
Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

Huafeng Liu 1 2 Yiran Fu 1 2 Liping Jing 1 2 3 Hui Li 1 2 Shuyang Lin 1 2

Jingyue Shi 1 2 Deqiang Ouyang 4 Jian Yu 1 2

Abstract

Neural processes (NPs) are a promising paradigm
to enable skill transfer learning across tasks with
the aid of the distribution of functions. The pre-
vious NPs employ the empirical risk minimiza-
tion principle in optimization. However, the fast
adaption ability to different tasks can vary widely,
and the worst fast adaptation can be catastrophic
in risk-sensitive tasks. To achieve robust neural
processes modeling, we consider the problem of
training models in a risk-averse manner, which
can control the worst fast adaption cases at a cer-
tain probabilistic level. By transferring the risk
minimization problem to a two-level finite sum
minimax optimization problem, we can easily
solve it via a double-looped stochastic mirror prox
algorithm with a task-aware variance reduction
mechanism via sampling samples across all tasks.
The mirror prox technique ensures better handling
of complex constraint sets and non-Euclidean ge-
ometries, making the optimization adaptable to
various tasks. The final solution, by aggregat-
ing prox points with the adaptive learning rates,
enables a stable and high-quality output. The pro-
posed learning strategy can work with various
NPs flexibly and achieves less biased approxima-
tion with a theoretical guarantee. To illustrate the
superiority of the proposed model, we perform ex-
periments on both synthetic and real-world data,
and the results demonstrate that our approach not
only helps to achieve more accurate performance
but also improves model robustness.

1Beijing Key Laboratory of Traffic Data Mining and Embodied
Intelligence, Beijing, China 2School of Computer Science and
Technology, Beijing Jiaotong University, Beijing, China 3State
Key Laboratory of Advanced Rail Autonomous Operation, Bei-
jing, China 4Collage of Computer Science, Chongqing University,
Chongqing, China. Correspondence to: Deqiang Ouyang, Liping
Jing <deqiangouyang@cqu.edu.cn, lpjing@bjtu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Neural processes (NPs) (Garnelo et al., 2018a;b) represent
a class of approximation models for Gaussian processes
(GPs) (Rasmussen, 2003), offering promising attributes in
terms of computational efficiency and uncertainty quantifi-
cation. Unlike conventional statistical modeling, where a
user typically needs to manually specify a prior, such as the
smoothness of functions characterized by a Gaussian dis-
tribution in Gaussian processes, NPs subtly define a broad
spectrum of stochastic processes using neural networks in
a data-driven fashion. When trained appropriately, NPs
can delineate a flexible range of stochastic processes that
are particularly apt for representing complex functions that
existing stochastic processes struggle to capture.

NPs model the relationship between inputs and outputs in
the form of probability distributions. This allows the model
to generate predictions with associated uncertainty, which is
particularly beneficial when only a small amount of training
data is available. By capturing the model’s confidence, NPs
are more robust in few-shot scenarios. NPs can leverage
meta-learning to extract shared knowledge from multiple
related tasks. This enables the model to quickly adapt to
new tasks by utilizing the information learned from previous
tasks. Even with limited data in the current task, the model
can make accurate predictions by drawing on this shared
knowledge. Unlike traditional Bayesian methods, NPs do
not depend on explicit prior assumptions. Instead, they
learn directly from the data, making them more flexible
and effective in few-shot learning contexts. Thanks to the
characteristics above of NPs, many researchers are focusing
on the few-shot learning capabilities of NPs (Gordon et al.,
2019; Liu et al., 2024b; Bruinsma et al., 2023).

However, the optimization in most of the previous NPs
optimizations has adopted the empirical risk minimization
principle, overlooking the differences in rapid adaptation
between tasks. Given a batch of training tasks, NPs treat
the task weights uniformly, which can result in insufficient
training for the fast adaptation capability to certain tasks.
As shown in Figure 1, we present the original task risk
frequency statistics. It can be observed that high-risk tasks
(with risk values above 70%) account for more than 30%
of the total tasks. Therefore, when a new task matches

1

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

Original risk
Improved risk

Fr
eq

ue
nc

y

Risk
High risk

Higher frequency
Lower frequency

Figure 1. Illustration of the task risk distributions of original NPs
and our robust NPs.

these high-risk tail tasks, the prediction risk for the new
task is similarly high, thereby affecting the performance of
the new task. This issue is particularly critical in sensitive
scenarios, such as spike sorting (Pakman et al., 2020), and
robot navigation (Yildirim & Ugur, 2022).

In this paper, we focus on the performance difference in
fast adaptation to various tasks as an indispensable consid-
eration. By investigating the learning paradigm from the
view of risk distribution, we convert the optimization prin-
ciples for NPs to stochastic optimization problems while
minimizing the expected tail risk, i.e., conditional value-
at-risk (CVaR) (Rockafellar et al., 2000). Specifically, we
focus on expected tail risk minimization for NPs with CVaR,
which can reshape the task risk distribution and control the
task’s fast adaptation ability at a certain probabilistic level.
When using a variant of SGD for solving the tail risk, it is
common to approximate the expectation through mini-batch
sampling. However, if the batch is sampled uniformly at
random, only a small fraction (e.g., α in CVaR) of the se-
lected samples may carry meaningful gradient information.
For the remaining points, their gradients are often truncated
to zero due to the presence of the max · operation and the
inherent non-linearity. On the other hand, for the points that
do contribute, their gradients are amplified by a factor of
a small number (e.g., 1/α), which can result in exploding
gradients. Meanwhile, only a small number of higi-loss
samples contribute to the gradient, and the variance of the
gradient estimates is significantly high, which makes the
optimization trajectory highly unstable. These combined
issues make stochastic optimization highly challenging.

Inspired by the previous work (Alacaoglu & Malitsky,
2022), we formulate the CVaR problem as a distributionally
robust optimization problem with stochastic minimax opti-
mization and introduce a variance-reduced stochastic mirror
prox algorithm. Specifically, we follow the double-loop
structure of variance reduction and leverage the two-level
structure to compute the stochastic gradient based on a sam-
pling strategy across all tasks, which can get a variance-
reduced stochastic gradient estimator. The final solution,
by aggregating prox points with the adaptive learning rates,
enables a stable and high-quality output. The proposed risk

and optimization algorithm can be flexible to work with vari-
ous NPs and achieve a less biased approximation. Extensive
experiments conducted on both synthetic and real-world
datasets demonstrate that the proposed solution can improve
robustness.

2. Related Work
In this section, we briefly review three different areas that
are highly relevant to the proposed method: neural processes
and risk-sensitive optimization.

Neural Processes Neural Processes (NPs) are a class of
models that aim to combine the flexibility of neural net-
works with the probabilistic framework of Gaussian Pro-
cesses (GPs). Introduced by (Garnelo et al., 2018a), NPs
learn a distribution over functions by conditioning on a
set of context points. This allows them to perform tasks
such as few-shot learning and function approximation with
remarkable efficiency. Several mechanisms or techniques
have been integrated into NPs to enhance their performance
and applicability, such as attention mechanisms (Kim et al.,
2019), hierarchical priors (Wang & Van Hoof, 2020), transla-
tion equivariance (Gordon et al., 2019; Kawano et al., 2021),
bootstraping (Lee et al., 2020). In recent years, cutting-edge
technologies have been applied to NPs to enhance model
performance, such as neural ODE (Norcliffe et al., 2021),
transformer (Nguyen & Grover, 2022; Maraval et al., 2024),
diffusion model (Dutordoir et al., 2023), contrastive learn-
ing (Ye & Yao, 2022), autoregressive mechanism (Bruinsma
et al., 2023; Tai, 2023). Unlike making improvements to
the model, many researchers have also explored the ap-
plicability of NPs to different specific tasks, for example,
recommender systems (Lin et al., 2021; Liu et al., 2022;
2024b), hyperparameter optimization (Wei et al., 2021),
neuroscience (Cotton et al., 2020; Pakman et al., 2020),
space science (Park & Choi, 2021), and physics-informed
systems design (Vadeboncoeur et al., 2023).

Risk-sensitive Optimization Robust Optimization
(RO) (Gabrel et al., 2014; Rahimian & Mehrotra, 2019; Yu
et al., 2024) aims to improve model stability and reliability
by designing algorithms capable of handling uncertainty
and perturbations. The core idea of robust optimization
is to consider the worst-case performance of a model
with min-max formulation during the training process,
rather than just its expected performance (Bertsimas &
Sim, 2004) by introducing uncertainty sets or adversarial
perturbations. Robust optimization strategies typically
include two major categories: adversarial robustness and
distributionally robust optimization. Adversarial examples
are a specific form of perturbation in machine learning,
where an attacker can deceive the model by making small
perturbations to the input (adversarial attacks) (Gabrel
et al., 2014; ?). Distributionally robust optimization is a

2

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

method that focuses on ensuring model robustness when the
training data distribution changes(Rahimian & Mehrotra,
2019). Among them, the risk principle Value-at-Risk
(VaR), as a representative method of robust optimization
with probabilistic constraints, was first introduced in
the financial sector (Rockafellar et al., 2000), gained
significant attention (Quaranta & Zaffaroni, 2008), and
has since been widely applied to other fields, such as
healthcare (Chen et al., 2019), reinforcement learning (Pinto
et al., 2017; Gagne & Dayan, 2021), smart grid (Ben-Tal
& Nemirovski, 1999; Bertsimas et al., 2012), and so on.
As for robust strategies for NPs, some researchers have
explored approaches such as using bootstrapping (Lee et al.,
2020) or ensemble methods (Liu et al., 2024a).

3. Preliminaries
Let calligraphic letter (e.g., A) indicate set, capital let-
ter (e.g., A) for scalar, lower-case bold letter (e.g., a) for
vector, and capital bold letter (e.g., A) for matrix. Sup-
pose there is a dataset D = (X,y) = {(xi, yi)}Ni=1

with N data points X = [x1,x2, · · · ,xN]> ∈ RN×D,
and corresponding labels y = [y1, y2, · · · , yN] ∈ RN .
Considering an arbitrary number of data points DC =
(XC ,yC) = {(xi, yi)}i∈C , where C ⊆ {1, 2, · · · , N}
is an index set defining context information, neural pro-
cesses model the conditional distribution of the target values
yT = {yi}i∈T at some target data points XT = {xi}i∈T
based on the context DC , i.e., Ep(C)pθ(yT |XT ,DC) =
Ep(C)

∑
i∈T pθ(yi|xi,DC), where p(C) is a context prior

indicating selecting context information from the whole
data set D, e.g., |C| ∼ U[1, · · · , N]. Usually, target set
is defined as T = {1, 2, · · · , N}. Only in CNP (Garnelo
et al., 2018a), T ⊆ {1, 2, · · · , N} and T ∩ C = ∅.

Usually, a latent variable z is introduced to capture
model uncertainty and the NPs infer qθ(z|DC) given
context set using the reparameterization trick (Kingma &
Welling, 2013) and models such a conditional distribution
as pθ(yi|xi,DC) =

∫
pθ(yi|xi,DC , z)qθ(z|DC)dz, and

it is trained by maximizing an ELBO: `(DC ,DT ; θ) =
Ez∼qθ(z|DT)[log pθ(y

T |xT)] − KL[qθ(z|DT)‖pθ(z|DC)].
The problems are difficult non-convex optimization prob-
lems, especially when the neural networks are intro-
duced, and iterative methods, e.g., gradient-based meth-
ods, are adopted to find solutions converging to local mini-
mum (Wang & Van Hoof, 2020).

3.1. Risk Minimization of NPs

To achieve robust NPs and inspired by (Wang et al., 2024),
we can optimize CVaR of the task risk function for NPs with
the adjustable confidence level α, and define controllable
expected tail task risk based on the CVaR of the task risk
function.

To achieve fast prediction on a new context set at test time,
NPs meta-learn a distribution over predictors. Consider the
distribution of tasks p(τ) for NPs. Let the task space be Ωτ
and τ be the task sampled from the distribution p(τ). To
perform meta-learning, we require a meta-dataset (dataset of
datasets) Dτ,1:M = {Dτ,m}Mm=1 with contains M datasets.
In NPs, the task risk function `(DCτ ,DTτ ; θ) evaluetes the
model’s adaption performance. Based on the commonly
used risk minimization principle, the expected risk mini-
mization of NPs is given as follows.

Definition 3.1. (Expected Risk Minimization for NPs)
Given the task distribution p(τ), the expected risk mini-
mization for NPs is given as

min
θ∈Θ

R̂τ (θ) := Ep(τ)[`(DCτ ,DTτ ; θ)]. (1)

The task distribution determines the diversity and breadth
of the meta-dataset, which plays a crucial role in fast
adaptation. By performing Monte Carlo estimation to
Eq.(1), we can get the empirical risk minimization as
minθ

1
B

∑B
i=1[`(DCτ,i,DTτ,i; θ)].

Next, we focus on defining the task risk functions as ran-
dom variables. Given the task space Ωτ , we can define a
probability measure p : δτ 7→ [0, 1] over the task space
as (Ωτ , δτ , p), where δτ is a σ-algebra on the subsets of
task space. Let (R+,B) be a probability measure over the
non-negative real domain defined by the task risk function
`(DCτ ,DTτ ; θ) and B be a Borel σ-algebra, the NP operator
NPθ : Ωτ 7→ R+ is given as NPθ : τ 7→ `(DCτ ,DTτ ; θ).

In this case, the task risk function `(DCτ ,DTτ ; θ) can be
viewed as a random variable, and we can induce a distribu-
tion p(`(DCτ ,DTτ ; θ)) over the task risk function. The cumu-
lative distribution function (CDF) of a real-valued random
variable `(DCτ ,DTτ ; θ) can be formulated as F`(ξ; θ) =
p(`(DCτ ,DTτ ; θ) ≤ ξ), where ξ ∈ R+. We cannot give an
explicit form of this CDF since it implicitly depends on the
loss function `(·) and model parameter θ.

Based on the definition of VaR and CVar (Eq.(16)), we can
define the VaR and CVaR of the task risk function.

Definition 3.2. Given the task risk function `(Dτ,1:M ; θ)
with cumulative distribution function F`(ξ; θ), the VaR
of the task risk function at level α ∈ (0, 1) is given as
vα(`(Dτ,1:M ; θ)) = inf{ξ|F`(ξ; θ) ≥ α}.

Definition 3.3. Given the task risk function `(Dτ,1:M ; θ)
with cumulative distribution function F`(ξ; θ) and the
VaR of the task risk function vα(`(Dτ,1:M ; θ)). Assume
the random variable is constrained by `(DCτ ,DTτ ; θ) ≥
vα(`(Dτ,1:M ; θ)), the CVaR of the task risk function is
defined as cα(`(Dτ,1:M ; θ)) =

∫∞
0
ξdFα` (ξ; θ), where

Fα` (ξ; θ) is the normalized cumulative distribution, which

3

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

is

Fα` (ξ; θ) =

{
0 ξ < vα(`(Dτ,1:M ; θ))
F`(ξ;θ)−α

1−α ξ ≥ vα(`(Dτ,1:M ; θ))
(2)

Thus, we can obtain the normalized probability measure
(Ωα,τ , δα,τ , pα), where Ωα,τ = ∪ξ≥vα(`(Dτ,1:M ;θ))[NP

−1
θ].

In this case, the task distribution constrained in Ωα,τ is
denoted by pα(τ).

3.2. Learning with the CVaR

Given the constrained task distribution pα(τ), the control-
lable expected tail task risk is defined as minimizing CVaR
cα(`(Dτ,1:M ; θ)), which can be rewritten as follows:

min
θ∈Θ

R̂α,τ (θ) := Epα(τ)

[
`(DCτ ,DTτ ; θ)

]
. (3)

However, directly optimizing the above controllable ex-
pected tail task risk is intractable since the constrained task
distribution pα(τ) implicitly depends on θ and α and cannot
access an explicit closed-form expression.

To avoid directly computing the constrained task distribu-
tion pα(τ), by introducing slack variable l and auxiliary risk
function [`(DCτ ,DTτ ; θ)− l]+, the probability-constrained
function in Eq.(3) can be converted into the following un-
constrained form:

min
θ∈Θ,l∈R

R̂α(l, θ):= l+
1

1− α
Ep(τ)

[[
`(DCτ ,DTτ ; θ)−l

]+]
.

(4)

Let samples from Dτ,m be {Zm,i}nmi=1, where nm is the
number of samples in the dataset Dτ,m and Z = (x, y). By
replacing the expectation Ep(τ) with the empirical tasks, the
problem (4) yields the following learning problem:

min
θ∈Θ,l∈R

Rα(l, θ) := l +
1

(1− α)M

M∑
m=1

[
[Rm(θ)− l]+

]
.

(5)
where Rm(θ) = 1

nm

∑nm
j=1 `m(Zm,j ; θ). This formulation

focuses on the tail distribution of the loss by truncating
smaller losses and optimizing only large ones.

3.3. Challenges for Stochastic Optimization

A variant of the SGD method can optimize the above prob-
lem. However, there are several challenges in CVaR op-
timization: 1) Vanishing Gradient Problem: In the CVaR
optimization formula, gradients are non-zero only for sam-
ples where the loss `(DCτ,i,DTτ,i; θ) exceeds the truncation
threshold s. However, only a small fraction of samples
(proportional to α) typically satisfy this condition. As a
result, most samples contribute no gradient, leading to fewer
effective updates and slowing or even halting the optimiza-
tion process. 2) Exploding Gradient Problem: For samples

where `(DCτ,i,DTτ,i; θ) ≥ s, the gradient is scaled by 1/α.
Since α is usually a small value (e.g., 0.01 or 0.05), this scal-
ing can cause the gradient magnitude to grow excessively
large, leading to exploding gradients and destabilizing the
optimization process. 3) High Gradient Variance: Because
only a small number of high-loss samples contribute to the
gradient, the variance of the gradient estimates is signif-
icantly high. This high variance makes the optimization
trajectory highly unstable and can cause the algorithm to
converge slowly or get stuck in local extrema. In summary,
the combination of vanishing gradients, exploding gradi-
ents, and high gradient variance leads to inefficiency and
instability in stochastic optimization algorithms for CVaR
objectives.

4. Algorithm for Tail Task Risk Optimization
The CVaR objective has a natural distributionally robust
optimization (DRO) formulation. Given the DRO set Qα =
{q ∈ RM |1 ≤ qm ≤ 1/k,

∑
m qm = 1} with k = bαMc,

the DRO problem can be formulated as the following min-
max problem:

min
θ∈Θ

max
q∈Qα

{
Fα(θ, q) :=

M∑
m=1

q>mRm(θ)

}
, (6)

The above problem is a finite-sum convex-concave saddle-
point problem if Rm(θ) is a convex function. However,
introducing neural networks often renders Rm(θ) non-
convex, leading to variance in algorithms like stochastic
mirror descent and stochastic mirror prox, designed for
finite-sum convex-concave saddle-point problems. This
variance results in instability during the parameter learning
process.

Here, inspired by (Carmon & Hausler, 2022; Yu et al., 2024),
we incorporate variance reduction into the stochastic mirror
prox algorithm. Specifically, we introduce a simple and
effective task-sampling technique that selects M samples,
one for each task, to form the stochastic gradients. Addi-
tionally, we incorporate variance reduction strategies within
each task to accelerate the convergence rate.

4.1. Distance-generating Function and Bregman Setups

Let ‖ · ‖x denote a general norm on a finite-dimensional
Banach space Ex, and its dual norm is defined as ‖ · ‖x,∗ =
supy∈Ex{〈x, y〉 | ‖y‖x ≤ 1}. We define the set [S] =
{1, 2, · · · , S} and its index set [S]0 = {0, 1, · · · , S − 1},
where S is a positive integer. For (θ, q) ∈ Θ ×Qα where
Qα represents the simplex, we view (θ, q) as the concate-
nation of θ and q. The gradient ∇Fα(θ, q) is expressed
as ∇Fα(θ, q) = (∇θFα(θ, q);−∇qFα(θ, q)), denoting the
combined gradient with respect to θ and q.

For primal-dual methods of the mirror descent type(Beck

4

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

& Teboulle, 2003), it is necessary to define a distance-
generating function and the corresponding Bregman diver-
gence.

Definition 4.1. (Distance-generating function) A contin-
uous function ψx : X → R is termed a distance-
generating function with modulus αx relative to the norm
‖ · ‖x if the following conditions hold: 1) The set X◦ =
{x ∈ X | ∂ψx(x) 6= 0} is convex; 2) ψx is con-
tinuously differentiable and αx-strongly convex with re-
spect to ‖ · ‖2x, i.e., 〈∇ψx(x1) − ∇ψx(x2), x1 − x2〉 ≥
αx‖x1 − x2‖2x, ∀x1, x2 ∈ X◦.
Definition 4.2. (Bregman divergence) The Bregman di-
vergence Bx : X × X◦ → R+ associated with the
distance-generating function ψx is defined as: Bx(x, x◦) =
ψx(x)− ψx(x◦)− 〈∇ψx(x◦), x− x◦〉.

In this work, we equip Θ with a distance-generating function
ψθ(·), which has modulus αθ with respect to a norm ‖ · ‖θ
on E . Similarly, ψq(·) is defined with modulus αq relative
to the norm ‖ · ‖q . The choice of ψx and ‖ · ‖x should align
with the geometric structure of the domain. In this paper,
we use ψq(q) =

∑m
i=1 qi log qi, which corresponds to the

entropy function.

The following standard assumptions are also widely used in
Bregman setup analyses.

Assumption 4.3. (Boundedness of the Domain) The diam-
eter of the domain Θ under the distance-generating function
ψθ(·) is bounded by a constant Dθ, i.e., maxθ∈Θ ψθ(θ)−
minθ∈Θ ψθ(θ) ≤ D2

θ . Similarly, the simplex Qα is as-
sumed to be bounded by Dq . Since the entropy function ψq
is used, we have Dq =

√
lnM .

We define the Cartesian product space E × RM with its
associated norm and dual norm as follows. For any (θ, q) ∈
Θ× RM and any (θ, q)∗ = (θ∗; q∗) ∈ E∗ × RM :

‖(θ, q)‖ :=
√

αθ
2D2

θ

‖θ‖2θ +
αq
2D2

q

‖q‖2q,

‖(θ, q)∗‖∗ :=

√
2D2

θ

αθ
‖θ∗‖2θ,∗ +

2D2
q

αq
‖q∗‖2q,∗.

(7)

The corresponding distance-generating function is defined
as ψ((θ, q)) := 1

2D2
θ
ψθ(θ) + 1

2D2
q
ψq(q).

It is straightforward to verify that ψ((θ, q)) is 1-strongly
convex with respect to the norm ‖·‖ defined in Eq. (7). Using
this, we define the Bregman divergence B : (Θ×Qα)×
(Θ × Qα)◦ → R+ as: B((θ, q), (θ, q)◦) := ψ((θ, q))−
ψ((θ, q)◦)−〈∇ψ((θ, q)◦),(θ, q)−(θ, q)◦〉.

4.2. Double-loop Structure of Variance Reduction

Unfortunately, this method proves ineffective when stochas-
tically optimizing CVaR due to the high variance in the

mini-batch gradient estimates of CVaR, particularly for non-
convex problems like training deep neural networks. The
double-loop structure of variance reduction is the commonly
used strategy in optimization algorithms. It consists of an
outer loop and an inner loop, which separate global updates
from local refinements, providing a structured approach
to achieving optimization goals. Inspired by the previous
work (Carmon & Hausler, 2022; Alacaoglu & Malitsky,
2022), we adopt a double-loop structure based on variance
reduction. The outer loop computes snapshot points in both
the primal and dual spaces, while the inner loop uses a
modified mirror prox method. Instead of computing two
stochastic gradients, we use a combination of a mini-batch
gradient and a stochastic gradient, building upon classical
mirror prox algorithms.

Outer Loop The outer loop follows a standard variance
reduction procedure (Johnson & Zhang, 2013), periodically
computing snapshot points based on the weighted average
of previous iterates. Let the snapshot in the s-th outer loop
be (θ, q)s, and ∇ψ((θ, q)s) be the corresponding mirror
snapshot. Formally, we define (θ, q)∗ as :

(θ, q)s =

∑Ks−1

k=1 ws−1
k−1(θ, q)s−1

k∑Ks
k=1 w

s−1
k−1

, (8)

and the mirror snapshot is

∇ψ ((θ, q)s) =

∑Ks−1

k=1 ws−1
k−1∇ψ

(
(θ, q)s−1

k

)∑Ks
k=1 w

s−1
k−1

, (9)

The full gradient∇Fα((θ, q)s) is then computed as:

∇θFα(θs, qs) =

M∑
m=1

qsm∇Rm(θs)

∇qFα(θs, qs) = − [R1(θs), · · · , RM (θs)]
>

(10)

Inner Loop In the k-th inner loop, we updates zk using a
modified mirror prox step:

(θ, q)sk+1/2 = arg min
(θ,q)∈Z

{
〈∇Fα((θ, q)s), (θ, q)〉

+ wskB((θ, q), (θ, q)s) + (1− wsk)B((θ, q), (θ, q)sk)
}
,

(11)

which utilizes the full gradient ∇Fα(θs, qs). The above
update employs techniques such as “negative momentum”
(Driggs et al., 2022) to enhance convergence speed. Note
that the above prox point using a full gradient differs
from traditional mirror prox algorithms (Nemirovski, 2004),
which use stochastic gradients. Although a full gradient
can achieve more stable solutions, it is time-consuming. To
alleviate computational complexity, we can replace the full
gradient (Eq. (10)) with a mini-batch gradient.

5

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

4.3. Variance-reduced Stochastic Gradient Estimator

After (θ, q)sk+1/2 is computed, we sample data points from
each task (dataset) to construct the stochastic gradient. For
the m-th task, we sample uniformly from the corresponding
dataset Dτ,m. The sampling process is denoted as: 1) for
each dataset, uniformly sampling one sample: Zsk,m ∼
U({Zm,i}nmi=1),∀m ∈ [M]; 2) forming the task-specific
samples as Zsk := {Zsk,m}Mm=1.

The task sampling strategy ensures that stochastic gradients
utilize information from all M datasets. In this case, we
can get the task-specific stochastic gradient based on the
task-specific samples {Zsk,m}Mm=1:

∇θFα(Zsk,m; θs, qs) =

M∑
m=1

qsm∇`m(Zsk,m; θs)

∇qFα(Zsk,m; θs, qs) = −
[
`1(Zsk,m; θs), · · · , `M (Zsk,m; θs)

]>
(12)

This formulation balances randomness across tasks, ef-
fectively leveraging the two-level finite-sum structure of
Eq. (6).

Leveraging variance reduction techniques from (Johnson &
Zhang, 2013), we construct a robust and efficient approach
to minimize variance in stochastic gradients while maintain-
ing computational efficiency. Specifically, we define the
variance-reduced stochastic gradient estimator with the aid
of the stochastic gradient at the s-th snapshot (θ, q)s and the
full gradient as follows:

gsk =∇Fα
(
{Zsk,m}Mm=1; (θ, q)sk+1/2

)
−∇Fα

(
{Zsk,m}Mm=1; (θ, q)s

)
+∇Fα((θ, q)s).

(13)

where the second term ∇Fα
(
{Zsk,m}Mm=1; (θ, q)s

)
is

given in Eq. (12), the third term ∇Fα((θ, q)s) is given
in Eq. (10). The above gradient is an unbiased estimator
since the samples across all tasks are used.

With the aid of the mirror prox method, the next step is to
compute (θ, q)sk+1:

(θ, q)sk+1 = arg min
(θ,q)∈Θ×Qα

{
ηsk〈gsk, (θ, q)〉

+ wskB((θ, q), (θ, q)s) + (1− wsk)B((θ, q), (θ, q)sk)
}
.

(14)

In the above stochastic gradient, the variance-reduced
stochastic gradient estimator gsk is used instead of the raw
stochastic gradient at (θ, q)sk to achieve variance reduction.
The final solution is given as:

(θ, q)S =

∑S−1
s=0

∑Ks−1
k=0 ηsk(θ, q)sk+1∑S−1

s=0

∑Ks−1
k=0 ηsk

, (15)

Algorithm 1 Variance-Reduced Stochastic Mirror Prox Al-
gorithm for Tail Task Risk Optimization
Input: Risk functions {`m(θ)}m∈[M] related to NPs, epoch
number S, iteration numbers {Ks}, learning rates {ηsk}, and
weights {wsk}.

1: Initialize parameters (θ, q)0 = (θ0, q0) =
arg min(θ,q)∈Θ×Qα ψ((θ, q)) as the starting point.

2: for s = 0 to S − 1 do
3: Compute the snapshot (θ, q)s and the mirror snapshot

∇ψ((θ, q)s) according to Eq.(8) and Eq.(9), respec-
tively.

4: Compute the full gradient ∇Fα((θ, q)s) according
to Eq. (10). (mini-batch is feasible)

5: for k = 0 to Ks − 1 do
6: Compute (θ, q)sk+1/2 according to Eq.(11).
7: For each m ∈ [M], Zsk,m ∼ U({Zm,i}nmi=1).
8: Compute the variance-reduced stochastic gradient

estimator gsk defined in Eq.(13).
9: Compute (θ, q)sk+1 according to Eq.(14).

10: end for
11: Set (θ, q)s+1

0 = (θ, q)sKs .
12: end for
13: Return (θ, q)S according to Eq. (15).

which adopts adaptive learning rates ηsk as weighting coeffi-
cients for the cumulated prox points. The whole variance-
reduced stochastic mirror prox algorithm for tail task risk
optimization is given in Algorithm 1.

4.4. Discussion

The task sampling method uniformly selects data across
all tasks, thus reducing the variance of stochastic gradients.
This approach leverages the hierarchical structure of the
objective function to achieve a Lipschitz constant reduction,
ultimately lowering the computational complexity. In the
gradient computation process of the outer loop, the weight-
ing coefficient for the gradient from the previous step is
typically determined using an average weighting strategy,
i.e., ws−1

k−1 = 1
Ks−1

,∀k = 1, · · · ,Ks−1. However, we can
set it as a learning rate ηsk as shown in Eq. (15). In many al-
gorithms, the learning rate is gradually decreased, meaning
that earlier iterations may contribute larger weights. This op-
eration can reduce fluctuations in each gradient update and
improve the stability of the algorithm. Additionally, by com-
prehensively leveraging historical solutions or gradients, the
quality of the current solution can be enhanced. In summary,
by using a variance-reduced gradient estimator in the inner
loop, our solution significantly reduces gradient variance,
improving convergence rates. The mirror prox technique
ensures better handling of complex constraint sets and non-
Euclidean geometries, making the optimization adaptable
to various tasks. The final solution (θ, q)S aggregates the

6

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

Table 1. Comparison of our robust NPs with the baselines on log-
likelihood of the target points on two real-world datasets: CelebA
and EMNIST. We train each method with 5 different seeds and
report the mean and standard deviation.

Method CelebA EMNIST
Seen (0-9) Unseen (10-46)

CNP 2.1601±0.004 0.7373±0.004 0.4854±0.004

BCNP 2.1652±0.005 0.7552±0.005 0.4982±0.006

SCNP 2.1713±0.004 0.7631±0.006 0.5125±0.008

RCNP 2.1896±0.005 0.7879±0.005 0.5362±0.006

NP 2.4816±0.015 0.7953±0.002 0.5847±0.003

BNP 2.7691±0.003 0.8706±0.005 0.7167±0.012

SNP 2.8714±0.006 0.8873±0.003 0.7021±0.009

RNP 2.8915±0.006 0.8911±0.005 0.7121±0.006

ANP 2.9214±0.004 0.9815±0.006 0.8843±0.003

BANP 2.9411±0.008 0.9833±0.007 0.8891±0.003

SANP 2.9518±0.004 0.9753±0.008 0.8924±0.005

RANP 2.9718±0.006 0.9881±0.004 0.8967±0.005

ConvNP 3.1241±0.004 1.1525±0.021 1.0351±0.006

BConvNP 3.1683±0.005 1.1651±0.009 1.0511±0.004

SConvNP 3.2135±0.006 1.2125±0.006 1.0698±0.008

RConvNP 3.2319±0.005 1.2348±0.005 1.0721±0.006

TNP 4.4042±0.020 1.5501±0.004 1.4196±0.006

BTNP 4.4151±0.004 1.5561±0.003 1.4221±0.004

STNP 4.4124±0.003 1.5547±0.002 1.4236±0.003

RTNP 4.4226±0.005 1.5572±0.002 1.4413±0.004

Table 2. Bayesian optimization experiments on data generated by
different GP kernels

Method RBF Matérn 5/2 Periodic
ANP 0.1245±0.003 0.1518±0.003 0.1892±0.002

BANP 0.1341±0.003 0.1316±0.004 0.1788±0.005

SANP 0.1142±0.002 0.1201±0.002 0.1672±0.001

RANP 0.1025±0.002 0.1171±0.003 0.1779±0.006

TNP 0.1125±0.003 0.1451±0.001 0.1715±0.003

BTNP 0.1037±0.006 0.1455±0.003 0.1691±0.008

STNP 0.0998±0.004 0.1351±0.006 0.1561±0.002

RTNP 0.0915±0.004 0.1289±0.003 0.1463±0.004

updates through weighted averaging, enabling a stable and
high-quality output.

5. Experiments
We started with learning predictive functions on synthetic
datasets, and high-dimensional tasks, e.g., image comple-
tion, Bayesian optimization, and contextual bandits, were
performed to evaluate the properties of the NP-related mod-
els. We compare the baselines NP classes (CNP (Garnelo
et al., 2018a), NP (Garnelo et al., 2018b), ANP (Kim et al.,
2019), ConvNP (Foong et al., 2020), and TNP (Nguyen &
Grover, 2022)), bootstrapping versions (Lee et al., 2020)
(BCNP, BNP, BANP, BConvNP, and BTNP), stable ver-
sions (Liu et al., 2024a) (SCNP, SNP, SANP, SConvNP, and
STNP) to our robust versions (RCNP, RNP, RANP, RCon-
vNP, and RTNP).

RCNPSCNPBCNPCNPContextOriginal RANPSANPBANPANP

(a) CelebA

RCNPSCNPBCNPCNPContextOriginal RANPSANPBANPANP

(b) EMNIST

Figure 2. Visualizations of CNP, ANP, and their bootstrapping ver-
sions (BCNP, BANP), stable versions (SNP, SANP), and robust
versions (RCNP, RANP) for image completion tasks.

5.1. Image Completion

Following (Kim et al., 2019), we compared the models on
image completion tasks on CelebA (Liu et al., 2015) and
EMNIST (Cohen et al., 2017), where each image is down-
sampled to 32 × 32. More detailed experimental settings
are given in the Appendix. Table 1 lists the log-likelihood
of the target point of our robust NPs over the baselines on
two datasets. Notably, on the EMNIST dataset, in addi-
tion to the standard experiments, we also conducted model-
data mismatch experiments. Specifically, we trained on the
first 10 classes and tested not only on these first 10 classes
(seen classes) but also on the remaining 37 classes (unseen
classes). Similar to 1D regression, our robust NPs still out-
perform all baselines, especially in model-data mismatch
settings (unseen classes). In the mismatch setting, all the
models become less accurate, but NPs with our robust so-
lutions are affected less, which is similar to the results in
1D regression tasks. Furthermore, we visualize the gener-
ated images and Figure 2 shows that the proposed robust
NPs produce noticeably better-completed images than the
baselines.

5.2. Bayesian Optimization

Following the setting in BANP (Lee et al., 2020; Nguyen
& Grover, 2022), we conducted the Bayesian optimization
experiment, see Appendix for details. Taking GP data with
RBF, Matérn 5/2, and Periodic prior functions as examples,
we gave the results of ANP, TNP, corresponding bootstrap-
ping NPs (BANP, BTNP), stable NPs (SANP, STNP), and

7

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

Table 3. Comparison of our robust NPs with the baselines on cumulative regret on contextual bandit problems with different values of γ.
We run each model 50 times for each value of γ and report the mean and standard deviation.

Method γ = 0.7 γ = 0.9 γ = 0.95 γ = 0.99 γ = 0.995 γ = 0.999
CNP 4.0816±0.321 8.1512±0.411 8.0125±0.393 26.771±0.791 38.833±0.986 93.2232±2.564

BCNP 5.8921±0.516 10.2726±1.153 10.0116±1.075 29.6628±1.216 42.2516±1.151 95.5624±3.616

SCNP 3.5266±0.415 8.29152±0.525 7.2852±0.258 24.5264±0.619 37.4265±0.946 89.8256±3.669

RCNP 3.1876±0.364 7.3115±0.657 7.6796±0.647 23.4416±0.547 35.5597±0.863 87.1514±2.165

NP 1.5626±0.125 2.9616±0.291 4.2513±0.251 18.2417±0.465 25.5646±0.195 62.7342±1.503

BNP 62.5115±1.076 57.4966±2.138 58.2276±2.285 58.9122±3.785 62.5021±5.156 77.5255±6.226

SNP 1.4356±0.214 2.4451±0.552 3.4056±0.242 17.2551±0.357 23.5226±0.226 60.8862±0.952

RNP 1.4581±0.153 2.5632±0.366 3.2367±0.195 15.6269±1.329 22.5154±0.851 58.2676±1.124

ANP 1.6246±0.172 4.0558±0.316 5.3983±0.506 19.5712±0.678 27.6516±0.952 73.3661±5.956

BANP 5.3165±15.614 15.2415±19.156 34.1167±24.167 58.2314±23.662 62.3364±17.994 69.3436±18.362

SANP 1.5878±0.205 3.6691±0.564 4.8767±0.704 18.2519±0.552 25.1169±0.891 71.5169±3.537

RANP 1.2555±0.162 2.6256±0.536 3.8987±0.663 16.5155±0.641 24.1519±0.983 70.1414±1.368

ConvNP 1.5035±0.104 2.4552±0.317 3.1761±0.447 16.3585±0.988 25.2359±1.251 72.3526±4.257

BConvNP 2.2563±0.251 3.6762±0.376 4.4626±0.551 18.2516±1.121 26.3629±1.357 74.6324±4.257

SConvNP 1.3846±0.536 2.0081±0.208 2.2662±0.226 15.2315±0.796 23.5266±1.447 70.1251±3.654

RConvNP 1.1536±0.103 1.7369±0.249 1.9854±0.341 13.2352±0.627 19.2516±2.352 61.1273±2.226

TNP 1.1895±0.942 1.7057±0.418 2.5562±0.438 3.5795±1.225 4.6867±1.092 9.5694±0.465

BTNP 3.3686±0.356 2.7356±0.523 4.6371±0.628 5.2526±1.643 7.3521±1.367 11.2657±2.277

STNP 1.1637±0.128 1.4362±0.378 2.1526±0.574 2.3612±1.522 3.5267±1.267 8.9824±0.678

RTNP 1.2155±0.204 1.5962±0.539 1.1371±0.348 2.0813±0.896 3.1231±0.957 7.2355±1.429

Figure 3. Regret performance on 1D Bayesian optimization tasks.
For each kernel, we generate 100 functions and report the mean
and standard deviation.

robust NPs (RANP, RTNP). Note that we use NPs as the
surrogate functions and Upper Confidence Bound (UCB)
as the acquisition function. To maintain consistent com-
parison, we standardized the initializations and normalized
the results. For each objective function, we run Bayesian
optimization for 100 iterations, and simple regret is used as
the evaluation metric. As shown in Table 2 and Figure 3, we
can see that our robust solutions consistently achieve lower
regret than other NPs.

5.3. Contextual Bandits

Following (Riquelme et al., 2018; Nguyen & Grover, 2022),
we focus on the contextual bandit problem, which is a type
of reinforcement learning problem where an agent makes
a series of decisions, each with an associated context, to
maximize cumulative reward. More detailed experimental
settings, including problem definition, training, and testing
procedure can be given in the Appendix. Considering this

ANP RANP

0.5 1.0 1.5 2.00

0.15

0.30

0.45

(a) CelebA

ANP RANP

0.5 1.0 1.5 2.0
0

0.15

0.30

0.45

(b) EMNIST(Seen)

Figure 4. The histograms of task risks in image completion tasks.

problem involves dividing a fixed-sized circle into a low-
reward region (the central circle) and four high-reward re-
gions (the remaining outer ring divided into four equal parts),
a control variable γ is introduced to manage the proportion
between the high and low-reward regions. The higher the
γ value, the larger the central circle and the smaller the
outer ring, and vice versa. We conducted experiments with
different γ, and Table 3 presents the experimental results of
all methods. We can see that NPs with our robust solutions
outperform all baselines by a large margin in most settings,
especially for harder settings (larger value of γ). We ob-
tained similar experimental results as in (Nguyen & Grover,
2022), where the performance of models using the attention
mechanism is generally lower than that of models without
the attention mechanism, which is contrary to the results
obtained in other experimental tasks.

5.4. Risk Distribution

As we stated previously, the proposed strategy can itera-
tively reshape the task risk distribution to increase robust-
ness, i.e., transport the probability mass in high-risk regions

8

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

to the lower-risk regions. To verify this point, we present
the task risk distributions with and without using our strat-
egy. Specifically, taking RANP as an example, Figure 4
shows the task risk distributions of ANP and RANP on im-
age completion tasks with two different kernels. We select
MSE as the risk measure. Overall, it can be seen that the
robust solutions shift the original risk distribution to the left,
reducing the proportion of high-risk tasks and effectively
demonstrating the robustness of the proposed model.

6. Conclusion and Future Work
The paper introduces a novel approach to enhance the ro-
bustness of Neural Processes (NPs) in skill transfer learning
across different tasks. Traditional NPs focus on empirical
risk minimization, which can lead to varying levels of fast
adaptation, potentially resulting in catastrophic outcomes in
risk-sensitive tasks. To address this problem, we propose
incorporating controllable expected tail meta risk, allowing
control over the worst-case fast adaptation scenarios at a
given probabilistic level. By reformulating the risk mini-
mization as a distributional robust formulation, we introduce
a variance-reduced stochastic mirror prox algorithm with
double-loop structures and leverage the two-level structure
to get a stochastic gradient among samples across all tasks.
The proposed risk and optimization strategy is versatile,
working with various NPs while providing a less biased
approximation.

A common optimization approach for the minimax problem
of CVaR involves leveraging a two-player game framework.
Designing efficient methods to optimize the game between
the two players is a topic worth exploring. Although our
variance-reduced stochastic mirror prox algorithm has been
validated for its effectiveness both intuitively and experi-
mentally, this kind of algorithm is primarily designed for
convex optimization. Models with deep neural networks
typically involve high-dimensional, non-convex objectives
for which the method lacks general convergence guarantees.
One future point is to investigate the algorithms’ conver-
gence guarantee. Additionally, improving the efficiency of
the overall optimization process is another point of interest.

Acknowledgements
This work was partly supported by the Talent Fund of Bei-
jing Jiaotong University (2024XKRC075); Beijing Nat-
ural Science Foundation (4244096); The National Natu-
ral Science Foundation of China under Grant (62406019,
62436001, 62176020); The Joint Foundation of the Min-
istry of Education for Innovation team (8091B042235);
The National Key Research and Development Program of
China (2024YFE0202900); The State Key Laboratory of
Rail Traffic Control and Safety (RCS2023K006); Natural

Science Foundation of Chongqing (Grant CSTB2023NSCQ-
MSX1020).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Alacaoglu, A. and Malitsky, Y. Stochastic variance reduc-

tion for variational inequality methods. In Conference on
Learning Theory, pp. 778–816. PMLR, 2022.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Beck, A. and Teboulle, M. Mirror descent and nonlinear
projected subgradient methods for convex optimization.
Operations Research Letters, 31(3):167–175, 2003.

Ben-Tal, A. and Nemirovski, A. Robust solutions of uncer-
tain linear programs. Operations research letters, 25(1):
1–13, 1999.

Bertsimas, D. and Sim, M. The price of robustness. Opera-
tions research, 52(1):35–53, 2004.

Bertsimas, D., Litvinov, E., Sun, X. A., Zhao, J., and Zheng,
T. Adaptive robust optimization for the security con-
strained unit commitment problem. IEEE transactions
on power systems, 28(1):52–63, 2012.

Bruinsma, W. P., Markou, S., Requiema, J., Foong, A. Y.,
Andersson, T. R., Vaughan, A., Buonomo, A., Hosking,
J. S., and Turner, R. E. Autoregressive conditional neural
processes. arXiv preprint arXiv:2303.14468, 2023.

Carmon, Y. and Hausler, D. Distributionally robust opti-
mization via ball oracle acceleration. Advances in Neural
Information Processing Systems, 35:35866–35879, 2022.

Chen, K., Yao, L., Zhang, D., Chang, X., Long, G., and
Wang, S. Distributionally robust semi-supervised learning
for people-centric sensing. In Proceedings of the AAAI
conference on Artificial Intelligence, volume 33, pp. 3321–
3328, 2019.

Chow, Y., Ghavamzadeh, M., Janson, L., and Pavone, M.
Risk-constrained reinforcement learning with percentile
risk criteria. Journal of Machine Learning Research, 18
(167):1–51, 2018.

Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A. Em-
nist: Extending mnist to handwritten letters. In 2017 Inter-
national Joint Conference on Neural Networks (IJCNN),
pp. 2921–2926. IEEE, 2017.

9

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

Cotton, R. J., Sinz, F., and Tolias, A. Factorized neural pro-
cesses for neural processes: K-shot prediction of neural
responses. Advances in Neural Information Processing
Systems, 33:11368–11379, 2020.

Curi, S., Levy, K. Y., Jegelka, S., and Krause, A. Adaptive
sampling for stochastic risk-averse learning. Advances in
Neural Information Processing Systems, 33:1036–1047,
2020.

Driggs, D., Ehrhardt, M. J., and Schönlieb, C.-B. Accelerat-
ing variance-reduced stochastic gradient methods. Math-
ematical Programming, pp. 1–45, 2022.

Dutordoir, V., Saul, A., Ghahramani, Z., and Simpson, F.
Neural diffusion processes. In International Conference
on Machine Learning, pp. 8990–9012. PMLR, 2023.

Fan, Y., Lyu, S., Ying, Y., and Hu, B. Learning with average
top-k loss. Advances in neural information processing
systems, 30, 2017.

Foong, A., Bruinsma, W., Gordon, J., Dubois, Y., Requeima,
J., and Turner, R. Meta-learning stationary stochastic
process prediction with convolutional neural processes.
Advances in Neural Information Processing Systems, 33:
8284–8295, 2020.

Gabrel, V., Murat, C., and Thiele, A. Recent advances in
robust optimization: An overview. European journal of
operational research, 235(3):471–483, 2014.

Gagne, C. and Dayan, P. Two steps to risk sensitivity. Ad-
vances in Neural Information Processing Systems, 34:
22209–22220, 2021.

Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T.,
Saxton, D., Shanahan, M., Teh, Y. W., Rezende, D., and
Eslami, S. A. Conditional neural processes. In Interna-
tional Conference on Machine Learning, pp. 1704–1713.
PMLR, 2018a.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F.,
Rezende, D. J., Eslami, S., and Teh, Y. W. Neural pro-
cesses. arXiv preprint arXiv:1807.01622, 2018b.

Gordon, J., Bruinsma, W. P., Foong, A. Y., Requeima, J.,
Dubois, Y., and Turner, R. E. Convolutional conditional
neural processes. arXiv preprint arXiv:1910.13556, 2019.

Gotoh, J.-y. and Takeda, A. Cvar minimizations in sup-
port vector machines. Financial Signal Processing and
Machine Learning, pp. 233–265, 2016.

Johnson, R. and Zhang, T. Accelerating stochastic gradient
descent using predictive variance reduction. Advances in
neural information processing systems, 26, 2013.

Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global
optimization of expensive black-box functions. Journal
of Global optimization, 13:455–492, 1998.

Kawano, M., Kumagai, W., Sannai, A., Iwasawa, Y., and
Matsuo, Y. Group equivariant conditional neural pro-
cesses. arXiv preprint arXiv:2102.08759, 2021.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A.,
Rosenbaum, D., Vinyals, O., and Teh, Y. W. Attentive
neural processes. arXiv preprint arXiv:1901.05761, 2019.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Lee, J., Lee, Y., Kim, J., Yang, E., Hwang, S. J., and Teh,
Y. W. Bootstrapping neural processes. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin,
H. (eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 6606–6615. Curran Associates,
Inc., 2020.

Lin, X., Wu, J., Zhou, C., Pan, S., Cao, Y., and Wang, B.
Task-adaptive neural process for user cold-start recom-
mendation. In Proceedings of the Web Conference, pp.
1306–1316, 2021.

Liu, H., Jing, L., Yu, D., Zhou, M., and Ng, M. Learning
intrinsic and extrinsic intentions for cold-start recommen-
dation with neural stochastic processes. In Proceedings of
the 30th ACM International Conference on Multimedia,
pp. 491–500, 2022.

Liu, H., Jing, L., and Yu, J. Neural processes with stability.
Advances in Neural Information Processing Systems, 36,
2024a.

Liu, H., Zhou, M., Song, M., Ouyang, D., Li, Y., Jing, L., Yu,
J., and Ng, M. K. Learning hierarchical preferences for
recommendation with mixture intention neural stochastic
processes. IEEE Transactions on Knowledge and Data
Engineering, 2024b.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

Maraval, A., Zimmer, M., Grosnit, A., and Bou Ammar,
H. End-to-end meta-bayesian optimisation with trans-
former neural processes. Advances in Neural Information
Processing Systems, 36, 2024.

Nemirovski, A. Prox-method with rate of convergence o
(1/t) for variational inequalities with lipschitz continuous
monotone operators and smooth convex-concave saddle
point problems. SIAM Journal on Optimization, 15(1):
229–251, 2004.

10

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

Nguyen, T. and Grover, A. Transformer neural processes:
uncertainty-aware meta learning via aequence modeling.
In International Conference on Machine Learning, pp.
16569–16594. PMLR, 2022.

Norcliffe, A., Bodnar, C., Day, B., Moss, J., and Liò, P.
Neural ode processes. arXiv preprint arXiv:2103.12413,
2021.

Ogryczak, W. and Tamir, A. Minimizing the sum of the k
largest functions in linear time. Information Processing
Letters, 85(3):117–122, 2003.

Pakman, A., Wang, Y., Mitelut, C., Lee, J., and Paninski, L.
Neural clustering processes. In International Conference
on Machine Learning, pp. 7455–7465. PMLR, 2020.

Park, Y.-J. and Choi, H.-L. A neural process approach for
probabilistic reconstruction of no-data gaps in lunar digi-
tal elevation maps. Aerospace Science and Technology,
113:106672, 2021.

Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A. Ro-
bust adversarial reinforcement learning. In International
conference on machine learning, pp. 2817–2826. PMLR,
2017.

Quaranta, A. G. and Zaffaroni, A. Robust optimization of
conditional value at risk and portfolio selection. Journal
of Banking & Finance, 32(10):2046–2056, 2008.

Rahimian, H. and Mehrotra, S. Distributionally robust op-
timization: A review. arXiv preprint arXiv:1908.05659,
2019.

Rasmussen, C. E. Gaussian processes in machine learn-
ing. In Summer school on machine learning, pp. 63–71.
Springer, 2003.

Riquelme, C., Tucker, G., and Snoek, J. Deep bayesian
bandits showdown: an empirical comparison of bayesian
deep networks for thompson sampling. In International
Conference on Learning Representations, 2018.

Rockafellar, R. T., Uryasev, S., et al. Optimization of condi-
tional value-at-risk. Journal of risk, 2:21–42, 2000.

Sani, A., Lazaric, A., and Munos, R. Risk-aversion in
multi-armed bandits. Advances in neural information
processing systems, 25, 2012.

Schölkopf, B., Smola, A. J., Williamson, R. C., and Bartlett,
P. L. New support vector algorithms. Neural computation,
12(5):1207–1245, 2000.

Shalev-Shwartz, S. and Wexler, Y. Minimizing the maximal
loss: How and why. In International Conference on
Machine Learning, pp. 793–801. PMLR, 2016.

Tai, J. Global perception based autoregressive neural pro-
cesses. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 10487–10497, 2023.

Vadeboncoeur, A., Kazlauskaite, I., Papandreou, Y., Cirak,
F., Girolami, M., and Akyildiz, O. D. Random grid neural
processes for parametric partial differential equations.
In International Conference on Machine Learning, pp.
34759–34778. PMLR, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Wang, Q. and Van Hoof, H. Doubly stochastic variational in-
ference for neural processes with hierarchical latent vari-
ables. In International Conference on Machine Learning,
pp. 10018–10028. PMLR, 2020.

Wang, Q., Lv, Y., Xie, Z., Huang, J., et al. A simple yet
effective strategy to robustify the meta learning paradigm.
Advances in Neural Information Processing Systems, 36,
2024.

Wei, Y., Zhao, P., and Huang, J. Meta-learning hyperpa-
rameter performance prediction with neural processes.
In International Conference on Machine Learning, pp.
11058–11067. PMLR, 2021.

Williamson, R. and Menon, A. Fairness risk measures. In
International conference on machine learning, pp. 6786–
6797. PMLR, 2019.

Ye, Z. and Yao, L. Contrastive conditional neural processes.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 9687–9696,
2022.

Yildirim, Y. and Ugur, E. Learning social navigation from
demonstrations with conditional neural processes. Inter-
action Studies, 23(3):427–468, 2022.

Yu, D., Cai, Y., Jiang, W., and Zhang, L. Efficient algorithms
for empirical group distributionally robust optimization
and beyond. In Proceedings of the 41st International Con-
ference on Machine Learning, pp. 57384–57414, 2024.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R., and Smola, A. Deep sets. arXiv
preprint arXiv:1703.06114, 2017.

11

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

A. Basic Knowledge
A.1. CVaR

we recall standard definitions of Value-at-Risk and Conditional Value-at-Risk which are used in our solution.

Definition A.1. ((Conditional) Value-at-Risk) Given a random variable X with cumulative distribution function F (·), the
Value-at-Risk VaR vα(X) and Conditional Value-at-Risk CVaR cα(X) at level α ∈ (0, 1) are defined as:

vα(X) = inf{ξ : p(X ≤ ξ) ≥ α}, and

cα(X) = vα(X) +
1

1− α
E[X − vα(X)]+,

(16)

where the notation [·]+ = max(0, ·) and α is a predefined confidence level or risk level.

In machine learning, the concept of Conditional Value at Risk (CVaR) has been widely applied. For instance, the ν-SVM
algorithm (Schölkopf et al., 2000), can be seen as addressing the minimization of the CVaR of the loss, as analyzed by
(Gotoh & Takeda, 2016). Additionally, (Shalev-Shwartz & Wexler, 2016) suggests focusing on minimizing the maximum
loss across all samples, which is equivalent to the limiting case of CVaR when α→ 0. Building on this, (Fan et al., 2017)
extend the idea to optimize a top-k average loss. Although they do not explicitly connect their criterion to CVaR, their
learning strategy aligns with the CVaR framework for empirical measures. For optimization tasks, (Ogryczak & Tamir, 2003)
proposed a method to minimize the maximum value of a summation over k functions. This approach is closely related to the
”truncated” algorithm developed by (Rockafellar et al., 2000) for CVaR optimization. CVaR has since found applications
in areas such as risk-averse reinforcement learning, including works by (Sani et al., 2012) and (Chow et al., 2018), and
fairness in machine learning, as discussed by (Williamson & Menon, 2019). Despite its widespread use, the original CVaR
optimization approach suffers from challenges such as the high variance of mini-batch gradient estimators (Rockafellar
et al., 2000). To overcome these limitations, adaptive sampling techniques (Shalev-Shwartz & Wexler, 2016) have been
proposed, enabling the efficient handling of large-scale datasets and complex models, including deep neural networks (Curi
et al., 2020; Wang et al., 2024).

A.2. Neural Processes

The neural process aims to learn a stochastic process (random function) mapping target features xi to prediction yi given the
context set DC as training data (a realization from the stochastic process), i.e., learning

log p
(
yT |XT ,DC

)
=

N∑
i=1

p
(
yi|xi,DC

)
. (17)

Conditional neural process (CNP) (Garnelo et al., 2018a) describes p
(
yi|xi,DC

)
with a deterministic neural network taking

DC to output the parameters of p
(
yi|xi,DC

)
. CNP consists of an encoder fenc(·), an aggregator fagg(·) and a decoder

fdec(·); the encoder summarizes DC and xi into latent representations [r1, · · · , r|C|] ∈ R|
C |×d via permutation-invariant

neural network (Zaheer et al., 2017), where d is the number of latent dimensions, and aggregator summarizes the encoded
context features to a single representation rC , and decoder takes as input the aggregated representations rC and xi and output
the single output-specific mean µi and variance σ2

i for the corresponding value of yi.

ri = fenc (xi, yi) , i ∈ C

rC =
1

|C|
∑
i∈C

ri

φ = fagg(rC)

(µi, σi) = fdec(φ,xi),

p
(
yi|xi,DC

)
= N

(
yi;µi, σ

2
i

)
i ∈ T

(18)

where fenc(·) and fdec(·) are feed-forward neural networks. The decoder output µi and variance σ2
i are predicted mean and

variance. We use Gaussian distribution N (yi;µi, σ
2
i) as predictive distribution. CNP is trained to maximize the expected

likelihood Ep(T)[p
(
yi|xi,DC

)
].

12

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

Neural process (Garnelo et al., 2018b) further models functional uncertainty using a global latent variable. Unlike CNP,
which maps a context into a deterministic representation r̃i, NP encoders a context into a Gaussian latent variable z, giving
additional stochasticity in function construction. Following (Kim et al., 2019), we consider an NP with both a deterministic
path and latent path, where the deterministic path models the overall skeleton of the function r̃i, and the latent path models
the functional uncertainty:

ri = f (1)
enc (xi, yi) , i ∈ C

rC =
1

|C|
∑
i∈C

ri

φ = fagg(r)

(µz, σz) = f (2)
enc

(
DC
)
,

q(z|DC) = N (z;µz, σ
2
z)

(µi, σi) = fdec(φ, z,xi),

p
(
yi|xi, z,DC

)
= N

(
yi;µi, σ

2
i

)
i ∈ T

(19)

with f (1)
enc(·) and f (2)

enc(·) having the same structure as fenc(·) in Eq.(18). In this scenario, the conditional distribution is lower
bounded as:

log p
(
y|X,DC

)
≥

N∑
i=1

Eq(z|DC)

[
log

p
(
yi|xi, z,DC

)
P (z|DC)

q(z|X,y)

]
. (20)

We further approximate q(z|DC) ≈ p(z|DC) and train the model by maximizing this expected lower bound over tasks.
Furthermore, ANP introduces attention mechanisms into NP to resolve the issue of under-fitting.

B. Theoretical Investigations
Proposition B.1. (Curi et al., 2020) Let h : X → Y be a finite function class |H|. Let `(h) : H → [0, 1] be a random
variable. Then, for any 0 < α ≤ 1, with probability at least 1− δ,

E
[

sup
h∈H

∣∣∣R̂α(s, θ)−Rα(s, θ)
∣∣∣] ≤ 1

1− α

√
log(2|H|/δ)

MN
. (21)

To deeply analyze the Bregman setup, we give the following assumptions.
Assumption B.2. (Boundedness of the Domain) The diameter of the domain Θ under the distance-generating function
ψθ(·) is bounded by a constant Dθ, i.e.,

max
θ∈Θ

ψθ(θ)−min
θ∈Θ

ψθ(θ) ≤ D2
θ . (22)

Similarly, the simplex Qα is assumed to be bounded by Dq . Since the entropy function ψq is used, we have Dq =
√

lnM .
Assumption B.3. ((Smoothness and Lipschitz Continuity)) For any sample from meta-dataset (dataset of datasets) Dτ,1:M =

{Dτ,m}Mm=1, the loss function `m(θ) is assumed to satisfy L-smoothness and G-Lipschitz continuity.

For the task-specific stochastic gradient defined in Eq. (12), we have the following theorem to indicate its unbiasedness.
Theorem B.4. The stochastic gradient

∇Fα(Zsk,m; θs, qs) =

[
∇θFα(Zsk,m; θs, qs)

∇qFα(Zsk,m; θs, qs)

]
=

 ∑M
m=1 q

s
m∇`m(Zsk,m; θs)

−
[
`1(Zsk,m; θs), , · · · , `M (Zsk,m; θs)

]>
 (23)

defined in Eq. (12) is unbiased.

Proof. For the sampling strategy defined in Section 4.3: 1) for each dataset, uniformly sampling one sample: Zsk,m ∼
U({Zm,i}nmi=1),∀m ∈ [M]; 2) forming the task-specific samples as {Zsk,m}Mm=1, we have

∀(θ, q) ∈ Θ×Qα : E[`m(Zsk,m; θ)] = Rm(θ), E[∇`m(Zsk,m; θ)] = ∇Rm(θ). (24)

13

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

Based on the additivity of expectation, we can get

∀(θ, q) ∈ Θ×Qα : E[∇Fα(Zsk; θ)] = ∇Fα(θ). (25)

In this case, it can be proved that the stochastic gradient is unbiased.

We assume that `m(Zk,m; θ) is L-smooth and G-Lipschitz contimuous for all m ∈ [M], k ∈ [nm]. The following theorem
analyzes the Lipschitz continuity of the stochastic gradient∇Fα(Zsk,m; θs, qs).

Theorem B.5. For any s ∈ [S]0, k ∈ [Ks]
0, ∇Fα(Zsk,m; θs, qs) is L∗-Lipschitz continuous, where L∗ =

2Dθ max{
√

2D2
θL

2 +G2 lnM,G
√

2 lnM}.

Proof. Randomly selecting two parameters (θ+, q+) and (θ−, q−), we can bound the gradient of θ as follows:

‖∇θFα(Zsk; θ+, q+)−∇θFα(Zsk; θ−, q−)‖2θa,∗

=

∥∥∥∥∥
M∑
m=1

q+
m[∇`m(Zsk,m; θ+)−∇`m(Zsk,m; θ−)] +

M∑
m=1

(q+
m − q−m)∇`m(Zsk,m; θ−)

∥∥∥∥∥
2

θ,∗

≤2

∥∥∥∥∥
M∑
m=1

q+
m[∇`m(Zsk,m; θ+)−∇`m(Zsk,m; θ−)]

∥∥∥∥∥
2

θ,∗

+ 2

∥∥∥∥∥
M∑
m=1

(q+
m − q−m)∇`m(Zsk,m; θ−)

∥∥∥∥∥
2

θ,∗

≤2

M∑
m=1

q+
m

∥∥∇`m(Zsk,m; θ+)−∇`m(Zsk,m; θ−)
∥∥2

θ,∗ + 2

(
M∑
m=1

|q+
m − q−m|

∥∥∇`m(Zsk,m; θ−)
∥∥2

θ,∗

)

≤2

M∑
m=1

q+
mL

2‖θ+ − θ−‖2θ + 2

(
M∑
m=1

|q+
m − q−m|G

)
=2L2‖θ+ − θ−‖2θ + 2G2‖q+ − q−‖21.

(26)

We can also bound the gradient of q as follows:

∀m ∈ [M] : `m(Zsk,m; θ+)− `m(Zsk,m; θ−) ≤ G‖θ+ − θ−‖θ. (27)

Given ∇qFα(Zsk,m; θs, qs) = −
[
`1(Zsk,m; θs), , · · · , `M (Zsk,m; θs)

]>
, we have

‖∇qFα(Zsk,m; θ+, q+)−∇qFα(Zsk,m; θ−, q−)‖2∞
= max
m∈[M]

[`m(Zsk,m; θ+)− `m(Zsk,m; θ−)]2

≤G2‖θ+ − θ−‖θ.

(28)

Based on the above bound, we have

‖∇Fα(Zsk,m; θ+, q+)−∇Fα(Zsk,m; θ−, q−)‖2∗
=2D2

θ‖∇θFα(Zsk,m; θ+, q+)−∇θFα(Zsk,m; θ−, q−)‖2θ,∗ + 2 lnM‖∇qFα(Zsk,m; θ+, q+)−∇qFα(Zsk,m; θ−, q−)‖2∞
≤(4D2

θL
2 + 2G2 lnM)‖θ+ − θ−‖2θ + 4D2

θG
2‖q+ − q−‖21

≤ 1

2D2
θ

[
(4D2

θL
2 +G2 lnM)‖θ+ − θ−‖2θ

]
+

1

2 lnM
[4D2

θ(2G
2 lnM)‖q+ − q−‖21]

≤ L2
∗

2D2
θ

‖θ+ − θ−‖2θ +
L2
∗

2 lnM
‖q+ − q−‖21

=L2
∗‖(θ+, q+)− (θ−, q−)‖2

(29)

14

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

C. Model Architecture
The architectural details of the CNP, NP, and ANP are the same as in (Kim et al., 2019). Here we give the detailed
architectures of the encoder and decoder of NPs.

C.1. Encoder without attention

Encoder focuses on learning embeddings for each data point in the context set, and the basic component is multi-layer
perceptron, which is defined by

MLP(l, din, dh, dout) = LINEAR(dh, dout) ◦ (RELU ◦ LINEAR(dh, dh) ◦ · · ·)︸ ︷︷ ︸
×(l−2)

◦LINEAR(dh, din)
(30)

where l is the number of layers, din, dh and dout are dimensinalities of inputs, hidden unites and outputs. Here RELU(·) is
adapted as activation function.

The encoder in Vanilla CNP uses a deterministic encoder that focuses on learning embeddings for each data point in the
context set.

ri = MLP(le1, dx + dy, dh, dh)([xi, yi]),

rC =
∑
i∈C

ri, φ = MLP(le2, dh, dh)(rC) (31)

where dx and dy are the dimensionalities of xi and yi.

To follow the encoder structure in NP, we introduce another encoder aligned with the original deterministic encoder to
permit the same number of parameters, i.e.,

r
(1)
i = MLP(le1, dx + dy, dh, dh)([xi, yi])

r
(1)
C =

∑
i∈C

r
(1)
i , φ1 = MLP(le2, dh, dh)(r

(1)
C)

r
(2)
i = MLP(le1, dx + dy, dh, dh)([xi, yi])

r
(2)
C =

∑
i∈C

r
(2)
i , φ2 = MLP(le2, dh, dh)(r

(2)
C)

φ = [φ1, φ2]

(32)

The encoder in NP contains a deterministic path and a latent path, i.e.,

r
(1)
i = MLP(lde1, dx + dy, dh, dh)([xi, yi])

r
(1)
C =

∑
i∈C

r
(1)
i , φ = MLP(lde2, dh, dh)(r

(1)
C)

r
(2)
i = MLP(lla1, dx + dy, dh, dh)([xi, yi])

r
(2)
C =

∑
i∈C

r
(2)
i , [µz, σ

′
z] = MLP(lla2, dh, dh)(r

(2)
C)

σz = 0.1 + 0.9 · SIGMOID(σ′z), z ∼ N (µz,diag(σ2
z)).

(33)

In this case, the encoder outputs deterministic representation φ and latent representation z.

15

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

C.2. Encoder with attention

The attention mechanism is widely used in NPs, Specifically, multi-head attention (Vaswani et al., 2017) is adapted, which is
defined by

Q′ = {LINEAR(dq, dout)(q)}q∈Q,
{Q′i}

nhead
i=1 = SPLIT(Q′, nhead),

K′ = {LINEAR(dk, dout)(k)}k∈K,
{K′i}

nhead
i=1 = SPLIT(K′, nhead),

V′ = {LINEAR(dv, dout)(v)}v∈V,
{V′i}

nhead
i=1 = SPLIT(V′, nhead),

Hi = SOFTMAX
(
Q′i(K

′
i)
>/
√
dout

)
V′i,

H = CONCAT ({Hi}nheadi=1)

H′ = LAYERNORM(Q′ + H)

MHA(dout)(Q,K,V) = LAYERNORM(H′ + RELU(LINEAR(dout, dout)))

(34)

where dq, dv, dk are the dimensionalities of query Q, key K, and value V, respectively. nhead is the number of head. Here
Layer normalization (Ba et al., 2016) LAYERNORM(·) is adapted. It is easy to derive self-attention by setting Q = K = V,
i.e.,

SA(dout))(X) = MHA(dout)(X,X,X) (35)

For CNP, the encoder with attention still contains two deterministic paths,

fqk = MLP(lqk, dx, dh, dh)

Q = fqk(xi), i ∈ T
K = {fqk(xi)}, i ∈ C
V = SA(dh).({MLP(lv, dx + dy, dh, dh)([xi, yi])}i∈C)
φ1 = MHA(dh)(Q,K,V)

H = SA(dh) ({RELU ◦MLP(le1, dx + dy, dh, dh)([xi, yi])}i∈C)

φ2 = MLP(le, dh, dh)

(
1

|C|
∑
i∈C

hi

)
φ = [φ1, φ2]

(36)

Similarly, an encoder with attention in NP contains a deterministic path and a latent path, i.e.,

fqk = MLP(lqk, dx, dh, dh)

Q = fqk(xi), i ∈ T
K = {fqk(xi)}, i ∈ C
V = SA(dh).({MLP(lv, dx + dy, dh, dh)([xi, yi])}i∈C)
φ = MHA(dh)(Q,K,V)

(37)

and

H = SA(dh) ({RELU ◦MLP(le1, dx + dy, dh, dh)([xi, yi])}i∈C)

[µz, σ
′
z] = MLP(lla, dh, dh)

(
1

|C|
∑
i∈C

hi

)
σz = 0.1 + 0.9 · SIGMOID(σ′z),

z ∼ N (µz,diag(σ2
z)).

(38)

16

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

C.3. Decoder

The decoder focuses on predicting output for target points based on the encoder’s outputs φ. For target point {xi}i∈T , the
decoder of CNP is defined by

[µi, σ
′
i] = MLP(ddec, 2dh + dx, dh, 2dy)[φ,xi], i ∈ T
σi = 0.1 + 0.9 · SOFTPLUS(σ′i)

yi ∼ N (µi, σi)

(39)

Decoder of NP is defined by

[µi, σ
′
i] = MLP(ddec, dh + dz + dx, dh, 2dy)[φ,xi, z], i ∈ T
σi = 0.1 + 0.9 · SOFTPLUS(σ′i)

yi ∼ N (µi, σi)

(40)

D. Implementation Details and Experiments
D.1. Infrastructure

We implement our model with Pytorch, and conduct our experiments with:

• CPU: Intel Xeon Silver 4316.

• GPU: 8x GeForce RTX 4090.

• RAM: DDR4 384GB.

• ROM: 16TB 7.2K 6Gb SATA and 1x 960G SATA 6Gb R SSD.

• Operating system: Ubuntu 18.04 LTS.

• Environments: Python 3.7; NumPy 1.18.1; SciPy 1.2.1; scikit-learn 0.23.2; seabornn 0.1; torch geometric 1.6.1;
matplotlib 3.1.3; dgl 0.4.2; pytorch 1.6.

D.2. Experimental Settings

For CNP (Garnelo et al., 2018a), BCNP (Lee et al., 2020), SCNP (Liu et al., 2024a), and our RCNP, we apply the encoder
with attention described in Eq (36) and decoder described in Eq (39). For NP (Garnelo et al., 2018b), ANP (Kim et al.,
2019), BNP (Lee et al., 2020), BANP (Lee et al., 2020) and our SNP and SANP models, we apply encoder with attention
described in Eq (37) and (38), and decoder described in Eq (40).

D.2.1. 1D REGRESSION

For synthetic 1D regression experiments, the neural architectures for CNP, NP, ANP, BCNP, BNP, BANP, and our
SCNP/SNP/SANP refer to Appendix C. The number of hidden units is dh = 128 and latent representation dz = 128. The
number of layers are le = lde = lla = lqk = lv = 2.

We generate datasets for synthetic 1D regression. Specifically, the stochastic process (SP) initializes with a 0 mean
Gaussian Process (GP) y(0) ∼ GP (0, k(·, ·)) indexed in the interval x ∈ [−2.0, 2.0], where the radial basis function kernel
k(x, x

′
) = σ2 exp(−‖x− x′‖2/2l2) with s ∼ U(0.1, 1.0) and σ ∼ U(0.1, 0.6). Furthermore, GP with Matern Kernel is

adopted for model-data mismatch scenario, which is defined as k(x, x′) = σ2(1 +
√

5d/l + 5d2/(3l2)) exp(−
√

5d/l) and
d = ‖x− x′‖ with s ∼ U(0.1, 1.0) and σ ∼ U(0.1, 0.6). For a fair comparison, we set the same data generation, training,
and testing for all models.

We trained all models for 100, 000 steps with each step computing updates with a batch containing 100 tasks. We used the
Adam optimizer with an initial learning rate 5 · 10−4 and decayed the learning rate using Cosine annealing scheme for
baselines. For SCNP/SNP/SANP, we set K = 3. The size of the context C was drawn as |C| ∼ U(3, 200). Testings were
done for 3, 000 batches with each batch containing 16 tasks (48, 000 tasks in total).

17

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

D.2.2. IMAGE COMPLETION

Analogous to the 1D experiments, we take random pixels of a given image at training as targets, and select a subset of this as
contexts, again choosing the number of contexts and targets randomly (n ∼ U [3, 200], m ∼ n+U [0, 200− n]). The xi are
rescaled to [−1, 1] and the yi are rescaled to [−0.5, 0.5]. We use a batch size of 16 for both EMNIST and CelebA, i.e. use
16 randomly selected images for each batch.

For image completion experiments on EMNIST and CelebA dataset, the neural architectures for CNP, NP, ANP, BCNP,
BNP, BANP, and our SCNP, SNP, and SANP refer to Appendix C. The number of hidden unites is dh = 128 and latent
representation dz = 128. The number of layers are le = lde = 4, lla = lqk = lv = 5. hhead = 8

D.2.3. BAYESIAN OPTIMIZATION

We sampled 100 GP prior functions from zero mean and unit variance. After realizing them, the prior functions are used to
optimize via Bayesian optimization. We normalized these functions in order to fairly compare simple regrets and cumulative
regrets across distinct sampled functions (Basically, since they are sampled from the same distributions, the scales of them
are quite similar, but we used more precise evaluations).

As presented in the Bayesian optimization results, all the methods are started from the same initializations. We employed
Gaussian process regression (Rasmussen, 2003) with squared exponential kernels as a surrogate model, and expected
improvement (Jones et al., 1998) as an acquisition function, which is optimized by the multi-started local optimization
method, L-BFGS-B with 100 initial points.

D.2.4. CONXTUAL BANDITS

The whell bandit problem is introduced in (Riquelme et al., 2018) and can be illustrated in Figure 5. In this problem, a unit
circle is divided into a low-reward region (blue area) and four high-reward regions (the other four colored areas). A scalar γ
determines the size of the low-reward region, and other regions have equal sizes. The agent does not know the underlying γ,
and has to choose among k = 5 arms given its coordinates X = (X1, X2) within the circle. If ‖X‖ ≤ γ, the agent falls
within the low-reward region (blue). In this case, the optimal action is k = 1, which provides a reward r ∼ N(1.2, 0.012),
while all other actions only return r ∼ N(1.0, 0.012). If the agent falls within any of the four high-reward regions
(‖X‖ > γ), the optimal arm will be one of the remaining four k = 2− 5, depending on the specific area. Pulling the optimal
arm here results in a high reward r ∼ N(50.0, 0.012), and as before all other arms receive N(1.0, 0.012) except for arm
k = 1 which always returns N(1.2, 0.012).

We sample a dataset of K different wheel problems γiKi=1, which are drawn from a uniform distribution γ ∼ U(0, 1). For
each problem, we sample N points to evaluate and pick m points as context, in which each point is a tuple (X, r) of the
coordinates X and the corresponding reward values r of all 5 arms. The training objective is to regress the reward values
from the coordinates. We set K = 8, N = 562, m = 512 in our experiments.

E. Additional Experiments
E.1. 1D Regression

Following (Kim et al., 2019; Lee et al., 2020; Liu et al., 2024a), we first conduct 1D regression experiments. We generate
training data from a GP with RBF kernels and test the trained model on the data generated from GPs with different kernels,
including RBF, Matérn, and Periodic. Among them, data from Matérn and Periodic are used to evaluate model performance
on unseen functions. We give a detailed description of experimental settings in the Appendix. Table 4 lists the average
log-likelihood comparison in terms of different kernels. The best results are marked in bold. After several repetitive
observations, we can observe that our robust version outperforms not only vanilla ones but also bootstrapping versions and
stable versions. For model-data mismatch settings, all the models become less accurate, but our robust ones affect less.
Visualizations for 1D regression data are shown in Figure 6. Each solid blue curve represents one sample function and the
blue area around each curve represents the variance in the predictive distribution. We can see that NPs with bootstraping,
stable, and robust solutions generally achieve better fitting performance, especially on data points where other methods fail
to fit effectively.

18

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

Figure 5. The wheel bandit problem with varying values of γ. (Riquelme et al., 2018; Nguyen & Grover, 2022).

Table 4. Comparison of our robust NPs with the baselines on log-likelihood of the target points on various GP kernels. We train each
method with 5 different seeds and report the mean and standard deviation.

Method RBF Matérn 5/2 Periodic
CNP 0.4334±0.007 0.2431±0.010 - 1.2521±0.008

BCNP 0.4589±0.006 0.2762±0.009 -1.1915±0.007

SCNP 0.4733±0.004 0.2953±0.006 -1.1779±0.006

RCNP 0.4798±0.003 0.3021±0.005 -1.1699±0.006

NP 0.3853±0.005 0.2041±0.015 -1.4255±0.009

BNP 0.4211±0.004 0.2689±0.007 -1.3988±0.009

SNP 0.4356±0.004 0.2844±0.005 -1.4085±0.008

RNP 0.4398±0.002 0.2832±0.006 -1.3761±0.009

ANP 0.5763±0.004 0.6366±0.004 -1.1824±0.009

BANP 0.5887±0.006 0.6514±0.005 -1.1781±0.006

SANP 0.5994±0.004 0.6653±0.004 -1.1774±0.004

RANP 0.6025±0.002 0.6771±0.006 -1.1779±0.006

ConvNP 0.6503±0.004 0.6557±0.005 -1.1761±0.006

BConvNP 0.6531±0.005 0.6787±0.006 -1.1675±0.006

SConvNP 0.6831±0.003 0.6836±0.004 -1.1681±0.008

RConvNP 0.6898±0.003 0.6916±0.004 -1.1547±0.004

TNP 0.8711±0.003 0.7151±0.001 -1.1625±0.005

BTNP 0.8981±0.006 0.7255±0.003 -1.1591±0.008

STNP 0.8798±0.008 0.7151±0.006 -1.1552±0.002

RTNP 0.8815±0.004 0.7389±0.003 -1.1511±0.004

19

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

RCNPSCNPBCNPCNP

R
B
F

M
atern

5/2
Periodic

RANPSANPBANPANP

R
B
F

M
atern

5/2
Periodic

Figure 6. Visualizations of CNP, ANP, and their bootstrap versions (BCNP, BANP), stable versions (SNP, SANP), and robust versions
(RCNP, RANP) for 1D regression data.

20

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

Figure 7. Regret performance on 1D Bayesian optimization tasks. For each kernel, we generate 100 functions and report the mean and
standard deviation.

E.2. Bayesian Optimization

Taking GP data with RBF, Matérn 5/2, and periodic prior functions as examples, we gave the results of CNP, ANP,
corresponding bootstrapping NPs (BCNP, BANP), stable NPs (SCNP, SANP), and robust NPs (RCNP, RANP). Note that we
use NPs as the surrogate functions and Upper Confidence Bound (UCB) as the acquisition function. To maintain consistent
comparison, we standardized the initializations and normalized the results. For each objective function, we run Bayesian
optimization for 100 iterations, and simple regret is used as the evaluation metric. As shown in Figure 7 and Table 5, we can
see that our robust solutions consistently achieve lower regret than other NPs in all three kernels.

E.3. The effect of confidence level α

The key parameter in our robust solution is the confidence level α, which controls the extent to which the learning model
focuses on difficult tasks. Taking RANP as an example, we investigate the average log-likelihood in terms of different α on
the 1D regression, image completion, and Bayesian optimization, as shown in Figure 8. We can see that RANP obtains the
best results (around 0.6), after that, the performance remained stable. This result is in line with our intuition. If there is too
much focus on difficult tasks, it may neglect the learning of general tasks. On the other hand, insufficient focus on difficult
tasks can also affect the model’s performance.

E.4. Risk Distribution

As we stated previously, the proposed strategy can iteratively reshape the task risk distribution to increase robustness, i.e.,
transport the probability mass in high-risk regions to the lower-risk regions. To verify this point, we present the task risk
distributions with and without using our strategy. Specifically, taking RANP as an example, Figure 9 shows the task risk
distributions of ANP and RANP on, 1d regression, image completion, and Bayesian optimization tasks. We select MSE as
the risk measure. Overall, it can be seen that the robust solutions shift the original risk distribution to the left, reducing the
proportion of high-risk tasks and effectively demonstrating the robustness of the proposed model.

21

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

Table 5. Bayesian optimization experiments on data generated by different GP kernels
Method RBF Matérn 5/2 Periodic

CNP 0.1524±0.004 0.1852±0.004 0.2051±0.005

BCNP 0.1501±0.003 0.1815±0.003 0.2016±0.003

SCNP 0.1415±0.005 0.1752±0.003 0.1998±0.003

RCNP 0.1352±0.003 0.1711±0.004 0.1941±0.004

NP 0.1647±0.003 0.1988±0.003 0.1985±0.007

BNP 0.1611±0.003 0.1901±0.004 0.1962±0.003

SNP 0.1536±0.004 0.1871±0.003 0.1915±0.005

RNP 0.1415±0.003 0.1789±0.005 0.1873±0.003

ANP 0.1245±0.003 0.1518±0.003 0.1892±0.002

BANP 0.1341±0.003 0.1316±0.004 0.1788±0.005

SANP 0.1142±0.002 0.1201±0.002 0.1672±0.001

RANP 0.1025±0.002 0.1171±0.003 0.1779±0.006

ConvNP 0.1211±0.004 0.1256±0.003 0.1854±0.004

BConvNP 0.1187±0.003 0.1201±0.004 0.1819±0.003

SConvNP 0.1176±0.006 0.1179±0.003 0.1786±0.004

RConvNP 0.1056±0.004 0.1156±0.004 0.1773±0.003

TNP 0.1125±0.003 0.1451±0.001 0.1715±0.003

BTNP 0.1037±0.006 0.1455±0.003 0.1691±0.008

STNP 0.0998±0.004 0.1351±0.006 0.1561±0.002

RTNP 0.0915±0.004 0.1289±0.003 0.1463±0.004

0.56
0.565
0.57

0.575
0.58

0.585
0.59

0.595
0.6

0.605

0.1 0.2 0.4 0.6 0.8 0.9

LL

Confidence level

(a) RBF

0.62
0.625
0.63
0.635
0.64
0.645
0.65
0.655
0.66
0.665
0.67

0.1 0.2 0.4 0.6 0.8 0.9

LL

Confidence level

(b) Matérn 5/2

1.17
1.172
1.174
1.176
1.178
1.18
1.182
1.184
1.186
1.188
1.19
1.192

0.1 0.2 0.4 0.6 0.8 0.9

N
LL

Confidence level

(c) Periodic

2.8
2.82
2.84
2.86
2.88
2.9
2.92
2.94
2.96
2.98
3

0.1 0.2 0.4 0.6 0.8 0.9

LL

Confidence level

(d) CelebA

0.97
0.972
0.974
0.976
0.978
0.98
0.982
0.984
0.986
0.988
0.99

0.1 0.2 0.4 0.6 0.8 0.9

LL

Confidence level

(e) EMNIST(Seen)

0.89
0.891
0.892
0.893
0.894
0.895
0.896
0.897
0.898

0.1 0.2 0.4 0.6 0.8 0.9

LL

Confidence level

(f) EMNIST(Unseen)

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.1 0.2 0.4 0.6 0.8 0.9

Re
gr

et

Confidence level

(g) BO(RBF)

0.112

0.114

0.116

0.118

0.12

0.122

0.124

0.126

0.1 0.2 0.4 0.6 0.8 0.9

Re
gr
et

Confidence level

(h) BO(Matérn 5/2)

0.174

0.176

0.178

0.18

0.182

0.184

0.186

0.1 0.2 0.4 0.6 0.8 0.9

Re
gr
et

Confidence level

(i) BO(Periodic)

Figure 8. The performance evaluation when we set the confidence level α with different values.

22

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

ANP RANP

0

0.2

0.4

0.6

0.5 1.0 1.5 2.0 2.5

(a) RBF

ANP RANP

0

0.2

0.4

0.6

0.5 1.0 1.5 2.0 2.5

(b) Matérn 5/2

ANP RANP

0

0.2

0.4

0.6

0.5 1.0 1.5 2.0 2.5

(c) Periodic

ANP RANP

0.5 1.0 1.5 2.00

0.15

0.30

0.45

(d) CelebA

ANP RANP

0.5 1.0 1.5 2.0
0

0.15

0.30

0.45

(e) EMNIST(Seen)

0.5 1.0 1.5 2.0
0

0.15

0.30

0.45

(f) EMNIST(Unseen)

ANP RANP

0

0.2

0.4

0.6

0.5 1.0 1.5 2.0 2.5

(g) BO(RBF)

ANP RANP

0

0.2

0.4

0.6

0.5 1.0 1.5 2.0 2.5

(h) BO(Matérn 5/2)

ANP RANP

0

0.2

0.4

0.6

0.5 1.0 1.5 2.0 2.5

(i) BO(Periodic)

Figure 9. The histograms of task risks in different tasks.

23

Learning Robust Neural Processes with Risk-Averse Stochastic Optimization

Table 6. Comparison of our robust NPs under different weight strategies on log-likelihood of the target points on various GP kernels. We
train each method with 5 different seeds and report the mean and standard deviation.

Method RBF Matérn 5/2 Periodic
average adam average adam average adam

RCNP 0.4756±0.002 0.4798±0.003 0.2989±0.003 0.3021±0.005 -1.1751±0.005 -1.1699±0.006

RNP 0.4359±0.003 0.4398±0.002 0.2797±0.003 0.2832±0.006 -1.3895±0.007 -1.3761±0.009

RANP 0.5989±0.004 0.6025±0.002 0.6688±0.005 0.6771±0.006 -1.1797±0.007 -1.1779±0.006

RConvNP 0.6857±0.004 0.6898±0.003 0.6871±0.004 0.6916±0.004 -1.1699±0.008 -1.1547±0.004

RTNP 0.8796±0.005 0.8815±0.004 0.7276±0.004 0.7389±0.003 -1.1544±0.006 -1.1511±0.004

Table 7. Comparison of our robust NPs under different weight strategies on log-likelihood of the target points on two real-world datasets:
CelebA and EMNIST. We train each method with 5 different seeds and report the mean and standard deviation.

Method CelebA EMNIST(Seen (0-9)) EMNIST(Unseen (10-46))
average adam average adam average adam

RCNP 2.1735±0.007 2.1896±0.005 0.7845±0.005 0.7879±0.005 0.5321±0.005 0.5362±0.006

RNP 2.8871±0.006 2.8915±0.006 0.8876±0.004 0.8911±0.005 0.7101±0.006 0.7121±0.006

RANP 2.9651±0.003 2.9718±0.006 0.9825±0.006 0.9881±0.004 0.8915±0.007 0.8967±0.005

RConvNP 3.2215±0.004 3.2319±0.005 1.2251±0.006 1.2348±0.005 1.0663±0.005 1.0721±0.006

RTNP 4.4189±0.003 4.4226±0.005 1.5541±0.003 1.5572±0.002 1.4361±0.005 1.4413±0.004

E.5. The effect of wk

In the gradient computation process of the outer loop, the weighting coefficient for the gradient from the previous step is
typically determined using an average weighting strategy, i.e., ws−1

k−1 = 1
Ks−1

,∀k = 1, · · · ,Ks−1. However, we can set it as
a learning rate ηsk as shown in Eq. (15). We compared the performance of the robust model using the average strategy and
adaptive learning rates, using three tasks as examples. The results are shown in Table 6, 7, and 8. It can be observed that the
experimental results with the adaptive learning rate (Adam) outperformed the average strategy, while the average strategy
performed better than other bootstrap strategies or the stable strategy.

Table 8. Comparison of our robust NPs under different weight strategies on Bayesian optimization experiments with different GP kernels.
We train each method with 5 different seeds and report the mean and standard deviation.

Method RBF Matérn 5/2 Periodic
average adam average adam average adam

RCNP 0.1396±0.003 0.1352±0.003 0.1753±0.003 0.1711±0.004 0.1985±0.005 0.1941±0.004

RNP 0.1489±0.004 0.1415±0.003 0.1837±0.003 0.1789±0.005 0.1908±0.004 0.1873±0.003

RANP 0.1097±0.003 0.1025±0.002 0.1204±0.003 0.1171±0.003 0.1798±0.005 0.1779±0.006

RConvNP 0.1128±0.005 0.1056±0.004 0.1180±0.004 0.1156±0.004 0.1793±0.006 0.1773±0.003

RTNP 0.0973±0.001 0.0915±0.004 0.1327±0.005 0.1289±0.003 0.1517±0.006 0.1463±0.004

24

