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Figure 1: Top: Overview of RefWords, a vocabulary of pre-defined, learnable discrete tokens for
2D spatial representation. It comprises grid tokens anchored to the image plane and offset tokens for
iterative refinement. Bottom: RefWords support both referring inputs and outputs; multiple format

conversion such as boxes, polylines, and masks; and seamless compatibility with multi-instance and
multi-granularity. No additional components need to be trained. Best viewed in color.

ABSTRACT

Due to the inherent loss of spatial information caused by token serialization in
autoregressive frameworks, modern multimodal large language models (MLLMs)
continue to encounter significant challenges in understanding and accurately refer-
encing 2D spatial locations. In this work, we address a critical question: How can
sequential tokens create a learnable and robust mapping to continuous 2D spatial
positions? We introduce RefWords, a spatial representation that integrates a ded-
icated vocabulary of learnable tokens into MLLMs. RefWords is featured by two
key components: (1) Grid Tokens, which divide the image plane into structured
spatial anchors, and (2) Offset Tokens, which allow for detailed, iterative refine-
ment of localization predictions. By embedding spatial relationships directly into
the token representation space, RefWords enables MLLMs to perform native 2D
reasoning without altering the autoregressive architecture. Extensive experiments
demonstrate that RefWords achieves superior performance across various refer-
ring tasks in both supervised and reinforcement learning settings. This shows that
sequential tokens can effectively represent 2D space when provided with struc-
tured representations. This work presents a new paradigm for spatial reasoning in
multi-modal systems.
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1 INTRODUCTION

The impressive success of autoregressive Transformers in language modeling has established them
as the core architecture for multimodal large language models (MLLMs). This has significantly ad-
vanced applications such as multimodal dialogue systems and web agents. However, their deploy-
ment in real-world scenarios, such as autonomous driving and embodied control, is still limited due
to challenges with accurate spatial understanding and reliable location referencing. We recognize
that a key limitation affecting the spatial understanding of MLLMs is the gap between textual tokens
and continuous visual regions. This fundamental misalignment arises from the conflict between se-
quential processing of tokens and the modeling of 2D spatial information, resulting in consistent
failures during precise localization tasks.

Existing approaches address the representational gap through compromise. Coordinate-based meth-
ods represent locations as text strings; for instance, a bounding box might be represented as
(z1,y1, T2, y2). However, this method does not preserve spatial topology. For example, coordinates
that are spatially close, like "199" and "200", may be distant in the textual token space, differing
by three characters. Moreover, these representations are inefficient due to syntactic overhead, which
includes commas and brackets, and they show fragility to minor token errors. Alternative meth-
ods use specialized components, such as regional encoders or segmentation heads, to address these
issues. However, these approaches abandon the unified sequence-to-sequence paradigm, which in-
troduces architectural complexity and limits generalization across various referring tasks.

To improve the ability of MLLMs to understand and refer to 2D spatial information, this work tack-
les a fundamental issue: how can sequential tokens be designed to inherently represent and reason
about 2D space within an unchanged autoregressive architecture? The primary challenge is to create
a reliable mapping between discrete tokens and continuous 2D space—one that maintains spatial
topology while remaining compatible with autoregressive generation. As such, we propose Ref-
Words, a lexicalized 2D spatial representation that addresses this challenge through a set of learnable
spatial vocabulary. RefWords is featured by two core components:

1) Grid Tokens establish a structured spatial topology by discretizing the image plane into an n X n
uniform grid. Each grid cell is associated with a learnable token added to the model’s vocabulary,
creating a set of spatial anchors where each token is responsible for referring to objects within its
corresponding local region.

ii) Offset Tokens enable precise spatial refinement by introducing an m x m set of discrete displace-
ment vectors (KOFF _j 1>,...,<OFFg 0>,..., <OFF1 _1>) together with a <DELETE> token. Building
upon the structural regularity of grid tokens, the offset mechanism enables local adjustments to ini-
tial predictions, forming an iterative refinement process that mimics human visual localization. This
creates a self-improving localization system, where <DELETE> provides built-in rejection capabil-
ity, establishing a cohesive feedback loop for introspective refinement and error correction.

RefWords presents three key advantages compared to existing methods: First, it replaces the unre-
liable practice of using text strings to describe locations with a dedicated spatial vocabulary. This
approach embeds two-dimensional spatial relationships directly into the token representation space,
allowing for native spatial reasoning. Second, RefWords offers a unified representation for various
tasks—ranging from points to masks—entirely within a standard autoregressive framework. This
eliminates the need for task-specific modules, simplifying the architecture while maintaining gen-
eralizability and precision. Third, the integrated offset mechanism enables self-correction through
iterative refinement. This allows the model to critique and adjust its spatial predictions, a feature
lacking in existing methods where initial errors often remain uncorrected.

The main contributions are summarized as follows:

* We propose RefWords, a lexical spatial representation that embeds a vocabulary of learnable
tokens into the model, enabling native 2D spatial reasoning within unmodified autoregressive
frameworks.

* We introduce an introspective refinement mechanism that creates a self-improvement loop, re-
solving error irreversibility in existing methods.
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* We develop training methodologies for both supervised fine-tuning and reinforcement learning,
including automated data transformation and specialized reward functions, demonstrating Ref-
Words’ versatility across learning paradigms.

Extensive experiments on diverse referring benchmarks show that RefWords achieves superior per-
formance under both supervised fine-tuning and reinforcement learning. Our work demonstrates the
feasibility and advantages of modeling 2D spatial information through structured token representa-
tions, paving the way for a novel approach to spatial reasoning in multimodal systems.

2 REFERRING REPRESENTATIONS IN VISION-LANGUAGE MODELS

Enabling multimodal large language models to achieve precise spatial understanding and referring
remains challenging. Current approaches typically follow several distinct paradigms.

Coordinate-Based Representations. Methods like Shikra/Chen et al.|(2023)), GPT4Rol|/Zhang et al.
(2023) represent spatial locations as textual coordinate strings. While this approach is straightfor-
ward, it has fundamental limitations. The issue of metric-token mismatch disrupts spatial topology,
while syntactic overhead reduces token efficiency, and format brittleness compromises robustness.

Discretized Coordinate Methods. Approaches such as Pix2Seq [Chen et al.| (2021), OFA Wang
et al.| (2022a) attempt to mitigate these issues through coordinate discretization into bin tokens.
However, they still treat localization as a numerical prediction task, requiring multiple tokens per
coordinate and failing to capture the semantic nature of spatial relationships. Kosmos-2 |Peng et al.
(2023) represents a step toward spatial grounding but remains limited to bounding box tasks without
supporting the full spectrum of referring capabilities.

Specialized Architectural Components. Methods like LISA |Lai et al.|(2024) and Ferret|You et al.
(2023) incorporate task-specific modules such as regional encoders or segmentation heads. While
effective for particular tasks, these approaches abandon the unified sequence-to-sequence paradigm,
introducing architectural complexity and limiting generalization across diverse referring scenarios.

Reinforcement Learning for Localization. Recent work like Seg-Zero Liu et al.| (2025a) explores
reinforcement learning for visual grounding, often decoupling reasoning from segmentation through
prompt-based mechanisms. While achieving impressive results, these methods still encode locations
as textual coordinates rather than native spatial understanding within the language model itself.

Unlike these approaches, RefWords introduces a fundamentally different paradigm: rather than
adapting spatial information to fit existing token representations or adding specialized components,
we propose a native spatial vocabulary that operates within standard autoregressive frameworks.
This lexicalized approach maintains architectural unity while enabling precise 2D spatial reasoning
across diverse referring tasks.

3  REFERRING VLMS WITH REFWORDS

We introduce RefWords, a unified referring representation designed to endow LVLMs with the ability
to interpret and generate spatial references in a native token-based manner. The core idea is to
augment the model’s vocabulary with a set of learnable spatial tokens—Grid Tokens and Offset
Tokens—that collectively form a structured spatial lexicon. This vocabulary enables the model to
express locations through a cohesive propose-and-refine chain, seamlessly integrated into standard
autoregressive decoding.

RefWords Vocabulary. As illustrated in Figure[T] RefWords introduces a unified spatial vocabulary
comprising two complementary token types that enable native visual referencing in LVLMs. i) Grid
Tokens discretize the image into n x n anchors: Tgiq = {<grid, ;> | 4,5 € {0,...,n — 1}}. ii)
Offset Tokens enable local refinement: Toger = {<OFF5, 5,>} U {<DELETE>}, where d,,0, €
{—=1,0,1}. The complete vocabulary V = Viim U Tgia U Toiseer facilitates spatial reasoning as
precise spatial pronouns. Coordinate mappings are detailed in the appendix.

Training and Inference. We implement RefWords under two complementary training paradigms:
Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL). Figure [2| illustrates the core

3
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propose-and-refine mechanism of RefWords,
where grid tokens provide initial coarse local-
ization and offset tokens enable precise spatial
adjustments through iterative refinement. For
SFT, we focus on constructing training data that
enables the model to properly utilize the Ref-
Words vocabulary through automated annota-
tion conversion and sequence simulation. For
RL, we adapt the GRPO [Shao et al.| (2024)
framework with specialized reward functions
designed for referring expression segmentation,
guiding the model to generate spatially accu-

4 N
Q: In a desert environment, it may be difficult
to travel on foot due to the rough and uneven
surface. what type of transportation can be
used to navigate the desert more easily.

o v

<think>

First, I need to identify the type of transportation suitable for
navigating a desert environment. The image shows a group of camels,
which are commonly used in deserts for their ability to carry goods
and people over long distances. Next, I will ensure the answer
format matches the standard answer provided. Finally, T will
conclude with the standard answer format.

</think>

PO Ll

<answer>

In a desert environment, it may be difficult to travel on foot due to
the rough and uneven surface.

<box><grido 16>¢gridzg 24></box>¢seg><grids 1>¢grids o1><grids 19>¢grids 21>
<gridy 19>4grid; »>¢gridg 19>¢grid »1><gridsy 17><grids 19><gridis 19><gridis 17>

<gridig 17>¢grida 17>¢gridzs 174grides 19¢gridzs 15>¢/seg> \n
</answer>

rate and well-formed references. During in-
ference, the generated token sequences are di-
rectly converted back to spatial coordinates us-
ing mapping rules, maintaining text-based sim-
plicity while achieving precise spatial ground-
ing. The following two sections detail our ap-
proaches for SFT and RL training respectively.

<offset><bbox><OFF_1_1><OFF_-1_-1></bbox>
<seg><OFF_1_1><OFF_0_0><OFF_0_0>OFF_-1_-1><OFF_0_0>
<OFF_-1_-1><OFF_0_0>DELETE>OFF_-1_1><OFF_0_0>DELETE>
<OFF_1_1><OFF_1_1><OFF_1_1><OFF_0_0>OFF_-1_-1=<DELETE>
</seg>

</offset>

4 REFWORDS-SFT: REFWORDS
FOR SUPERVISED FINE-TUNING

Figure 2: An overview of the propose-and-refine
mechanism in RefWords with a result example.
Grid tokens provide coarse localization, while off-
set tokens enable precise adjustment.

The integration of RefWords into a SFT
paradigm provides a straightforward yet effec-
tive approach to endow MLLMS with spatial
reasoning capabilities. The core premise treats
spatial reference generation as a standard se-
quence modeling task within the autoregressive framework.

4.1 GRID TOKEN DATA CURATION

In this section, we show how existing referring-related datasets can be converted into the unified
grid token representation.

Conversion from/to Point, Bounding Boxes and Polylines. Grid tokens establish a uni-
fied representation for diverse geometric forms through straightforward computational map-
pings. Points are directly represented by their nearest grid token. Bounding boxes are en-
coded as <box><grid,, j, ><grid,, ;,><\box>, where the two tokens correspond to the
top-left and bottom-right corners identified through nearest-grid assignment. Similarly, poly-
lines—commonly used in applications such as lane detection and motion planning—are repre-
sented as ordered sequences of grid tokens approximating the curve nodes, using the format
<pl><grid;, j,>...<grid;, ;, ><\pl>.

Greedy Mask-to-Token Conversion Algorithm. Segmentation masks are a type of referring rep-
resentation that is much finer and more accurate. Unlike previous formats, its continuous nature
makes it tricky to discretize using grid tokens.

For the conversion from grid tokens to masks, we can easily implement this using off-the-shelf SAM
by using grid tokens as point prompts. The more challenging aspect is the reverse process: how to
convert masks into grid tokens? Naive approaches such as using single points, bounding boxes, or
randomly sampled points within a mask suffer from redundancy and ambiguity, particularly in the
case of complex, multiply-connected mask regions. We design a greedy algorithm to facilitate the
transformation from masks to grid tokens. Notably, this conversion requires no training and can be
viewed as a straightforward data processing step, thereby avoiding any unnecessary complexity in
our architecture.



Under review as a conference paper at ICLR 2026

SuNOL pLH LD

Munion

Figure 3: The greedy algorithm for generating the ground-truth grid tokens sequence corre-
sponding to the ground-truth mask. This conversion automatically transforms continuous masks
into discrete tokens, enabling scalable data expansion.

Specifically, we first input the image, together with the n? grid points as prompts into SAMEL pro-
duces K masks M = {Mj,...,Mg}. Each mask uniquely corresponds to an input grid, denoting
by a mapping 6 : {i}7", — {k}/,. Typically, K < n? due to the mask deduplication that occurs
in post-processing. Given a ground-truth mask M., we aim to find a minimal set of grid points so
that the union of their corresponding masks resembles M. The objective can be written as:

7 = argmin |||,
™

st. ToU(Mye, U Myy) > 7, M
k:mp=1

where w € {0, 1}"2 is a binary selection vector over grid tokens, and 7 is a quality threshold
ensuring a minimum Intersection-over-Union (IoU). Equation [I]is a constrained multi-object opti-
mization problem. For efficiency, we design a simple greedy algorithm and find it suffices for a
decent solution. The algorithm begins with m = 0, M,;0n = 0, and IoU,x = 0. We first com-
pute IoUs between Mg and all K mask proposals, and sort them in descending order. We then
iterates through all masks, for the k-th iteration, we calculate IoU™ = IoU(Mp;on U My, Mg:.).
If ToU* > ToUp.x, we update w5 < 1, Munion < Munion U My, and ToUpx < ToU™. At the
end of the iterative process, an approximately optimal 7v* can be obtained, which identifies the grid
points matched to the ground truth mask. Figure [3] provides a visualization of this greedy algo-
rithm. Finally, a mask can be represented by an unordered sequence of matched grid tokens, e.g. ,
<seg><grid,, ;;>...<grid;, ;, ><\seg>.

4.2 OFFSET-AWARE DATASET CONSTRUCTION

To generate high-quality training data for offset tokens, we develop a systematic approach that cat-
egorizes grid points based on their spatial relationship to mask boundaries. Using morphological
operations scaled to the offset step size, we define four distinct regions around each mask boundary
(see Appendix [E]for detailed formulations): i) INSIDE: Stable interior points mapped to zero offset
(<OFFg,0>) ii) RING: Boundary-proximal exterior points requiring non-zero offsets iii) FAR: Dis-
tant negatives mapped to deletion (<DELETE>) iv) HARD-DELETE: Challenging edge cases also
mapped to <DELETE>Each grid point is assigned to exactly one region through an ordered deci-
sion rule that prioritizes educationally valuable cases. Training pairs are sampled with bias toward
INSIDE and RING regions where offset corrections provide the most learning value.

This procedure yields a variable number K of grid—offset token pairs per image for supervised
training. Empirically, this simulated supervision outperforms real-generated alternatives by focusing
on boundary-proximal scenarios while remaining model-agnostic, creating a curated set of high-
value training cases that teach effective refinement strategies. Detailed algorithms are provided in

Appendix [E]

5 REFWORDS—R1: REFWORDS FOR REINFORCEMENT LEARNING

We develop a RefWords-RL framework for referring expression segmentation (RES) and compre-
hension (REC) tasks, training the model to jointly output bounding boxes and masks—a format

"We use its segment everything mode |Kirillov et a1.|(]2023[).
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Figure 4: Overview of RefWords-R1. Our framework models 2D spatial localization as a two-step
generative task. First, a Grid Token is generated to propose a coarse anchor region in the image.
Second, an Offset Token is generated to refine this proposal to a precise point.

widely adopted in existing RL-based referring methods |[Liu et al.| (2025ab). Our pipeline begins
with a cold-start model pre-trained via supervised fine-tuning on the RefWords vocabulary, provid-
ing the policy mg with a prior for generating spatially-grounded responses. Then, the training pro-
ceeds through a two-stage procedure using GRPO [Shao et al.[(2024): The first stage focuses on grid
token generation with rewards for spatial accuracy and structural validity, while the second stage
introduces offset tokens in multi-turn dialogues with rewards prioritizing precision improvement
through iterative refinement. This self-correcting mechanism significantly enhances localization
precision while maintaining conversational coherence.

5.1 REWARD DESIGN FOR STAGE 1: GRID TOKEN GENERATION

Format Reward. This reward encourages structured output with reasoning in <think> tags and
spatial predictions in <answer> tags containing <box> and <seg> tokens.

Non-repeat Reward. This reward penalizes sentence-level repetition by returning 0 if two or more
duplicate sentences appear.

Tiered IoU Reward. We employ SAM [Kirillov et al.| (2023) for automated quality assessment,
converting predicted boxes and points in <seg> into spatial prompts to generate masks: R,y =

Zi:l 1(I > t;) where t = [0.50,0.80].

Given P predictions and G ground-truth instances matched via Hungarian assignment M. Then, we
can compute the instance-level rewards for bounding boxes and semantic-critical points as follows:

Bboxes Reward. We score each match based on bbox IoU and corner points distance. The reward
is computed as Rypox = m Y pgem |LoUp g > 0.5+ 1[b, — byl /4 < 18} )

Semantic-Critical Points Reward. This reward evaluates point set quality for segmentation by
combining hit ratio (fraction of points inside ground-truth masks) and spatial distribution (normal-
ized nearest-neighbor distance). To balance point count and avoid degenerate outputs, we apply
an exponential saturation term (1 — e~"»/5) to discourage sparse predictions and a linear penalty
(0.02m,,) to prevent excessive points. More reward details are list in App.

5.2 REWARD DESIGN FOR STAGE 2: OFFSET TOKEN REFINEMENT

Format Reward. Unlike the grid stage, we found the <think> preamble provides negligible
benefit for offsets, so the formatter enforces a minimal schema: per-instance <offset> tokens
containing <box> and <seg> serializations.
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Point Refinement Reward. This reward evaluates point-level refinement quality using ternary scor-
ing 55, € —1,0,1 per point, where —1 for inside—outside movements; 41 for outside—inside
corrections, maintained inside positions, or valid deletions; 0 otherwise. A deletion is considered
valid only if the model predicts <DELETE>and no point in the 3 X 3 neighborhood of the origi-
nal position lies inside the ground truth mask. The instance-level reward averages over its points:

(k) _ 1 Py
Ryg = 5 2pe1 Sk

Box Refinement Reward. This reward measures IoU gain between initial and refined bounding
boxes, where +1 per instance if refined box IoU > initial proposal IoU, 0 otherwise.

IoU Gain Reward. This reward measures normalized IoU improvement between initial prediction
(R1) and refined prediction (R2) predictions. Let it be Raoy = 0if A < —0.30 or |A| < 0.01;
Ralou = 1if0 < A/(l — IOURI) < 0.50; Raou = 21if A/(]. — IOURl) > 0.50 or IoUg; > 0.80,
where A = IOUR2 — IOURl.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Training Details. We evaluate RefWords under two training paradigms. For SFT, we use the
ms_swift framework with LoRA (rank=64), a batch size of 16, and a learning rate of 1 X 109,
training on publicly available corpora spanning image-level reasoning, referring grounding, and seg-
mentation. For RL, we employ the GRPO algorithm via the easy—-r1 framework, initializing from
a cold-start model trained on referring segmentation data and open-source multimodal instruction
data (e.g., LLaVA-CoT-100k). Stage 1 GRPO training uses a 9K dataset containing LISA++ and re-
ferring segmentation samples, with a batch size of 16 (8 samples per step), learning rate of 1 x 1076,
and weight decay of 0.01. Stage 2 refinement training, limited to 200 steps to prevent overfitting due
to the concise nature of offset tokens. All experiments are conducted on 8x NVIDIA A800 GPUs
using the DeepSpeed engine |Rasley et al.| (2020), with a grid size of 32 and an offset size of 64.
Detailed dataset composition provided in Appendix Tab. [5]

Benchmark Settings. RefWords addresses a broad spectrum of visual referring tasks with a single,
unified architecture. We conduct quantitative evaluations on six benchmarks: (i) Referring Expres-
sion Comprehension (REC), (ii) Referring Expression Segmentation (RES), (iii) Reasoning Seg-
mentation, (iv) Referring Captioning, (v) Generalized Referring Expression Segmentation (gRES),
and (vi) Lane Polyline Detection. We also provide (vii) a driving case study that mixes polylines
(lanes), polygons (drivable area), and boxes (dynamic objects), demonstrating unified supervision
in complex scenes. Comprehensive benchmark statistics are detailed the Appendix.[G|

For SFT-based paradigm, we perform exhaustive validation across all seven settings (i)—(vii), estab-
lishing strong and consistent SFT baselines under a shared training recipe and decoding budget. (see
Appendix for tasks iv—v) For RL-based paradigm, we focus on (i)—(iii), which reflect mainstream
benchmarks for R1 paradigm referring models.

6.2 MAIN RESULTS: UNIFIED REFERRING WITH SFT

Referring Expression Comprehension. To evaluate RefWords for bounding box referring, we
compare it with state-of-the-art MLLMs on REC tasks. As shown in Tab. 2] RefWords surpasses
the Qwen2.5-VL baseline by +1.6% on average, demonstrating its effectiveness in spatial repre-
sentation. The strong performance of RefWords-SFT-grid confirms that grid tokens alone enable
high-quality localization, while the +0.4% gain of full RefWords-SFT—even on the AP@(.5 met-
ric where improvements are subtle—highlights the consistent benefit of offset refinement. These
results validate that with a suitable grid size n x n, our discrete tokenization strategy outperforms
continuous coordinate regression, despite inherent discretization errors.

Referring Expression Segmentation. We evaluate the segmentation capability of RefWords
through an efficient matching strategy that associates masks with specific grid token sequences.
This approach enables referring VLMs to achieve segmentation through a unified autoregressive
loss, eliminating the need for task-specific architectures. As shown in Tab. [2] RefWords achieves
68.2% average IoU on Qwen2.5-VL, competitive with specialized methods while maintaining ar-
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Table 1: Referring Expression Comprehension results (Acc@0.5) on the RefCOCO (+/g) datasets.

Methods refCOCO refCOCO+ refCOCOg Ave,
Val. Test-A Test-B Val. Test-A  Test-B Val. Test
—— Supervised Fine-Tuning Models ——
VisonLLM Chen et al.|(2023) 87.0  90.6 80.2 81.6 874 72.1 823 822 82.9
UNINEXT-L|Yan et al.|(2023) 914 937 88.9 83.1 879 76.2 869 875 87.0
Shikra|Chen et al.|(2023) 87.0 90.6 80.2 81.6 874 72.1 823 822 82.9
Ferret|You et al.|[(2023) 875 914 82.5 80.8 874 73.1 839 8438 83.9
InternVL2-8B|Chen et al.|(2024) 87.1 91.1 80.7 79.8 879 71.4 82.7 827 82.9
Groma|Ma et al.|(2024) 89.5 92.1 86.3 839 88.9 78.1 86.4 87.0 86.5
Qwen2.5-VL-7B Bai et al.|(2025) 90.0 925 854 842 89.1 76.9 87.2 872 86.6
RefWords-SFT-grid 904 93.8 86.9 86.3  90.8 79.4 87.1 875 87.8
RefWords-SFT 90.6 93.7 87.2 86.7 90.9 79.9 88.5 884 88.2
—— Reinforcement Learning Models —
VisionReasoner! [Wang et al.|(2024) 89.6 91.1 - 854  89.0 - 88.2 89.0 88.7
RefWords-R1-grid 90.2 929 - 86.7 89.9 - 89.2 88.7 89.6
RefWords-R1 90.9 93.6 - 87.1 90.8 - 89.9 89.2 90.3

Table 2: Referring Expression Segmentation results on the RefCOCO (+/g) datasets.

Training  ReasonSeg refCOCO refCOCO+ refCOCOg

Methods Mask D
ask DeC. val. Test Val. T-A T-B Val. T-A T-B  Val. Test

Avg.

—— Supervised Fine-Tuning Models ——

LAVT|Yang et al.|{(2022) 4 - - 727 75.8 68.8 62.1 68.4 55.1 612 62.1 -
ReLA [Liu et al.|(2023) v - - 73.8 76.5 70.2 66.0 71.0 57.7 65.0 66.0 -
CRIS|Wang et al.[(2022b) v - - 705 73.2 66.1 653 68.1 53.7 599 60.4 -
PixelLM|Ren et al.|(2024) v - - 73.0 76.5 68.2 663 71.7 583 69.3 70.5 -
LISA|Lai et al.|(2024) v 444 36.8 76.0 788 729 65.0 70.2 58.1 69.5 70.5 642
RefWords-SFT (LLaVA-1.5) X 449 369 746 784 713 66.4 72.8 59.8 68.1 69.8 643
Qwen2.5-VL-7B |Lai et al.|(2024) X 554 515 725 764 70.0 643 705 584 68.1 699 657
RefWords-SFT-grid X 58.1 544 743 779 723 65.6 719 588 68.0 709 672
RefWords-SFT X 59.2 558 761 79.2 73.2 664 723 59.9 694 709 68.2
—— Reinforcement Learning Models —
Seg-Zero Lai et al.|(2024) X 62.6 57.5 - 803 - - 762 - - 726 698
SAM-R1|Lai et al.|(2024) X 64.0 60.2 - 192 - - 747 - - 731 702
VisionReasoner|Lai et al.|(2024) X 66.3 63.6 - 793 - - 722 - - 722 70.7
RefWords-SFT-grid X 59.6 60.0 - 790 - - 759 - - 729 695
RefWords-R1 X 64.8 64.0 - 809 - - 716 - - 751 725

chitectural simplicity. Offset tokens provide critical gains in RES (+1.0% IoU over grid-only), as
precise positioning is essential for segmentation—minor errors in point locations are amplified dur-
ing mask decoding (e.g., by SAM), significantly affecting final mask quality.

Figure [5]a) shows that by using a non-finetuned SAM, we fully preserve its generalization capabil-
ity, yielding high-quality masks with fine-grained edge details. We note this can sometimes lead
to discrepancies when measured against lower-quality ground-truth annotations. Figure [3] (b)(d)
showcase the adaptability of our refinement mechanism, which applies small corrections to accu-
rate proposals (b) and large corrections to less precise ones (d). Figure[5|c) specifically showcasing
the effectiveness of our propose-then-refine approach on small targets, where precise localization is
particularly challenging.

6.3 MAIN RESULTS: REFWORDS-RL

Referring Expression Comprehension. Our RL-based approach (RefWords-R1) achieves a no-
table 90.3% average accuracy, surpassing the VisionReasoner baseline by +1.6%. However, we
observe that the performance gain over SFT on REC benchmarks is relatively limited. We attribute
this to the inherently straightforward nature of REC tasks, which often require minimal reasoning
to yield correct answers. In contrast, the integration of offset tokens demonstrates clearer advan-
tages under the RL paradigm, as the fixed and compact search space of the m? + 1 offset tokens
is better suited for RL exploration, enabling more stable and efficient policy learning compared to
unconstrained coordinate regression.

Reason and Referring Expression Segmentation. RefWords-R1 achieves state-of-the-art perfor-
mance on RES tasks (72.5% avg. IoU), demonstrating the full advantage of our token design under
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Pred. Mask with Grid Tokens Refined Mask with Offset Tokens Ground Truth Mask Pred. Mask with Grid Tokens Refined Mask with Offset Tokens Ground Truth Mask

n (h)
E (d)

Figure 5: RefWords-SFT Qualitative ResultsWe visualize the two-step localization: red dots are
grid-token proposals, blue lines show the applied offset vectors, and green dots represent the final
offset-refined points.

0, Please select the type of static object highlighted by the blue | | [ 0, Please select the traffic flow density along the red lane from | | {0, Please select the color of traffic sign/visible state of the traffic
polygon from the options {static object categories}. the provided options {traffic flow density}. light highlighted by the green bbox in from the options.

0. Please select the color of traffic sign/visible state of the traffic
light highlighted by the bbox with {<gird, >...} from the options.

0. Please select the traffic flow density along the lane with
<g|rd . 7~} from the provided options {traffic flow density}.

0,: Please select the type of static object marked by the pnlygon
with {<gird, ...} from the options {static object categories}

1,: Traffic cone. (45 Trafficcone. ) A, None.

(4 Water-safety barrier. @ 1.: Triangular traffc sign. () | [ 427 Crowded.

@ A+ Crowded. & | (4: Others @) (4, Blurred.
@ )[4 None. @ ) (4 Red. @ (42 Crear.

(a) Static Obstacle (b) Road State (b) Traffic Sign

Figure 6: Qualitative results of the proposed grid tokens in the driving scene. Challenging
examples from three referring categories demonstrate that the proposed anchor tokens offer superior
region-referencing ability compared to conventional visual referring prompts.

reward-based optimization. The grid tokens provide a robust initial localization that enables efficient
exploration, while the offset tokens allow the RL policy to learn precise boundary refinements that
are critical for high-quality segmentation. The significant +4.3% gain over the SFT baseline under-
scores that the structured, finite action space of the m? + 1 offset tokens is particularly well-suited
for RL, enabling stable and effective policy learning that directly translates into improved mask ac-
curacy and generalization. Quantitative analysis reveals that the model learns effective refinement
strategies: the <DELETE>is utilized in 12% of cases where initial proposals are fundamentally mis-
placed, preventing erroneous predictions. The offset acceptance rate serves as a reliable confidence
metric, with high-acceptance predictions showing a 0.92 correlation with actual IoU improvement.

6.4 CASE STUDY: DRIVING SCENE APPLICATION

We further evaluate grid tokens on a proprietary driving dataset containing diverse urban scenarios
with three annotation types: lanes (polylines), static obstacles (bounding boxes), and traffic signs
(key points). For lane detection, RefWords converts continuous coordinate regression into discrete
point selection, achieving +3% precision, +18% recall, and +10% F1-score over coordinate-based
methods (Table [ in Appendix [C), demonstrating particular strength in handling curved lanes. For
general scene understanding, RefWords consistently outperforms traditional visual prompts across
all tasks (Table 3] in Appendix [C), with notable gains in challenging scenarios: +12.24% for traf-
fic sign color recognition and +7.95% for static obstacle classification. Figure [f] illustrates Ref-
Words’ precision in complex driving scenarios, validating its ability to handle diverse reference
types through a unified representation without architectural modifications.

7 CONCLUSION

We present RefWords, a unified lexicalized representation that bridges the spatial understanding
gap in multimodal learning by discretizing geometric primitives into a shared vocabulary. Through
comprehensive evaluation, RefWords achieves state-of-the-art performance across diverse referring
tasks under both supervised and reinforcement learning paradigms, demonstrating that structured
tokenization enables precise spatial reasoning while maintaining architectural simplicity. Our work
establishes a new direction for native 2D understanding in autoregressive models.
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8 ETHICS STATEMENT

This research adheres to the ethical guidelines of the ICLR community. Our work focuses on devel-
oping spatial referring representations for multimodal large language models and does not involve
collection of sensitive personal information or data that may compromise individual privacy. All
datasets used in this study are publicly available referring expression benchmarks (e.g., RefCOCO,
ReasonSeg) that have been released under appropriate licenses for research purposes. We carefully
ensured compliance with dataset usage policies and did not perform any data manipulation that
would raise ethical concerns.

Potential societal impacts of our work include both positive and negative aspects. On the posi-
tive side, our method may advance spatial reasoning capabilities in assistive technologies, robotics,
and autonomous systems, potentially improving human-computer interaction. On the negative side,
enhanced spatial referring abilities could potentially be misused in surveillance applications. We
acknowledge these risks and emphasize that our work is intended solely for academic research and
beneficial applications. No human subjects, personally identifiable information, or harmful content
were involved in this study. We believe the ethical risks of this work are minimal and manageable.

9 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results, in accordance with the ICLR re-
producibility guidelines. We will release the complete code implementation of RefWords, including
both supervised fine-tuning and reinforcement learning frameworks, upon publication. All datasets
used in our experiments are publicly available referring benchmarks.

We provide comprehensive experimental details in the paper: architecture specifications (including
grid size n X n, offset range m x m, and token embedding dimensions), training hyperparameters
(learning rates, batch sizes, optimizer configurations for both SFT and RL paradigms), and reward
function formulations. Detailed descriptions of our propose-and-refine mechanism, data processing
pipelines, and evaluation protocols are documented in the methodology section and appendix.

Experiments were conducted on standard NVIDIA A800 GPUs GPU. We believe these measures
provide sufficient information for independent verification and reproduction of our results.
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Q: Please locate “The animal with
luggage on its back.”

-

Ve
Q: in an ice hockey game, what essential
equipment does a player use to hit the puck.

-

<think>

First, I need fo identify the animal with luggage on its back in the
image. I see a white animal with a pack on its back, which fits the
description. Next, I will ensure the bounding box coordinates match
the standard answer format. Finally, I will cross-check the details to

<think>

First, I need to identify the equipment used in ice hockey for hitting
the puck, which is the hockey stick. I see a long, slender object in
the player's hand. I will then ensure the bounding box coordinates
match the standard format required for the answer. Finally, T will

ensure accuracy before concluding with the standard answer format.
</think>

<answer>

the animal with luggage on its back:

<box><gridy 2>¢grid,, 25>¢/box><seg><grid; 13>¢gridy 17>¢grid ,1><grid; 23>
<grid 13>¢grid 15>¢grids 17>¢grids 19>¢grid 23><gridy 13>¢gridy 15><gridy 1>
<gridy p1><grids 13>¢gridis 15>¢gridsz 17>¢gridis ;7>¢gridz 13><gridly 1>
<gridy 13>¢/seg> \n
</answer>

provide the standard answer as specified.
</think>

<answer>

In an ice hockey game, what essential equipment does a player use to
hit the puck:

<box><gridy 20>¢gridas 30>¢/box><seg><grid; ;7><grid; 2g>¢grid; 29><grids ,7>
<grids 27>¢grid; 27>¢gridis 27>¢gridis 25><gridig 21><grid 23>¢/seg> \n
</answer>

<offset><bbox><OFF_1_1><OFF_-1_-1></bbox><seg><OFF_1_1>
<OFF_0_0>OFF_0_0>OFF_-1_-1><OFF_0_0>OFF_-1_-1>
<OFF_0_0><DELETE>OFF_-1_1><OFF_0_0><DELETE>OFF_1_1>
<OFF_1_1><OFF_1_1><OFF_0_0><OFF_-1_-1><DELETE></seg>
</offset>

<offset><bbox><OFF_-1_1><OFF_-1_-1>¢/bbox><seg><OFF_0_0>
<OFF_0_0><OFF_1_-1><OFF_1_1><OFF_1_1><OFF_0_1>
<DELETE><OFF_0_-1><OFF_1_1><OFF_0_-1></seg>

</offset>

Figure 7: Additional examples demonstrating RefWords’ propose-and-refine mechanism. Grid to-
kens establish initial spatial proposals (red dots), while offset tokens enable fine-grained adjustments
through iterative refinement (blue arrows). The cases showcase how this approach handles objects
of varying sizes and complexities, with particular effectiveness on small targets where precise local-
ization is challenging.

A USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, we used large language models (ChatGPT) solely for im-
proving writing clarity and style. All scientific content—including research ideas, methodological
design, experiments, analysis, and conclusions—was originated and conducted by the human au-
thors. The models were not used to generate any scientific insights, technical implementations, or
data interpretations. All LLM-generated text was carefully reviewed and modified by the authors to
ensure accuracy and alignment with our original research. No confidential or unpublished data were
disclosed during this process.

B MORE CASES FOR REFWORDS

Figure[7|presents additional qualitative examples illustrating the propose-and-refine workflow of Re-
fWords. The left panel demonstrates that for points clearly inside the mask, the model refrains from
unnecessary adjustments and focuses refinement efforts on boundary points. The right panel shows
an extreme case of a slender mask where RefWords still achieves accurate proposal generation and
precise correction. These cases demonstrate the versatility of our approach across different spatial
referring scenarios, highlighting its ability to maintain precise localization through the coordinated
operation of grid and offset tokens. The visualizations underscore how RefWords achieves robust
spatial understanding while operating within standard autoregressive frameworks.

13
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C DRIVING SCENE TESTING

C.1 DATASET ANNOTATIONS

We constructed a proprietary autonomous driving dataset to validate our Grid Tokens in complex
scenarios in fair comparison with state-of-the-art approaches. This dataset contains 1,988 training
samples (29,825 annotations) and 980 test samples (14,524 annotations), covering diverse urban sce-
narios like intersections, highways, and pedestrian zones. As illustrated in Figure [§[a), the dataset
categorizes driving targets into three classes: Traffic Lanes, Static Obstacles, and Traffic Signs with
hierarchical annotations for multi-granular reasoning. We then design a series of classification tasks
to evaluate the model’s ability to understand and refer to these specific regions. For example, the
model is designed to assess whether a designated lane is obstructed and to identify the type of
obstruction (e.g., construction or a dynamic object such as a vehicle that is stationary or moving
slowly). Common static objects in driving scenes include, but are not limited to, traffic cones, park-
ing poles, and warning signs. This capability enables the model to provide detailed descriptions of
static obstacles and their potential impact on driving safety. For traffic signs or lights, the model can
be trained to identify potential safety hazards, such as occlusions or damage. This allows the model
to assess whether a traffic sign is fully visible or partially obscured, which is critical to ensuring
safe navigation for autonomous driving. The color classification task is set to help determine the
sign type. Figure[8b) presents a sample from our dataset. For each sample, we classify the object
categories presented in the image according to the selection options depicted in Figure [§[a).

C.2 RESULTS AND ANALYSIS

In Section of the main paper, we present
both qualitative and quantitative experimental Taple 3: Performance comparison using Ref-
results. The findings show that grid tokens yield  Words in driving scenes.
a significant improvement over traditional vi-
sual prompt-based referring. Visualizations fur- Lane Polyline
ther reveal that grid tokens are particularly ef- Methods
fective at localizing small, distant objects, as

. . . . . Coords-based 0.49 0.47 0.48
their discrete representation aids the model in Grid Tokens 052 0.65 058
precisely understanding and pinpointing these
challenging targets.

Precision Recall F1

Table 4: Polyline grounding results in driving

scenes.
Our experiments further demonstrate that inte-

grating Chain-of-Thought (CoT) reasoning sig- ~ Category Task Baseline Grid Tokens
nificantly enhances static object classification i Classification 31.69 89.64

in driving scenarios. By providing detailed de- ~ Staticobstacle ;10 e 90.60 93.49
scriptions for each object category and guiding Blockage Status 86.07 87.25
the model to analyze the visual features of the = Road Surface Condition ~ 95.46 95.68
referring target, we achieve more accurate clas- Traffic Density 8431 e
sification. For example, we define a set of static  raffic Sign stlirle Site gé :‘2? 2;:2;

object categories along with their visual char-
acteristics (e.g., Traffic Cone: conical structure;
Traffic Warning Pole: slender cylindrical shape; Diversion Sign: features directional arrows). The
task prompt instructs the model to identify the color, texture, and shape of the object(s) marked by
the grid tokens and then select the correct category from the provided list. This CoT-guided ap-
proach significantly improves the model’s ability to localize and classify static objects accurately in
complex driving scenes.

D COORDINATE TRANSFORMATION DETAILS

Grid Token Coordinate Mapping. Given an image I € R”*W >3 and the normalized plane 2 =

[0,1]% with (u,v) = (z/W, y/H), we tile Q with an n x n grid whose cell centers are:

, o \T
cij = (Tij,yij) = (#W, %H) ; i,j€{0,...,n—1}. (2
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Traffic Lanes ] - Static Object 1:
- Blockage Status Options: Water-Filled Barrier
Normal, Static Object Obstruction; Construction; Lane Convergence; - Static Object 2:

Stop Dynamic Object Obstruction; Slow Dynamic Object Obstruction; Construction Sign
Others

- Road Surface Condition Options: Normal; Bumps and Potholes;
Water; Snow; Mud; Sand; Others

- Traffic Flow Density: None; Few; Density

Visible State: Clear
Color: Red

[ Static Obstacle ] TeTTTE -
- Static Object Options: Blockage Status Options: Construction |
Traffic Cone; Traffic Warning Post; Guiding Sign; Construction Sign; Road Surface Condition: Normal - Traffic Light 1:
Water-Filled Barrier; Triangular Sign; Crash Barrel; Parking Barrier. Traffic Flow Density: None Visible State: Clear
Traffic Signs/Light: - -
[ RELERIE A } Blockage Status Options: Construction .
- Visible State: Clear; Blurred; Obscured Road Surface Condition: Normal Visible State: Clear
- Color: Red; Yellow; Green; Blue; Others Traffic Flow Density: None
(a) Referring Classification Options (b) Annotation Example

Figure 8: Overview of driving dataset annotations information.

We introduce n? learnable grid tokens {<gridi7j>}zj;lo and extend the base vocabulary from
ViLm to Voom U {<grid, ;>}, binding each <grid, ;> to c;;. A point (z,y) is mapped to
the nearest cell via:

|, ?3)

i,7) = ar min T —Cir
0.9) B (.4 € {0 n—1)2 @) = ev

and is then tokenized as <grid, ;>.

Offset Token Refinement Process. We define the offset token set as:

Tottset = {<OFFs5, 5,> | 0u, 0y € {—1,0,1}} U {<DELETE>}.

Let m be the global offset granularity and define step sizes:

Sz = W/m, sy = H/m, S = diag(sz, sy)- 4

Given an grid <grid, ;> with center c; ;, the model emits either <OFFs, 5,> or <DELETE>. Let
d = (64,6,) ; applying an offset yields the refined coordinate:

p/ :Ci,j+S(57 0 € {_17031}27 (5)
optionally followed by clipping («’,y’) to [0, W] x [0, H].
The complete vocabulary is defined as:

V =Viim U Taria U Tofiset- (6)

E OFFSET-AWARE DATASET CONSTRUCTION DETAILS

E.1 MORPHOLOGICAL OPERATIONS AND REGION DEFINITIONS

Let M. € {0,1}#>W be the binary foreground mask. We place an n x n anchor grid and denote
the pixel center of cell (4,5) by ¢; ; = (@i ;,vi ;). The offset step sizes s, s, and scaling matrix
S are defined in equation equation 4] of the main text.

To construct pools of candidate grid tokens, we employ morphology-based bands scaled according
to the offset step size. Let K, € {0, 1}¥** represent a square structuring element with side length &
pixels. We define:
ke: I_SyJ +1, E:Mgt @’Cke’
deQLSyJ+17 D:Mgt @de7

where |- ] denotes the floor operation, while © and @ represent morphological erosion and dilation
respectively.

(7
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Algorithm 1: Constructing Offset-Supervised Conversations

Input: Referring dataset D; grid size n; offset granularity m; IoU threshold 7
Qutput: JSONL conversations containing grids and offset targets
foreach (I,M:,q) € D do
Resize I, Mg to H x W; compute s, = W/m, s, = H/m, S = diag(sz, Sy);
// grid pools via morphology (cf. equation —-equation )
Compute E, D, B; assign each grid cell (i, j) to one of INSIDE/RING/FAR/HARD-DELETE by rule
equation|10}
// Segmentation grids and offsets
Sample K grids {(ix, jx) }1—; from the pools;
for £ = 1to K do
if Mgt (ylk N xzk) = 1 then
| emit [OFF_0.0]
else if Hitsx3(ix, ji) then
pick (8u,dv) € {—1,0,1}* with My ( clip(c,, j,, + S&; [0, W—1] x [0, H—1]) ) = 1 and
emit [OFF _0y -0y ]
else
L emit <DELETE>

// Bounding-box corner offsets

Let B* <~ BBox (M. ); jitter its TL/BR to grid corners (1, j&1), (br, Jbr);

Evaluate all 81 offset pairs for the two corners (apply S-scaled displacements), obtain IoUmax;

if loUmax > 7 then
| emit the two corner offsets

else
L emit <DELETE> for both corners

// Serialization

Write a JSONL sample with image tag, user prompt ¢ and grids (user turn), and the offsets (assistant
turn);

A thin boundary band is additionally defined as:
B = dilate(grad (Mg ), Ks), (8)
where grad (M. ) is the morphological gradient and b is a small width parameter.

By construction, E C Mgy, C D: E forms a step-sized interior buffer, D creates a step-sized
exterior halo, and B captures edge uncertainty as a narrow boundary ribbon.

E.2 GRID POINT CATEGORIZATION AND SAMPLING

We define a one-step hit test to determine reachability:
Hit(i,7) £ 36 € {~1,0,1}* : My (c;; + Sd) = 1. 9)

Each grid center is assigned to exactly one category via the hierarchical decision rule:

HARD-DELETE, B(yi,ja :Ci,j) =1A Mqt (yi,ja xi,j) =0A~ Hlt(Z,j),

. INSIDE E(yij,xi ) =1
ool(i, j) = ' T ' (10)
pool(i, 7) RING, D(yij.@i,j) = 1 A Mae (yi,5, 2i,5) = 0,
FAR, otherwise.

Following pool formation Pharda — Pinside — Pring — Prar, We sample K ~ 7g grids per
image with preferential selection from Pingiqe and Pring, While maintaining representation from all
categories for robustness.

We systematically compare two supervision strategies: (i) simulated pairs, constructed directly
from ground-truth masks using the one-step offset test, and (ii) real-generated pairs, obtained by
first inferring grid tokens with an internal annotator and then deriving offsets. Empirical results
show that simulated supervision consistently outperforms the real-generated variant. Crucially, it
remains annotator-agnostic, concentrating samples on boundary-proximal and near-miss scenar-
ios—resulting in a curated set of informative hard cases while mitigating bias from generator fail-
ures.
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F REWARD DETAILS

F.1 GRID TOKENS INSTANCE-LEVEL REWARD

From each non-empty line in <answer> we extract at most one predicted instance p consisting
of an optional box Ep € R* and a point set P, = {q} C R?. Let there be P predictions and
G ground-truth (GT) instances with binary masks {M,}5_; and tight boxes {b,}5_,. We define
pairwise similarities between predicted p and ground-truth g:

1. Box IoU:
IoU,., € [0,1]. (11

2. Point-hit ratio: the fraction of predicted points that land inside M,

1

= 1 M 1]. 12
b9 = P 2 Ha€Ma} €01 (12)
qeP,
3. Normalized L; box score (optional):
b, — b1 /4
St = clip (1 _ by = by l1/4 , 0, 1) . (13)
; e,

These are combined into a similarity used only for assignment:

Sim,, , = loU, , + H, , + S% (14)

p.g’

We solve a Hungarian assignment with costs C}, ; = 3 — Sim,, 4, yielding matched pairs M C
{1..P} x {1..G}. Denote M=|M|. We use 7;, =18 px.

A. Bounding-box quality B € [0, 1]. For each (p, g) € M, define a pair score

Bp.g 2 1{IoU, 4 > 1o} + 1{3|b, — by|l1 < 7¢,} € {0,1,2}, (15)

where 7,y=0.5.Normalize by the larger set size:

1
B . 1
2max(P,G) Z brg (16)
(p,g)eM

B. Key-Point Quality T € [0, 1]. For each match (p, g) € M, we compute a key points quality
F,y, £ S(my) (wH Hp g + Wepr Spreadpyg) — A My 17)

where Hy, ; is the hit ratio, and Spread,, , rewards larger nearest-neighbor spacing normalized by
object scale:

mp

- 1 . -
dy = = minllg;—gjlb,  Spread,, = clip(dy/(psry), 0,1).  (18)
P = 77"

The multiplicative saturation S(m) = 1 — exp(—m/myg) discourages degenerate few-point outputs,
and the linear term \,,m,, penalizes overly long point lists. We aggregate across matches with

point-count weighting:
my F;
T = clip Z(;,”’Q)EM PRI 1. (19)
> max(1,my)

We set w=0.6, wepr=0.4, Ap=0.02, p,=0.30.
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Table 5: Summary of training data composition.

Training Composition

SFT Image reasoning (LLaVA-665K, 665K), referring grounding (RefCOCO/+/g, 65.8K),

Training segmentation (COCO-Stuff+ADE20K, 164K), captioning (Visual Genome, 108K), part-
level segmentation (PACO-LVIS+PASCAL-Part, 85.9K), multi-instance segmentation
(gRefCOCO, 49.8K)

Cold Start  Referring datasets (RefCOCO/+/g, 65.8K), offset training (RefWords-Off, 56.3K), in-
struction tuning (LLaVA-CoT-100K, 100K)

GRPO Single-target referring (RefCOCOg subset, 3K) + multi-instance cases (LISA++ and
Training gRefCOCO, 6.0K)

G MORE TRAINING DETAILS

We perform quantitative evaluations on the following tasks involving visual referring:

(i) Referring Expression Comprehension (REC) assesses the model’s ability to localize textual
descriptions by predicting bounding boxes for referred objects, demonstrating grid Tokens’ superi-
ority in bounding box grounding over coordinate-based methods.

(ii) Referring Captioning evaluates region understanding given referring inputs (e.g., bbox, mask),
showing that grid Tokens enable precise region referencing without the need for separately designed
region-specific architectures.

(iii) Referring Expression Segmentation (RES) extends localization to pixel-level mask predic-
tion, illustrating grid Tokens’ capability to handle complex mask representations without task-
specific design and auxiliary losses.

(vi) Generalized RES validates multi-instance resolution through grid sequences, supporting simul-
taneous references to multiple objects.

(v) Lane Polyline Detection demonstrates that ordered grid token sequences outperform coordinate
strings in representing topological structures (e.g., curved lanes).

Additionally, we deploy RefWords in driving scenarios, showcasing their practical advantages in
resolving real-world queries.

H MORE TRAINING RESULTS

Referring Captioning. We assess region-based caption generation on refCOCOg Mao et al.|(2016)
and Visual Genome Krishna et al.| (2017). RefWords achieves performance comparable to models
utilizing specialized region feature extractors (v'), confirming the efficacy of RefWords in enhanc-
ing region-aware comprehension. RefWords excels in handling scenarios with overlapping objects,
where traditional bounding boxes often fail to capture targeted regions precisely.

Table 6: Region-Level Captioning results on the refcocog and visual genome datasets.

Region Feat. refCOCOg Visual Genome
Extractor y/pTEOR CIDEr METEOR CIDEr

15.2 71.6 17.1 142.0
15.9 66.2

Model

GRIT Wu et al.|(2024)
SLR|Yu et al.|(2017)
GPT4Rol|Zhang et al.|(2023)
GLaMM Rasheed et al.|(2024)
Groma Ma et al.|(2024)
Kosmos-2 |Peng et al.|(2023)
Ours

- - 17.4 145.2
16.2 106.0 19.7 180.5
16.8 107.3 19.0 158.4
14.1 62.3 - -

14.7 107.4 17.9 153.2

xx XN

Generalized RES. RefWords naturally support multi-instance expressions. We validate the effec-
tiveness of our method for multi-instance segmentation on the gRefCOCO dataset. The results on
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Training refCOCO refCOCO+ refCOCOg

Methods M-D
“D€C val. A T-B Val. A T-B  Val. Test

Avg.

MCN |Luo et al.|(2020)
VLT Ding et al.|(2021)
LAVT|Yang et al.|(2022)
CRIS|Wang et al.|(2022b)
PixelLM Ren et al.|(2024)
LISA|Lai et al.|(2024)
Ours

62.4 642 597 50.6 55.0 447 49.2 494 544
67.5 70.5 652 563 61.0 50.1 55.0 57.7 604
727 75.8 68.8 62.1 684 551 612 62.1 658
70.5 732 66.1 653 68.1 53.7 59.9 60.4 64.7
73.0 76.5 68.2 663 71.7 583 693 705 69.2
76.0 788 729 65.0 70.2 58.1 69.5 70.5 70.1
74.6 784 71.3 664 72.8 598 68.1 69.8 70.2

L. NN N N AN

Table 7: Generalized Referring Expression Segmentation results (cIoU) on the RefCOCO (+/g)
datasets.

the gRefCOCO demonstrate the effectiveness of RefWords in multi-instance segmentation, achiev-
ing competitive performance compared to specialized methods while maintaining architectural sim-
plicity.

I ABLATION AND ANALYSIS

I.1 GRID RESOLUTION

For bounding box—based referring, the length is fixed to two corner points, but in segmentation tasks,
the grid size n must balance spatial precision and prediction complexity. Although a larger n yields
finer granularity, it also increases the number of grid tokens per mask. We investigate how n affects
segmentation performance under this trade-off.

Grid Size  gloU cloU  Average Token Length

32 x 32 68.2 65.8 8.7
16 x 16 68.9 66.2 5.2

Table 8: Performance comparison of different grid resolution.

As Table[§|shows, increasing the grid resolution from 16x16 to 32x32 paradoxically reduces gloU by
0.7% despite providing finer spatial granularity for referring expression segmentation. We identify
two key factors contributing to this observation:

First, increasing the grid size results in more grid tokens per mask instance. On RefCOCO, the
average number of grid tokens per mask increases from 5.2 to 8.7. This expanded token sequence
complicates the model’s task of accurately interpreting supervision signals, as longer sequences
introduce more opportunities for segmentation errors.

Second, the extended output sequence heightens prediction error susceptibility. For SAM-based
segmentation, errors in point token prompts have amplified consequences—even minor token mis-
placements can significantly degrade mask quality. While finer granularity appears beneficial theo-
retically, the practical trade-off involves increased complexity and error propagation that ultimately
impairs performance in precision-sensitive segmentation tasks.

To maintain consistency with bounding box tasks while avoiding redundancy, we adopt a two-stage
approach: we first generate ground-truth annotations using SAM with n=16 grid resolution, then
map these 16x16 points to the 32x32 grid space for model training. This strategy preserves the
benefits of fine-grained spatial representation while mitigating the error accumulation associated
with direct high-resolution prediction.

Our future work will consider using Hybrid approaches (e.g., adaptive grids) to resolve this problem.
I.2  IMAGE PREPROCESSING

We evaluate the impact of three common image preprocessing strategies—center cropping, resizing,
and padding—on localization performance. Among them, padding yielded the worst performance.

This is because padding introduces a gray border around the image, which reduces the resolution of
the valid content, negatively affecting the model’s ability to focus on relevant features. In contrast,
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Input Image with Oulput Tokens Predict Mask Ground Truth Mask  Input Image with Output Tokens ~Predict Mask Ground Truth Mask

nnn---

Figure 9: More qualitative results of the segmentation task. From top to bottom, the predictions
are ordered by decreasing Intersection-over-Union (IoU) scores relative to the ground truth masks.

center crop can alter the semantic content of the image. For example, in the task of identifying “the
person on the far left,” if the leftmost person is cropped out, the ground truth will no longer align
with the cropped image, leading to mismatched predictions. On the other hand, resizing the image
consistently provided the best results, maintaining the integrity of the image content while scaling
it to a uniform size suitable for processing by the model. Future work may explore any resolution
strategies to further enhance performance.

J ADDITIONAL QUALITATIVE RESULTS AND ANALYSIS

Figure 0] presents additional qualitative results showcasing the output grid tokens, prediction masks,
and their corresponding ground truth (GT) masks. The results are organized from top to bottom,
ranging from predictions that are more precise than the GT mask to some failure cases. These
visualizations highlight the following key observations:

(1) High-Quality Predictions: The model is capable of generating highly accurate grid tokens, which
align well with the GT masks. These results demonstrate the effectiveness of grid tokens in precisely
localizing and referring to objects in complex scenes.

(2) Failure Cases: The failure cases reveal that, although the model can predict grid tokens with
considerable accuracy, discrepancies between the grid token outputs and the mask generation by
SAM can lead to segmentation errors. This observation provides insight into why segmentation
scores remain lower compared to segmentation-specific methods. However, it is important to note
that segmentation itself is not a necessary form of expression for referring tasks.

For real-world applications, precise segmentation is not always required for effective referring. The
ability of the model to accurately predict grid tokens is often sufficient for tasks such as object
localization and referring expression comprehension. The qualitative results underscore the robust-
ness of grid tokens as a referring representation, even in cases where segmentation performance is
suboptimal.
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