superficial neu-
rons, we construct another control dataset called CountryRC (CRC), in which the correct answer is
always a country name that appears in the context . We utilize ChatGP to create CRC.
Answering CRC requires models to recognize and propagate information about the country name,
but it does not involve cultural understanding. CRC contains 50 problems per country, with half
used for neuron identification (CRCe,;), and the remainder for evaluation (CRCeg).

For culture-general neurons, we first select the top t% of neurons ranked by s(l’k)(BLEnDneur) —
s(bk) (BLEnD,y;), and then exclude the top 7% ranked by s(Lk) (CRCeur)- This procedure defines
CULNIG-general. For culture-specific neurons of a country ¢, we first apply the same process
to select neurons using only the instances of ¢ in the datasets, with an additional filtering step.
Specifically, the score for ¢ is calculated as s(+%©) = s(%)(BLEnD') ) — s(t%)(BLEnD'®)). We

neur ctrl
L (LK) _
compute the z-score of each neuron over the 16 countries in BLEnD as z(¢) = =——F, where i
and o are the mean and standard deviation of s(**:°) across countries. Neurons with z(¢) < 0.5 are
removed, as they are likely to contribute to multiple cultures. This threshold of z-score is determined
through a preliminary experiment. The whole pipeline defines CULNIG-specific.

4 EXPERIMENT AND ANALYSIS

In this section, we first describe our experimental settings in Section 4.1} We then compare the roles
of each module and decide the thresholds in Section Based on its result, we identify culture-
general neurons in Section[d.3|and culture-specific neurons in Section4.4] Next, we perform further
analysis about what these neurons encode and compute in Section 45| Finally, we show a potential
application of our findings from an engineering perspective in Section

4.1 MODELS AND DATASETS

In our experiments, we use gemma-3-12b-it, gemma-3-27b-it (Gemma Team, 2025), Qwen-3-
14B (Qwen Team, 2025)), Llama-3-8B-Instruct (Grattafiori et al., [2024), phi-4 (Abdin et al.| [2024),

'https://chatgpt.com/overview
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Figure 2: Accuracy of gemma-3-12b-it on each benchmark as more top-scoring neurons on BLEnD
(threshold t) are masked, with neurons selected from MLP and attention modules, respectively.

and Falcon3-10B-Instruct (T1I Teaml 2024). We select various state-of-the-art open-source models
to demonstrate the robustness and generalizability of our findings (see for details).

As explained in Section @ we use BLEnD,¢,;, BLEnD.;, and CRC,,; for neuron identification.
For evaluation, we employ BLEnDy and CulturalBench (CultB) to measure cultural knowledge,
NormAd as a task involving both cultural knowledge and values, and WorldValuesBench (WVB) to
assess understanding of cultural values. We also use short answer questions (SAQs) of BLEnD ¢
to evaluate LLMs in a different task and multilingual settings. In addition, we utilize four NLU
benchmarks: CRCey, CommonsenseQA (ComQA) (Talmor et al.|[2019), QNLI, and MRPC (Wang
et al.,[2019)), as comparison tasks that do not necessarily require cultural understanding.

Regarding evaluation metrics, we use accuracy (%) for all benchmarks except WVB. For WVB, we
frame the task as a prediction of a questionnaire response given the country. The questionnaire uses
a Likert scale, and we adopt the score. metric based on |Xu et al.| (2025)):

N ) |

(n) _ (n
score, = i Z (1 _ u

1 10
N max distance) x 100 (10

n=1

agn) is the majority answer among participants from country c, p§"> is the model prediction, and max

distance is the maximum possible distance between the options and aén). A higher score, indicates
greater alignment.

Considering the sensitivity of LLMs to task instructions (Zhan et al.,2024), we prepare four prompt
formats for each benchmark using ChatGPT (for BLEnD, the task instruction is included in the ques-
tions, so we prompt them without additional instructions). Further details are given in[Appendix A}

4.2 ROLES OF MODULES: ATTENTION VS MLP

First, we conduct a preliminary experiment to analyze the roles of each module and decide the
threshold in CULNIG-general. We separately select neurons from MLP and attention modules
of gemma-3-12b-it, varying the threshold ¢ for the top-ranked neurons. We fix the threshold for
CRCpeyr to 7 = 1%. shows the evaluation results when masking the identified neurons.

We find that masking MLP neurons causes substantial degradation on cultural benchmarks, while
accuracies on QNLI and MRPC remain unaffected. For ComQA, the accuracy shows a moderate
drop, likely because ComQA contains culture-related questions (e.g., What island country
is ferret popular? — great britain). Beyond ¢ = 1%, declines on BLEnDi and
CultB become gradual and parallel those on QNLI and ComQA, indicating that additional neu-
rons contribute less specifically to cultural understanding. For attention neurons, the overall impact
is smaller, but the scores on cultural benchmarks and QNLI decline to some extent. Although
QNLI is solvable only with in-context information, it contains cultural sentences (e.g., What is
the first major city in the stream of the Rhine?). Cultural knowledge can
help solve QNLI, so the reduction may come from lost cultural understanding. Therefore, attention
modules can still contain culture neurons. Beyond ¢ = 0.2%, the slopes on cultural benchmarks are
similar to those on QNLI and ComQA.
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Table 2: Evaluation results of masking culture-general (cult) and random (rand) neurons. Random
scores are averaged over ten seeds of neuron selection. Values in parentheses denote standard devi-
ations. Bold values indicate statistically significant score reductions relative to the random scores.

Model | #Neuron | BLEnDyx  CultB NormAd WVB | ComQA QNLI MRPC
Chance rate ‘ - ‘ 25.00 25.00 33.33 49.85 ‘ 20.00 50.00 50.00
emma-3 orig 0 64.22 78.08 58.54 64.08 79.71 75.37 78.04

g—12b—it cult 8,087 37.93 62.00 52.02 58.46 75.10 72.77 78.65
rand 8,087 63.57(0.46) 77.31(0.28) 57.55(0.57) 64.03(0.59) | 79.18(0.60) 75.46(4.81) 78.22(0.53)

emma-3 orig 0 61.37 81.32 58.76 64.47 80.88 91.43 78.30

g—27b—it cult 14,273 39.96 69.76 52.31 60.98 79.32 90.81 78.86
rand 14,273 62.17(3.15) 78.32(7.11) 57.19(1.62) 62.07(7.03) | 78.40(6.71) 87.56(9.87) 77.21(2.64)

Qwen3 orig 0 65.96 76.92 56.85 65.22 81.76 71.31 79.91

“14B cult 7,340 35.84 57.07 49.02 60.70 75.23 76.20 78.70
rand 7,340 65.47(0.49) 75.98(0.40) 56.26(0.65) 64.46(1.04) | 80.86(0.42) 71.49(1.2) 79.64(0.42)

Llama- orig 0 60.18 70.54 47.71 64.05 76.74 64.43 73.93

3.1-8B- cult 4,268 32.19 36.94 37.65 51.68 51.97 48.64 69.35
Instruct  ran ) 7.75(0.97) 67.25(1.03) .88(1.59) 61.55(1.71) | 72.84(1.24) .78(6.05) 70.49(2.26)
d 4,268 57.75(0.97) 67.25(1.03) 43.88(1.59) 61.55 1 2.84(1.24) 55.78(6.05) 70.49(2.26

orig 0 63.89 78.30 59.68 65.0 80.43 89.15 78.57

phi-4 cult 7,447 35.05 57.72 51.84 66.48 70.60 85.84 77.00
rand 7,447 63.29(0.63) 76.94(1.71) 56.38(2.98) 61.82(2.67) | 78.89(2.10) 86.98(1.93) 76.04(2.47)

Falcon3  orig 0 57.98 71.74 55.26 58.00 79.73 74.57 78.59

-10B-  cult 9,282 35.47 56.81 48.75 59.16 71.85 70.30 78.43
Instruct rand 9,282 57.64(0.31) 71.07(0.23) 54.06(1.39) 57.4(0.83) | 78.89(0.71) 74.17(3.19) 78.56(0.19)

These results corroborate prior studies showing that transformer MLPs primarily support knowledge
recall, whereas attention modules facilitate in-context information processing (Meng et al., 2022}
Ortu et al., |2024). This observation suggests that LLMs can rely more heavily on MLP neurons
to solve cultural benchmarks, which require recall of out-of-context knowledge. Based on these
observations, we adopt different thresholds for MLP and attention neurons in CULNIG-general,
setting tyrp = 1% and oy = 0.2%. Theserthresholdsrare further validated by the sensitivity
analysis described in In CULNIG-specific, we do not separate MLP and attention
neurons, since the z-score-based filtering step can remove neurons that facilitate task understanding.
We set t = 0.3% and r = 1%, reflecting the expectation that culture-specific neurons are fewer than
culture-general neurons.

4.3 CULTURE-GENERAL NEURONS

With the settings described in Section 4.2} we identify culture-general neurons. shows the
evaluation results when suppressing culture-general neurons and random neurons averaged over ten
seeds. In the table, p-values are defined as the probability that the score reduction with random
neurons is greater than or equal to that with culture-general neurons, estimated by setting a boot-
strapping sample size to 2,000. Here, the scores of random neurons are computed in two ways: the
average over ten seeds and the score of a uniformly sampled single seed (for sensitivity analysis). If
both p-values are smaller than 0.05, culture-general neurons are regarded as statistically significant.

We observe that eliminating culture-general neurons consistently causes significant degradation on
cultural benchmarks, while the impact on NLU benchmarks is smaller. In particular, for BLEnD\,
the score drops substantially up to 30%, although the identified neurons account for fewer than 1%
of the total. For CRCg, the models achieved almost 100% accuracy both before and after masking
neurons (Table 23)), suggesting that few superficial neurons were included. Notably, although neu-
rons are identified solely using specific cultural knowledge categories, performance also declines on
the unseen categories (BLEnDy.), demonstrating generalization beyond knowledge domains. This
generalization further extends across task formats (CultB) and even across cultural attributes, such
as cultural etiquette and values (NormAd and WVB). Moreover, we evaluate the models on SAQs of
BLEnDy.s and demonstrate that masking culture-general neurons degrades the accuracy in the mul-
tilingual setting as well (Table 15} [Appendix E)). These results imply that culture-general neurons
capture a broad representation of cultural understanding. shows the distribution of culture-
general neurons in gemma-3-12b-it. Most of the neurons are located in shallow to middle MLP
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Figure 3: The distribution of culture-general neurons in gemma-3-12b-it.
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Figure 4: Score reductions after masking culture-specific neurons of gemma-3-12b-it.

modules, and this tendency is consistent across models (Appendix D)), suggesting that CULNIG-
general captures a general property of LLMs. We also show the ablation studies of each step in

CULNIG-general in

4.4 CULTURE-SPECIFIC NEURONS

Next, we apply CULNIG-specific to identify culture-specific neurons that support understanding
of individual cultures. We focus on eight countries covered in all of BLEnD, CultB, and NormAd
(China, Indonesia, Iran, Mexico, South Korea, Spain, UK, and USA), which are culturally diverse
in the Inglehart-Welzel World Cultural Map from WVS Wave 7 (Haerpfer et al., [2020).

Figure 4] shows score reductions when masking culture-specific neurons in gemma-3-12b-it. For
BLEnDy. and CultB, the largest drops occur in the target cultures, confirming that identified neurons
are associated with knowledge of the target culture. Moreover, culture-specific neurons tend to affect
related cultures. For example, masking Mexico-specific neurons most strongly affects the problem
instances of Mexico (the mean rank of score reduction among 16 cultures over six models is 1.17),
and the second most affected culture is Spain (the mean rank was 3.83). We observe that historically
or geographically related cultures tend to affect each other, indicating that the neurons underlying
the related cultures are shared (Table 17} [Table 18] [Table 19). In contrast, these patterns are less
clear for NormAd, which suggests that culture-specific neurons capture less etiquette and values.

The distribution of culture-specific neurons is similar to that of culture-general neurons (Figure 12a)).
In contrast, these results differ from CAPE, which reported that culture neurons are concentrated
in the upper layers. We replicated the experiments of CAPE with gemma-3-12b-it, but failed to
reproduce it. Consequently, LAPE and CAPE neurons had negligible impacts on evaluation scores.
Further investigation of this discrepancy is left for future work. Possiblerfactorsifor therdifference
of the distributions are differences in attribution scores (gradient-based in ours and activation-based
in CAPE) and evaluation metrics (QA accuracy in ours and perplexity in CAPE). Additionally,
recent studies have demonstrated that LLMs process multilingual prompts through three stages:
(1) map multilingual inputs into the shared representation at the early layers, (2) process semantic
information in the shared space at the middle layers, and (3) translate back for generation at the
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4.6 APPLICATIONS: TARGET MODULE SELECTION FOR TRAINING

In this section, we demonstrate a potential application of our findings from an engineering perspec-
tive. Fine-tuning LLMs often risks degrading their abilities on other tasks 2025) and
also requires enormous computational costs. To achieve robust and efficient training, we propose to
select updating modules based on their roles.

We fine-tune (a language model of) gemma-3-12b-it with QNLI and MRPC, updating only a portion
of the modules. For module selection, we sort the modules by the number of culture-general neu-
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Figure 6: Evaluation results of gemma-3-12b-it on BLEnDy, CultB, QNLI, and MRPC when fine-
tuned on QNLI or MRPC, updating only 10% of the total parameters. Updated modules are selected
either from those containing the most culture-general neurons (Top) or those without culture-general
neurons (Bottom).

rons, and select either those with the most culture-general neurons (top-culture modules) or those
with none (bottom-culture modules) until the number of parameters exceeds 10%. When an MLP
gate projection is selected, we also include the corresponding up and down projections, and when a
query, key, or value module is selected, we also include the corresponding query, key, value, and out
projections, since neurons in those modules are connected as subkeys and subvalues (Section [3.1).
We fine-tune the model for 600 steps with a learning rate of 3e-5 and evaluate it every 200 steps.

The selected top-culture modules are all MLP modules from shallow to middle layers, while the
bottom-culture modules mainly consist of very shallow attention modules and very deep attention
and MLP modules (Table 22). The evaluation results are shown in We observe that
the target scores (QNLI or MRPC) improved in both cases. However, when updating the top-culture
modules, the scores of cultural benchmarks decrease. Meanwhile, updating the bottom-culture mod-
ules has little effect on cultural abilities. These results suggest that we can train the model efficiently
and robustly by selecting target components based on their roles. The details and experiments with

different parameter settings are shown in

Although our experiments are limited to QNLI and MRPC, these benchmarks are well-established
and widely used for measuring NLU of LLMs. Our results would be applied to other tasks or
settings as well. Moreover, we believe that our findings can be leveraged to improve the cultural
understanding of LLMs. For example, when we use knowledge editing methods (e.g., Meng et al.
(2023), [Fang et al.| (2025)) to update cultural knowledge, we can target the top-culture modules. In
addition, when we train a model to insert new cultural knowledge, we can update the neurons that are
not included in culture-general neurons in the top-culture modules so that new knowledge is easily
incorporated while retaining existing knowledge. Actual applications are left for future work.

5 CONCLUSION AND LIMITATIONS

We introduced CULNIG, a pipeline to identify neurons that contribute to the cultural understand-
ing of LLMs. We evaluated six LLMs with culture-general neurons masked and demonstrated that
the scores on the cultural benchmark decreased significantly, while the impacts on the NLU bench-
marks were minor. Although identified with a limited domain of cultural knowledge problems,
these neurons affected broader cultural attributes, including understanding of cultural values and
performance on cultural knowledge benchmarks even in multilingual settings. Moreover, we lo-
cated culture-specific neurons that are tied to individual cultures and confirmed that masking these
neurons impaired knowledge of both the target and related cultures. Culture-general and culture-
specific neurons were concentrated in shallow to middle MLP layers. Finally, we demonstrated
that when we fine-tuned LLMs on NLU benchmarks, cultural understanding was more easily lost
by updating modules containing many culture-general neurons than by updating modules without
culture-general neurons. While our findings do not directly improve the cultural understanding of
LLMs, they provide a foundation for future studies to do so.
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REPRODUCIBILITY STATEMENT

For reproducibility, we attach our source code in the supplementary materials. In the materials, we
include the scripts of CULNIG to identify culture-general and culture-specific neurons, the script for
evaluation, the training script for the experiment in Section [4.6] the prompts, and the CRC dataset.
For the detailed information and the usage of the scripts, refer to README . md in the supplementary
materials.
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A  DATASET DETAILS

Table 3: Cultural benchmarks used in our experiments.

Benchmark | #Country | #Instance | Target
BLEn]fl 16 306k MCQs, Everyday knowledge in a
(Myung et al.[[2024) 15k SAQs diverse culture
CulturalBenclﬂ
(Chiu et al, 025) 45 1.23k Cultural knowledge
NormAcﬂ .
(Rao et al| 2025) 75 2.63k Cultural etiquette and norms
WorldValuesBenctﬂ 260 per
(Zhao et al.}[2024) 64 participants Cultural values

[Table 3|lists the cultural benchmarks used in our experiments. As explained in Section 2.1} BLEnD
evaluates everyday cultural knowledge of LLMs in multiple-choice questions (MCQs) and short an-
swer questions (SAQs). CulturalBench has two task formats: CulturalBench-Easy, which asks about
cultural knowledge in multiple-choice questions with four options, and CulturalBench-Hard, which
asks whether each of these four options is correct or not with the same question. For simplicity,
we adopt CulturaBench-Easy for evaluation. In NormAd, a model is asked to determine whether
a given daily scenario is acceptable in a specified culture, which requires understanding of both
cultural knowledge and values. The task of WorldValuesBench is to predict participants’ responses
to questionnaires given their demographic information. Questionnaires are common for all partic-
ipants, such as do you believe in God?, derived from World Values Survey Wave 7. We
download the datasets from Hugging Face Datasets and the GitHub repositories.

Table 4: Examples of BLEnD;,¢y; and BLEND .

BLEnDeur | BLENDcn

What is a common snack for preschool kids in Without any explanation, choose only one from
the UK? Without any explanation, choose only | the given alphabet choices(e.g., A, B, C).
one from the given alphabet choices(e.g., A, B, | Provide as JSON format:

C). Provide as JSON format: {"answer_choice”:””"}
{”answer_choice”:””’} A. cookie B. egg C. fruit D. jelly
A. cookie B. egg C. fruit D. jelly Answer:

Answer:

As described in Section @], we prepare BLEnD, corresponding to each question of BLEnD ;.
Table 4|shows examples of BLEnD,¢,; and BLEnDi. BLEnD, is created by omitting the question
content from the instances of BLEnDy,,,. In CULNIG, by subtracting the neuron attribution score
of BLEnD,; from that of BLEnD,,;, we can measure the sheer contribution of neurons to culture
knowledge.

Moreover, we constructed the CountryRC (CRC) dataset to filter out superficial neurons that respond
to country names. We utilized ChatGPT to create CRC. We instructed ChatGPT to generate reading
comprehension problems that contain a country name in their context, and the answer is that country
name. We also specified that the problems must not require any cultural understanding. CRC has
50 instances, and 30 instances have only one country name in their context, and the remaining 20
contain an additional dummy country name. Each instance has four answer choices of country
names. Country names are represented as placeholders and replaced with the actual names of the
target countries. We include CRC in the supplementary material.

Zhttps://huggingface.co/datasets/nayeon212/BLEnD
*https://huggingface.co/datasets/kellycyy/CulturalBench
‘nttps://huggingface.co/datasets/akhilayerukola/NormAd
5https ://github.com/Demon702/WorldValuesBench/tree/
635db7455e2c656978929210eba984bc09ddd659
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In addition to the cultural benchmarks, we use NLU benchmarks that do not necessarily require
cultural understanding for evaluation. If masking identified neurons results in the reduction of NLU
abilities, we cannot conclude that the identified neurons really support the cultural mechanisms
of an LLM, even if masking them degrades cultural understanding. We use CommonsenseQ
QNLIEL and MRPCﬂ As for CommonsenseQA and QNLI, ground truths for the test set have not
been published, so we use the validation set for evaluation.

Considering the sensitivity of LLMs to prompt wording, we prepared four task instructions for each
evaluation dataset except for BLEnD. For BLEnD, task instructions are already included in data
sources, and each problem has multiple instances with diverse answer choices, so we used them
without additional instructions. We used the prompts in the original paper as a seed and utilized

ChatGPT to rephrase the prompts. We show the prompts for each dataset in
Table 7| [Table 8] [Table 9] [Table 10} and [Table 11] We also include the evaluation prompts in our

code.

Table 5: Evaluation prompts for CulturalBench

Instruction

To answer the following multiple-choice question, you should choose one option only among A,B,C,D. Do not output any
other things.

Question: {question}

A. {option_a}

B. {option_b}

C. {option_c}

D. {option_d}

Select only one option from A, B, C, or D to answer the following multiple-choice question. Do not output anything else.
Question: {question}

A. {option_a}

B. {option_b}

C. {option_c}

D. {option_d}

Choose one answer among A, B, C, and D for the question below. Do not include any explanation or extra content.
Question: {question}

A. {option_a}

B. {option_b}

C. {option_c}

D. {option_d}

You must answer the following question by selecting a single choice from A, B, C, or D. Do not write anything else.
Question: {question}

A. {option_a}

B. {option_b}

C. {option_c}

D. {option_d}

®https://huggingface.co/datasets/tau/commonsense_ga
"nttps://huggingface.co/datasets/nyu-mll/glue
$https://huggingface.co/datasets/nyu-mll/glue
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Table 6: Evaluation prompts for NormAd

Instruction

You will be given a short story involving 2 or more characters about everyday situations. You will also be given a country
of relevance. Read the story and determine if the character’s behavior aligns with the social norms of that country.

Only consider the provided context and country. Do not include any outside assumptions. Respond **only** with the
number 1, 2, or 3.

country: {country}
Story: {story}
Options: {options}

Read a short story describing everyday events with at least two characters. You’ll also receive a country. Your task is to
judge whether the character’s actions are in line with the cultural expectations of that country.

Use only the given story and cultural context; do not bring in any outside knowledge. Answer strictly with the number 1,
2,o0r 3.

country: {country}
Story: {story}
Options: {options}

A short scenario featuring multiple characters will be provided, along with the cultural background of a specific country.
Your role is to determine how well the behavior shown fits that country’s social norms.
Do not make inferences beyond the given content. Only respond with 1, 2, or 3.

country: {country}
Story: {story}
Options: {options}

Given a short daily-life story involving multiple characters, along with the country, assess whether the behavior depicted
fits within the social norms of that culture.
Stick strictly to the given material without adding outside reasoning. Answer with just 1, 2, or 3.

country: {country}
Story: {story}
Options: {options}

Table 7: Evaluation prompts for World ValuesBench

Instruction

System: You are a person from {country}.
Prompt: Question: {question}
Please respond with a single digit only from {min_option} to {max_option}. Do not include any other text.

System: You are a person from {country}.
Prompt: Question: {question}
Your answer should be a single digit between {min_option} and {max-option}. Do not add any other information.

System: Behave as if you are from {country}.
Prompt: Question: {question}
Please respond with a single digit only from {min_option} to {max_option}. Do not include any other text.

System: Behave as if you are from {country}.
Prompt: Question: {question}
Your answer should be a single digit between {min_option} and {max_option}. Do not add any other information.
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Table 8: Evaluation prompts for CountryRC

Instruction

Read the passage carefully and choose a single option from A, B, C, D to answer the question. Do not output any other text.

passage: {passage}
question: {question}
A. {option_a}

B. {option_b}

C. {option_c}

D. {option_d}

Read the following passage and question. Then, pick the most suitable answer from the four options. Only return the letter
of your choice (A, B, C, or D).

passage: {passage}
question: {question}
A. {option_a}

B. {option_b}

C. {option_c}

D. {option_d}

From the information provided in the passage, choose the best answer to the question. You must select a single choice: 1,
2, 3, or 4, and do not include any other text.

passage: {passage}
question: {question}
1. {option_a}

2. {option_b}

3. {option_c}

4. {option_d}

Determine the correct answer to the question based on the content of the passage. Respond with one of the following: 1,
2, 3, or 4. No additional text is needed.

passage: {passage}
question: {question}
1. {option_a}

2. {option_b}

3. {option_c}

4. {option_d}

Table 9: Evaluation prompts for CommonsenseQA

Instruction

To answer the following multiple-choice question, you should choose one option only among A,B,C,D,E. Do not output
any other things.

Question: {question}

A. {option_a}

B. {option_b}

C. {option_c}

D. {option_d}

E. {option_e}

Choose one answer among A, B, C, D, and E for the question below. Do not include any explanation or extra content.
Question: {question}

A. {option_a}

B. {option_b}

C. {option_c}

D. {option_d}

E. {option_e}

Pick one option only — A, B, C, D, or E — as the answer to the question below. Do not provide any additional text.
Question: {question}

A. {option_a}

B. {option_b}

C. {option_c}

D. {option_d}

E. {option_e}

Please choose one and only one of the following options (A, B, C, D, or E) to answer the question. Do not add anything
else.

Question: {question}

A. {option_a}

B. {option_b}

C. {option_c}

D. {option_d}

E. {option_e}
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Table 10: Evaluation prompts for QNLI

Instruction

Determine whether the following context sentence contains enough information to answer the question.
Question: {question}

Context: {sentence}

Respond with:

0 if it does (entailment)

1 if it does not (not_entailment)

Only answer with O or 1.

Classify the relationship between the following question and context.
Question: {question}

Context: {sentence}

Label as:

0: entailment — the question is supported by the context

1: not_entailment — the question is not supported by the context
Please respond with either O or 1 only.

Read the question and the context.

Question: {question}

Context: {sentence}

If the context provides enough evidence to answer the question, return O (entailment).
If the context is insufficient or irrelevant, return 1 (not_entailment).

Your answer should be either 0 or 1.

Your task is to judge if the answer to the question can be found in the context.
Question: {question}

Context: {sentence}

Answer 0 for entailment, and 1 for not_entailment. Do not include any other text.

Table 11: Evaluation prompts for MRPC

Instruction

Determine whether the following two sentences are paraphrases of each other in meaning.
Sentence 1: {sentencel}

Sentence 2: {sentence2}

Respond with:

1 —if they are paraphrases

0 — if they are not paraphrases

Only answer with O or 1.

You are given two sentences. Judge whether they express the same meaning, even if the wording is different.
Sentence 1: {sentencel }

Sentence 2: {sentence2}

Answer with 1 if they are paraphrases, and 0 if they are not.

Please respond using only O or 1.

A paraphrase means that two sentences convey the same information using different words or structure.
Sentence 1: {sentencel}

Sentence 2: {sentence2}

Decide whether these sentences are paraphrases.

Return 1 for paraphrase, O for not paraphrase.

Your answer must be either O or 1.

Compare the following two sentences. If they convey the same meaning regardless of differences in wording, classify them
as paraphrases.

Sentence 1: {sentencel }

Sentence 2: {sentence2}

Respond with:

1 — if they are semantically equivalent (paraphrase)

0 — if they are not semantically equivalent

Only use 0 or 1 as your answer.
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B MODEL DETAILS

In our experiment, we analyze six open source state-of-the-art LLMs: gemma-3—12b—iﬂ gemma-3-
27b-i Qwen-3-14 Llama-3-8B-Instruc phi— and FalconS-IOB-Instruc We apply our
methods to these models to show the robustness and generalizability of our findings. We download

the parameters from Hugging Face Hub. The architectures of these models are similar, as described
in Section[3.1]

Table 12: The total number of neurons in each module of each model.

Models Total Neuron Count
MLP gate  Attention query  Attention key  Attention value
gemma-3-12b-it 737,280 196,608 98,304 98,304
gemma-3-27b-it 1,333,248 253,952 126,976 126,976
Qwen3-14B 696,320 204,800 40,960 40,690
Llama-3.1-8B-Instruct | 458,752 131,072 32,768 32,768
phi-4 716,800 204,800 51,200 51,200

Falcon3-10B-Instruct | 921,600 122,880 40,960 40,960

The total number of neurons in each model module is shown in We only include the
modules from which we select culture neurons (see Section [3.1I). The number of neurons in an
MLP gate module is intermediate_size X num_layer, the number of neurons in an attention query
module is head_dim X num_head x num_layer, and the number of neurons in an attention key
and value module is both head_dim x num_kv_head x num_layer. When using grouped-query
attention of the group size g, num_kv_head = num_head + g.

‘nttps://huggingface.co/google/gemma-3-12b-it
Uhttps://huggingface.co/google/gemma—-3-27b-it
"https://huggingface.co/Qwen/Qwen3—14B
Phttps://huggingface.co/meta-1lama/Llama-3.1-8B-Instruct
Bhttps://huggingface.co/microsoft/phi-4
“https://huggingface.co/tiiuae/Falcon3-10B-Instruct
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I

tme | #Neuron | BLEnDyy  CultB NormAd WVB | ComQA  QNLI MRPC
0% (orig) 0 64.22 78.08 55.42 64.08 79.71 75.37 78.04
1% (ours) 8,087 37.93 62.00 50.73 58.46 75.10 72.77 78.65

2% 15,426 36.41 57.50 51.06 60.28 72.03 68.68 78.88

3% 22,770 35.29 55.54 49.36 58.88 69.16 65.23 78.58

taun | #Neuron | BLEnDyx  CultB NormAd WVB | ComQA  QNLI MRPC
0% (orig) 0 64.22 78.08 55.42 64.08 79.71 75.37 78.04
0.2% (ours) 8,087 37.93 62.00 50.73 58.46 75.10 72.77 78.65
0.4% 8,868 37.84 61.80 51.46 58.71 75.20 73.40 79.03
0.6% 9.652 37.50 61.04 51.60 58.56 74.88 73.42 79.19
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D CULTURE NEURON DISTRIBUTION

We show the distributions of culture-general neurons in each model in [Figure 3| [Figure 7| [Figure 8|
[Figure 9 |Figure 10} and [Figure 11} We can observe that the neuron distributions are similar for all
the models, concentrated in shallow to middle MLP layers. This result suggests that our method
captures mechanisms shared across LLMs.

In addition, [Figure 12afshows the distribution of Chinese culture-specific neurons in gemma-3-12b-
it, and [Figure 12b| shows the distribution of Chinese neurons identified by CAPE (pure). While

CULNIG-specific Chinese neurons are mainly located in shallow to middle MLP layers, similarly
to CULNIG-general, CAPE Chinese neurons are concentrated in deeper layers.
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Figure 7: The distribution of culture-general neurons in gemma-3-27b-it.
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Figure 8: The distribution of culture-general neurons in Qwen3-14B.

mip.gate_proj 500 .,
c
. 400 3
self_attn.k_proj S
300
. o
self_attn.q_proj 200 5
z

self_attn.v_proj 100

0
1 6 1 16 21 26 31

Layer Index

Figure 9: The distribution of culture-general neurons in Llama-3.1-8B-Instruct.
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Figure 10: The distribution of culture-general neurons in phi-4.
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Figure 11: The distribution of culture-general neurons in Falcon3-10B-Instruct.
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Figure 12: The distribution of Chinese neurons identified by CULNIG-specific and CAPE in
gemma-3-12b-it.
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E RESULTS OF MULTILINGUAL EVALUATION ON BLEND SAQ

As explained in Section BLEnD provides two types of tasks: multilingual short answer ques-
tions (SAQs) and English multiple-choice questions (MCQs). The evaluation results on MCQs are
shown in Section 4.3] confirming that suppressing culture-general neurons substantially degrades
the performance of the models on MCQs (BLEnDy). Here, we evaluate LLMs on BLEnD SAQs to
see whether culture-general neurons are responsible for cultural understanding in multilingual and
SAQ settings.

BLEnD covers 16 cultures, and the SAQs for each culture are provided in English and their corre-
sponding language, resulting in 13 languages in total. We prompt LLMs only in their native language
to evaluate each culture. Also, to align with the evaluation on MCQs, we use the same three cat-
egories as BLEnD. As for the task instruction, we utilize the prompts provided in their GitHub
reposito and randomly select one instruction per instance. For other details of the evaluation,
we follow the original settings of BLEnD (Myung et al.| [2024) and their GitHub repositories. We
set max_new_tokens to 512 and other parameters to the models’ default values. When judging
models’ responses, we first lemmatize, stem, or tokenize the models’ responses and the annotation
answers. We regard the prediction as correct if any answers are included in the response.

Table 15: Evaluation accuracy (%) on BLEnD SAQs for the original model (Orig), when culture-
general neurons are masked (Cult), and when random neurons are masked (Rand).

Model | Orig Cult Rand

gemma-3-12b-it 51.13 4277 49.13
gemma-3-27b-it 57771 47.00 56.32

Qwen3-14B 4774  36.04 46.32
Llama-3.1-8B-Instruct | 43.89 20.63 39.38
phi-4 4797 3598 47.76

Falcon3-10B-Instruct 28.36 2341 26091

The accuracies on the SAQs are shown in[Table T3] Suppressing culture-general neurons reduces the
accuracy of all models more significantly than suppressing random neurons. Moreover,
[Figure 14} [Figure 13} [Figure 16| [Figure 17} and [Figure 18] show culture-wise accuracies of each
model. We can observe that score reduction occurs regardless of cultures. These results indicate
that culture-general neurons contribute to cultural understanding in multilingual and SAQ settings
as well.

Bhttps://github.com/nlee0212/BLEnD/tree/9972379c4fd20601691c45e6d7befabaleedTedsd
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Figure 13: Accuracy of gemma-3-12b-it on BLEnD SAQs for each culture. Evaluation results of
the original model, when masking culture-general neurons, and when masking random neurons are

shown.
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Figure 14: Accuracy of gemma-3-27b-it on BLEnD SAQs for each culture. Evaluation results of
the original model, when masking culture-general neurons, and when masking random neurons are

shown.
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Figure 15: Accuracy of Qwen3-14B on BLEnD SAQs for each culture. Evaluation results of the
original model, when masking culture-general neurons, and when masking random neurons are

shown.
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Figure 16: Accuracy of Llama-3.1-8B-Instruct on BLEnD SAQs for each culture. Evaluation results
of the original model, when masking culture-general neurons, and when masking random neurons

are shown.
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Figure 17: Accuracy of phi-4 on BLEnD SAQs for each culture. Evaluation results of the original
model, when masking culture-general neurons, and when masking random neurons are shown.
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Figure 18: Accuracy of Falcon3-10B-Instruct on BLEnD SAQs for each culture. Evaluation results
of the original model, when masking culture-general neurons, and when masking random neurons

are shown.
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F RESULTS OF CULTURE-SPECIFIC NEURONS

Table 16: The number of culture-specific neurons identified by CULNIG-specific.

Indo- Mex-  South
. Iran .
nesia ico Korea

gemma-3-12b-it 2,667 2,569 2948 2,756 2,101 2,655 2,977 3,041
gemma-3-27b-it 4,011 4563 4953 3,580 5,061 4,663 3,768 3,821
Qwen3-14B 1,553 1,897 1473 2,070 2,204 1,874 2,029 2,190
Llama-3.1-8B-Instruct | 471 782 549 373 678 540 345 470
phi-4 1,072 1,192 1,373 1,249 1,524 1,039 1,210 1,050
Falcon3-10B-Instruct | 1,789 2,199 1,785 1,923 2,603 2,114 1,665 2,356

Model China Spain UK USA

In this section, we present the results of culture-specific neurons for models not shown in Section[d.4}
First, shows the number of neurons identified by CULNIG-specific for each country. It is
natural that the numbers are proportional to the total number of neurons (see because
the initial candidate neurons are the top 0.3% neurons ranked by attribution score. Subsequently,
culture-specific neurons are refined by CRC,,; and z-score, which may make the difference between
countries. In the table, the number of neurons corresponding to South Korea tends to be large,
indicating that models possess more dedicated neurons for South Korean culture than others.

o s o
2 § o S o §
g s = g e = 19 e X
g § § s 5 g § £s5 £ g § § s
g s 5 5 5 5 s s 5 3 5 I £ s 5 ¥ 5 5
£ 5 ) S X 9 < 3 ) S X 9 < 5 ) S & 9
5 < £ £ 4 & 5 3 5 < £ &£ 3 & 5 9 5 £ & & 4 & 5 8
China{ &4 17 26 15 23 58 17 20 China{ 47 00 07 15 24 06 30 37 China{ 62 10 00 07 03 00 19 00
Indonesia 0.1 0.5 1.0 02 Indonesia { 0.4 9.6 20 oo 24 a4 6.0 12 Indonesia{ 4.2 0.0 0.6 37 0.9 0.7 0.0 06
Iran SR 5.7 6.7 Iran{ 85 2.6 4.9 9.4 12 Iran{ 42 19 2.8 29 19 0.7 19 36

Mexico| - Mexico{ 04 18 07 31 24 31 10 25 Mexico| 14 10 00 29 09 00 19 30

Neuron Manipulated Country
Neuron Manipulated Country
Neuron Manipulated Country

South Korea {24 59 76 86 4.4 5.0 South Korea{ 0.4 5.8 14 00 -12.8 44 5.0 25 South Korea{ 28 19 45 0.7 ) 29 19 18

- R o o e san S - IR spain | [EREER R

UK{ 01 14 03 16 21 29 3.4 27 UK{ 17 29 2.0 05 00 12 6.0 25 UK4{ 21 19 0.6 0.0 0.0 07 28 12

USA{ 47 29 23 19 3.2 21 12 5.7 USA{ 00 19 27 00 18 0.0 3.0 0.0 USA{ 21 0.0 11 15 0.0 00 0.9 42
Evaluated Country Evaluated Country Evaluated Country

(2) BLEND ey (b) CultB (c) NormAd

Figure 19: Score reductions after masking culture-specific neurons of gemma-3-27b-it.
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Figure 20: Score reductions after masking culture-specific neurons of Qwen3-14B.

29



Under review as a conference paper at ICLR 2026

g s £ 7 . ¢
e £ g s < s & g s <
g $ s 5 5 5 5 £ § s 5§ 5 5
S 5 s 3
5 g I & 5 8 5 g N & 5 9
China 1.0 8.8 15 73 5.0 2.0 5.0 China{ 0.7 5.8 11 22 37 0.7 19 3.0

Indonesia { = 6.6 6.7 3.0 0.0 Indonesia{ 2.1 87 28 00 5.9 83

Mexico{ 88 48 74 92 00 31 30 o0 Mexico| 14 38 23 51 19 29 s 42

a

South Korea{ 97 74 a6 24 80 o0

Neuron Manipulated Country
Neuron Manipulated Country
Neuron Manipulated Country

Spain{ 55 98 41 a2 20 25 Spain{ 21 06 o7 4s 29 | @3 24
UK{ 04 28 34 31 1 S0 80 7 k] 21 25 o6 23 o3 o7 o3 as
Usa 7 62 a0 usal 42 38 o5 00 37 29 09 54
Evaluated Country Evaluated Country Evaluated Country

(2) BLEND ey (b) CultB (¢) NormAd

Figure 21: Score reductions after masking culture-specific neurons of Llama-3.1-8B-Instruct.
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Figure 22: Score reductions after masking culture-specific neurons of phi-4.
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Figure 23: Score reductions after masking culture-specific neurons of Falcon3-10B-Instruct.

We show the evaluation results of culture-specific neurons for each model in [Figure 4} [Figure 19}
[Figure 20} [Figure 21} [Figure 22] and[Figure 23] These figures show the reduction of scores compared
to the original models for each problem culture. The result patterns are similar to Section 4.4}
The scores of the same countries as the neuron targets are most affected for BLEnD,y and CultB,
while a clear pattern is not observed for NormAd. On the other hand, there are several cases where
suppressing identified culture-specific neurons consistently degrades the scores for all evaluation
cultures (e.g., Indonesian neurons in Llama-3.1-8B-Instruct on BLEnD). For these cases, the
identified neurons may actually be important for understanding the benchmark task.
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Table 17: Average ranks of performance drops among 16 cultures of BLEnDy when masking
culture-specific neurons. Ranks are averaged over six models.

Neuron culture
Evaluation China Indg— Iran  Mexico South
culture nesia Korea
Algeria 14.17 9.67 8.00 10.33 1233 13.17 7.33 8.00
Assam 12.17 8.50 9.83 10.83 11.00 11.17 9.83 12.00
Azerbaijan 5.67 11.33 4.83 8.17 9.67 8.33 7.67 8.17

Spain UK USA

China 1.00 9.83 8.33 10.00 4.33 7.00 9.83 7.33
Ethiopia 13.50 1250 12.83 11.50 1233 14.00 1433 1250
Greece 833 10.67 8.50 12.50 8.33 8.17 7.67 8.17
Indonesia 8.83 1.17 4.00 4.00 5.33 4.67 8.00 6.33
Iran 6.33 11.50 3.50 10.00 9.50 850 11.67 8.83
Mexico 10.50 9.00 9.17 1.17 6.17 433 10.17 6.33
Nigeria 7.50 7.00 6.00 9.00 11.67 12.83 9.67 11.00

North Korea 7.50 11.33  13.00 11.67 6.50 12.83 13.00 12.50
South Korea | 10.83 833 11.33 9.50 1.00 10.33 10.33 9.67

Spain 3.67 7.17 9.33 3.83 5.50 2.00 3.17 7.83
UK 7.83 8.17 10.83 8.67 9.67 3.17 1.17 5.67
USA 8.17 7.83  11.17 7.00 11.67 7.33 5.17 1.67

West Java 10.00 2.00 5.33 7.83  11.00 8.17 7.00 10.00

Table 18: In-class and out-of-class average rankings of score reduction when masking culture-
general neurons in gemma-3-12b-it. Cultures are classified based on regions.

Neuron culture \ In-class  Out-of-class

China 8.76 9.21
Indonesia 8.97 9.00
Iran 8.09 948
Mexico 7.00 9.13
South Korea 8.19 9.71
Spain 5.67 9.44
UK 542 9.54

Table 19: In-class and out-of-class average rankings of score reduction when masking culture-
general neurons in gemma-3-12b-it. Cultures are classified based on spoken languages.

Neuron culture \ In-class  Out-of-class

Mexico 3.83 9.36
South Korea 6.50 9.18
Spain 4.33 9.26
UK 7.42 9.23
USA 8.34 9.05

For a deeper analysis, we show the average rankings of performance drops among 16 cultures of
BLEnD,.; when masking culture-specific neurons in The ranks are averaged over six
models, and a lower rank means a significant drop. We observe that the top ranks are always when
the neuron target culture and evaluation culture agree, validating that the identified neurons espe-
cially contribute to their target culture.

Additionally, when culture-specific neurons of a specific culture are masked, it tends to have an
impact on scores of related cultures. For example, when Mexican neurons are masked, Spain is
the second most strongly influenced culture. When Spanish neurons are masked, Mexico is the
third most influenced, and the second most influenced culture is the UK. Spain and Mexico are
historically connected, and Spain and the UK are geographically close. Inrorderitorquantifysthese
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G REPLICATION OF LAPE AND CAPE

As discussed in Section 4.3 and the neuron distributions of CULNIG and CAPE are
different. CAPE is a method designed to isolate culture neurons from language neurons of LAPE,
using a multilingual and multicultural dataset, MUREL. We replicate the experiments of LAPE and
CAPE according to their GitHub repositorym and compare with our results.

LAPE identifies language-specific neurons using multilingual corpora taken from
Wikipedie{ﬂ (Wikimedia Foundation). Similarly, CAPE first selects neurons using MUREL
(in this paper, we call this neuron set “MUREL neuron” to avoid conflict with the name “culture
neuron” with CULNIG), and then refines neurons by excluding corresponding LAPE neurons
to obtain “pure” culture neurons. As MUREL contains six languages and cultures (Danish (da),
German (de), English (en), Persian (fa), Russian (ru), and Chinese (zh)), we identify neurons of
these languages and cultures. For the model, we use gemma-3-12b-it.

Table 20: Neuron counts of LAPE and CAPE neurons in gemma-3-12b-it. Languages (cultures) are
Danish (da), German (de), English (en), Persian (fa), Russian (ru), and Chinese (zh).

| da de en fa ru zh

LAPE 914 1,087 773 1,115 1,157 2,440
MUREL | 412 477 1,059 718 810 3,897
pure 60 80 644 264 221 2,462

Neuron Manipulated Country
Neuron Manipulated Country
Neuron Manipulated Country

en{ oa 009 000 013 003 043 en{ o1 006 008 019 010 027 en

Evaluated Country Evaluated Country Evaluated Country

(a) LAPE neuron (b) MUREL neuron (c) pure neuron

Figure 24: Perplexity increase when masking LAPE, MUREL, and pure neurons from the original
state of gemma-3-12b-it.

The number of identified neurons by LAPE and CAPE is shown in The number of pure
neurons is small, especially for da (60) and de (80). This indicates that the overlaps between LAPE
and MUREL neurons are large, failing to isolate culture neurons from language neurons. For evalu-
ation in the CAPE paper, they use the MUREL test set and see the perplexity change. We present the
replicated evaluation results in[Figure 24] It shows that for LAPE and MUREL neurons, increases in
perplexity are most significant when the language or culture of neurons and data match. However,
this is not the case for pure neurons, which have little impact after masking them. Based on these
results, we speculate that most of the MUREL neurons are actually language neurons. Note that they
use gemma-3-12b-pt in the original experiment, while we use gemma-3-12b-it, which is developed
by performing instruction tuning on gemma-3-12b-pt, for consistency with our experiment. Other
possible differences are hyperparameters, such as the context length of inputs.

Moreover, the evaluation results on BLEnDe, CultB, and NormAd for LAPE, MUREL, and pure
neurons are presented in [Figure 23} [Figure 26} and [Figure 27] respectively. We show the score

https://github.com/namazifard/Culture_Neurons/tree/
£48acc08d2d4a9117610£3e8e29a502fcaz2704c4
""mttps://huggingface.co/datasets/wikimedia/wikipedia
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changes from the original model on problems of the cultures common in MUREL and each bench-
mark. As a result, none of the three methods caused significant changes to the scores. One plausible
reason is that all the problems in these benchmarks are asked in English in our evaluation. As shown
in[Figure 24] the impacts on English are the smallest for all methods. Therefore, if identified neurons
contribute to language abilities, not cultural understandings, the effects will be small when asking

cultural questions in English.
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Figure 25: Score reductions after masking LAPE neurons of gemma-3-12b-it.
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Figure 26: Score reductions after masking MUREL neurons of gemma-3-12b-it.
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Figure 27: Score reductions after masking pure neurons of gemma-3-12b-it.
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| #Neuron | BLEnDyx CultB  NormAdes WVB | ComQA QNLI  MRPC

(orig) 0 64.22 78.08 55.42 64.08 79.71 75.37 78.04
NBLEnD 8,087 37.93 62.00 50.73 58.46 75.10 72.77 78.65
NNormad 7,989 47.44 68.36 49.73 60.07 77.81 73.40 78.12
NBLED N NNormAd 1,347 55.19 73.66 54.10 62.63 79.12 76.53 78.23
NBLEnD U NNormad 14,729 34.74 57.23 47.14 54.49 73.81 72.47 78.03
NaLenp \ NNormad 6,740 51.39 68.87 51.09 62.30 76.15 72.52 78.72
NNormad \ VBLEnD 6,642 62.24 74.37 50.53 62.99 78.58 73.92 77.75
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J DETAILS OF MODEL TRAINING

Table 22: Selection of top-culture and bottom-culture modules. Values in parentheses denote the

number of culture neurons contained in each module.

top-culture

bottom-culture

layer13 MLP (785)
layer12 MLP (685)
layer14 MLP (612)
layer10 MLP (491)
layer11 MLP (469)
layer7 MLP (429)

layer9 MLP (409)

layerO attention (0)
layer2 attention (0)
layer8 attention (0)
layer27 attention (0)
layer28 attention (0)
layer30 attention (0)
layer31 attention (0)

layer32 attention (0)
layer36 attention (0)
layer39 attention (0)
layer41 attention (0)
layer43 attention (0)
layer44 attention (0)
layer45 attention (0)
layer47 attention (0)
layer34 MLP (0)

layer41 MLP (0)

layer43 MLP (0)

In this section, we present the supplementary information and results of Section[4.6] As described
in Section 4.6 we select top-culture and bottom-culture modules to fine-tune gemma-3-12b-it with
QNLI and MRPC. The selected modules are shown in The top-culture modules are all
MLP modules of shallow to middle layers, while the bottom-culture modules consist of the shal-
lowest attention, deep attention, and deep MLP modules. This selection matches the distribution of
culture-general neurons (subsection 4.3|and[Appendix D). Note that for the bottom-culture modules,
we randomly picked modules from those without any culture-general neurons to account for 10% of
the total parameters. During training, we use AdamW (Loshchilov & Hutter, [2019) optimizer and
linear scheduler with batch size 16. For QNLI, we randomly selected 10,000 training samples to
reduce computational cost.

The evaluation results when the learning rate is 3e-5 are shown in Section .6 (Figure €). We also
show the results when the learning rate is le-5 and 5e-5 in [Figure 31] and [Figure respectively.
When the learning rate is le-5, there are almost no impacts on cultural benchmarks regardless of
updated modules. When the learning rate is 5e-5, the scores on cultural benchmarks degrade at early
steps when updating top-culture modules, and the scores also decrease for bottom-culture modules
as the training goes on. Regarding the target benchmarks (QNLI or MRPC), the scores improve on
all cases except for QNLI when targeting top-culture modules. These results suggest that forgetting
can be avoided depending on the learning rate (or other parameters), but tuning bottom-culture
modules can achieve a better outcome.
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Figure 31: Evaluation results when Ir=1e-5.
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Figure 32: Evaluation results when Ir=5e-5.
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K ABLATION OF DATASETS USED FOR NEURON IDENTIFICATION

Table 23: Evaluation results on CRC ., when masking neurons identified with and without CRC,¢y;.

Model | orig  w/CRCpewr W/0 CRCpeur
gemma-3-12b-it 100.00 100.00 99.75
gemma-3-27b-it 100.00 100.00 100.00

Qwen3-14B 100.00 100.00 100.00
Llama-3.1-8B-Instruct | 100.00 96.00 0.00
phi-4 100.00 100.00 0.13
Falcon3-10B-Instruct 100.00 99.62 98.25

CULNIG identifies culture neurons using BLEnDyr, BLEnD¢yy, and CRC (Section @]) In this
section, we perform the ablation studies of these datasets. [Table 23| compares the evaluation results
on CRC when masking neurons identified by CULNIG-general with and without CRC.s. We
observe that without CRC,;, masking identified neurons significantly reduces accuracy for some
models. As described in Section we use CRC,,; in CULNIG to eliminate superficial neurons
activated by tokens of country names, since such neurons should not be considered as supporting
cultural mechanisms. The results confirm that CRC,,;, filters out such neurons.

Table 24: Evaluation results of gemma-3-12b-it when masking neurons identified by CULNIG-
general with and without BLEnD .

| #Neuron | BLEnD CultB  NormAd WVB | ComQA QNLI MRPC

orig 0 64.22 78.08 58.54 64.08 79.71 75.37 78.04
w/ ctrl 8,087 37.93 62.00 52.02 58.46 75.10 72.77 78.65
w/o ctrl 6,494 39.65 61.57 52.82 62.28 70.13 67.49 78.25

Moreover, shows the ablation results of BLEnDy on gemma-3-12b-it. We observe that
without BLEnD,;, the evaluation scores on the NLU benchmarks are worse than normal CULNIG-
general, although the number of neurons is smaller. This result indicates that neurons that contribute
to properties other than cultural understanding, such as language understanding, tend to get high
scores and be selected without BLEnD,. These results confirm that the datasets used in our pipeline
are important for accurately and steadily identifying culture neurons.
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L. COMPARISON OF NEURON ATTRIBUTION SCORES

As explained in Section[3.2] we adopt a gradient-based score to measure neuron attribution in solving
cultural problems, following [Yang et al.| (2024). In this section, we compare it with alternative
attribution methods.

In our method, the attribution score of a neuron at the i-th token position is calculated as[Equation 5}
and aggregated across tokens by taking the maximum (Equation 6)). As alternatives, we consider:

* Mean aggregation (mean): replacing the maximum with the mean across token positions.

* Weight-gradient inner product (norm): directly computing inner product w - apéﬂx) for the

subkey w (row vectors of MLP gate, attention query, key, and value modules) associated
with each neuron.

Table 25: Evaluation results of masking culture-general neurons identified with max (the one used
in the original pipeline), mean, and norm attribution scores on gemma-3-12b-it.

Score | #Neuron | BLEnDys;  CultB NormAd WVB | ComQA QNLI MRPC

(orig) 0 64.22 78.08 58.54 64.08 79.71 75.37 78.04
max 8,087 37.93 62.00 52.02 58.46 75.10 72.77 78.65
mean 8,151 59.50 75.75 58.59 64.27 79.20 74.22 78.23
norm 8,151 56.54 75.06 58.86 63/72 79.71 74.86 78/20
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Figure 33: The distribution of neurons identified with mean and norm attribution scores.

We identify culture-general neurons in gemma-3-12b-it with mean and norm scores integrated into
CULNIG-general. The evaluation results are shown in Masking mean or norm barely
affects the benchmark scores, indicating that identified neurons do not engage in model behavior.
shows that such neurons are mainly located in very shallow and very deep MLP layers,
unlike the distribution of our original method (Figure 3). Moreover, compares the dis-
tribution of attribution scores. For max, the distribution has a wider positive tail, while for mean
and norm, only a few neurons have a positive score. Actually, the number of neurons with z-score
> 2.5 1s 729 for max, but only 6 for mean and 15 for norm, suggesting that mean and norm failed to
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Figure 34: The distribution of neuron attribution scores with max, mean, and norm on gemma-3-
12b-it.

distinguish neurons that contribute to cultural understanding. We speculate that this is because the
scores of mean and norm take into account all token positions. Not all tokens necessarily encode
cultural representations, so attribution can be obscure. In contrast, max highlights salient tokens,
which may result in the best performance for identifying culture neurons.

M EXPERIMENTAL CONFIGURATION

In our experiments, we used NVIDIA H100 GPUs. To calculate all neuron attribution scores on
BLEnD,¢,;, BLEnDy and CRC,, in CULNIG, it took up to 4 hours per model with one H100
GPU (for gemma-3-27b-it, we used two H100 GPUs). For fine-tuning in Section[4.€] it took up to
20 minutes to train gemma-3-12b-it for 600 steps.

N LLM USAGE

We utilized ChatGPT to construct the CRC dataset and to generate task instructions in the evaluation
prompts. We also used ChatGPT and Gemin to proofread the paper. When implementing the
scripts for our experiments, we used GitHub Copilod%] as a coding assistant.

Bhttps://gemini.google/about/
Yhttps://github.com/features/copilot
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