
Published as a conference paper at ICLR 2023

DIFFUSION-GAN: TRAINING GANS WITH DIFFUSION

Zhendong Wang1,2, Huangjie Zheng1,2, Pengcheng He2, Weizhu Chen2, Mingyuan Zhou1

1The University of Texas at Austin, 2Microsoft Azure AI
{zhendong.wang, huangjie.zheng}@utexas.edu, {penhe,wzchen}@microsoft.com
mingyuan.zhou@mccombs.utexas.edu

ABSTRACT

Generative adversarial networks (GANs) are challenging to train stably, and a
promising remedy of injecting instance noise into the discriminator input has not
been very effective in practice. In this paper, we propose Diffusion-GAN, a novel
GAN framework that leverages a forward diffusion chain to generate Gaussian-
mixture distributed instance noise. Diffusion-GAN consists of three components,
including an adaptive diffusion process, a diffusion timestep-dependent discrimi-
nator, and a generator. Both the observed and generated data are diffused by the
same adaptive diffusion process. At each diffusion timestep, there is a different
noise-to-data ratio and the timestep-dependent discriminator learns to distinguish
the diffused real data from the diffused generated data. The generator learns from
the discriminator’s feedback by backpropagating through the forward diffusion
chain, whose length is adaptively adjusted to balance the noise and data levels.
We theoretically show that the discriminator’s timestep-dependent strategy gives
consistent and helpful guidance to the generator, enabling it to match the true data
distribution. We demonstrate the advantages of Diffusion-GAN over strong GAN
baselines on various datasets, showing that it can produce more realistic images
with higher stability and data efficiency than state-of-the-art GANs.

1 INTRODUCTION

Generative adversarial networks (GANs) (Goodfellow et al., 2014) and their variants (Brock et al.,
2018; Karras et al., 2019; 2020a; Zhao et al., 2020) have achieved great success in synthesizing
photo-realistic high-resolution images. GANs in practice, however, are known to suffer from a
variety of issues ranging from non-convergence and training instability to mode collapse (Arjovsky
and Bottou, 2017; Mescheder et al., 2018). As a result, a wide array of analyses and modifications
has been proposed for GANs, including improving the network architectures (Karras et al., 2019;
Radford et al., 2016; Sauer et al., 2021; Zhang et al., 2019), gaining theoretical understanding of
GAN training (Arjovsky and Bottou, 2017; Heusel et al., 2017; Mescheder et al., 2017; 2018),
changing the objective functions (Arjovsky et al., 2017; Bellemare et al., 2017; Deshpande et al.,
2018; Li et al., 2017a; Nowozin et al., 2016; Zheng and Zhou, 2021; Yang et al., 2021), regularizing
the weights and/or gradients (Arjovsky et al., 2017; Fedus et al., 2018; Mescheder et al., 2018;
Miyato et al., 2018a; Roth et al., 2017; Salimans et al., 2016), utilizing side information (Wang
et al., 2018; Zhang et al., 2017; 2020b), adding a mapping from the data to latent representation
(Donahue et al., 2016; Dumoulin et al., 2016; Li et al., 2017b), and applying differentiable data
augmentation (Karras et al., 2020a; Zhang et al., 2020a; Zhao et al., 2020).

A simple technique to stabilize GAN training is to inject instance noise, i.e., to add noise to the
discriminator input, which can widen the support of both the generator and discriminator distribu-
tions and prevent the discriminator from overfitting (Arjovsky and Bottou, 2017; Sønderby et al.,
2017). However, this technique is hard to implement in practice, as finding a suitable noise distri-
bution is challenging (Arjovsky and Bottou, 2017). Roth et al. (2017) show that adding instance
noise to the high-dimensional discriminator input does not work well, and propose to approximate
it by adding a zero-centered gradient penalty on the discriminator. This approach is theoretically
and empirically shown to converge in Mescheder et al. (2018), who also demonstrate that adding
zero-centered gradient penalties to non-saturating GANs can result in stable training and better or
comparable generation quality compared to WGAN-GP (Arjovsky et al., 2017). However, Brock

1

Published as a conference paper at ICLR 2023

𝑥 ∼ 𝑝(𝑥) 𝑦 | 𝑡 = 100 𝑦 | 𝑡 = 300 𝑦 | 𝑡 = 600 𝑦 | 𝑡 = 𝑇 = 1000

𝑦! | 𝑡 = 100 𝑦! | 𝑡 = 300 𝑦! | 𝑡 = 600 𝑦! | 𝑡 = 𝑇 = 1000

Timestep-Dependent Discriminator: 𝑫(𝒚, 𝒕)

T is adaptively adjusted.

Generator: 𝒙𝒈 = 𝑮 𝒛 , 𝒛 ∼ 𝒑(𝒛)

Diffusion Process: 𝒚 ∼ 𝒒 𝒚 𝒙, 𝒕 , 𝒕 ∼ 𝒑𝝅

Diffusion Process: 𝒚𝒈 ∼ 𝒒 𝒚𝒈 𝒙𝒈, 𝒕 , 𝒕 ∼ 𝒑𝝅

Figure 1: Flowchart for Diffusion-GAN. The top-row images represent the forward diffusion process of a real
image, while the bottom-row images represent the forward diffusion process of a generated fake image. The
discriminator learns to distinguish a diffused real image from a diffused fake image at all diffusion steps.

et al. (2018) caution that zero-centered gradient penalties and other similar regularization methods
may stabilize training at the cost of generation performance. To the best of our knowledge, there has
been no existing work that is able to empirically demonstrate the success of using instance noise in
GAN training on high-dimensional image data.

To inject proper instance noise that can facilitate GAN training, we introduce Diffusion-GAN, which
uses a diffusion process to generate Gaussian-mixture distributed instance noise. We show a graph-
ical representation of Diffusion-GAN in Figure 1. In Diffusion-GAN, the input to the diffusion
process is either a real or a generated image, and the diffusion process consists of a series of steps
that gradually add noise to the image. The number of diffusion steps is not fixed, but depends on the
data and the generator. We also design the diffusion process to be differentiable, which means that
we can compute the derivative of the output with respect to the input. This allows us to propagate
the gradient from the discriminator to the generator through the diffusion process, and update the
generator accordingly. Unlike vanilla GANs, which compare the real and generated images directly,
Diffusion-GAN compares the noisy versions of them, which are obtained by sampling from the
Gaussian mixture distribution over the diffusion steps, with the help of our timestep-dependent dis-
criminator. This distribution has the property that its components have different noise-to-data ratios,
which means that some components add more noise than others. By sampling from this distribution,
we can achieve two benefits: first, we can stabilize the training by easing the problem of vanishing
gradient, which occurs when the data and generator distributions are too different; second, we can
augment the data by creating different noisy versions of the same image, which can improve the
data efficiency and the diversity of the generator. We provide a theoretical analysis to support our
method, and show that the min-max objective function of Diffusion-GAN, which measures the dif-
ference between the data and generator distributions, is continuous and differentiable everywhere.
This means that the generator in theory can always receive a useful gradient from the discriminator,
and improve its performance.

Our main contributions include: 1) We show both theoretically and empirically how the diffusion
process can be utilized to provide a model- and domain-agnostic differentiable augmentation, en-
abling data-efficient and leaking-free stable GAN training. 2) Extensive experiments show that
Diffusion-GAN boosts the stability and generation performance of strong baselines, including Style-
GAN2 (Karras et al., 2020b), Projected GAN (Sauer et al., 2021), and InsGen (Yang et al., 2021),
achieving state-of-the-art results in synthesizing photo-realistic images, as measured by both the
Fréchet Inception Distance (FID) (Heusel et al., 2017) and Recall score (Kynkäänniemi et al., 2019).

2 PRELIMINARIES: GANS AND DIFFUSION-BASED GENERATIVE MODELS

GANs (Goodfellow et al., 2014) are a class of generative models that aim to learn the data dis-
tribution p(x) of a target dataset by setting up a min-max game between two neural networks: a
generator and a discriminator. The generator G takes as input a random noise vector z sampled
from a simple prior distribution p(z), such as a standard normal or uniform distribution, and tries to
produce realistic-looking samples G(z) that resemble the data. The discriminator D receives either

2

Published as a conference paper at ICLR 2023

a real data sample x drawn from p(x) or a fake sample G(z) generated by G, and tries to correctly
classify them as real or fake. The goal of G is to fool D into making mistakes, while the goal of D
is to accurately distinguish G(z) from x. The min-max objective function of GANs is given by

min
G

max
D

V (G,D) = Ex∼p(x)[log(D(x))] + Ez∼p(z)[log(1−D(G(z)))].

In practice, this vanilla objective function is often modified to improve the stability and performance
of GANs(Goodfellow et al., 2014; Miyato et al., 2018a; Fedus et al., 2018), but the general idea of
adversarial learning between G and D remains the same.

Diffusion-based generative models (Ho et al., 2020b; Sohl-Dickstein et al., 2015; Song and Ermon,
2019) assume pθ(x0) :=

∫
pθ(x0:T)dx1:T , where x1, . . . ,xT are latent variables of the same di-

mensionality as the data x0 ∼ p(x0). There is a forward diffusion chain that gradually adds noise
to the data x0 ∼ q(x0) in T steps with pre-defined variance schedule βt and variance σ2:

q(x1:T |x0) :=
∏T

t=1 q(xt |xt−1), q(xt |xt−1) := N (xt;
√
1− βtxt−1, βtσ

2I).

A notable property is that xt at an arbitrary time-step t can be sampled in closed form as

q(xt |x0) = N (xt;
√
ᾱtx0, (1− ᾱt)σ

2I), where αt := 1− βt, ᾱt :=
∏t

s=1 αs. (1)
A variational lower bound (Blei et al., 2017) is then used to optimize the reverse diffusion chain as

pθ(x0:T) := N (xT ;0, σ
2I)

∏T
t=1 pθ(xt−1 |xt).

3 DIFFUSION-GAN: METHOD AND THEORETICAL ANALYSIS

To construct Diffusion-GAN, we describe how to inject instance noise via diffusion, how to train the
generator by backpropagating through the forward diffusion process, and how to adaptively adjust
the diffusion intensity. We further provide theoretical analysis illustrated with a toy example.

3.1 INSTANCE NOISE INJECTION VIA DIFFUSION

We aim to generate realistic samples xg from a generator network G that maps a latent variable z
sampled from a simple prior distribution p(z) to a high-dimensional data space, such as images. The
distribution of generator samples xg = G(z), z ∼ p(z) is denoted by pg(x) =

∫
p(xg | z)p(z)dz.

To make the generator more robust and diverse, we inject instance noise into the generated samples
xg by applying a diffusion process that adds Gaussian noise at each step. The diffusion process can
be seen as a Markov chain that starts from the original sample x and gradually erases its information
until reaching a noise level σ2 after T steps.

We define a mixture distribution q(y |x) that models the noisy samples y obtained at any step of
the diffusion process, with a mixture weight πt for each step t. The mixture components q(y |x, t)
are Gaussian distributions with mean proportional to x and variance depending on the noise level
at step t. We use the same diffusion process and mixture distribution for both the real samples
x ∼ p(x) and the generated samples xg ∼ pg(x). More specifically, the diffusion-induced mixture
distributions are expressed as

x ∼ p(x), y ∼ q(y |x), q(y |x) :=
∑T

t=1 πtq(y |x, t),

xg ∼ pg(x), yg ∼ q(yg |xg), q(yg |xg) :=
∑T

t=1 πtq(yg |xg, t),

where q(y |x) is a T -component mixture distribution, the mixture weights πt are non-negative and
sum to one, and the mixture components q(y |x, t) are obtained via diffusion as in Equation (1),
expressed as

q(y |x, t) = N (y;
√
ᾱtx, (1− ᾱt)σ

2I). (2)
Samples from this mixture can be drawn as t ∼ pπ := Discrete(π1, . . . , πT), y ∼ q(y |x, t).
By sampling y from this mixture distribution, we can obtain noisy versions of both real and gen-
erated samples with varying degrees of noise. The more steps we take in the diffusion process,
the more noise we add to y and the less information we preserve from x. We can then use this
diffusion-induced mixture distribution to train a timestep-dependent discriminator D that distin-
guishes between real and generated noisy samples, and a generatorG that matches the distribution of
generated noisy samples to the distribution of real noisy samples. Next we introduce Diffusion-GAN
that trains its discriminator and generator with the help of the diffusion-induced mixture distribution.

3

Published as a conference paper at ICLR 2023

3.2 ADVERSARIAL TRAINING

The Diffusion-GAN trains its generator and discriminator by solving a min-max game objective as

V (G,D) = Ex∼p(x),t∼pπ,y∼q(y |x,t)[log(Dϕ(y, t))] + Ez∼p(z),t∼pπ,yg∼q(y |Gθ(z),t)[log(1−Dϕ(yg, t))]. (3)

Here, p(x) is the true data distribution, pπ is a discrete distribution that assigns different weights
πt to each diffusion step t ∈ {1, . . . , T}, and q(y |x, t) is the conditional distribution of the per-
turbed sample y given the original data x and the diffusion step t. By Equation (2), with Gaussian
reparameterization, the perturbation function could be written as y =

√
ᾱtx +

√
1− ᾱtσϵ, where

1 − ᾱt = 1 −
∏t

s=1 αs is the cumulative noise level at step t, σ is a scale factor, and ϵ ∼ N (0, I)
is a Gaussian noise.

The objective function in Equation (3) encourages the discriminator to assign high probabilities to
the perturbed real data and low probabilities to the perturbed generated data, for any diffusion step t.
The generator, on the other hand, tries to produce samples that can deceive the discriminator at any
diffusion step t. Note that the perturbed generated sample yg ∼ q(y |Gθ(z), t) can be rewritten
as yg =

√
ᾱtGθ(z) +

√
(1− ᾱt)σϵ, ϵ ∼ N (0, I). This means that the objective function in

Equation (3) is differentiable with respect to the generator parameters, and we can use gradient
descent to optimize it with back-propagation.

The objective function Equation (3) is similar to the one used by the original GAN (Goodfellow
et al., 2014), except that it involves the diffusion steps and the perturbation functions. We can show
that this objective function also minimizes an approximation of the Jensen–Shannon (JS) divergence
between the true and the generated distributions, but with respect to the perturbed samples and the
diffusion steps, as follows:

DJS(p(y, t)||pg(y, t)) = Et∼pπ
[DJS(p(y | t)||pg(y | t))]. (4)

The JS divergence measures the dissimilarity between two probability distributions, and it reaches
its minimum value of zero when the two distributions are identical. The proof of the equality in
Equation (4) is given in Appendix C. A natural question that arises from this result is whether mini-
mizing the JS divergence between the perturbed distributions implies minimizing the JS divergence
between the original distributions, i.e., whether the optimal generator for Equation (3) is also the
optimal generator for DJS(p(x)||pg(x)). We will answer this question affirmatively and provide a
theoretical justification in Section 3.4.

3.3 ADAPTIVE DIFFUSION

With the help of the perturbation function and timestep dependency, we have a new strategy to
optimize the discriminator. We want the discriminator D to have a challenging task, neither too
easy to allow overfitting the data (Karras et al., 2020a; Zhao et al., 2020) nor too hard to impede
learning. Therefore, we adjust the intensity of the diffusion process, which adds noise to both y
and yg , depending on how much D can distinguish them. When the diffusion step t is larger, the
noise-to-data ratios are higher and the task is harder. We use 1 − ᾱt to measure the intensity of the
diffusion, which increases as t grows. To control the diffusion intensity, we adaptively modify the
maximum number of steps T .

Our strategy is to make the discriminator learn from the easiest samples first, which are the original
data samples, and then gradually increase the difficulty by feeding it samples from larger t. To do
this, we use a self-paced schedule for T , which depends on a metric rd that estimates how much the
discriminator overfits to the data:

rd = Ey,t∼p(y,t)[sign(Dϕ(y, t)− 0.5)], T = T + sign(rd − dtarget) ∗ C, (5)

where rd is the same as in Karras et al. (2020a) and C is a constant. We calculate rd and update T
every four minibatches. We have two options for the distribution pπ that we use to sample t for the
diffusion process:

t ∼ pπ :=

{
uniform: Discrete

(
1
T ,

1
T , . . . ,

1
T

)
,

priority: Discrete
(

1∑T
t=1 t

, 2∑T
t=1 t

, . . . , T∑T
t=1 t

)
,

(6)

The ‘priority’ option gives more weight to larger t, which means the discriminator will see more new
samples from the new steps when T increases. This is because we want the discriminator to focus on

4

Published as a conference paper at ICLR 2023

the new and harder samples that it has not seen before, as this indicates that it is confident about the
easier ones. Note that even with the ‘priority’ option, the discriminator can still see samples from
smaller t, because q(y |x) is a mixture of Gaussians that covers all steps of the diffusion chain.

To avoid sudden changes in T during training, we use an exploration list tepl that contains t values
sampled from pπ . We keep tepl fixed until we update T , and we sample t from tepl to generate noisy
samples for the discriminator. This way, the model can explore each t sufficiently before moving to
a higher T . We give the details of training Diffusion-GAN in Algorithm 1 in Appendix F.

3.4 THEORETICAL ANALYSIS WITH EXAMPLES

To better understand the theoretical properties of our proposed method, we present two theorems that
address two important questions about the use of diffusion-based instance noise injection for training
GANs. The proofs of these theorems are deferred to Appendix B. The first question, denoted as (a),
is whether adding noise to the real and generated samples in a diffusion process can facilitate the
learning. The second question, denoted as (b), is whether minimizing the JS divergence between
the joint distributions of the noisy samples and the noise levels, p(y, t) and pg(y, t), can lead to the
same optimal generator as minimizing the JS divergence between the original distributions of the
real and generated samples, p(x) and pg(x).

To answer (a), we prove that for any choice of noise level t and any choice of convex function f ,
the f -divergence (Nowozin et al., 2016) between the marginal distributions of the noisy real and
generated samples, q(y | t) and q(yg | t), is a smooth function that can be computed and optimized
by the discriminator. This implies that the diffusion-based noise injection does not introduce any
singularity or discontinuity in the objective function of the GAN. The JS divergence is a special case
of f -divergence, where f(u) = − log(2u)− log(2− 2u).

Theorem 1 (Valid gradients anywhere for GANs training). Let p(x) be a fixed distribution
over X and z be a random noise over another space Z . Denote Gθ : Z → X as a func-
tion with parameter θ and input z and pg(x) as the distribution of Gθ(z). Let q(y |x, t) =
N (y;

√
ᾱtx, (1 − ᾱt)σ

2I), where ᾱt ∈ (0, 1) and σ > 0. Let q(y | t) =
∫
p(x)q(y |x, t)dx

and qg(y | t) =
∫
pg(x)q(y |x, t)dx. Then, ∀t, if function Gθ is continuous and differentiable, the

f-divergence Df (q(y | t)||qg(y | t)) is continuous and differentiable with respect to θ.

Theorem 1 shows that with the help of diffusion noise injection by q(y |x, t), ∀t, y and yg are
defined on the same support space, the whole X , and Df (q(y | t)||qg(y | t)) is continuous and dif-
ferentiable everywhere. Then, one natural question is what if Df (q(y | t)||qg(y | t)) keeps a near
constant value and hence provides little useful gradient. Hence, we empirically show that by in-
jecting noise through a mixture defined over all steps of the diffusion chain, there is always a good
chance that a sufficiently large t is sampled to provide a useful gradient, via the toy example below.

Toy example. We use the same simple example from Arjovsky et al. (2017) to illustrate our method.
Let x = (0, z) be the real data and xg = (θ, z) be the data generated by a one-parameter generator,
where z is a uniform random variable in [0, 1]. The JS divergence between the real and the generated
distributions, DJS(p(x)||p(xg)), is discontinuous: it is log 2 when θ = 0 and zero otherwise, so it
does not provide a useful gradient to guide θ towards zero.

We introduce diffusion-based noise to both the real and the generated data, as shown in the first
row of Figure 2. The noisy data, y and yg , have supports that cover the whole space R2 and their
densities overlap more or less depending on the diffusion step t. In the second row, left, of Figure 2,
we plot how the JS divergence between the noisy distributions, DJS(q(y | t)||qg(y | t)), varies with
θ for different t values. The black line with t = 0 is the original JS divergence, which has a
discontinuity at θ = 0. As t increases, the JS divergence curves become smoother and have non-
zero gradients for a larger range of θ. However, some values of t, such as t = 200 in this example,
still have flat regions where the JS divergence is nearly constant. To avoid this, we use a mixture of
all steps to ensure that there is always a high chance of getting informative gradients.

For the discriminator optimization, as shown in the second row, right, of Figure 2, the optimal
discriminator under the original JS divergence is discontinuous and unattainable. With diffusion-
based noise, the optimal discriminator changes with t: a smaller t makes it more confident and a
larger t makes it more cautious. Thus the diffusion acts like a scale to balance the power of the

5

Published as a conference paper at ICLR 2023

0 2 4
x

0.0

0.5

1.0

y

t=0

0 2 4
x

0

1

y

t=200

0 2
x

1

0

1

y

t=400

0 2
x

1

0

1

y

t=500

1 0 1 2
x

1

0

1

y

t=600

1 0 1
x

1

0

1

y

t=800

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0

2

4

6

D
JS

(q
(y

|t)
||q

g(
y|

t))

t = 0 t = 200 t = 400 t = 500 t = 600 t = 800

2 0 2 4 6
x

0.00

0.25

0.50

0.75

1.00

Op
tim

al
 D

isc
rim

in
at

or
 V

al
ue

 D
* (

x)

t = 0 t = 200 t = 400 t = 500 t = 600 t = 800

Figure 2: The toy example inherited from Arjovsky et al. (2017). The first row plots the distributions of data
with diffusion noise injected for t. The second row shows the JS divergence and the optimal discriminator value
with and without our noise injection.

discriminator. This suggests the use of a differentiable forward diffusion chain that can provide
various levels of gradient smoothness to help the generator training.

Theorem 2 (Non-leaking noise injection). Let x ∼ p(x),y ∼ q(y |x) and xg ∼ pg(x),yg ∼
q(yg |xg), where q(y |x) is the transition density. Given certain q(y |x), if y could be reparame-
terized into y = f(x) + h(ϵ), ϵ ∼ p(ϵ), where p(ϵ) is a known distribution, and both f and h are
one-to-one mapping functions, then we could have p(y) = pg(y) ⇔ p(x) = pg(x).

To answer question (b), we present Theorem 2, which shows a sufficient condition for the equality
of the original and the augmented data distributions. By Theorem 2, the function f maps each
x to a unique y, the function h maps each ϵ to a unique noise term, and the distribution of ϵ is
known and independent of x. Under these assumptions, the theorem proves that the distribution
of y is the same as the distribution of yg , if and only if the distribution of x is the same as the
distribution of xg . If we take y | t as the y introduced in the theorem, then for ∀t, Equation (2)
fits the assumption made. This means that, by minimizing the divergence between q(y | t) and
qg(y | t), which is the same as minimizing the divergence between p(x) | t and pg(x) | t, we are also
minimizing the divergence between p(x) and pg(x). This implies that the noise injection does not
affect the quality of the generated samples, and we can safely use our noise injection to improve the
training of the generative model.

3.5 RELATED WORK

The proposed Diffusion-GAN can be related to previous works on stabilizing the GAN training,
building diffusion-based generative models, and constructing differential augmentation for data-
efficient GAN training. A detailed discussion on these related works is deferred to Appendix A.

4 EXPERIMENTS

We conduct extensive experiments to answer the following questions: (a) Will Diffusion-GAN out-
perform state-of-the-art GAN baselines on benchmark datasets? (b) Will the diffusion-based noise
injection help the learning of GANs in domain-agnostic tasks? (c) Will our method improve the
performance of data-efficient GANs trained with a very limited amount of data?

Datasets. We conduct experiments on image datasets ranging from low-resolution (e.g., 32 ×
32) to high-resolution (e.g., 1024 × 1024) and from low-diversity to high-diversity: CIFAR-10
(Krizhevsky, 2009), STL-10 (Coates et al., 2011), LSUN-Bedroom (Yu et al., 2015), LSUN-Church
(Yu et al., 2015), AFHQ(Cat/Dog/Wild) (Choi et al., 2020), and FFHQ (Karras et al., 2019). More
details on these benchmark datasets are provided in Appendix E.

Evaluation protocol. We measure image quality using FID (Heusel et al., 2017). Following Karras
et al. (2019; 2020b), we measure FID using 50k generated samples, with the full training set used

6

Published as a conference paper at ICLR 2023

Table 1: Image generation results on benchmark datasets: CIFAR-10, CelebA, STL-10, LSUN-Bedroom,
LSUN-Church, and FFHQ. We highlight the best and second best results in each column with bold and
underline, respectively. Lower FIDs indicate better fidelity, while higher Recalls indicate better diversity.

Methods
CIFAR-10 CelebA STL-10 LSUN-Bedroom LSUN-Church FFHQ
(32× 32) (64× 64) (64× 64) (256× 256) (256× 256) (1024× 1024)

FID Recall FID Recall FID Recall FID Recall FID Recall FID Recall

StyleGAN2 (Karras et al., 2020a) 8.32∗ 0.41∗ 2.32 0.55 11.70 0.44 3.98 0.32 3.93 0.39 4.41 0.42
StyleGAN2 + DiffAug (Zhao et al., 2020) 5.79∗ 0.42∗ 2.75 0.52 12.97 0.39 4.25 0.19 4.66 0.33 4.46 0.41
StyleGAN2 + ADA (Karras et al., 2020a) 2.92∗ 0.49∗ 2.49 0.53 13.72 0.36 7.89 0.05 4.12 0.18 4.47 0.41
Diffusion StyleGAN2 3.19 0.58 1.69 0.67 11.43 0.45 3.65 0.32 3.17 0.42 2.83 0.49

(a) CIFAR-10 (b) CelebA (c) STL-10

(d) LSUN-Bedroom (e) LSUN-Church

(f) FFHQ

Figure 3: Randomly generated images from Diffusion StyleGAN2 trained on CIFAR-10, CelebA, STL-10,
LSUN-Bedroom, LSUN-Church, and FFHQ datasets.

as reference. We use the number of real images shown to the discriminator to evaluate convergence
(Karras et al., 2020a; Sauer et al., 2021). Unless specified otherwise, all models are trained with 25
million images to ensure convergence (these trained with more or fewer images are specified in table
captions). We further report the improved Recall score introduced by Kynkäänniemi et al. (2019) to
measure the sample diversity of generative models.

Implementations and resources. We build Diffusion-GANs based on the code of StyleGAN2
(Karras et al., 2020b), ProjectedGAN (Sauer et al., 2021), and InsGen (Yang et al., 2021) to an-
swer questions (a), (b), and (c), respectively. Diffusion GANs inherit from their corresponding base
GANs all their network architectures and training hyperparamters, whose details are provided in
Appendix G. Specifically for StyleGAN2 and InsGen, we construct the discriminator as Dϕ(y, t),
where t is injected via their mapping network. For ProjectedGAN, we empirically find t in the dis-
criminator could be ignored to simplify the implementation and minimize the modifications to Pro-
jectedGAN. More implementation details are provided in Appendix H. By applying our diffusion-
based noise injection, we denote our models as Diffusion StyleGAN2/ProjectedGAN/InsGen. In the
following experiments, we train related models with their official code if the results are unavailable,
while others are all reported from references and marked with ∗. We run all our experiments with ei-
ther 4 or 8 NVIDIA V100 GPUs depending on the demands of the inherited training configurations.

4.1 COMPARISON TO STATE-OF-THE-ART GANS

We compare Diffusion-GAN with its state-of-the-art GAN backbone, StyleGAN2 (Karras et al.,
2020a), and to evaluate its effectiveness from the data augmentation perspective, we compare it with
both StyleGAN2 + DiffAug (Zhao et al., 2020) and StyleGAN2 + ADA (Karras et al., 2020a), in
terms of both sample fidelity (FID) and sample diversity (Recall) over extensive benchmark datasets.

We present the quantitative and qualitative results in Table 1 and Figure 3. Qualitatively, these gener-
ated images from Diffusion StyleGAN2 are all photo-realistic and have good diversity, ranging from
low-resolution (32 × 32) to high-resolution (1024 × 1024). Additional randomly generated images

7

Published as a conference paper at ICLR 2023

1M 2M 5M 10M 15M 20M 25M
Training Progress (# million real images)

0

200

400

600

800

1000

T

T Schedule on CIFAR-10 and STL-10

T of Diffusion StyleGAN2 on CIFAR-10
T of Diffusion StyleGAN2 on STL-10
T of Diffusion ProjectedGAN on CIFAR-10
T of Diffusion ProjectedGAN on STL-10

0M 5M 10M 15M 20M 25M
Training Progress (# million real images)

4

2

0

2

4

D(
x)

Discriminator outputs on CIFAR-10
Real images
Generated images

Figure 4: Plot of adaptively adjusted maximum diffusion steps T and discriminator outputs of Diffusion-GANs.

can be found in Appendix L. Quantitatively, Diffusion StyleGAN2 outperforms all the GAN base-
lines in generation diversity, as measured by Recall, on all 6 benchmark datasets and outperforms
them in FID by a clear margin on 5 out of the 6 benchmark datasets.

From the data augmentation perspective, we observe that Diffusion StyleGAN2 always clearly out-
performs the backbone model StyleGAN2 across various datasets, which empirically validates our
Theorem 2. By contrast, both the ADA (Karras et al., 2020b) and Diffaug (Zhao et al., 2020)
techniques could sometimes impair the generation performance on sufficiently large datasets, e.g.,
LSUN-Bedroom and LSUN-Church, which is also observed by Yang et al. (2021) on FFHQ. This is
possibly because their risk of leaking augmentation overshadows the benefits of data augmentation.

To investigate how the adaptive diffusion process works during training, we illustrate in Figure 4 the
convergence of the maximum timestep T in our adaptive diffusion and discriminator outputs. We see
that T is adaptively adjusted: The T for Diffusion StyleGAN2 increases as the training goes while
the T for Diffusion ProjectedGAN first goes up and then goes down. Note that the T is adjusted
according to the overfitting status of the discriminator. The second panel shows that trained with the
diffusion-based mixture distribution, the discriminator is always well behaved and provides useful
learning signals for the generator, which validates our analysis in Section 3.4 and Theorem 1.

Memory and time costs. Generally speaking, the memory and time costs of a Diffusion-GAN are
comparable to those of the corresponding GAN baseline. More specifically, switching from ADA
(Karras et al., 2020a) to our diffusion-based augmentation, the added memory cost is negative, the
added training time cost is negative, and the added inference time cost is zero. For example, for
CIFAR-10, with four NVIDIA V100 GPUs, the training time for each 4k images is around 8.0s for
StyleGAN2, 9.8s for StyleGAN2-ADA, and 9.5s for Diffusion-StyleGAN2.

4.2 EFFECTIVENESS OF DIFFUSION-GAN FOR DOMAIN-AGNOSTIC AUGMENTATION

To verify whether our method is domain-agnostic, we apply Diffusion-GAN onto the input feature
vectors of GANs. We conduct experiments on both low-dimensional and high-dimensional feature
vectors, for which commonly used image augmentation methods are no longer applicable.

25-Gaussians Example. We conduct experiments on the popular 25-Gaussians generation task.
The 25-Gaussians dataset is a 2-D toy data, generated by a mixture of 25 two-dimensional Gaussian
distributions. Each data point is a 2-dimensional feature vector. We train a small GAN model,
whose generator and discriminator are both parameterized by multilayer perceptrons (MLPs), with
two 128-unit hidden layers and LeakyReLu nonlinearities.

The training results are shown in Figure 5. We observe that the vanilla GAN exhibits severe mode
collapsing, capturing only a few modes. Its discriminator outputs of real and fake samples depart
from each other very quickly. This implies a strong overfitting of the discriminator happened so
that the discriminator stops providing useful learning signals for the generator. However, Diffusion-
GAN successfully captures all the 25 Gaussian modes and the discriminator is under control to
continuously provide useful learning signals. We interpret the improvement from two perspectives:
First, non-leaking augmentation helps provide more information about the data space; Second, the
discriminator is well behaved given the adaptively adjusted diffusion-based noise injection.

ProjectedGAN. To verify that our adaptive diffusion-based noise injection could benefit the learn-
ing of GANs on high-dimensional feature vectors, we directly apply it to the discriminator feature

8

Published as a conference paper at ICLR 2023

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Groud Truth

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

GAN

0 1000 2000 3000 4000 5000
Epochs

1.5

1.0

0.5

0.0

0.5

1.0

D
(x

)

Discriminator outputs of GAN
Real samples
Fake samples

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

DiffusionGAN

0 1000 2000 3000 4000 5000
Epochs

1.5

1.0

0.5

0.0

0.5

1.0

1.5

D
(x

)

Discriminator outputs of DiffusionGAN
Real samples
Fake samples

Figure 5: The 25-Gaussians example. We show the true data samples, the generated samples from vanilla
GANs, the discriminator outputs of the vanilla GANs, the generated samples from our Diffusion-GAN, and the
discriminator outputs of Diffusion-GAN.

space of ProjectedGAN (Sauer et al., 2021). ProjectedGANs generally leverage pre-trained neu-
ral networks to extract meaningful features for the adversarial learning of the discriminator and
generator. Following Sauer et al. (2021), we adaptively diffuse the feature vectors extracted by
EfficientNet-v0 and keep all the other training parts unchanged. We report the performance of Dif-
fusion ProjectedGAN on several benchmark datasets in Table 2, which verifies that our augmentation
method is domain-agnostic. Under the ProjectedGAN framework, we see that with noise properly
injected into the high-dimensional feature space, Diffusion ProjectedGAN shows clear improvement
in terms of both FID and Recall. We reach state-of-the-art FID results with Diffusion ProjectedGAN
on STL-10 and LSUN-Bedroom/Church datasets.

Table 2: Domain-agnostic experiments on ProjectedGAN.

Domain-agnostic Tasks
CIFAR-10 (32× 32) STL-10 (64× 64) LSUN-Bedroom (256× 256) LSUN-Church (256× 256)
FID Recall FID Recall FID Recall FID Recall

ProjectedGAN (Sauer et al., 2021) 3.10 0.45 7.76 0.35 2.25 0.55 3.42 0.56
Diffusion ProjectedGAN 2.54 0.45 6.91 0.35 1.43 0.58 1.85 0.65

4.3 EFFECTIVENESS OF DIFFUSION-GAN FOR LIMITED DATA

We evaluate whether Diffusion-GAN can provide data-efficient GAN training. We first generate
five FFHQ (1024× 1024) dataset splits, consisting of 200, 500, 1k, 2k, and 5k images, respectively,
where 200 and 500 images are considered to be extremely limited data cases. We also consider
AFHQ-Cat, -Dog, and -Wild (512 × 512), each with as few as around 5k images. Motivated by
the success of InsGen (Yang et al., 2021) on small datasets, we build our Diffusion-GAN upon it.
We note on limited data, InsGen convincingly outperforms both StyleGAN2+ADA and +DiffAug,
and currently holds the state-of-the-art performance for data-efficient GAN training. The results in
Table 3 show that our Diffusion-GAN method can help further boost the performance of InsGen in
limited data settings.

Table 3: FFHQ (1024 × 1024) FID results with 200, 500, 1k, 2k, and 5k training samples; AFHQ (512 × 512)
FID results. To ensure convergence, all models are trained across 10M images for FFHQ and 25M images for
AFHQ. We bold the best number in each column.

Models FFHQ (200) FFHQ (500) FFHQ (1k) FFHQ (2k) FFHQ (5k) Cat Dog Wild
InsGen (Yang et al., 2021) 102.58 54.762 34.90 18.21 9.89 2.60∗ 5.44∗ 1.77∗

Diffusion InsGen 63.34 50.39 30.91 16.43 8.48 2.40 4.83 1.51

5 CONCLUSION

We present Diffusion-GAN, a novel GAN framework that uses a variable-length forward diffu-
sion chain with a Gaussian mixture distribution to generate instance noise for GAN training. This
approach enables model- and domain-agnostic differentiable augmentation that leverages the ad-
vantages of diffusion without requiring a costly reverse diffusion chain. We prove theoretically
and demonstrate empirically that Diffusion-GAN can prevent discriminator overfitting and provide
non-leaking augmentation. We also demonstrate that Diffusion-GAN can produce high-resolution
photo-realistic images with high fidelity and diversity, outperforming its corresponding state-of-the-
art GAN baselines on standard benchmark datasets according to both FID and Recall.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS

Z. Wang, H. Zheng, and M. Zhou acknowledge the support of NSF-IIS 2212418 and IFML.

REFERENCES

Martı́n Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial
networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=Hk4_qw5xe.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
214–223, 2017.

Marc G Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed, Balaji Lakshminarayanan,
Stephan Hoyer, and Rémi Munos. The Cramer distance as a solution to biased Wasserstein gra-
dients. arXiv preprint arXiv:1705.10743, 2017.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-
cians. Journal of the American statistical Association, 112(518):859–877, 2017.

Ashish Bora, Eric Price, and Alexandros G. Dimakis. AmbientGAN: Generative models from lossy
measurements. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=Hy7fDog0b.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. StarGAN v2: Diverse image synthesis
for multiple domains. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8185–8194, 2020.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelli-
gence and statistics, pages 215–223. JMLR Workshop and Conference Proceedings, 2011.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

Ishan Deshpande, Ziyu Zhang, and Alexander G Schwing. Generative modeling using the sliced
Wasserstein distance. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3483–3491, 2018.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neu-
ral Information Processing Systems, 2021. URL https://openreview.net/forum?id=
AAWuCvzaVt.

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv preprint
arXiv:1605.09782, 2016.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Ar-
jovsky, and Aaron Courville. Adversarially learned inference. arXiv preprint arXiv:1606.00704,
2016.

William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M Dai, Shakir Mohamed, and
Ian Goodfellow. Many paths to equilibrium: GANs do not need to decrease a divergence at every
step. In International Conference on Learning Representations, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems, pages 2672–2680, 2014.

10

https://openreview.net/forum?id=Hk4_qw5xe
https://openreview.net/forum?id=Hk4_qw5xe
https://openreview.net/forum?id=Hy7fDog0b
https://openreview.net/forum?id=Hy7fDog0b
https://openreview.net/forum?id=AAWuCvzaVt
https://openreview.net/forum?id=AAWuCvzaVt

Published as a conference paper at ICLR 2023

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of Wasserstein GANs. In Advances in Neural Information Processing Systems,
pages 5767–5777, 2017.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In Advances
in Neural Information Processing Systems, pages 6626–6637, 2017.

Jonathan Ho, Ajay Jain, and P. Abbeel. Denoising diffusion probabilistic models. ArXiv,
abs/2006.11239, 2020a.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020b.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4401–4410, 2019.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. Advances in Neural Information Processing
Systems, 33:12104–12114, 2020a.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of StyleGAN. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 8110–8119, 2020b.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. CoRR, abs/1312.6114,
2014.

Zhifeng Kong and Wei Ping. On fast sampling of diffusion probabilistic models. arXiv preprint
arXiv:2106.00132, 2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in Neural Information
Processing Systems, 32, 2019.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos. MMD GAN:
Towards deeper understanding of moment matching network. Advances in neural information
processing systems, 30, 2017a.

Chunyuan Li, Hao Liu, Changyou Chen, Yuchen Pu, Liqun Chen, Ricardo Henao, and Lawrence
Carin. Alice: Towards understanding adversarial learning for joint distribution matching. Ad-
vances in neural information processing systems, 30, 2017b.

Bingchen Liu, Yizhe Zhu, Kunpeng Song, and Ahmed Elgammal. Towards faster and stabilized
gan training for high-fidelity few-shot image synthesis. In International Conference on Learning
Representations, 2020.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of GANs. Advances in
neural information processing systems, 30, 2017.

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for GANs do
actually converge? In International conference on machine learning, pages 3481–3490. PMLR,
2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. In International Conference on Learning Representations,
2018a. URL https://openreview.net/forum?id=B1QRgziT-.

11

https://openreview.net/forum?id=B1QRgziT-

Published as a conference paper at ICLR 2023

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. In International Conference on Learning Representations,
2018b.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. In Advances in neural information processing systems,
2016.

Kushagra Pandey, Avideep Mukherjee, Piyush Rai, and Abhishek Kumar. Diffusevae: Effi-
cient, controllable and high-fidelity generation from low-dimensional latents. arXiv preprint
arXiv:2201.00308, 2022.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. CoRR, abs/1511.06434, 2016.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125, 2022.

Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Stabilizing training of
generative adversarial networks through regularization. Advances in neural information process-
ing systems, 30, 2017.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training GANs. In Advances in Neural Information Processing Systems,
pages 2234–2242, 2016.

Robin San-Roman, Eliya Nachmani, and Lior Wolf. Noise estimation for generative diffusion mod-
els. arXiv preprint arXiv:2104.02600, 2021.

Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas Geiger. Projected GANs converge faster.
Advances in Neural Information Processing Systems, 34, 2021.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. ArXiv, abs/1503.03585, 2015.

Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc Huszár. Amortised
MAP inference for image super-resolution. In 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. Open-
Review.net, 2017. URL https://openreview.net/forum?id=S1RP6GLle.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a. URL https://openreview.net/
forum?id=St1giarCHLP.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems, pages 11918–11930, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021b. URL https://openreview.net/
forum?id=PxTIG12RRHS.

Ngoc-Trung Tran, Viet-Hung Tran, Ngoc-Bao Nguyen, Trung-Kien Nguyen, and Ngai-Man Che-
ung. On data augmentation for gan training. IEEE Transactions on Image Processing, 30:1882–
1897, 2021.

12

https://openreview.net/forum?id=S1RP6GLle
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS

Published as a conference paper at ICLR 2023

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-
resolution image synthesis and semantic manipulation with conditional GANs. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 8798–8807, 2018.

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
denoising diffusion gans. arXiv preprint arXiv:2112.07804, 2021.

Ceyuan Yang, Yujun Shen, Yinghao Xu, and Bolei Zhou. Data-efficient instance generation from
instance discrimination. Advances in Neural Information Processing Systems, 34:9378–9390,
2021.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. LSUN:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dim-
itris N Metaxas. StackGAN: Text to photo-realistic image synthesis with stacked generative ad-
versarial networks. In Proceedings of the IEEE international conference on computer vision,
pages 5907–5915, 2017.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative ad-
versarial networks. In International Conference on Machine Learning, pages 7354–7363. PMLR,
2019.

Han Zhang, Zizhao Zhang, Augustus Odena, and Honglak Lee. Consistency regularization for gen-
erative adversarial networks. In International Conference on Learning Representations, 2020a.
URL https://openreview.net/forum?id=S1lxKlSKPH.

Hao Zhang, Bo Chen, Long Tian, Zhengjue Wang, and Mingyuan Zhou. Variational hetero-encoder
randomized GANs for joint image-text modeling. In International Conference on Learning Rep-
resentations, 2020b. URL https://openreview.net/forum?id=H1x5wRVtvS.

Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation for
data-efficient GAN training. Advances in Neural Information Processing Systems, 33:7559–7570,
2020.

Huangjie Zheng and Mingyuan Zhou. Exploiting chain rule and Bayes’ theorem to compare prob-
ability distributions. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=f-ggKIDTu5D.

Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Truncated diffusion proba-
bilistic models. arXiv preprint arXiv:2202.09671, 2022.

13

https://openreview.net/forum?id=S1lxKlSKPH
https://openreview.net/forum?id=H1x5wRVtvS
https://openreview.net/forum?id=f-ggKIDTu5D
https://openreview.net/forum?id=f-ggKIDTu5D

Published as a conference paper at ICLR 2023

Appendix

A RELATED WORK

Stabilizing GAN training. A root cause of training difficulties in GANs is often attributed to the JS
divergence that GANs intend to minimize. This is because when the data and generator distributions
have non-overlapping supports, which are often the case for high-dimensional data supported by
low-dimensional manifolds, the gradient of the JS divergence may provide no useful guidance to
optimize the generator (Arjovsky and Bottou, 2017; Arjovsky et al., 2017; Mescheder et al., 2018;
Roth et al., 2017). For this reason, Arjovsky et al. (2017) propose to instead use the Wasserstein-1
distance, which in theory can provide useful gradient for the generator even if the two distributions
have disjoint supports. However, Wasserstein GANs often require the use of a critic function under
the 1-Lipschitz constraint, which is difficult to satisfy in practice and hence realized with heuristics
such as weight clipping (Arjovsky et al., 2017), gradient penalty (Gulrajani et al., 2017), and spectral
normalization (Miyato et al., 2018a).

While the divergence minimization perspective has played an important role in motivating the con-
struction of Wasserstein GANs and gradient penalty-based regularizations, cautions should be made
on purely relying on it to understand GAN training, due to not only the discrepancy between the
divergence in theory and the actual min-max objective function used in practice, but also the poten-
tial confounding between different divergences and different training and regularization strategies
(Fedus et al., 2018; Mescheder et al., 2018). E.g., Mescheder et al. (2018) have provided a simple
example where in theory the Wasserstein GAN is predicted to succeed while the vanilla GAN is
predicted to fail, but in practice the Wasserstein GAN with a finite number of discriminator updates
per generator update fails to converge while the vanilla GAN with the non-saturating loss can slowly
converge. Fedus et al. (2018) provide a rich set of empirical evidence to discourage viewing GANs
purely from the perspective of minimizing a specific divergence at each training step and emphasize
the important role played by gradient penalties on stabilizing GAN training.

Diffusion models. Due to the use of a forward diffusion chain, the proposed Diffusion-GAN
can be related to diffusion-based (or score-based) deep generative models (Ho et al., 2020b; Sohl-
Dickstein et al., 2015; Song and Ermon, 2019) that employ both a forward (inference) and a reverse
(generative) diffusion chain. These diffusion-based generative models are stable to train and can
generate high-fidelity photo-realistic images (Dhariwal and Nichol, 2021; Ho et al., 2020b; Nichol
et al., 2021; Ramesh et al., 2022; Song and Ermon, 2019; Song et al., 2021b). However, they are
notoriously slow in generation due to the need to traverse the reverse diffusion chain, which involves
going through the same U-Net-based generator network hundreds or even thousands of times (Song
et al., 2021a). For this reason, a variety of methods have been proposed to reduce the generation cost
of diffusion-based generative models (Kong and Ping, 2021; Luhman and Luhman, 2021; Pandey
et al., 2022; San-Roman et al., 2021; Song et al., 2021a; Xiao et al., 2021; Zheng et al., 2022).

A key distinction is that Diffusion-GAN needs a reverse diffusion chain during neither training nor
generation. More specifically, its generator maps the noise to a generated sample in a single step.
Diffusion-GAN can train and generate as quickly as a vanilla GAN does with the same generator
size. For example, it takes around 20 hours to sample 50k images of size 32 × 32 from a DDPM
(Ho et al., 2020b) on an Nvidia 2080 Ti GPU, but would take less than a minute to do so from
Diffusion-GAN.

Differentiable augmentation. As Diffusion-GAN transforms both the data and generated samples
before sending them to the discriminator, we can also relate it to differentiable augmentation (Karras
et al., 2020a; Zhao et al., 2020) proposed for data-efficient GAN training. Karras et al. (2020a) intro-
duce a stochastic augmentation pipeline with 18 transformations and develop an adaptive mechanism
for controlling the augmentation probability. Zhao et al. (2020) propose to use Color + Translation
+ Cutout as differentiable augmentations for both generated and real images.

While providing good empirical results on some datasets, these augmentation methods are developed
with domain-specific knowledge and have the risk of leaking augmentation into generation (Karras
et al., 2020a). As observed in our experiments, they sometime worsen the results when applied to
a new dataset, likely because the risk of augmentation leakage overpowers the benefits of enlarging
the training set, which could happen especially if the training set size is already sufficiently large.

14

Published as a conference paper at ICLR 2023

By contrast, Diffusion-GAN uses a differentiable forward diffusion process to stochastically trans-
form the data and can be considered as both a domain-agnostic and a model-agnostic augmentation
method. In other words, Diffusion-GAN can be applied to non-image data or even latent features,
for which appropriate data augmentation is difficult to be defined, and easily plugged into an existing
GAN to improve its generation performance. Moreover, we prove in theory and show in experiments
that augmentation leakage is not a concern for Diffusion-GAN. Tran et al. (2021) provide a theoreti-
cal analysis for deterministic non-leaking transformation with differentiable and invertible mapping
functions. Bora et al. (2018) show similar theorems to us for specific stochastic transformations,
such as Gaussian Projection, Convolve+Noise, and stochastic Block-Pixels, while our Theorem 2
includes more satisfying possibilities as discussed in Appendix B.

B PROOF

Proof of Theorem 1. For simplicity, let x ∼ Pr, xg ∼ Pg , y ∼ Pr′,t, yg ∼ Pg′,t, at =
√
ᾱt and

bt = (1− ᾱt)σ
2. Then,

pr′,t(y) =

∫
X
pr(x)N (y; atx, btI)dx

pg′,t(y) =

∫
X
pg(x)N (y; atx, btI)dx

z ∼ p(z),xg = gθ(z),yg = atxg + btϵ, ϵ ∼ p(ϵ)

Df (pr′,t(y)||pg′,t(y)) =

∫
X
pg′,t(y)f

(
pr′,t(y)

pg′,t(y)

)
dy

= Ey∼pg′,t(y)

[
f

(
pr′,t(y)

pg′,t(y)

)]
= Ez∼p(z),ϵ∼p(ϵ)

[
f

(
pr′,t(atgθ(z) + btϵ)

pg′,t(atgθ(z) + btϵ)

)]
Since N (y; atx, btI) is assumed to be an isotropic Gaussian distribution, for simplicity, in what
follows we show the proof in uni-variate Gaussian, which could be easily extended to multi-variate
Gaussian by the production rule. We first show that under mild conditions, the pr′,t(y) and pg′,t(y)
are continuous functions over y.

lim
∆y→0

pr′,t(y −∆y) = lim
∆y→0

∫
X
pr(x)N (y −∆y; atx, bt)dx

=

∫
X
pr(x) lim

∆y→0
N (y −∆y; atx, bt)dx

=

∫
X
pr(x) lim

∆y→0

1

C1
exp

(
((y −∆y)− atx)

2

C2

)
dx

=

∫
X
pr(x)N (y; atx, bt)dx

= pr′,t(y),

where C1 and C2 are constants. Hence, pr′,t(y) is a continuous function defined on y. The proof of
continuity for pg′,t(y) is exactly the same proof. Then, given gθ is also a continuous function, it is
clear to see that Df (pr′,t(y)||pg′,t(y)) is a continuous function over θ.

Next, we show that Df (pr′,t(y)||pg′,t(y)) is differentiable. By the chain rule, showing
Df (pr′,t(y)||pg′,t(y)) to be differentiable is equivalent to show pr′,t(y), pr′,t(y) and f are dif-
ferentiable. Usually, f is defined with differentiability (Nowozin et al., 2016).

∇θpr′,t(atgθ(z) + btϵ) = ∇θ

∫
X
pr(x)N (atgθ(z) + btϵ; atx, bt)dx

=

∫
X
pr(x)

1

C1
∇θ exp

(
||atgθ(z) + btϵ− atx||22

C2

)
dx,

15

Published as a conference paper at ICLR 2023

∇θpg′,t(atgθ(z) + btϵ) = ∇θ

∫
X
pg(x)N (atgθ(z) + btϵ; atx, bt)dx

= ∇θEz′∼p(z′) [N (atgθ(z) + btϵ; atgθ(z
′), bt)]

= Ez′∼p(z′)

[
1

C1
∇θ exp

(
||atgθ(z) + btϵ− atgθ(z

′)||22
C2

)]
,

where C1 and C2 are constants. Hence, pr′,t(y) and pr′,t(y) are differentiable, which concludes the
proof.

Proof of Theorem 2. We have p(y) =
∫
p(x)q(y |x)dx and pg(y) =

∫
pg(x)q(y |x)dx.

⇐ If p(x) = pg(x), then p(y) = pg(y)
⇒ Let y ∼ p(y) and yg ∼ pg(y). Given the assumption on q(y |x), we have

y = f(x) + g(ϵ),x ∼ p(x), ϵ ∼ p(ϵ)

yg = f(xg) + g(ϵg),xg ∼ pg(x), ϵg ∼ p(ϵ).

Since f and g are one-to-one mapping functions, f(x) and g(ϵ) are identifiable, which indicates
f(x)

D
= f(xg) ⇒ x

D
= xg . By the property of moment-generating functions (MGF), given f(x) is

independent with g(ϵ), we have for ∀s

My(s) =Mf(x)(s) ·Mg(ϵ)(s)

Myg (s) =Mf(xg)(s) ·Mg(ϵg)(s).

where My(s) = Ey∼p(y)[e
sTy] denotes the MGF of random variable y and the others follow

the same form. By the moment-generating function uniqueness theorem, given y
D
= yg and

g(ϵ)
D
= g(ϵg), we have My(s) = Myg

(s) and Mg(ϵ)(s) = Mg(ϵg)(s) for ∀s. Then, we could
obtain Mf(x) = Mf(xg) for ∀s. Thus, Mf(x) = Mf(xg) ⇒ f(x)

D
= f(xg) ⇒ p(x) = p(xg),

which concludes the proof.

Discussion. Next, we discuss which q(y |x) fits the assumption we made on it. We follow the
discussion of reparameterization of distributions as used in Kingma and Welling (2014). Three
basic approaches are:

1. Tractable inverse CDF. In this case, let ϵ ∼ U(0, I), and ψ(ϵ,y,x) be the inverse CDF
of q(y |x). From ψ(ϵ,y,x), if y = f(x) + g(ϵ), for example, y ∼ Cauchy(x, γ) and
y ∼ Logistic(x, s), then Theorem 2 holds.

2. Analogous to the Gaussian example, y ∼ N (x, σ2I) ⇒ y = x+ σ · ϵ, ϵ ∼ N (0, I). For
any “location-scale” family of distributions we can choose the standard distribution (with
location = 0, scale = 1) as the auxiliary variable ϵ, and let g(.) = location + scale · ϵ.
Examples: Laplace, Elliptical, Student’s t, Logistic, Uniform, Triangular, and Gaussian
distributions.

3. Implicit distributions. q(y |x) could be modeled by neural networks, which implies y =
f(x) + g(ϵ), ϵ ∼ p(ϵ), where f and g are one-to-one nonlinear transformations.

16

Published as a conference paper at ICLR 2023

C DERIVATIONS

Derivation of equality in JSD

JSD(p(y, t), pg(y, t))

=
1

2
DKL

[
p(y, t)

∣∣∣∣∣∣∣∣p(y, t) + pg(y, t)

2

]
+

1

2
DKL

[
pg(y, t)

∣∣∣∣∣∣∣∣p(y, t) + pg(y, t)

2

]
=

1

2
Ey,t∼p(y,t)

[
log

2 · p(y, t)
p(y, t) + pg(y, t)

]
+

1

2
Ey,t∼pg(y,t)

[
log

2 · pg(y, t)
p(y, t) + pg(y, t)

]
=

1

2
Et∼pπ(t),y∼p(y | t)

[
log

2 · p(y | t)pπ(t)
p(y | t)pπ(t) + pg(y | t)pπ(t)

]
+

1

2
Et∼pπ(t),y∼pg(y | t)

[
log

2 · pg(y | t)pπ(t)
p(y | t)pπ(t) + pg(y | t)pπ(t)

]
= Et∼pπ(t)

[
1

2
Ey∼p(y | t)

[
log

2 · p(y | t)
p(y | t) + pg(y | t)

]
+

1

2
Ey∼pg(y | t)

[
log

2 · pg(y | t)
p(y | t) + pg(y | t)

]]
= Et∼pπ(t)[JSD(p(y | t), pg(y | t))].

D DETAILS OF TOY EXAMPLE

Here, we provide the detailed analysis of the JS divergence toy example.

Notation. Let X be a compact metric set (such as the space of images [0, 1]d) and Prob(X) denote
the space of probability measures defined on X . Let Pr be the target data distribution and Pg

1 be
the generator distribution. The JSD between the two distributions Pr,Pg ∈ Prob(X) is defined as:

DJS(Pr||Pg) =
1

2
DKL(Pr||Pm) +

1

2
DKL(Pg||Pm), (7)

where Pm is the mixture (Pr + Pg)/2 and DKL denotes the Kullback-Leibler divergence, i.e.,
DKL(Pr||Pg) =

∫
X pr(x) log(

pr(x)
pθ(x)

)dx. More generally, the f -divergence (Nowozin et al., 2016)
between Pr and Pg is defined as:

Df (Pr||Pg) =

∫
X
pg(x)f

(
pr(x)

pg(x)

)
dx, (8)

where the generator function f : R+ → R is a convex and lower-semicontinuous function satisfying
f(1) = 0. We refer to Nowozin et al. (2016) for more details.

We recall the typical example introduced in Arjovsky and Bottou (2017) and follow the notations.

Example. Let Z ∼ U [0, 1] be the uniform distribution on the unit interval. Let X ∼ Pr be the
distribution of (0, Z) ∈ R2, which contains a 0 on the x-axis and a random variable Z on the y-axis.
Let Xg ∼ Pg be the distribution of (θ, Z) ∈ R2, where θ is a single real parameter. In this case, the
DJS(Pr||Pg) is not continuous,

DJS(Pr||Pg) =

{
0 if θ = 0,

log 2 if θ ̸= 0.

1For notation simplicity, g and G both denote the generator network in GANs in this paper.

17

Published as a conference paper at ICLR 2023

0 2 4
x

0.0

0.5

1.0

y

t=0

0 2 4
x

0

1

y

t=200

0 2
x

1

0

1

y

t=400

0 2
x

1

0

1

y

t=500

1 0 1 2
x

1

0

1

y

t=600

1 0 1
x

1

0

1

y

t=800

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0

2

4

6

D
JS

(q
(y

|t)
||q

g(
y|

t))

t = 0 t = 200 t = 400 t = 500 t = 600 t = 800

2 0 2 4 6
x

0.00

0.25

0.50

0.75

1.00

Op
tim

al
 D

isc
rim

in
at

or
 V

al
ue

 D
* (

x)

t = 0 t = 200 t = 400 t = 500 t = 600 t = 800

Figure 6: We show the data distribution and DJS(Pr||Pg).

which can not provide a usable gradient for training. The derivation is as follows:

DJS(Pr||Pg) =
1

2
Ex∼pr(x)

[
log

2 · pr(x)
pr(x) + pg(x)

]
+

1

2
Ey∼pg(y)

[
log

2 · pg(y)
pr(y) + pg(y)

]
=

1

2
Ex1=0,x2∼U [0,1]

[
log

2 · 1[x1 = 0] · U(x2)

1[x1 = 0] · U(x2) + 1[x1 = θ] · U(x2)

]
+

1

2
Ey1=θ,y2∼U [0,1]

[
log

2 · 1[y1 = θ] · U(y2)

1[y1 = 0] · U(y2) + 1[y1 = θ] · U(y2)

]
=

1

2

[
log

2 · 1[x1 = 0]

1[x1 = 0] + 1[x1 = θ]

∣∣∣x1 = 0

]
+

1

2

[
log

2 · 1[y1 = θ]

1[y1 = 0] + 1[y1 = θ]

∣∣∣y1 = θ

]
=

{
0 if θ = 0,

log 2 if θ ̸= 0.

Although this simple example features distributions with disjoint supports, the same conclusion
holds when the supports have a non empty intersection contained in a set of measure zero (Arjovsky
and Bottou, 2017). This happens to be the case when two low dimensional manifolds intersect
in general position (Arjovsky and Bottou, 2017). To avoid the potential issue caused by having
non-overlapping distribution supports, a common remedy is to use Wasserstein-1 distance which in
theory can still provide usable gradient (Arjovsky and Bottou, 2017; Arjovsky et al., 2017). In this
case, the Wasserstein-1 distance is |θ|.

Diffusion-based noise injection In general, with our diffusion noise injected, we could have,

pr′,t =

∫
X
pr(x)N (y;

√
ᾱtx, (1− ᾱt)σ

2I)dx

pg′,t =

∫
X
pg(x)N (y;

√
ᾱtx, (1− ᾱt)σ

2I)dx

DJS(pr′,t||pg′,t) =
1

2
Epr′,t

[
log

2pr′,t
pr′,t + pg′,t

]
+

1

2
Epg′,t

[
log

2pg′,t

pr′,t + pg′,t

]
For the previous example, we have Y ′

t and Y ′
g,t such that,

Y ′
t = (y1, y2) ∼ pr′,t = N (y1 | 0, bt)f(y2), Y ′

g,t = (yg,1, yg,2) ∼ pg′,t = N (yg,1 | atθ, bt)f(yg,2),

where f(·) =
∫ 1

0
N (· | atZ, bt)U(Z)dZ, at and bt are abbreviations for

√
ᾱt and (1 − ᾱt)σ

2. The
supports of Y ′

t and Y ′
g,t are both the whole metric space R2 and they overlap with each other de-

pending on t, as shown in Figure 2. As t increases, the high density region of Y ′
t and Y ′

g,t get closer

18

Published as a conference paper at ICLR 2023

since the weight at is decreasing towards 0. Then, we derive the JS divergence,

DJS(pr′,t||pg′,t)

=
1

2
Ey1∼N (y1 | 0,bt),y2∼f(y2)

[
log

2 · N (y1 | 0, bt)f(y2)
N (y1 | 0, bt)f(y2) +N (y1 | atθ, bt)f(y2)

]
+

1

2
Eyg,1∼N (yg,1 | 0,bt),yg,2∼f(yg,2)

[
log

2 · N (yg,1 | atθ, bt)f(yg,2)
N (yg,1 | 0, bt)f(yg,2) +N (yg,1 | atθ, bt)f(yg,2)

]
=

1

2
Ey1∼N (0,bt)

[
log

2 · N (y1 | 0, bt)
N (y1 | 0, bt) +N (y1 | atθ, bt)

]
+

1

2
Eyg,1∼N (atθ,bt)

[
log

2 · N (yg,1 | atθ, bt)
N (yg,1 | 0, bt) +N (yg,1 | atθ, bt)

]
which is clearly continuous and differentiable.

We show this DJS(pr′,t||pg′,t) with respect to increasing t values and a θ grid in the second row
of Figure 2. As shown in the left panel, the black line with t = 0 shows the origianl JSD, which
is not even continuous, while as the diffusion level t increments, the lines become smoother and
flatter. It is clear to see that these smooth curves provide good learning signals for θ. Recall that
the Wasserstein-1 distance is |θ| in this case. Meanwhile, we could observe with an intense diffu-
sion, e.g., t = 800, the curve becomes flatter, which indicates smaller gradients and a much slower
learning process. This motivates us that an adaptive diffusion could provide different level of gradi-
ent smoothness and is possibly better for training. The right panel shows the optimal discriminator
outputs over the space X . With diffusion, the optimal discriminator is well defined over the space
and the gradient is smooth, while without diffusion the optimal discriminator is only valid on two
star points. Interestingly, we find that smaller t drives the optimal discriminator to become more
assertive while larger t makes discriminator become more neutral. The diffusion here works like a
scale to balance the power of the discriminator.

E DATASET DESCRIPTIONS

The CIFAR-10 dataset consists of 50k 32×32 training images in 10 categories. The STL-10 dataset
originated from ImageNet (Deng et al., 2009) consists of 100k unlabeled images in 10 categories,
and we resize them to 64× 64 resolution. For LSUN datasets, we sample 200k images from LSUN-
Bedroom, use the whole 125k images from LSUN-Church, and resize them to 256× 256 resolution
for training. The AFHQ datasets includes around 5k 512× 512 images per category for dogs, cats,
and wild life; we train a separate network for each of them. The FFHQ contains 70k images crawled
from Flickr at 1024× 1024 resolution and we use all of them for training.

F ALGORITHM

We provide the Diffusion-GAN algorithm in Algorithm 1.

G HYPERPARAMETERS

Diffusion-GAN is built on GAN backbones, so we keep the learning hyperparameters of the original
GAN backbones untouched. Diffusion-GAN introduces four new hyperparameters: noise standard
deviation σ, Tmax, T increasing threshold dtarget, and t sampling distribution pπ .

The σ is fixed as 0.05 for images (pixel values rescaled to [-1 ,1]) in all our experiments and it
shows good performance. Tmax could be fixed as 500 or 1000, which depends on the diversity
of the dataset. We recommend a large Tmax for diverse datasets. dtarget is usually fixed as 0.6,
which does not influence much about the performance. pπ has two choices, ‘uniform’ and ‘priority’.
Generally, (σ = 0.05, Tmax = 500, dtarget = 0.6, pπ = ‘uniform’) is a good starting point for a
new dataset.

In our experiment, we find StyleGAN2-based models are not sensitive to the values of dtarget, so
we set dtarget = 0.6 for them across all dataset, only except that we set dtarget = 0.8 for FFHQ

19

Published as a conference paper at ICLR 2023

Algorithm 1 Diffusion-GAN

while i ≤ number of training iterations do
Step I: Update discriminator

• Sample minibatch of m noise samples {z1, z2, . . . ,zm} ∼ pz(z).
• Obtain generated samples {xg,1,xg,2, . . . ,xg,m} by xg = G(z).
• Sample minibatch of m data examples {x1,x2, . . . ,xm} ∼ p(x).
• Sample {t1, t2, . . . , tm} from tepl list uniformly with replacement.
• For j ∈ {1, 2, . . . ,m}, sample yj ∼ q(yj |xj , tj) and yg,j ∼ q(yg,j |xg,j , tj)
• Update discriminator by maximizing Equation (3).

Step II: Update generator
• Sample minibatch of m noise samples {z1, z2, . . . ,zm} ∼ pz(z)
• Obtain generated samples {xg,1,xg,2, . . . ,xg,m} by xg = G(z).
• Sample {t1, t2, . . . , tm} from tepl list with replacement.
• For j ∈ {1, 2, . . . ,m}, sample yg,j ∼ q(yg,j |xg,j , tj)
• Update generator by minimizing Equation (3).

Step III: Update diffusion
if i mod 4 == 0 then

Update T by Equation (5)
Sample tepl = [0, . . . , 0, t1, . . . , t32], where tk ∼ pπ for k ∈ {1, . . . , 32}. pπ is in Equa-
tion (6). {tepl has 64 dimensions.}

end if
end while

Datasets rd

CIFAR-10 (32× 32, 50k images) 0.45
STL-10 (64× 64, 100k images) 0.6
LSUN-Church (256× 256, 120k images) 0.2
LSUN-Bedroom (256× 256, 200k images) 0.2

Table 4: dtarget for Diffusion ProjectedGAN

(dtarget = 0.8 for FFHQ is slightly better than 0.6 in FID). We report dtarget of Diffusion Project-
edGAN for our experiments in Table 4. We also evaluated two t sampling distribution pπ , [‘priority’,
‘uniform’], defined in Equation (6). In most cases, ‘priority’ works slightly better, while in some
cases, such as FFHQ, ‘uniform’ is better. Overall, we didn’t modify anything in the model archi-
tectures and training hyperparameters, such as learning rate and batch size. The forward diffusion
configuration and model training configurations are as follows.

Diffusion config. For our diffusion-based noise injection, we set up a linearly increasing schedule
for βt, where t ∈ {1, 2, . . . , T}. For pixel level injection in StyleGAN2, we follow Ho et al.
(2020b) and set β0 = 0.0001 and βT = 0.02. We adaptively modify T ranging from Tmin = 5 to
Tmax = 1000. The image pixels are usually rescaled to [−1, 1] so we set the Guassian noise standard
deviation σ = 0.05. For feature level injection in Diffusion ProjectedGAN, we set β0 = 0.0001,
βT = 0.01, Tmin = 5, Tmax = 500, and σ = 0.5. We list all these values in Table 5

Model config. For StyleGAN2-based models, we borrow the config settings provided by Karras
et al. (2020a), which include [‘auto’, ‘stylegan2’, ‘cifar’, ‘paper256’, ‘paper512’, ‘stylegan2’]. We
create the ‘stl’ config based on ‘cifar’ with a small modification that we change the gamma term to
be 0.01. For ProjectedGAN models, we use the recommended default config (Sauer et al., 2021),
which is based on FastGAN (Liu et al., 2020). We report the config settings used for our experiments
in Table 6.

20

Published as a conference paper at ICLR 2023

Diffusion config for pixel, priority β0 = 0.0001, βT = 0.02, Tmin = 5, Tmax = 1000, σ = 0.05
Diffusion config for pixel, uniform β0 = 0.0001, βT = 0.02, Tmin = 5, Tmax = 500, σ = 0.05

Diffusion config for feature β0 = 0.0001, βT = 0.01, Tmin = 5, Tmax = 500, σ = 0.5

Table 5: Diffusion config.

Dataset Models Config Specification

CIFAR-10 (32× 32)

StyleGAN2 cifar -
Diffusion StyleGAN2 cifar diffusion-pixel, dtarget = 0.6, ‘priority’
ProjectedGAN default diffusion-feature
Diffusion ProjectedGAN default diffusion-feature

STL-10 (64× 64)

StyleGAN2 stl -
Diffusion StyleGAN2 stl diffusion-pixel, dtarget = 0.6, ‘priority’
ProjectedGAN default diffusion-feature
Diffusion ProjectedGAN default diffusion-feature

LSUN-Bedroom (256× 256)

StyleGAN2 paper256 -
Diffusion StyleGAN2 paper256 diffusion-pixel, dtarget = 0.6, ‘priority’
ProjectedGAN default diffusion-feature
Diffusion ProjectedGAN default diffusion-feature

LSUN-Church (256× 256)

StyleGAN2 paper256 -
Diffusion StyleGAN2 paper256 diffusion-pixel, dtarget = 0.6, ‘priority’
ProjectedGAN default diffusion-feature
Diffusion ProjectedGAN default diffusion-feature

AFHQ-Cat/Dog/Wild (512× 512)

StyleGAN2 paper512 -
Diffusion StyleGAN2 paper512 diffusion-pixel, dtarget = 0.6, ‘priority’
InsGen default -
Diffusion InsGen paper512 diffusion-pixel, dtarget = 0.6, ‘uniform’

FFHQ (1024× 1024)

StyleGAN2 stylegan2 -
Diffusion StyleGAN2 stylegan2 diffusion-pixel, dtarget = 0.8, ‘uniform’
InsGen default -
Diffusion InsGen stylegan2 diffusion-pixel, dtarget = 0.6, ‘uniform’

Table 6: The config setting of StyleGAN2-based models and ProjectedGAN-based models. For StyleGAN2-
based models, we borrow the config settings provided by Karras et al. (2020a), which includes [‘auto’, ‘style-
gan2’, ‘cifar’, ‘paper256’, ‘paper512’, ‘paper1024’]. We create the ‘stl’ config based on ’cifar’ with small
modifications that we change the gamma term to be 0.01. For ProjectedGAN models, we use the recommended
default config (Sauer et al., 2021), which is based on FastGAN.

H IMPLEMENTATION DETAILS

We implement an additional diffusion sampling pipeline, where the diffusion configurations are
set in Appendix G. The T in the forward diffusion process is adaptively adjusted and clipped to
[Tmin, Tmax]. As illustrated in Algorithm 1, at each update step, we sample t from tepl for each data
point x, and then use the analytic Gaussian distribution at diffusion step t to sample y. Next, we use
y and t instead of x for optimization.

Diffusion StyleGAN2. We inherit all the network architectures from StyleGAN2 implemented
by Karras et al. (2020a). We modify the original mapping network, which is there for label con-
ditioning and unused for unconditional image generation tasks, inside the discriminator to inject t.
Specifically, we change the original input of mapping network, the class label c, to our discrete value
timestep t. Then, we train the generator and discriminator with diffused samples y and t.

Diffuson ProjectedGAN. To simplify the implementation and minimize the modifications to
ProjectedGAN, we construct the discriminator asDϕ(y), where t is ignored. Our method is plugged
in as a data augmentation method. The only change in the optimization stage is that the discriminator
is fed with diffused images y instead of original images x.

Diffuson InsGen. To simplify the implementation and minimize the modifications to InsGen,
we keep their contrastive learning part untouched. We modify the original discriminator network

21

Published as a conference paper at ICLR 2023

5M 10M 20M 30M 40M 50M
Training Progress (# million real images)

5

10
15

25

50

100

FI
D

Ablation on the adaptive schedule

47 48 49 50
3.5

4.0

4.5

uniform-adaT
uniform-no_adaT
priority-adaT
priority-no_adaT

Figure 7: Ablation study on the T adaptiveness.

to inject t similarly to Diffusion StyleGAN2. Then, we train the generator and discriminator with
diffused samples y and t.

I ABLATION ON THE MIXING PROCEDURE AND T ADAPTIVENESS

Note the mixing procedure described in Equation (6), referred to as “priority mixing” in what fol-
lows, is designed based on our intuition. Here we conduct an ablation study on the mixing procedure
by comparing the priority mixing with uniform mixing on three representative datasets. We report in
Table 7 the FID results, which suggest that uniform mixing could work better than priority mixing
in some dataset, and hence Diffusion-GAN may be further improved by optimizing its mixing pro-
cedure according to the training data. While optimizing the mixing procedure is beyond the focus
of this paper, it is worth further investigation in future studies.

Table 7: Ablation study on the mixing procedure. “Priority Mixing” refers to the mixing procedure in Equa-
tion (6) and “Uniform Mixing” refers to sample t uniformly at random.

CIFAR-10 STL-10 FFHQ

Priority Mixing 3.19 11.43 3.22
Uniform Mixing 3.44 11.75 2.83

We further conduct ablation study on whether the T needs to be adaptively adjusted. As shown in
Figure 7, we observe with adaptive diffusion strategy, the training curves of FIDs converge faster
and reach lower final FIDs.

J MORE GAN VARIANTS

To further validate our noise injection via diffusion-based mixtures, we add our diffusion-based
training into two more representative GAN variants: DCGAN (Radford et al., 2015) and SNGAN
(Miyato et al., 2018b), which have quite different GAN architectures compared to StyleGAN2. We
provide the FIDs for CIFAR-10 in Table 8. We observe that both Diffusion-DCGAN and Diffusion-
SNGAN clearly outperform their corresponding baseline GANs.

Table 8: FIDs on CIFAR-10 for DCGAN, Diffusion-DCGAN, SNGAN, and Diffusion-SNGAN.

DCGAN (Radford et al., 2015) Diffusion-DCGAN SNGAN (Miyato et al., 2018b) Diffusion-SNGAN

CIFAR-10 28.65 24.67 20.76 17.23

22

Published as a conference paper at ICLR 2023

Method IS ↑ FID ↓ Recall ↑ NFE ↓
DDPM (Ho et al., 2020a) 9.46 3.21 0.57 1000
DDIM (Song et al., 2020) 8.78 4.67 0.53 50
Denoising Diffusion GAN (Xiao et al., 2021) 9.63 3.75 0.57 4
StyleGAN2 (Karras et al., 2020a) 9.18 8.32 0.41 1
StyleGAN2 + DiffAug (Zhao et al., 2020) 9.40 5.79 0.42 1
StyleGAN2 + ADA (Karras et al., 2020a) 9.83 2.92 0.49 1
Diffusion StyleGAN2 9.94 3.19 0.58 1

Table 9: Inception Score for CIFAR-10. For sampling time, we use the number of function evaluations (NFE).

K INCEPTION SCORE FOR CIFAR-10

We report the Inception Score (IS) (Salimans et al., 2016) of Diffusion StyleGAN2 for CIFAR-10
dataset in Table 9 and also include other state-of-the-art GANs and diffusion models as baselines.
Note CIFAR-10 is a well-known dataset and tested by almost all baselines, so we pick CIFAR-10
here and we reference the reported IS values from their original papers for a fair comparison.

L MORE GENERATED IMAGES

We provide more randomly generated images for LSUN-Bedroom, LSUN-Church, AFHQ, and
FFHQ datasets in Figure 8, Figure 9, and Figure 10.

23

Published as a conference paper at ICLR 2023

Figure 8: More generated images for LSUN-Bedroom (FID 1.43, Recall 0.58) and LSUN-Church (FID 1.85,
Recall 0.65) from Diffusion ProjectedGAN.

24

Published as a conference paper at ICLR 2023

Figure 9: More generated images for AFHQ-Cat (FID 2.40), AFHQ-Dog (FID 4.83) and AFHQ-Wild (FID
1.51) from Diffusion InsGen.

25

Published as a conference paper at ICLR 2023

Figure 10: More generated images for FFHQ from Diffusion StyleGAN2 (FID 3.71, Recall 0.43).

26

	Introduction
	Preliminaries: GANs and diffusion-based generative models
	Diffusion-GAN: Method and Theoretical Analysis
	Instance noise injection via diffusion
	Adversarial Training
	Adaptive diffusion
	Theoretical analysis with Examples
	Related work

	Experiments
	Comparison to state-of-the-art GANs
	Effectiveness of Diffusion-GAN for domain-agnostic augmentation
	Effectiveness of Diffusion-GAN for limited data

	Conclusion
	Related work
	Proof
	Derivations
	Details of toy example
	Dataset descriptions
	Algorithm
	Hyperparameters
	Implementation details
	Ablation on the mixing procedure and T adaptiveness
	More GAN variants
	Inception Score for CIFAR-10
	More generated images

