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Abstract

Medical knowledge graphs (KG) are a source of highly granular, semantically rich, and cu-
rated medical ontologies. However, they have seen limited adoption in various multi-modal
medical imaging tasks owing to their sheer size. Instead, semantic label embeddings from
language models such as BERT and word2vec are currently employed. These embeddings
are derived from word co-occurrences and encode rich semantic associations. However, they
lack explicit relational information which KG intrinsically encode. On the other hand, the
expressive power of KG is limited by its parsed size. In view of these observations, we pro-
pose a way to learn KG embeddings on the parsed heterogeneous graph and complement
it with language embeddings. We test our hypothesis on generalized zero-shot learning of
chest radiographs.
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1. Introduction

There has been a surge in multi-modal text and image processing in the medical domain
over recent years. Tasks such as few-shot learning (Mahajan et al., 2020), zero-shot learning
(Hayat et al., 2021) and handling data-imbalance (Zhang et al., 2020) are using textual
information to account for the semantic knowledge gap.

However, the traditional language-based models such as word2vec (Zhang et al., 2019)
and BioBERT (Devlin et al., 2018) learn embeddings based on the distributional hypothesis
and masked language modeling respectively. As such, although these embeddings are rich,
they are local in their nature. They can not learn viable relationships between medical
concepts that do not appear together in medical reports. On the other hand, we have
knowledge graphs (KG) that are a curated knowledge bank of medical ontologies e.g. the
Unified Medical Language System (UMLS ) (Bodenreider, 2004). We can find explicit rela-
tionships between medical entities using such a KG. Intuitively, a KG gives us a more global
view of these relationships. Thus, an approach combining these two sources of information
can help us in various downstream tasks.

Despite the utility of KG, processing them is difficult owing to their size and the dif-
ferent kinds of relations they encode. In this work, we parse the KG conditioned on the
downstream application and model the parsed graph as a heterogeneous graph. The nodes
would be various medical ontologies while we have a separate edge for each relation type.
A heterogeneous treatment of the KG allows us to learn node features that are enriched
based on the different relationship types. This draws parallels from multi-head attention
that has been used very successfully in the case of transformers (Vaswani et al., 2017) and
graph attention networks (Veličković et al., 2017).
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Figure 1: We first train the Vision backbone using seen classes to learn weights WF for the linear classifier.
Second, the Graph processing module is trained to align predictions ŴF withWF for seen classes.
Finally, the enriched ŴF are copied over and replace the WF .

In this paper, we present an approach to using a knowledge graph for generalized zero-
shot learning of chest x-rays. We show that modeling a KG as a heterogeneous graph allows
us to learn information complementary to using only BERT embeddings. We show proof-of-
concept results for generalized zero-shot learning on NIH chest x-ray dataset (Wang et al.,
2017), where a combination of the two embeddings works better than the individual ones.

2. Method

We employ a multi-stage training process inspired from (Kampffmeyer et al., 2019). The
method overview is presented in Figure 1.

Graph construction We use UMLS as the knowledge graph for our application. We
limit ourselves to only five relationship types based on prior medical knowledge. These are:
is associated anatomic site of, finding site of, part of, inverse is a and has member.

We look up the target labels in the UMLS. These act as our seed entities. Starting from
each of these entities, we extract its 5-hop neighborhood. This operation is repeated for each
of the different entity types. The different edge types are combined using a heterogeneous
graph (Figure 2). We then compute the node2vec (Grover et al., 2016) embeddings for the
parsed graph. Finally, we initialize each of the nodes with the concatenated node2vec and
BioBERT embeddings.

Figure 2: We parse graph based on each of the relations. We use two target nodes, pulmonary edema and
cardiomegaly for reference. Target nodes are shown in green. The two subgraphs are obtained
by parsing nodes based on two different relation types. The final graph is a heterogeneous graph
containing both types of edge.

Model: The image processing module consists of a CNN feature extractor F and a classi-
fication layer WF . The Graph Processing module (GPM ) consists of three graph attention
layers and a node projection layer to predict the classifier weights ŴF .
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Training: Firstly, we train the image processing module using only the seen classes. The
classifier WF is semantically rich for the seen classes while it remains random for the unseen
classes. We would use our parsed graph to bridge this information gap. Secondly, the parsed
graph is processed using the GPM. The GPM predictions ŴF are aligned with the classifier
weights WF for seen classes. We hypothesize that during the alignment, weights of unseen
classes are also enriched due to GPM weight sharing. Finally, we replace the WF with the
enriched GPM predictions ŴF (ref Fig 1).

To account for a surplus of positive or negative samples in a mini-batch, we use the multi-
label classification loss(Chen et al., 2020) while training the image processing module. To
train the GPM we use the following loss function:-

Lreg =
∑

j∈seen
||W j

F − ŴF
j ||2 (1)

where W j
F is the weight of the jth disease. The loss is computed only for the seen classes.

Please note that the GPM module is not used during inference. Only the image pro-
cessing module is required to classify the unseen test samples.

3. Experiment

Dataset We evaluate our method on the NIH Chest X-ray dataset (Wang et al., 2017). We
have radiographs with multi-label annotations.The 112,120 frontal X-ray images are split
into training (70%), validation (10%) and test sets (20%). Each image is associated with
14 class labels. We use Atelectasis, Effusion, Infiltration, Mass, Nodule, Pneumothorax,
Consolidation, Cardiomegaly, Pleural Thickening, and Hernia as the seen classes while
Edema, Pneumonia, Emphysema, and Fibrosis are the unseen classes (same as (Hayat
et al., 2021)), resulting in 30,758 training, 4,474 validation and 10,510 test images.

Evaluation metrics. We report overall precision, recall, and f1 scores for the top k
predictions (where k ∈ 2, 3) and the average area under the receiving operating characteristic
curve (AUROC) for seen and unseen classes and their harmonic mean.

Table 1: Performance Evaluation on the NIH Chest X-ray dataset. We report the results using Preci-
sion@k, Recall@k , F1@k for k ∈ {2, 3}. We also report AUROC for seen (S) & unseen (U)
classes and the Harmonic Mean (HM).

k=2 k=3 AUROC

Method p@k r@k f1@k p@k r@k f1@k S U HM

Node2Vec Grover et al. (2016) 0.26 0.32 0.28 0.23 0.43 0.29 0.78 0.54 0.64
BioBERT (Devlin et al., 2018) 0.31 0.35 0.33 0.26 0.44 0.33 0.80 0.60 0.69
HeteroKG (Ours) 0.33 0.35 0.34 0.26 0.45 0.33 0.80 0.64 0.71

Results We summarize the results in Table 1. As we can see, while BERT embeddings are
semantically rich, only a combination of node2vec and BioBERT gives the best performance.
None of these embeddings are expressive enough on their own.

4. Conclusion

We propose a novel way to model medical knowledge graphs as a heterogeneous graph
and use it for generalized zero-shot learning task. We show that it encodes information
complementary to word embedding models and a combination of these two information
sources might be the preferred way going forward.
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