Under review as a conference paper at ICLR 2026

Do DEPTH-GROWN MODELS OVERCOME THE CURSE
OF DEPTH? AN IN-DEPTH ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Gradually growing the depth of Transformers during training cannot only re-
duce training cost but also lead to improved reasoning performance, as shown
by MIDAS [Saunshi et al., |2024]. Thus far, however, a mechanistic understand-
ing of these gains has been missing. In this work, we establish a connection to
recent work showing that layers in the second half of non-grown, pre-layernorm
Transformers contribute much less to the final output distribution than those in the
first half—also known as the Curse of Depth [Sun et al., [2025b; (Csordas et al.,
2025]). Using depth-wise analyses, we show that growth via gradual middle stack-
ing yields more effective utilization of model depth, changes in the residual stream
structure, and formation of permutable computational blocks. In addition, we pro-
pose a lightweight modification of MIDAS that yields further improvements in
downstream reasoning benchmarks. Overall, this work highlights how gradual
growth of model depth can lead to formation of distinct computational circuits
and overcome the limited depth utilization seen in standard non-grown models.

1 INTRODUCTION

The remarkable success of large language models (LLMs) has been accompanied by immense com-
putational and energy demands. This trend of training larger and larger networks is correlated with
the increasing depth of model architectures [Kaplan et al.| 2020; [Hoffmann et al., 2022]. As Trans-
formers [Vaswani et al.l 2017] lack recurrence, their computational capacity is directly linked to
their depth. Greater depth enables more complex computations and improves capabilities like rea-
soning, compositional generalization and goal reaching [Petty et al.| 2023} [Lad et al.l [2024; [Wang
et al.l |2025]. However, this pursuit of greater scale uncovers a critical inefficiency, as training such
models is extremely resource-intensive [[Varoquaux et al., [2025].

A core issue of the current paradigm is the observation that not all layers contribute equally to
the final model’s performance [Yin et al.l 2023; Gromov et al., [2024} |L1 et al., 2024; Men et al.,
2024]. |Csordas et al. [2025] and [Sun et al.| [2025b] demonstrated the phenomenon that deeper
layers of modern pre-layer Transformers tend to be less effective than their earlier counterparts,
with many layers in the second half of the model contributing minimally to the final output — also
known as the Curse of Depth [Sun et al., 2025bf]. This observation, which highlights a kind of
over-parametrization, is supported by findings that various architectures are remarkably robust to
perturbations like swapping or skipping intermediate layers without significant performance loss
[Lad et al.| 2024} |Y1n et al.| [2023]]. The Curse of Depth represents a major resource inefficiency in
today’s paradigm. As highlighted by |Csordas et al.|[2025]], addressing these limitations is a pressing
need for the community to avoid the waste of valuable resources and to develop more efficient
architectures that can leverage deep layers effectively.

A promising solution lies in gradually grown architectures, which dynamically expand a model’s
depth or width during training. These novel training strategies, such as gradual stacking [|[Gong et al.,
2019} Reddi et al.l|2023]], enable efficient training by using layers from a smaller model to initialize
the next stage. Of particular interest is the MIDAS method [Saunshi et al., 2024]], which gradually
increases depth by inserting new layers into the middle of the model. MIDAS has been shown to not
only speed up training but also to improve performance on reasoning-heavy benchmarks, suggesting
that this growth procedure introduces a favourable inductive bias. However, a clear mechanistic
understanding of these gains has so far been missing.

Under review as a conference paper at ICLR 2026

Baseline MIDAS LIDAS
A Depth score by dataset ’g B Top-5 Overlap after Early Exit

o 0.8
E
o 0.6
K]
(9]

MATH 3%
[Te}
6021 ¢
s 0 5 10 15 20

C Early Exit Performance with Tuned Lens

ey
@ 1.00
MQUAKE 3
0 0.75
<
2 050
ke
[0]
o 0251 7 : . . .
0.00 . 0 5 10 15 20
Depth score Layer

Figure 1: Depth-grown models use their depth more. (A) Depth score [Csordés et al., 2025] on MATH
Hendrycks et al} 2021] and MQuAKE [2023]. Grown models have consistently higher depth
scores. (B) Top-5 overlap between each layer’s early-exit vocabulary and model’s final vocabulary on 20
prompts from GSM8K [2021]). Both grown models studied in this work (MIDAS, LIDAS) show
lower overlap at later layers, indicating that these later layers still add more features needed for the final predic-
tion. (C) Early-exit relative accuracy versus layer (Variable Assignment Math primitive). The baseline reaches
near its final performance early, whereas accuracy for MIDAS and LIDAS continues to rise up to the last layer.

In this work, we establish a direct connection between gradual depth growth and the “Curse of
Depth” [Sun et al, 2025b], providing a mechanistic understanding of how gradual depth growth
procedures can lead to a more effective utilization of a model’s depth. Using depth analysis tools

Belrose et al.| 2023} [Csordas et al., [2025]), we show that gradual stacking counteracts the patterns

of diminishing returns observed in non-grown models. We summarize our contributions below:

* MIDAS reproduction on different backbones. We reproduce the core MIDAS results on
SmolLM-v1 backbones (360M and 1.7B), trained with autoregressive next-token predic-
tion, confirming that gradual depth growth improves reasoning performance over a conven-
tionally trained, non-grown baseline with a 1.29x improvement in reduced training cost.

« Extensive suite of analyses showing that grown models use their depth more. We
provide an in-depth analysis of how gradual depth growth alters computation and represen-
tation in LLMs, providing mechanistic insights into these findings. We show that grown
models utilize their depth more efficiently than conventionally trained baselines. Further-
more, we demonstrate that grown models develop permutable computational blocks in the
middle of the network, with each layer within a block fulfilling a specific cyclical role.

* Novel gradual depth growth strategy LIDAS. Based on our extensive analyses, we pro-
pose LIDAS, an improved growing strategy that duplicates the layer-wise middle rather
than the block-wise middle while preserving the inductive bias of growing. Across scales,
LIDAS matches or exceeds MIDAS and conventionally trained models in reasoning bench-
marks without degrading Negative Log-Likelihood (NLL) or knowledge performance. In
depth analyses, LIDAS produces more symmetric weights and even further utilizes its
depth.

Overall, this work provides a first mechanistic understanding of how gradual depth growth can
counteract the Curse of Depth, potentially leading to more efficient and capable language models.

2 RELATED WORK

Growing Neural Networks. Early on, researchers recognized the advantages of training neural
networks one layer at a time [Hinton et al., 2006} Bengio et al., 2006] to overcome the challenges

Under review as a conference paper at ICLR 2026

of learning long-term dependencies with gradient descent [Bengio et al., |1994]. More recently, this
concept has been re-explored for large language models (LLMs) through gradual stacking [Gong
et al., 2019} |[Reddi et al., |2023; |Du et al.l 2024]] and depth up-scaling [Kim et al.| [2023]]. Alter-
native growing strategies include masked structural growth [Yao et al., [2023|], function-preserving
expansions [Gesmundo & Maile} 2023|] and learned linear growth operators [Wang et al.| [2023]].

Adaptive Architectures. A potentially complementary strategy to growing is using adaptive archi-
tectures that dynamically adjust their computational graph or parameters based on their input data
by using a larger, pre-trained network more efficiently, including mixture of experts approaches [Ja-
cobs et al.| [1991} [Shazeer et al., 2017; |(Csordas et al., [2024] or early exiting [Teerapittayanon et al.,
2016; Xin et al., |2020]. Recent approaches apply adaptive token level computations [Bae et al.,
2025], nested models for elastic inference [Devvrit et al., |2024]] or depth-wise looping [|Giannou
et al.,[2023; |Yang et al., 2023; ivon Oswald et al.| |[2025].

Depth of Neural Network Architectures. While depth is a key factor correlated with network
performance [Csordas et al., [2025]], recent research has found that deeper layers in LLMs are often
redundant and less effective. This phenomenon has been termed the Curse of Depth, which suggests
deeper layers contribute minimally to learning [Sun et al., |2025b]. Studies on models like GPT-2
show that their middle and deep layers exhibit remarkable robustness to significant perturbations,
including layer swapping and deletion [Yin et al., 2023} [Lad et al., 2024]]. This over-provisioning
has inspired various layer intervention strategies, such as skipping, swapping, or parallelization, to
improve efficiency [Lad et al., [2024; |Sun et al.| 2025a].

Reasoning. For solving challenging tasks, recent work has shifted focus to recurrence and looping
[Geiping et al.l 2025} Saunshi et al., [2025]] to improve model reasoning and leverage depth scaling
for enhanced internal “thinking” [[Chen et al.l 2025[]. These methods scale up test-time computation
to allow models to iteratively refine their answers. Complementary to these approaches, our work
focuses on identifying and leveraging computational blocks within depth-grown neural networks to
improve reasoning, rather than relying on a fixed, recurrent process.

3 Two DEPTH-GROWN TRANSFORMERS: MIDAS & LIDAS

In this section, we first formalise the growth operator on a fixed architecture class F and recover
MIDAS [Saunshi et al.| [2024] as a special case. We then introduce LIDAS, which inserts a new
middle block constructed by interleaving its neighbours to provide a stronger initialisation. Finally,
using models from the SmolLM-v1 family [Ben Allal et al.l 2024], we present empirical results on
aggregated reasoning and knowledge benchmarks, showing that both gradual-depth growing meth-
ods outperform a conventionally trained, non-grown baseline on these tasks while remaining on par
with general language-modelling performance.

3.1 THE GROWING OPERATOR

We fix a base architecture class F (width, heads, embedding size, etc. are fixed) and vary only
depth. Let fr, € F denote a model with L Transformer layers, written as an ordered list fr, =
[Co,-..,0L—1]. A (depth) growth operator G : F x N — F maps an L-layer model to an (L + b)-
layer model, such that G(f1;b) = fr1s, where b € N is the block size (the number of layers added
per growth step). Following |Saunshi et al.| [2024], we consider growth operators that insert new
layers in the centre of the model and keep the block size b fixed across growing stages.

The following strategies use layer duplication to initialize new layers within the newly inserted
block. This consists of deep copying all parameters within the layer, including their optimizer state.
The result is two initially identical copies at different depths of the model, thus allowed to diverge
as training continues.

MIDAS. When depth increases by b layers per stage, at stage n we have L = nb and can partition
fr into n contiguous blocks of size b :
fo=1Boll Bull -~ [Bual, Bj =, -, Lrayp-l- (1)

Let my, = [%] — 1 denote the middle block index. Middle gradual stacking inserts a new block B’
immediately after B,,,, , i.e.

G(fr;0) = [Boll -+ | By, | B[Bmy 41 || -+ || Bual-)

Under review as a conference paper at ICLR 2026

If B' = B, (copying the middle block), we recover MIDAS as proposed in|Saunshi et al.|[2024].

LIDAS. Since we are constrained by the block patterning in MIDAS, we propose Layer-wise mIDdle
grAdual Stacking, or LIDAS, in which we consider the middle layer m; = [%W to be the central
point of the growing operation. We then construct a new block B' = [l,,,—11/275 - - > by +[b/2]]
around the middle layer [,,,, which is inserted after the layer [,,,, |;/2|. For odd-indexed growing
stages, i.e., odd number of blocks, MIDAS and LIDAS coincide by selecting the same layers. They
differ for even-indexed growing stages, shown from a block-wise perspective in Fig. 2} Further
details can be found in Section [Al

MIDAS vs. LIDAS

N
| B Trnormer
A
|

\ Layer

4
4

Layer
i ' 1 Block

(o]

3

EA
[>v]
2|
-
i g

” —— —

Growing
step

Figure 2: Illustration of growing strategies with block size 4: MIDAS vs. LIDAS, with an even number
of existing blocks. MIDAS [Saunshi et al., 2024] simply copies B’ = B,, which is the block preceding
mid-depth. When seen from a block-wise perspective instead of a layer-wise perspective, our proposed variant
LIDAS may be interpreted as forming B’ from the two blocks surrounding the mid-depth by combining the
head of B,,+1 with the tail of B,, in reverse order. This small difference in initialization leads to significantly
improved performance as shown in Tablem

Training runs and schedules. A training run is specified by (i) the model class F, (ii) the target
depth Lgpa, (iii) the initial depth L (typically Ly = b), (iv) a fixed block size b, and (v) a stage
schedule {7, }5~ (training steps per stage). Starting from f,, after each stage s, we apply G(-; b)
to obtain fr_,, withdepth Lsy; = Ls 4+ b. We repeat until Lg = Lgpa).

s+1
3.2 EXPERIMENTS

Setup. We evaluate and compare the two growing methods, MIDAS and LIDAS, against a con-
ventionally non-grown baseline. We use the 360M and 1.7B models from the SmolLM-v1 family
[Ben Allal et al,, [2024] to probe scaling behaviour. All models are trained from scratch on the
SmolLM-Corpus, a curated mixture of educational and synthetic texts as well as mathematics and
code. Due to their favourable efficiency—performance trade-off, these models enable competitive
evaluation within a constrained computational budget. For all grown models we present, we use the
block size b = 4 and a prop-1 schedule (see Appendix Section[A]for details).

Benchmarks. We report negative log-likelihood (NLL) on a held-out validation set from the
SmolLM-Corpus. We follow the knowledge and reasoning benchmarking suite reported in Saun-
shi et al.|[2024]. The knowledge-based benchmarks are split into Open-book Q&A with provided
context (TyDiQA-GoldP, SQuADvV2, DROP, QuAC, CoQA), and Closed-book Q&A without con-
text (TriviaQA, TyDiQA-NoContext, NaturalQuestions, WebQuestions), evaluated zero-shot. We
additionally add Lambada [Paperno et al.,2016]] and HellaSwag [Zellers et al.|[2019] in their classi-
cal settings. For reasoning, we report the aggregated performance on MathWorld problems (SVAMP
[Patel et al., 2021]], ASDiv [Miao et al., 2021]], AQuA and MAWPS [Koncel-Kedziorski et al., 2016])
and reasoning primitives, which are a suite of synthetic tasks designed by [Saunshi et al.| [2024] to
specifically investigate reasoning performance on a smaller scale, both evaluated under five-shot
prompting as done previously. For the exact score breakdown, we refer to Appendix Section[C]

Results. Aggregated results are shown in Table [Consistent with the findings of [Saunshi
et al.| [2024], we observe that depth-grown models (both MIDAS and LIDAS) outperform the

Under review as a conference paper at ICLR 2026

baseline on reasoning-heavy tasks (i.e., MathWorld and Reasoning Primitives). On the remaining
benchmarks (Open-book Q&A, Closed-book Q&A, and Lambada), we observe little deviation
from the baseline model with LIDAS being slightly superior to MIDAS. In addition, we observe a
1.29x improvement in reduced training cost for depth-grown models over a conventionally trained,
non-grown baseline Table [/| In summary, our results reproduce the observation of |Saunshi et al.
[2024]. MIDAS outperforms a conventionally trained baseline on reasoning-heavy tasks, and our
proposed method LIDAS further strengthens this effect without degrading NLL at 1.7B. To stabilise
results on MathWorld, we additionally report the performance of models which are finetuned on the
OpenWebMath dataset. While the relative order stays the same, we observe for the 360M model
that the improvements for the grown models become more pronounced. However, the reasons
behind these gains remain unclear. Therefore, we turn next to a detailed analysis of the 1.7B models,
aiming to characterize how MIDAS and LIDAS may mechanistically differ from the baseline and
how this could lead to improved performance in reasoning tasks.

Standard cooldown Math cooldown
\

Open-book Closed-book
Holdout Set Q&A Q&A Lambada Hellaswag | MathWorld Primitives | MathWorld Primitives
(NLL }) (F11) (F1 1) (Acc 1) (Acc 1) (Acc 1) (Acc 1) (Acc 1) (Acc 1)
s Baseline | 2.18 | 2290 14.20 | 43.35 3997 | 3.69 30.06 | 8.10 33.12
§ MIDAS 2.18 24.57 13.53 43.31 40.36 4.39 28.18 13.43 35.14
LIDAS 2.16 26.63 14.08 44.03 40.58 4.36 31.20 12.30 50.36
o Baseline | 1.96 | 2957 18.61 | 50.05 4628 | 13.75 3486 | 2328 42.77
= MIDAS 1.97 28.80 18.50 50.81 46.19 16.07 40.74 24.60 53.00
LIDAS 1.96 29.84 19.08 51.41 46.32 18.59 47.39 24.01 55.57

Table 1: Performance comparison of a standard transformer baseline and the two grown models MIDAS
and LIDAS. We reproduce the findings of [Saunshi et al.|[2024] and observe that grown models match the
baseline in training objective (NLL), standard Q& A benchmarks as well as Lambada. Grown models, especially
LIDAS, outperform the non-grown baseline on reasoning-heavy tasks such as MathWorld and Primitives.

4 DEPTH ANALYSIS

Motivated by the confirmed observations that gradually depth-grown Transformers seem to yield
increased reasoning abilities, we investigate here how gradual depth growth reshapes computation
across depth in fully trained models. To this end, we first examine early-exiting performance for
every layer with TunedLens [Belrose et al.,|2023] to test how much performance degrades when we
exit early. Next, we run various interventions on the models, such as swapping contiguous blocks of
layers, to test whether grown models form permutable circuits, and how sensitive each method is to
late-layer ablations. We then analyse the layer-wise roles within blocks by measuring the similarity
between each layer’s contribution and the residual stream. Finally, we compare MIDAS with LIDAS
on weight symmetry and contribution per attention matrix, connecting it to benchmark results of the
previous section. All analyses are conducted on the 1.7B variant described in Table[T]and analogous
results for the 360M models are reported in Section[E] A detailed description of the setups for each
analysis can be found in Appendix Section B} For notation, we follow (Csordas et al.| [2025]: ;41
denotes the residual stream after transformer layer /;, a; the layer’s attention output and m; the
output of the MLP.

4.1 DOES DEPTH GROWTH LEAD TO DIFFERENT DEPTH UTILIZATION?

Hypothesis. Gradual depth-grown Transformers (with MIDAS and LIDAS) utilize model
depth more efficiently than conventionally trained, non-grown Transformer baselines.

Evidence. Skipping late layers degrades prediction accuracy substantially more for MIDAS
and LIDAS than for the baseline, which coincides with an increased depth score.

Experiments. To investigate the contribution of deeper layers, we evaluate intermediate represen-
tations via a Tuned Lens [Belrose et al.,[2023]]. Concretely, for each layer /;, we train a small affine
adapter on a split of FineWeb-Edu [Penedo et al.| |2024]] that maps that layer’s residual output to
the hidden representation consumed by the final normalization; we then obtain logits by applying

Under review as a conference paper at ICLR 2026

the model’s final normalization and unembedding [Belrose et al.| [2023]], enabling early-exit at ev-
ery deptlﬂ Subsequently, we quantify depth utilization by the top-5 vocabulary overlap of their
predicted vocabularies (Fig. [IB), and early-exiting accuracy on the reasoning primitives (Fig. [I[C).
Finally, we compute the depth score [[Csordas et al.,[2025]] to summarize where computation occurs
along the network by estimating each layer’s influence on future tokens (Fig.[TJA). For further details,
we refer to Appendix Section [B] and for results on the 360M model, to Section [E.T]

Interpretation. For MIDAS and LIDAS, Fig. shows that early-exit predictions differ substan-
tially more from the final logits than in the baseline (lower top-5 overlap), indicating that later layers
in the grown models add features to the residual stream that are required for the final prediction. In
Fig. [I[C, the baseline reaches its final performance by Layer 18, whereas accuracy for both grown
models continues to improve up to the last layer. Lastly, Fig. reports consistently higher depth
scores for the grown models across datasets, most notably on math tasks, showing that more com-
putation is concentrated in later layers.

4.2 DOES DEPTH GROWTH FORM PERMUTABLE COMPUTATIONAL BLOCKS?

Hypothesis. Non-grown models depend on their specific layer ordering. Depth-grown mod-
els, on the other hand, develop computational blocks that are robust to block-level ordering
interventions.

Evidence. Reduced performance degradation under multi-layer perturbations indicates lower
layer order dependence and greater robustness of MIDAS and LIDAS.

Experiments. To evaluate layer functional independence, we swap contiguous sub-blocks of sizes
{1,2,4, 8} and measure the effect on downstream performance. While these experiments can indi-
cate robustness, we can also observe how commutative sub-blocks are, as the local order of layers is
preserved when swapping larger blocks.

Interpretation. Swapping just single layers does not affect the performance of the baseline and
grown models much (Fig.[3)), except for the input layers. This observation aligns with findings from
Lad et al|[2024]. If we increase the number of consecutive layers that we swap, the accuracy of
the baseline quickly starts to deteriorate. In contrast, grown models allow swapping blocks of up
to size four with a relatively small decrease in performance, and we observe even less performance
degradation when swapping blocks, indicating less order dependence of these blocks. The grown
models even reach non-random performance when swapping middle 8-layer blocks compared to the
baseline, whose performance drops to random. In general, the degradation is lower on the language-
modelling task (Fig. [3]top row) compared to the reasoning primitive (bottom row). Taken together,
these effects are most consistent with the emergence of computational blocks whose internal order
matters less than the presence of the block as a unit, matching the qualitative behaviour in Fig. [3]

4.3 DOES GRADUALLY GROWING FORM LAYER-WISE PATTERNS?

Hypothesis. The block-wise growing introduces a cyclical pattern in the architecture such
that each layer within a block fulfils a certain role.

Evidence. The contribution of the attention sublayer, in norm and cosine similarity, repeats
in each block. When performing causal interventions, the effect for each layer within a block
also repeats. Reversing the order of layers within and especially across blocks destroys the
performance of grown models more than swapping, where local order is more preserved.

Experiments. Using the tools of [Csordas et al.| [2025]], we compute for each (sub)layer its co-
sine similarity to the residual stream (W) and its mean relative contribution HZH We then
intervene by skipping a transformer layer or sublayer and track the relative changes in downstream

computations under two regimes: (i) propagated: zeroing that component’s contribution to the resid-
ual stream and forwarding this change to all downstream layers; and (ii) local: removing a layer’s

"Note that this should result in more accurate predictions than naively applying the unembedding matrix at
every layer (LogitLens [gebraist, 2020])), as done in|Csordas et al.|[2025].

Under review as a conference paper at ICLR 2026

—e— len=1 len=2 —o— len=4 —e— |en=8 —— original ~ ----- random
Baseline MIDAS

0.5 o fw 0.5 : wv

5 0.4 0.4 4 W—. \‘s-\
[€) ! b
X fo3q 031
3 H

% g 0.2 1 0.2
|

0.1 0.1

0.0 4= pran : : : 0.014 : : :
-
QC) ~ \/5. X —

0.6 0.6 4 7
£ S \'\/ \f \
c
o 0.5 asa_ | 05 .
a ¢

.44 44
< g 0 0 b
% < 0.3 0.3 >
© | » Po-g
= 0.2 0.2 T8¢
(U T T T T T T T T
= 0 5 10 15 20 0 5 10 15 20

Swapping starts at

Swapping starts at

Figure 3: Effect of swapping blocks of layers on Lambada (top row) and the reasoning primitive Variable
Assignment Math (bottom row). MIDAS is more robust to interventions for larger blocks in the middle of
the network: the degradation in performance for MIDAS is much smaller for swapping blocks of larger sizes
{2, 4,8} compared to the baseline, especially for Lambada. In Fig. Elwe present results including LIDAS

—e— reverse 4 —— original ----- random
= Baseline MIDAS
Q
E 0.6 1
c
o 30.5< —A q)
g ¢ avd
5 0.4+ q
<8 \\/4
gL AA ‘ \
Q
©
= 02 T-o B = S & ')
© T T T T T T T T T
> 0 5 10 15 20 0 5 10 15 20

Reversing starts at

Reversing starts at

Figure 4: Effect of reversing the order of four consecutive layers on reasoning primitive. Reversing
the order of layers within a block (first layer of each grown block as vertical grey lines; right figure) of size
4 degrades the performance for grown models more than swapping the same number of layers (len = 2 in
Fig. B). The baseline is more robust to reversing the order of the later layers, while MIDAS is especially
sensitive to reversing the order across grown blocks, i.e., the last two and first two layers of consecutive blocks.
Starting to reverse at these positions, which correspond to layer index 6, 10, and 14, always results in a drop in
performance. Fig. E shows results including LIDAS and an additional dataset

contribution from all subsequent inputs separately to isolate pairwise source—target dependencies.
Finally, we assess the effect of reversing the order of four consecutive layers and comparing the out-
come to results from Fig.[3] A detailed explanation of the interventions can be found in Section[B]

Interpretation. Grown models exhibit a highly cyclical pattern in the middle, where the effect is
especially visible for the attention sublayer (Fig. [5). The mean relative contribution of the attention
sublayer always grows from its lowest point at the first layer of every block to its highest point at the
last layer of the block. The highest spike across depth is always at the final layer of the last block in
the middle of the network, i.e., the overall second-to-last block. For MIDAS the cosine similarity of
the attention sublayers in the middle, similarly to their contributions, always rises from around zero,
adding orthogonal features, or slightly negative, weakening or erasing features, to the highest but
only slightly positive cosine similarity at the end of each block. The pattern for LIDAS is a little bit
less clear, but the cosine similarity never drops as low as MIDAS, potentially adding features from
subspaces that are better aligned with the residual stream across the whole block.

Under review as a conference paper at ICLR 2026

Turning towards interventions, by skipping a layer, the most pronounced disruption to future com-
putations arises when skipping the second layer of each block (aside from the earliest layers), with
often the biggest observed relative change in the immediate layer after it, i.e., in each block’s third
layer (Fig. [6h). We hypothesize that the second layer prepares features for future computations.
If we measure the relative change on the following layers directly, we notice a clear and striking
pattern (Fig. [6b). For future computations, the third layer of every block directly depends on the
features of almost all previous layers, potentially performing an aggregating operation. The direct
change of removing the output of a previous layer is less on deeper blocks that can depend on more
inputs simultaneously, i.e., visually a fading pattern. The last block mostly depends on the final
aggregation and strengthening of relevant features performed by the second-to-last block.

Reversing the order of four consecutive layers (Fig.) reduces performance in the grown model
far more than swapping pairs of two or four layers (len = 2,4 in Fig. [8), where local order is more
preserved. The baseline is comparatively robust to reversals involving later layers, which aligns with
the hypothesis from (Csordas et al.| [2025] that later layers in pre-layernorm transformers refine the
current output distribution with less order dependence. By contrast, the grown model is most brittle
when the reversal straddles block boundaries (last two layers and first two layers of consecutive
blocks), showcasing the order of layers within a block matters.

10 Baseline MIDAS 100
- —— Mean Relative Contribution L 075
% 0.8 1 == Cosine Similarity
3 . ———— = I 0.50
= . T A g

] LR s ety F025 &

8 0.6 \\’//’\\" \\\\’,/ ~7 £
° \ ’ ®
2 \ ,/ \i, 0.00 ﬁ
[4 c
S04 L -025 5
= 3
g B SN o
$ 02
= =075

0.0 : : ; — -1.00

0 5 10 15 20

Attention Layer

Figure 5: Attention layer contributions to the residual stream. Grown models exhibit a highly cyclical pat-
tern in the centre of the network. The mean relative contribution of the attention sublayer to the residual stream
increases throughout a block (whose first layer is denoted by a vertical line) and has its largest contribution
in the last layer of each block. While the cosine similarity between the output of each attention layer and the
residual stream is relatively flat for the baseline, the pattern for the grown models again depends on the block
size and the relative position of the layers within each block. Notably in MIDAS, the first attention sublayer
of a block has a very low cosine similarity to the residual stream, while for LIDAS the attention contributions
align more with the residual stream.

Baseline MIDAS Baseline MIDAS

0 1.0 0 1.0
o 5 | o 088 o - 5 08 &
v [[v [[
g g 2 g 3 2
S10 £ 065 & S0 065
]] P] m
[fo > [— >
21s 2 043 2 21s 043
© © o © o
— — 022 - — 022

20 20
0.0 0.0
0 10 20 10 20 10 20 10 20
Effect @ layer Effect @ layer Effect @ layer Effect @ layer
(a) Propagated Effect (b) Local Effect

Figure 6: Baseline vs. MIDAS. Effect of skipping a layer on downstream layer contributions for future
tokens. (a) MIDAS relies more on later layers than the baseline for future computations. Especially skipping
the second layer of each mid-block strongly impacts the immediately following layer. (b) For MIDAS, the third
layer of every block in the middle directly depends on all previous computations. We refer to Fig. @ and
Fig. [[3|for results including LIDAS.

Under review as a conference paper at ICLR 2026

Hypothesis. Compared to MIDAS, LIDAS produces more symmetric weights and utilises
its depth more effectively, making better use of central layers towards better empirical per-
formance.

Evidence. In LIDAS, inter-block cosine similarities are higher and more symmetric about
the centre. Skipping the first attention sublayer in the middle blocks causes larger relative
changes in the hidden state of the token under consideration.

Experiments. To measure the weight similarity of blocks for the grown model, we concatenate all
weights from the feedforward layers of a block and calculate the cosine similarity to other blocks.
Similarly to before, we skip layers and measure the relative change for all later layers, but now on
all tokens (including the current token).

Interpretation. In LIDAS we observe a block-similarity structure that is symmetric about the
model’s centre, whereas in MIDAS the central block is more similar to the earlier (upper) blocks
than to the later (lower) ones, yielding an asymmetric pattern (Fig. [7). This difference follows from
the growth rule: LIDAS duplicates the exact layer-wise middle, while MIDAS is constrained to the
nearest block centre. With an even number of blocks, the MIDAS choice necessarily biases similarity
toward one side.

Additionally, this growing strategy leads to a higher utilization of the first attention sublayer of every
block (Fig. [7b), making it more aligned with the residual stream and having a bigger effect on the
current computations of future layers.

MIDAS LIDAS Baseline MIDAS LIDAS 1.0
0 0 0
0 0 0.7 08
06 g 5] o 5 o 5)
! ! g g g 5
05 o o a 06 c
2 2 < 10 B 10 g 10 I
=3 @3 Qs Qs 215 045
02 § 8 8 3
4 4 o
0.2 20 20 20 0.2
5 5
) 3 A 5 3 A 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0.0
Block Block Effect @ layer Effect @ layer Effect @ layer
(a) Block similarity (b) Effect of skipping attention sublayer

Figure 7: Baseline vs. MIDAS vs. LIDAS. (a) The weight similarity, measured by cosine similarity, between
feedforward layers per block is more symmetric for LIDAS compared to MIDAS. We omit the baseline as its
weight similarities are all close to zero. (b) Skipping the first attention sublayer of every block in the centre of
the network has a lower effect on the following layers’ current computations in MIDAS compared to LIDAS.

5 DISCUSSION

This work systematically investigates how gradual depth growth in large language models affects
their computational dynamics, providing a mechanistic explanation for their improved reasoning
performance. Our findings confirm that gradually grown models, outperform conventionally trained
baselines on reasoning tasks and in training cost. Through detailed analysis, we demonstrate that this
performance is tied to a more effective utilization of model depth. Unlike non-grown models that
suffer from a Curse of Depth [Sun et al., 2025b; (Csordas et al., 2025]], our grown models continue
to perform novel computations in their later layers and exhibit a higher overall depth score. We
show that this is enabled by the formation of permutable computational blocks in the middle of
the network, with each layer within these blocks serving a distinct cyclical role. The superiority
of our proposed lightweight and novel stacking variant LIDAS is attributed to its ability to create a
more symmetric weight structure and more effective attention layers, leading to improved robustness
to interventions. In conclusion, our research provides critical insights into the internal workings
of depth-grown models, confirming that these training procedures can overcome key architectural
inefficiencies and pave the way for more efficient and capable model development.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We conduct all training and experiments using publicly available code and datasets. Our training
setup builds on the open-source nanot ronE] library; Table [2|lists all model and optimizer hyper-
parameters, and Section [A] provides the exact SmolLM training mixture with links to each public
dataset to fully reconstruct the training corpus. Additionally, we provide a detailed description of
the growing operators in Section and further detail in Section [Al To reproduce our analyses,
Section [B] details the evaluation protocols and the open-source libraries we use, along with any
task-specific settings.

REFERENCES

Sangmin Bae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha, Tal Schuster, Adam Fisch, Hrayr
Harutyunyan, Ziwei Ji, Aaron Courville, et al. Mixture-of-recursions: Learning dynamic recur-
sive depths for adaptive token-level computation. arXiv preprint arXiv:2507.10524, 2025.

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned
lens. arXiv preprint arXiv:2303.08112, 2023.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von
Werra. SmolLM-corpus, July 2024. URL https://huggingface.co/datasets/
HuggingFaceTB/smollm-corpus.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157-166, 1994,

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training
of deep networks. Advances in neural information processing systems, 19, 2006.

Yilong Chen, Junyuan Shang, Zhenyu Zhang, Yanxi Xie, Jiawei Sheng, Tingwen Liu, Shuohuan
Wang, Yu Sun, Hua Wu, and Haifeng Wang. Inner thinking transformer: Leveraging dynamic
depth scaling to foster adaptive internal thinking. arXiv preprint arXiv:2502.13842, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

Rébert Csordés, Kazuki Irie, Jiirgen Schmidhuber, Christopher Potts, and Christopher D Manning.
MOEUT: Mixture-of-experts universal transformers. Advances in Neural Information Processing
Systems, 37:28589-28614, 2024.

Rébert Csordas, Christopher D Manning, and Christopher Potts. Do language models use their depth
efficiently? arXiv preprint arXiv:2505.13898, 2025.

Fnu Devvrit, Sneha Kudugunta, Aditya Kusupati, Tim Dettmers, Kaifeng Chen, Inderjit Dhillon, Yu-
lia Tsvetkov, Hanna Hajishirzi, Sham Kakade, Ali Farhadi, et al. Matformer: Nested transformer
for elastic inference. Advances in Neural Information Processing Systems, 37:140535-140564,
2024.

Wenyu Du, Tongxu Luo, Zihan Qiu, Zeyu Huang, Yikang Shen, Reynold Cheng, Yike Guo, and Jie
Fu. Stacking your transformers: A closer look at model growth for efficient LLM pre-training.
arXiv preprint arXiv:2405.15319, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

https://github.com/huggingface/nanotron

10

https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://zenodo.org/records/12608602
https://github.com/huggingface/nanotron

Under review as a conference paper at ICLR 2026

gebraist, 2020. URL lesswrong.com/posts/AcKRB8wDpdaN6veru/
interpreting-gpt-the-logit-1lens.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
latent reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

Andrea Gesmundo and Kaitlin Maile. Composable function-preserving expansions for transformer
architectures. arXiv preprint arXiv:2308.06103, 2023.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference
on Machine Learning, pp. 11398-11442. PMLR, 2023.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient training of
BERT by progressively stacking. In International conference on machine learning, pp. 2337-
2346. PMLR, 2019.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset, 2021.

Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief
nets. Neural computation, 18(7):1527-1554, 2006.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79-87, 1991.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Dahyun Kim, Chanjun Park, Sanghoon Kim, Wonsung Lee, Wonho Song, Yunsu Kim, Hyeonwoo
Kim, Yungi Kim, Hyeonju Lee, Jihoo Kim, et al. Solar 10.7 b: Scaling large language models
with simple yet effective depth up-scaling. arXiv preprint arXiv:2312.15166, 2023.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi.
MAWPS: A math word problem repository. In Proceedings of the 2016 conference of the north
american chapter of the association for computational linguistics: human language technologies,
pp. 1152-1157, 2016.

Vedang Lad, Jin Hwa Lee, Wes Gurnee, and Max Tegmark. The remarkable robustness of LLMs:
Stages of inference? arXiv preprint arXiv:2406.19384, 2024.

Pengxiang Li, Lu Yin, and Shiwei Liu. Mix-LN: Unleashing the power of deeper layers by combin-
ing pre-LN and post-LN. arXiv preprint arXiv:2412.13795, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2019.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. ShortGPT: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing
english math word problem solvers. arXiv preprint arXiv:2106.15772, 2021.

11

lesswrong.com/posts/AcKRB8wDpdaN6v6ru/ interpreting-gpt-the-logit-lens
lesswrong.com/posts/AcKRB8wDpdaN6v6ru/ interpreting-gpt-the-logit-lens

Under review as a conference paper at ICLR 2026

Denis Paperno, German Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Ferndndez. The LAMBADA dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. OpenWebMath: An open
dataset of high-quality mathematical web text. arXiv preprint arXiv:2310.06786, 2023.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple
math word problems? arXiv preprint arXiv:2103.07191, 2021.

Guilherme Penedo, Hynek Kydlicek, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The FineWeb datasets: Decanting the web for the finest text data
at scale. Advances in Neural Information Processing Systems, 37:30811-30849, 2024.

Jackson Petty, Sjoerd van Steenkiste, Ishita Dasgupta, Fei Sha, Dan Garrette, and Tal Linzen. The
impact of depth and width on transformer language model generalization. CoRR, 2023.

Sashank J Reddi, Sobhan Miryoosefi, Stefani Karp, Shankar Krishnan, Satyen Kale, Seungyeon
Kim, and Sanjiv Kumar. Efficient training of language models using few-shot learning. In Inter-
national Conference on Machine Learning, pp. 14553—-14568. PMLR, 2023.

Nikunj Saunshi, Stefani Karp, Shankar Krishnan, Sobhan Miryoosefi, Sashank Jakkam Reddi, and
Sanjiv Kumar. On the inductive bias of stacking towards improving reasoning. Advances in
Neural Information Processing Systems, 37:71437-71464, 2024.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning
with latent thoughts: On the power of looped transformers. arXiv preprint arXiv:2502.17416,
2025.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Qi Sun, Marc Pickett, Aakash Kumar Nain, and Llion Jones. Transformer layers as painters. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 25219-25227,
2025a.

Wenfang Sun, Xinyuan Song, Pengxiang Li, Lu Yin, Yefeng Zheng, and Shiwei Liu. The curse of
depth in large language models. arXiv preprint arXiv:2502.05795, 2025b.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference
via early exiting from deep neural networks. In 2016 23rd international conference on pattern
recognition (ICPR), pp. 2464-2469. IEEE, 2016.

Gaél Varoquaux, Sasha Luccioni, and Meredith Whittaker. Hype, sustainability, and the price of
the bigger-is-better paradigm in Al. In Proceedings of the 2025 ACM Conference on Fairness,
Accountability, and Transparency, pp. 61-75, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Johannes von Oswald, Nino Scherrer, Seijin Kobayashi, Luca Versari, Songlin Yang, Maximil-
ian Schlegel, Kaitlin Maile, Yanick Schimpf, Oliver Sieberling, Alexander Meulemans, Rif A.
Saurous, Guillaume Lajoie, Charlotte Frenkel, Razvan Pascanu, Blaise Agiiera y Arcas, and Jodo
Sacramento. Mesanet: Sequence modeling by locally optimal test-time training, 2025. URL
https://arxiv.org/abs/2506.05233!

Kevin Wang, Ishaan Javali, Michal. Bortkiewicz, Benjamin Eysenbach, et al. 1000 layer networks

for self-supervised RL: Scaling depth can enable new goal-reaching capabilities. arXiv preprint
arXiv:2503.14858, 2025.

12

https://arxiv.org/abs/2506.05233

Under review as a conference paper at ICLR 2026

Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky,
Rogerio Feris, David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learning to grow pretrained
models for efficient transformer training. arXiv preprint arXiv:2303.00980, 2023.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. DeeBERT: Dynamic early exiting
for accelerating bert inference. arXiv preprint arXiv:2004.12993, 2020.

Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. Looped transformers are
better at learning learning algorithms. arXiv preprint arXiv:2311.12424, 2023.

Yiqun Yao, Zheng Zhang, Jing Li, and Yequan Wang. Masked structural growth for 2x faster lan-
guage model pre-training. arXiv preprint arXiv:2305.02869, 2023.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Jaiswal,
Mykola Pechenizkiy, Yi Liang, et al. Outlier weighed layerwise sparsity (OWL): A missing secret
sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Zexuan Zhong, Zhengxuan Wu, Christopher D. Manning, Christopher Potts, and Danqgi Chen.
MQuAKE: Assessing knowledge editing in language models via multi-hop questions, 2023.

13

Under review as a conference paper at ICLR 2026

DISCLOSURE OF LLM USAGE

Large language models were used for language editing, such as enhancing clarity, precision, and
flow, and for minor aesthetic adjustments to figures to improve interpretability.

A SMOLLM: ARCHITECTURE & DATA

Data. For all SmolLM models we trained, we followed the SmolLM-v1 data mixture from|Ben Al-
Ial et al.|[2024].

* FineWeb-Edu (dedup) [Ben Allal et al., 2024]: Educational slice of FineWeb selected
with a Llama3-70B—trained “educational quality” classifier. We use the deduplicated subset
(~220B tokens) included in the SmolLM-Corpus.

* Open-Web_Math [Paster et al., 2023]: High-quality mathematical web pages extracted
from Common Crawl with math-aware parsing, quality filtering, and deduplication
(=14.7B tokens). Used to enrich math/reasoning coverage.

* Cosmopedia-v2 [Ben Allal et al., |2024]: Synthetic textbooks, stories, and code generated
with Mixtral-8x7B using curated topic lists and seed pages. v2 totals ~39M documents
(~28B tokens of textbooks/stories).

* Python-Edu [Ben Allal et al.| [2024]]: Educational Python subset built by training an “edu-
cational code” classifier on annotated samples from The Stack and applying it to the Star-
Coder training corpus. It contains of ~4B tokens with strict quality thresholding.

Given a fixed training-token budget, we then sample the corpus by proportion—70% FineWeb-Edu
(deduplicated), 15% Cosmopedia-v2, 9% Python-Edu, 6% OpenWebMath. Note that this leads to
significant upsampling of the smaller datasets like Python-Edu and OpenWebMath.

Model architecture. Both sizes follow a LLaMA-style, decoder-only Transformer with RM-
SNorm, SwiGLU MLPs, and RoPE positional embeddings (tied input/output embeddings). The
360M variant uses GQA.

SmolLM-1.7B SmolLM-360M

Layers 24 32
Model width 2048 960
FFN dimension 8192 2560
Attention heads 32 15

KV heads 32 (MHA) 5 (GQA)
Norm RMSNorm RMSNorm
MLP activation SwiGLU SwiGLU
Batch size 2M 1M
Learning rate 7max 0.0005 0.003
Weight decay 0.01 0.01
Positional embeddings RoPE (/=10,000) RoPE (#=100,000)
Context length (pretrain) 2048 2048
Tokenizer cosmo?2 EI cosmo?2
Tied embeddings Yes Yes

Table 2: Hyperparameters for both SmolLM models

Training. We train both sizes for 200k iterations. This corresponds to roughly 200B seen tokens
for the 360M model and 400B for the 1.7B model. We use a trapezoidal learning-rate schedule
with a linear warmup for the first 2000 steps up to the peak rate 7., a constant plateau until step
170000, and a square root decay over the final 30000 steps. We optimise with AdamW [Loshchilov
& Hutter, 2019]] and apply global gradient clipping at 1.0 for all runs.

14

Under review as a conference paper at ICLR 2026

Training with the Growing operator For SmolLM with gradual depth growth all training hyper-
parameters match the baseline in Table[2] We use a fixed block size b = 4 and insert a new middle
block after each stage, instantiating either MIDAS (duplicate the middle stage block) or LIDAS (du-
plicate the layer-wise middle; see Section[3.1]), while keeping width and attention heads constant. At
every growth step we deep-copy all layer parameters and their optimizer state so duplicated layers
start identically (same AdamW moments) and then diverge with continued training; embeddings and
the final head are copied unchanged. The number of growth stages is defined by k = Lyn, /b and let
T be the total training steps. We allocate per-stage budgets using the PROP-« schedule of Saunshi
et al.|[2024]:
T, = ———T fori=1,....k,
> =1

and use PROP-1 (a=1) in our experiments. In practice, we round 7; to integers (largest-remainder
to keep >, 7; = T') and maintain a single continuous learning-rate schedule across stages (no LR
reset; the scheduler’s global step carries over). We set 7' = 170,000 so all models reach their final
depth before they enter the cooldown phase.

Compute requirements. We trained all models on NVIDIA A100 GPUs (40 gb). The large (static
baseline) model ran on 128 GPUs for 4.5 days, and the small (static baseline) model ran on 64 GPUs
for 1.5 days.

B EXPERIMENTAL SETUP

Codebases and provenance. Depth analyses and interventions follow the methodology of
Csordas et al.| [2025], extended to block-wise skip/swap over consecutive layers (block sizes
{1,2,4,8}) and further extended to permuting consecutive layers in arbitrary order. Tuned Lens
experiments follow Belrose et al.|[2023]]. For reproducibility, we adhere to the default configura-
tions and the fixed GSM8K prompt subset used in the original depth-analysis setup.

Reproducibility defaults. We adopt the default configuration from the original depth-analysis
repository of (Csordas et al.| [2025] for reproducibility. Specifically, we use the same fixed set of
GSME8K prompts/examples for early-exit, skip, swap and relative contribution evaluations, and we
keep random seeds, batching, and evaluation hyperparameters at their defaults unless stated other-
wise.

Models and data. We analyze SmolLM-v1 backbones at 360M and 1.7B parameters (training
details in Section @) and evaluate on MATH, MQuAKE, and GSMS8K as described in the main text.
Preprocessing follows (Csordas et al.[[2025].

Intervention protocols. We distinguish heatmap (relative-change) experiments from bench-
marked interventions. Heatmaps quantify relative changes and use single (sub)layer skipping only.
Benchmarked interventions (accuracy-based) are described separately below. For heatmaps, we
evaluate two intervention modes and two measurement axes, following and extending |Csordas et al.
[2025]):

* Current vs. future effects. In the current setting, we intervene by erasing the entire
(sub)layer contribution for all tokens and measure changes on all positions. In the future
setting, for a chosen boundary token index ¢, we erase the (sub)layer contribution only for
tokens < t, leaving tokens > ¢ unchanged at that (sub)layer; we then measure changes
strictly on tokens > t. This design directly tests whether information is transferred to later
tokens via attention, ruling out purely pointwise (self-only) computation.

* QOutput vs. later-layer effects. For the output probability distribution, we compute the
L2 norm difference between the softmaxed logits of the intervened and original forward
passes, aggregated over the relevant positions (current or future). For the later-layer effects,
we compute, for each later layer, the relative change in the residual contribution (i.e., the
norm of the difference in that layer’s residual update divided by the norm of the original
residual update), again aggregated over the relevant positions.

15

Under review as a conference paper at ICLR 2026

Concretely for heatmaps, in the future effects evaluation we select multiple boundary indices ¢ and,
for each t, (i) erase the (sub)layer’s contribution only at tokens < ¢, (ii) keep its contribution intact at
tokens > ¢, and then compare the intervened and original runs on (a) softmaxed output distributions
at positions > ¢ and (b) residual contributions of all later layers at positions > ¢. This directly tests
whether features are moved forward in time (to future tokens) by attention.

For heatmaps, we also include a local (direct) effects variant, which isolates pairwise dependencies
between a source layer and a later target layer without allowing effects to propagate through multiple
subsequent layers. Specifically, for a source layer s and a later layer ¢ > s, we subtract the stored
contribution of s from the residual fed into ¢ and record the relative change at /; we do not roll
this modification forward beyond ¢. This complements the propagated analyses by revealing direct,
non-compounded influences.

Heatmap interventions are performed at the layer or sublayer level and are strictly single-layer.
The current/future distinction applies only to these heatmap experiments. Block-wise operations are
used solely in benchmarked interventions (below).

Aggregation for heatmaps. For heatmap visualizations of later-layer effects, we aggregate by
taking the maximum relative change across (i) batch examples, (ii) eligible sequence positions, and
(iii) multiple chosen boundaries ¢ in the future setting. Concretely, for current effects we take the
max over all positions; for future effects we take the max only over positions strictly greater than ¢,
and then take the max over all tested ¢ for each example. This yields a single matrix of source-layer
by target-layer maxima per model/setting.

Tuned Lens training and evaluation. Following Belrose et al.| [2023]], we train, for each layer, a
small affine adapter that maps that layer’s residual output to the hidden representation with the same
shape that serves as the input to the final normalization layer immediately before the unembedding.
Final logits are then obtained by applying the model’s final normalization and unembedding as
usual. Adapters are trained on a held-out split of FineWeb-Edu and evaluated by (a) KL divergence
between early-exit and final distributions and (b) top-5 vocabulary overlap with the final prediction
(cf. Fig.[TB for 1.7B and Fig.[15]360M).

Benchmarked interventions. We evaluate accuracy on downstream benchmarks under: (i) Tuned
Lens early-exit (using the adapter path described above), (ii) skip interventions, and (iii) swap inter-
ventions. For benchmarks, we may intervene on contiguous blocks of sizes {2, 4, 8} (in addition to
single layers). We decode with greedy top-1 and compute benchmark accuracy (e.g., MathWorld,
reasoning primitives), matching the evaluation protocol used for the unmodified model. The curren-
t/future distinction does not apply to benchmark evaluations.

Depth score. We report the logit-effect depth score based on mean_dout. For each layer /,
mean_dout is the across-examples mean of the maximum L2 change in the softmaxed output
distribution at future tokens when intervening at layer ¢ (future-setting; see intervention protocols).
We normalize this per-layer vector to a probability distribution over layers and take its expected
layer index as the depth score.

C DETAILED BENCHMARK RESULTS

In Section [3.2] we have shown aggregated results over several Benchmarks. In this section, we
present the Detailed results for all models. We have evaluated out models on these benchmarks
using the language model evaluation harness library [Gao et al.,|[2024f]. The Reasoning primitives
we have implemented ourselves following [Saunshi et al.|[2024]. Induction copying is generated by
sampling a sequence of random 3-letter words (e.g., length 10), selecting a contiguous subsequence
(e.g., length 5) from within it, appending that subsequence, and asking for the next token in the
original sequence. Variable assignment is generated by sampling variable—value statements and
querying a single variable’s value. We use the authors’ basic/math/code prompt templates.

In Tables [3] and fi] we report per-dataset results for Open-Book and Closed-Book QA. In line with
Saunshi et al|[2024], both grown models (MIDAS and LIDAS) yield larger gains on Open-Book
QA than on Closed-Book QA. Notably, LIDAS 1.7B improves over the 1.7B baseline even on most

16

Under review as a conference paper at ICLR 2026

CoQA DROP QuAC SquadV2 TyDi QA (wc)

360M Baseline | 46.08 12.48 14.27 24.35 17.25
Midas 50.00 12.75 14.10 24.96 21.06
Lidas 5150 1525 15.79 28.11 22.50
1.7B Baseline | 58.36 16.52 1591 33.88 23.17
Midas 59.35 16.88 17.30 36.06 14.39
Lidas 6341 17.66 1791 36.56 13.65

Table 3: Open-book QA Benchmarks.

Closed-Book datasets and remains competitive on the rest, which differs from observations made
with MIDAS

\ Trivia QA Web Questions TyDi QA (nc) Natural Questions

360M Baseline | 19.23 16.78 12.98 9.01
Midas 18.90 14.58 12.64 8.89
Lidas 20.80 15.61 12.14 9.73
1.7B Baseline ‘ 27.72 19.20 15.34 12.18
Midas 27.98 17.96 16.16 11.91
Lidas 26.85 20.24 16.34 12.90

Table 4: Closed-book QA Benchmarks.

MAWPS MAWPS MAWPS MAWPS
ASDiv Add/Sub Multi-Arith ~ Single-Op Single-Eq SVAMP
360M Baseline | 3.34 3.67 1.72 5.66 2.75 5.02
Midas 3.77 3.67 1.15 6.29 6.42 5.02
Lidas 4.64 1.83 1.72 7.55 6.42 4.01
17B Baseline | 11.15 14.68 1.15 25.16 22.02 8.36
Midas 12.93 18.35 2.30 33.96 20.18 8.70
Lidas 14.88 25.69 2.87 38.36 18.35 11.37

Table 5: Math World.

On the reasoning benchmarks, Math World (Table [5)) and Reasoning Primitives (Table[6), improve-
ments at 360M are modest on average, while at 1.7B they become more pronounced. For Math
World, LIDAS 1.7B attains the best score on five of six subsets (the exception is MAWPS Single-
Equation). For Reasoning Primitives, both MIDAS and LIDAS surpass the baseline, with LIDAS
1.7B leading on copying and on the code/math variable-assignment formats, while MIDAS slightly
edges LIDAS on the basic variable-assignment format.

In addition to improved reasoning performance, models trained with gradual stacking also reduce
the computational resources needed. Specifically, MIDAS and L.IDAS only require ~ 77% of the
FLOPs used to train the baseline Table[71

D SUPPLEMENTARY: BIG MODELS (1.7B)

D.1 BENCHMARK ABLATIONS

We report accuracy under four benchmarked interventions on Lambada and the Variable Assignment
d0 MC primitive: (i) early exit via Tuned Lens (adapter-to-final-readout), (ii) swapping contiguous

17

Under review as a conference paper at ICLR 2026

) . Variable Variable Variable
Copying Copying gsignment assignment assignment

(random words) (real words) (basic) (code) (math)

360M Baseline | 15.50 13.30 20.50 58.30 42.70
Midas 13.80 14.10 20.00 52.90 40.10

Lidas 14.20 19.70 24.30 51.80 46.00

1.7B Baseline | 16.80 23.60 20.80 64.20 48.80
Midas 19.30 24.60 37.00 61.50 62.00

Lidas 28.40 31.00 36.70 71.80 68.80

Table 6: Reasoning Primitives.

Model PetaFLOPs Ratio
360M Standard 613527488 1.289
360M Grown 476147.897 1.000

1700M Standard 4813222.102 1.288
1700M Grown 3736608.182 1.000

Table 7: PetaFLOPs used for training 200k iterations

blocks, (iii) skipping single layers or blocks, and (iv) reversing the order of four consecutive layers

(see Figs. [§|to[TT).

D.2 RELATIVE CONTRIBUTION HEATMAPS

We visualize relative changes under single-(sub)layer skipping in two future-effect vari-
ants—propagated and local—and a current-effect attention ablation (see Figs. [12]to[I4).

E SUPPLEMENTARY: SMALL MODELS (360M)

E.1 DEPTH SUMMARY

We summarize small-model depth utilization using the depth score and tuned-lens early-exit diag-
nostics; see Fig.[I5]

E.2 BENCHMARK ABLATIONS

We replicate benchmarked interventions at 360M to assess robustness under reduced capacity, cov-
ering early exit, swap, skip, and reversal (see Figs.[I6]to[19).

E.3 RELATIVE CONTRIBUTION HEATMAPS

We include the small-model counterparts of the future propagated, future local, and current attention
ablations (see Figs.[20[to 22).

E.4 ADDITIONAL PLOTS

For completeness, we show block-similarity structure at 360M, which mirrors the symmetry patterns
observed at 1.7B (cf. Fig.[7a).

18

Under review as a conference paper at ICLR 2026

Lambada

Variable Assignment

Accuracy

Accuracy

. —e— intervened —— ori%inal fffff random
Baseline MIDAS LIDAS

0.5 0.5 0.5
0.44 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.14 __)J 0.1 _/’f
0.0 ? . * u . - v 0.0 ’ * * u . . v 0.0 = . T * * — v

0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24
0.7 0.7 0.7 1 ®

[]

0.6 0.6 0.6
0.5 0.54 0.5
0.4 0.44 0.4
0.3 0.3 0.3
0.2 T oo Tes® 0.2 Toowretyt vt toy 02 1 SO SSULS

0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24

Figure 8:

Lambada

Variable Assignment

Accuracy

Accuracy

Exit at

Exit at

Big models (1.7B): early exit with tuned lens on Lambada and Variable Assignment d0 MC for
Baseline, MIDAS, and LIDAS.

—o— len=1 —o— len=2

—e— len=4 —e— len=8

—— original

random

Baseline MIDAS LIDAS
P i 2.

0.5 w53 05 0.5
0.4 0.4 0.4
0.31 0.31 0.31
0.21 0.24 0.2
0.19 0.11 0.14
0.0 < ™ ™ 0.0 —= T ™ T ™ 0.0 — T ™ ™ ™

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
0.71 0.74 0.7 4

Bo R o PY
0.6 M 0.6 q v v 0.6 1
] 28 Py]]

0.5 ¥ 5 5 05 0.5
0.4 0.4 0.4
0.3 A/\ 0.3 0.3 '-./f
02 T s8 s 8Y 021w 02 1o

[5 10 15 20 0 5 10 15 20 [5 10 15 20

Swapping starts at

Swapping starts at

Swapping starts at

Figure 9: Big models (1.7B): swap ablations on Lambada and Variable Assignment d0 MC for Baseline,
MIDAS, and LIDAS.

19

Under review as a conference paper at ICLR 2026

—o— len=1 —o— len=2 —e— len=4 —e— len=8 —— original ----- random
Baseline MIDAS LIDAS

05 0.5 0.5
© 0.4+ 0.44 0.4
5 3z
8 fosq 03 034
€ 3
c K024 0.2 0.2
—

0.1+ 0.14 0.1

0.0-4 ¥ y ; v 0.0 14 - y v : 0.0 - y y v

0 10 15 20 0 5 10 15 20 0 5 10 15 20
o
S o071 0.71 0.7+ K)
Ao
E 0.6 4 V 0.6
o >
D ® 0.5 0.5
2 5
j [+ 0.44 0.4
L <
3 031 0.3
= Al
8 0.2 1¢4 v 02 T 8gS~
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Skipping starts at

Skipping starts at

Skipping starts at

Figure 10: Big models (1.7B): skip ablations on Lambada and Variable Assignment d0 MC for Baseline,
MIDAS, and LIDAS.

Reversing starts at

Reversing starts at

Reversing starts at

. —o— reverse 4 ~—— ori(];inal fffff random
Baseline MIDAS LIDAS

0.5 0.5 0.5 o
© 044 041 St vw » | 0.4 y
S 3
X Cosq 034 0.3

5

€ o
© &£ 024 0.2 0.2
& <

0.1 0.1 0.1

0.0+ - y - — 0.0 0.0

0 10 15 20 0 4 8 12 16 20 0 4 8 12 16 20
-
=
g 0.7 0.7 0.7
c 0.6 0.6 0.6
[S
@ 3 051 A 0.54 , | 051
S
i g o4 4 \\/Av 4
QL <
2 0.34)R 0.3 it 0.3
§ 02 tod—-bgd-¥ 02 ¥ & 0.2 A'
0 5 10 15 20 0 4 8 12 16 20 0 4 8 12 16 20

Figure 11: Big models (1.7B): reversing the order of 4 consecutive layers on Lambada and Variable Assignment
d0 MC for Baseline, MIDAS, and LIDAS.

Baseline MIDAS LIDAS 1.0

0.8
(]
© kel el ()]
(9] (9] (] c
o Q. Q. ©
o o o 0.6 c
~ X ~ @)
("2} ("2} [%2])
]] 5] 042
> > > B
© © © —
- - - ()
o

0.2

0 5 10 15 20 5 10 15 20 0 5 10 15 20 0.0

Effect @ layer

Effect @ layer

Effect @ layer

Figure 12: Big models (1.7B): propagated future effects of single-layer skipping.

20

Under review as a conference paper at ICLR 2026

Baseline

MIDAS

LIDAS 1.0
0.8
(]
© ° ° (@)
2 2 2 5
Q Q o 0.6 &
kv <z kv O
"] "] (%])
5 5 oy 043
> > > TR
3 3 3 ©
o«
0.2
0 5 10 15 20 0 5 10 15 20 0.0
Effect @ layer Effect @ layer Effect @ layer
Figure 13: Big models (1.7B): local future effects of single-layer skipping.
Baseline MIDAS LIDAS 1.0
0 0
0.8
o 3 | ° - 3 - &
[[} (] c
o o o 0.6 2
£ 10 £ €10 5
(%2} (%2} [%2])
[[[>
s 4 Q15 0435
[0} [0} @© _—
- - - (0]
o
20 20 0.2
0 5 10 15 20 0 5 10 15 20 0.0
Effect @ layer Effect @ layer Effect @ layer
Figure 14: Big models (1.7B): current effects when skipping the attention sublayer.
Baseline MIDAS LIDAS
A Depth score by dataset ’(‘;‘:; B Top-5 Overlap after Early Exit
Q
E
o 0.6
11.25 3
204
MATH 1253 &
o}
1193 4027 ¢ , . . . :
° 0 6 12 18 24 30
C Early Exit Performance with Tuned Lens
MQUAKE 312
Q
<09
[
2
B 0.6
3 =
: . o : . ; ; . :
0.00 8.00 0 6 12 18 24 30

Depth score

Layer

Figure 15: Depth-grown models use their depth more. Results are less pronounced for smaller models.

21

Under review as a conference paper at ICLR 2026

. —e— intervened —— cri%inal fffff random
Baseline MIDAS LIDAS
0.5 0.5 0.5
0.4+ 0.4+ 0.4
©
>
® Go3q 0.3 0.3
o B
=1
g &5’0.2« 0.24 0.24
—
0.1 0.1 0.1
0.0 gpesssesasaccsacasacantal | (- fecssesssscspecspecasecasanadSD o .0 pesstecspeccsecasscaqaccpent
0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32

0.7+ 0.74

0.6 0.6
0.51 0.51

o
N
N

o
o
L

Variable Assignment
Accuracy
°
&
— 1L o
[
L

0.4 0.4 0.4
0.3 0.3 M 0.3
9.y SO0
0.2 4 0.2 198 0.2 1 epuosaseysoes
o v — — 7
0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32
Exit at Exit at Exit at

Figure 16: Small models (360M): early exit with tuned lens on Lambada and Variable Assignment d0 MC for
Baseline, MIDAS, and LIDAS.

0.34

o
w
L

o
N}
N

0.2 1

—e— len=1 —e— len=2 —e— len=4 —e— len=8 —— original ----- random
Baseline MIDAS LIDAS

0.5 0.5 0.5

0.4 0.4 0.4
©

>
® Gosq 0.3 0.3
o ¢
=3

% 3 0.24 0.24 0.24
8 <

0.1 0.1+ 0.1+

0.0 4 7 y y v 0.0 -4 T v y v 0.0 - T v y v

0 5 10 15 20 4 5 10 15 20 0 5 10 15 20

=
S 074 071 0.7
g 0.6 0.6
(S
‘W © 05 0.5
2 s
< S 0.4 0.4
L <
e}
©
5
>

0 5 0 15 20 0 5 0 15 20 0 5 0 15 20
Swapping starts at Swapping starts at Swapping starts at

Figure 17: Small models (360M): swap ablations on Lambada and Variable Assignment dO MC.

—o— len=1 —o— len=2 —e— len=4 —— len=8 —— original ----- random
Baseline MIDAS LIDAS
0.5 0.5 0.5
0.4 0.4 0.4
@©
>
E § 0.3 0.3 0.3
=3
g § 0.2 0.2 0.24
i
0.1 0.1 0.1
0.0 - v v v 0.0+ - y v v 0.0 - v v v
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
0.7 0.7 0.7

0.6 1 0.6 1

Accuracy

Variable Assignment

0 5 0 15 20 0 5 0 15 20 0 5 0 15 20
Skipping starts at Skipping starts at Skipping starts at

Figure 18: Small models (360M): skip ablations on Lambada and Variable Assignment d0 MC.

22

Under review as a conference paper at ICLR 2026

—e— reverse4 —— original = ----- random

Baseline IDAS LIDAS

0.5 0.5 0.5

0.4 0.4 0.4 e oo,
o _ : . "'J ..a\ . P v".\
2 Q034 0.3 0.31
8 e
£ 3 '
5 2027 0.2 0.2
i

0.1 0.1 0.1

0.0 - T y T v v 0.0 0.0

0 5 10 15 20 25 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
=
S 0.7 0.74 0.7
E 0.64 0.6 0.6
[S I
) 3 0.5 0.5 0.5 0 ‘ o fn(.\
g 5 Py P W_) y %
° § 0.4 | 04 — ,J 0.4 V\ 4
o 1]]
© 03 03 k‘ 03 ./
= N
g 02 15# © 0.2 0.2
0 5 10 15 20 25 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
Reversing starts at Reversing starts at Reversing starts at

Figure 19: Small models (360M): reversing the order of 4 consecutive layers on Lambada and Variable As-
signment d0 MC.

Baseline MIDAS LIDAS 1.0

° § N .,

5 = 08
© © ° ()]
[} [} (] C
Q Q a 10 S
Q Q Q 0.6 c
=~ =~ X 5)
"] "] (%] [0}
- [[>
S S 220 042
© © © =
- - - (0]

25 o
0.2
30
0 10 20 30 0 10 20 30 0 10 20 30 0.0
Effect @ layer Effect @ layer Effect @ layer
Figure 20: Small models (360M): propagated future effects of single-layer skipping.
Baseline MIDAS LIDAS 1.0
0.8
(]
© el © (@]
2 2 2 5
Q o [o% 0.6 =
~ ~ ~ O
0] 9] (%])
j j j >
g g g 043
© © © =
- - - 0]
o«
0.2
0 10 20 30 0 10 20 30 0 10 20 30 0.0
Effect @ layer Effect @ layer Effect @ layer

Figure 21: Small models (360M): local future effects of single-layer skipping.

23

Under review as a conference paper at ICLR 2026

Baseline MIDAS LIDAS

1.0
0 0 0
| | TN
5 = 5 | = 5 i T 08
kel - el ° (o))
-
§ 10 - é 10 § 10 06 E
Y15 L [¥1s Y15 <
; = : 2
% 20 %’ 20 % 20 043
| = — K9]
25 25 25 0.2 o
30 30 30
0 10 20 30 0 10 20 30 0 10 20 30 0.0
Effect @ layer Effect @ layer Effect @ layer

Figure 22: Small models (360M): current effects when skipping the attention sublayer.

MIDAS LIDAS
0 A 0 A
1 A 1A
2 2
5 34 S 3 -
o o
m 4 m 4
5 5 |
6 6
7 1 7
0 2 4 6 0 2 4 6
Block Block

Figure 23: Small models (360M): block similarity for MIDAS and LIDAS.

24

	Introduction
	Related Work
	Two Depth-Grown Transformers: MIDAS & LIDAS
	The Growing operator
	Experiments

	Depth Analysis
	Does Depth Growth Lead to Different Depth Utilization?
	Does Depth Growth Form Permutable Computational Blocks?
	Does gradually growing form layer-wise patterns?

	Discussion
	SmolLM: Architecture & Data
	Experimental Setup
	Detailed Benchmark Results
	Supplementary: Big Models (1.7B)
	Benchmark ablations
	Relative contribution heatmaps

	Supplementary: Small Models (360M)
	Depth summary
	Benchmark ablations
	Relative contribution heatmaps
	Additional plots

