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ABSTRACT

Subgraph representation learning has been effective in solving various real-world
problems. However, current graph neural networks (GNNs) produce suboptimal
results for subgraph-level tasks due to their inability to capture complex interac-
tions within and between subgraphs. To provide a more expressive and efficient
alternative, we propose WLKS, a Weisfeiler-Lehman (WL) kernel generalized for
subgraphs by applying the WL algorithm on induced k-hop neighborhoods. We
combine kernels across different k-hop levels to capture richer structural informa-
tion that is not fully encoded in existing models. Our approach can balance ex-
pressiveness and efficiency by eliminating the need for neighborhood sampling.
In experiments on eight real-world and synthetic benchmarks, WLKS signifi-
cantly outperforms leading approaches on five datasets while reducing training
time, ranging from 0.01x to 0.25x compared to the state-of-the-art.

1 INTRODUCTION

Subgraph representation learning has effectively tackled various real-world problems (Bordes et al.,
2014; Luo, 2022; Hamidi Rad et al., 2022; Maheshwari et al., 2024). However, existing graph neural
networks (GNNs) still produce suboptimal representations for subgraph-level tasks since they fail
to capture arbitrary interactions between and within subgraph structures. These GNNs cannot cap-
ture high-order interactions beyond and even in their receptive fields. Thus, state-of-the-art models
for subgraphs have to employ hand-crafted channels (Alsentzer et al., 2020), node labeling (Wang
& Zhang, 2022), and structure approximations (Kim & Oh, 2024) to encode subgraphs’ complex
internal and border structures.

As an elegant and efficient alternative, we generalize graph kernels to subgraphs, which measure
the structural similarity between pairs of graphs. We propose WLKS, the Weisfeiler-Lehman (WL)
Kernel for Subgraphs based on WL graph kernel (Shervashidze & Borgwardt, 2009). Specifically,
we apply the WL algorithm (Leman & Weisfeiler, 1968) on induced k-hop subgraphs around the
target subgraph for all possible ks. The WL algorithm’s output (i.e., the color histogram) for each k
encodes structures in the receptive field of the k-layer GNNs; thus, the corresponding kernel matrix
can represent the similarity of k-hop subgraph pairs. A classifier using this kernel can be trained
without GPUs in a computationally efficient way compared to deep GNNs.

To enhance the expressive power, we linearly combine kernel matrices of different k-hops. The
motivation is that simply using larger hops for WL histograms does not necessarily lead to more
expressive representations. We theoretically demonstrate that WL histograms of the (k + 1)-hop
are not strictly more expressive than those of k-hop in distinguishing isomorphic structures, while
(k+1)-hop structures include entire k-hop structures. Therefore, combining kernel matrices across
multiple k-hop levels can capture richer structural information around subgraphs.

However, sampling k-hop subgraphs can increase the time and space complexity, as the number of
nodes in the k-hop neighborhoods grows exponentially (Hamilton et al., 2017). To mitigate this
issue, we choose only two values of k: 0 and the diameter D of the global graph. No neighborhood
sampling is required for the case where k = 0 since it only uses the internal structure. When k is set
to the diameter D, the expanded subgraph encompasses the entire global graph, making the k-hop
neighborhood identical for all subgraphs. Consequently, there is no need for explicit neighborhood
sampling in this case; we only perform the WL algorithm on the global graph once. This approach
balances expressiveness and efficiency, providing a practical solution for subgraph-level tasks.
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We evaluate WLKS’s classification performance and efficiency with four real-world and four syn-
thetic benchmarks (Alsentzer et al., 2020). Our model outperforms the best-performed methods
across five of the eight datasets. Remarkably, this performance is achieved with ×0.01 to ×0.53
training time compared to the state-of-the-art models. Moreover, unlike existing models, WLKS
does not require pre-computation, pre-training embeddings, utilizing GPUs, and searching a large
hyperparameter space.

The main contributions of our paper are summarized as follows. First, we propose WLKS, a gen-
eralization of graph kernels to subgraphs. Second, we theoretically show that combining WLKS
matrices from multiple k-hop neighborhoods can increase the expressiveness. Third, we evaluate
our method on real-world and synthetic benchmarks and demonstrate superior performance in a
significantly efficient way. We make our code available for future research1.

2 RELATED WORK

WLKS is a ‘graph kernel’ method designed for ‘subgraph representation learning.’ This section
explains both of these areas and their relationship to our model.

Subgraph Representation Learning Subgraph representation learning can address various real-
world challenges by capturing higher-order interactions that nodes, edges, or entire graphs cannot
model. For example, subgraphs can formulate diseases and patients in gene networks (Luo, 2022),
teams in collaboration networks (Hamidi Rad et al., 2022), and communities in mobile game user
networks (Zhang et al., 2023). Existing methods are often domain-specific (Zhang et al., 2023; Li
et al., 2023; Trümper et al., 2023; Ouyang et al., 2024; Maheshwari et al., 2024) or rely on strong
assumptions about the subgraph (Meng et al., 2018; Hamidi Rad et al., 2022; Kim et al., 2022; Luo,
2022; Liu et al., 2023), limiting their generalizability.

Recent deep graph neural networks designed for subgraph-level tasks can apply to any subgraph
type without specific assumptions. However, they often generate suboptimal representations due to
their inability to capture arbitrary interactions between and within subgraph structures. They strug-
gle to account for high-order interactions beyond their limited receptive fields; thus, they should
incorporate additional techniques including hand-crafted channels (Alsentzer et al., 2020), node
labeling (Wang & Zhang, 2022), random-walk sampling (Jacob et al., 2023), and structural approx-
imations (Kim & Oh, 2024). In contrast, we design kernels that can capture local and global inter-
actions of subgraphs, respectively, to enable simple but strong subgraph prediction. We formally
compare our proposed WLKS with representative prior models in Appendix A.

Graph Kernels Graph kernels are algorithms to measure the similarity between graphs to
enable the kernel methods, such as Support Vector Machines (SVMs) to graph-structured
data (Vishwanathan et al., 2010). Early examples measure the graph similarity based on random
walks (Kashima et al., 2003) or shorted paths (Borgwardt & Kriegel, 2005). One of the most in-
fluential graph kernels is the Weisfeiler-Lehman (WL) kernel (Shervashidze & Borgwardt, 2009),
which leverages the WL isomorphism test to refine node labels iteratively, improving the expres-
siveness of the graph structure comparison. While the WL test is designed for graph isomorphism,
WL kernels capture structural similarities using the WL test’s outcomes even when graphs are not
strictly isomorphic (See Appendix B for detailed comparison). Kernels for graph-level prediction
by counting, matching, and embedding subgraphs have been deeply explored (Shervashidze et al.,
2009; Kriege & Mutzel, 2012; Yanardag & Vishwanathan, 2015; Narayanan et al., 2016). However,
there has been no research on kernels to solve subgraph-level tasks by computing the similarity of
subgraphs and their surroundings. To the best of our knowledge, our paper is the first to investigate
this approach.

3 WL GRAPH KERNELS FOR SUBGRAPH-LEVEL TASKS

This section introduces WLKS, the WL graph kernels generalized for subgraphs. We first describe
the original WL algorithm and its extension for subgraphs, which is a foundation of WLKS. Then,
we suggest WLKS and its enhancement of expressiveness and efficiency.

1see supplementary materials
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3.1 SUBGRAPH REPRESENTATION LEARNING

We first formalize subgraph representation learning as a classification task. Let G = (V,A) represent
a global graph, where V denotes a set of nodes (with |V| = N ) and A ⊂ V × V represents a set of
edges (with |A| = E). A subgraph S = (Vsub,Asub) is a graph formed by subsets of nodes and edges
in the global graph G (with |Vsub| = N sub and |Asub| = Esub). There exists a set of M subgraphs,
with M < N , denoted as S = {S1,S2, . . . ,SM}. In a subgraph classification task, the model learns
representation hi ∈ RF and the logit vector yi ∈ RC for Si where F and C are the dimension size
and the number of classes, respectively.

3.2 1-WL ALGORITHM FOR k-HOP SUBGRAPHS

1-WL for Graphs We briefly introduce the 1-dimensional Weisfeiler-Lehman (1-WL) algorithm.
As illustrated in Algorithm 1, the 1-WL is an iterative node-color refinement by updating node
colors based on a multiset of neighboring node colors. This process produces a histogram of refined
coloring that captures graph structure, which can distinguish non-isomorphic graphs in the WL
isomorphism test.

Algorithm 1: 1-WL Algorithm

Input: Graph G = (V,A) and T iterations
Output: Refined node coloring (cT1 , c

T
2 , ..., c

T
|V|) for nodes in V after T iterations

Initialize c0v for all v ∈ V
for i← 1 to T do

for node v ∈ V do
Mv ← multiset of labels {ci−1

u | u ∈ N (v)}
c̃iv ← concatenate ci−1

v and sorted Mv

end
Use a bijective function to map each unique c̃iv to a new color civ

end
return (cT1 , c

T
2 , ..., c

T
|V|)

1-WL for Subgraphs (WLS) We then propose the WLS, the 1-WL algorithm generalized for
subgraphs. Since surrounding structures are the core difference between graphs and subgraphs, the
main contribution of the WLS lies in encoding the k-hop neighborhoods of the subgraph. Here, k
will be denoted in superscript as WLSk if a specific k is given.

Formally, for a subgraph S = (Vsub,Asub) in a global graph G = (V,A), the WLSk’s goal is to get
the refined colors of nodes in Vsub, where each color represents a unique subtree in k-hop neigh-
borhoods. As in the Algorithm 2, we first extract the k-hop subgraph Sk of S, which contains all
nodes in S as well as any nodes in G that are reachable from the nodes in S within k hops. The
1-WL algorithm is then run on this induced k-hop subgraph to generate the colors of the nodes in
Sk. The WLS returns the node coloring belonging to the original S, not in Sk. In general, k-hop
neighborhoods are much larger than the original subgraph, so using all the colors in Sk will likely
produce a coloring irreverent to the target subgraph.

Algorithm 2: WLSk Algorithm: 1-WL for subgraphs with their k-hop neighborhoods

Input: A subgraph S = (Vsub,Asub), a global graph G = (V,A), and T iterations
Output: Refined node coloring (cT1 , c

T
2 , ..., c

T
|Vsub|) for nodes in Vsub after T iterations

Sample Sk = (Vsub,k,Asub,k), which is the induced k-hop subgraph of G around all nodes in S
reachable within k hops

Run 1-WL (Algorithm 1) on (Sk, T ) to get node colors in Vsub,k

return (cT1 , c
T
2 , ..., c

T
|Vsub|). Note that this coloring is about nodes in S, not Sk.
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k=0 k=1 k=2 …

Color

Histogram

k=1
k=2

k=0

Figure 1: An example of WLSk algorithm (Algorithm 2) for k ∈ {0, 1, 2}. Left: A subgraph (red
shade) and its k-hop neighborhoods (dashed lines). Right: The outputs of WLSk algorithm as colors
and histograms for the left subgraph. We visualize each iteration of WLSk algorithm in Appendix C.
The WLKS kernel matrix for each k is constructed by an inner product of histogram pairs.

After WLSk’s color refinement, we can get a feature vector (or a color histogram) ϕk
S ∈ R#colors

which is the aggregation of the refined colors in S. Each element ϕk
S [c] is the number of occurrences

of the color c in the output of WLSk. We illustrate an example of a subgraph and its WLSk outputs for
different ks in Figure 1.

WL Kernels for Subgraphs (WLKS) Now, we suggest WLKS, the corresponding kernel matrix
Kk

WLS ∈ RM×M of which is defined as the number of common subtree patterns of two subgraphs in
their k-hop neighborhoods. That is, each element can be formulated as an inner product of a pair
of ϕk

∗ . This WLKS is a valid kernel since Kk
WLS is positive semi-definite for all non-negative ks, as

demonstrated in Proposition 3.1.

Proposition 3.1. ∀k ≥ 0,Kk
WLS is positive semi-definite (p.s.d.).

Proof. Each element in Kk
WLS is defined as an inner product of two feature vectors ϕk

∗ . This leads∑M
i=1

∑M
j=1 cicj⟨ϕk

i ,ϕ
k
j ⟩ = ⟨

∑M
i=1 ciϕ

k
i ,
∑M

j=1 cjϕ
k
j ⟩ = ∥

∑M
i=1 ciϕ

k
i ∥2 ≥ 0 for any real c. Thus,

Kk
WLS is positive semi-definite.

3.3 EXPRESSIVENESS DIFFERENCE OF THE WLS BETWEEN k AND k + 1

How do we choose k? Intuitively, selecting one large k seems reasonable since the k-hop neighbor-
hoods include the k′-hop structures of all smaller k′s. Against this intuition, we present a theoretical
analysis that the WLSk+1 histogram is not strictly more expressive than the WLSk histogram.

In Proposition 3.2, we show that non-equivalent colorings of two subgraphs in WLSk+1 do not guar-
antee non-equivalent colorings in WLSk. This is also true for the inverse: equivalent colorings in
WLSk+1 do not guarantee equivalent colorings in WLSk. We obtain the same conclusion as Proposi-
tion 3.2 for GNNs as powerful as the WL test (e.g., Wang & Zhang (2022)), and some recent models
are based on even less powerful GNNs than the WL test (e.g., Kim & Oh (2024)).

Proposition 3.2. Given two subgraphs S1 and S2 of a global graph G and T iterations,

WLSk+1(S1) ̸≡ WLSk+1(S2) ⇏ WLSk(S1) ̸≡ WLSk(S2), (1)

WLSk+1(S1) ≡ WLSk+1(S2) ⇏ WLSk(S1) ≡ WLSk(S2), (2)

for any k < T where WLSk(S) := WLSk(S,G, T ) and ‘≡’ denotes the equivalence of colorings.

Proof. We will prove both statements by contradiction.

Proof of Equation 1 For the sake of contradiction, assume that whenever WLSk+1(S1) ̸≡
WLSk+1(S2), it must follow that WLSk(S1) ̸≡ WLSk(S2). Consider two subgraphs S1 and S2
of a global graph G such that their k-hop neighborhoods are isomorphic, i.e., Sk1 ≡ Sk2 , but
their (k + 1)-hop neighborhoods have non-identical subtree patterns of height-T rooted at sub-
graphs. That is, within the k-hop radius, S1 and S2 have identical structures, but beyond that,
their structures are distinguishable by the 1-WL algorithm (i.e., distinct colorings). This implies
that WLSk(S1) ≡ WLSk(S2), but WLSk+1(S1) ̸≡ WLSk+1(S2) (e.g., the top part in Figure 2). This
contradicts our assumption that WLSk+1(S1) ̸≡ WLSk+1(S2) implies WLSk(S1) ̸≡ WLSk(S2).

4
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k=1k=0Two Subgraphs in a Graph

≢

≡

≡

≢

Figure 2: Example pairs of subgraphs that WLSk produces equivalent colorings while WLSk+1 does
not, and vice versa (where k = 0). The gray area represents the subgraph.

Proof of Equation 2 For the sake of contradiction, assume that whenever WLSk+1(S1) ≡
WLSk+1(S2), it must follow that WLSk(S1) ≡ WLSk(S2). Let G be a global graph, and consider
its two subgraphs S1 and S2. Suppose that in G, (k + 1)-hop neighborhoods of S1 and S2 are iden-
tical, WLSk+1(S1) ≡ WLSk+1(S2). However, within the k-hop neighborhoods, the local structures
can differ such that the rooted subtree patterns of S1 and S2 up to height T > k are not identical,
WLSk(S1) ̸≡ WLSk(S2) (e.g., the bottom part in Figure 2). This contradicts our assumption that
WLSk+1(S1) ≡ WLSk+1(S2) implies WLSk(S1) ≡ WLSk(S2).

Proposition 3.2 demonstrates that WLSk cannot represent the structural information of a smaller k′-
hop structure (k′ < k) from the perspective of graph isomorphism. This limitation suggests that
relying solely on a single k for WLSk may be insufficient for encoding comprehensive information
from various levels of structures. To address this, we propose combining WLSk for multiple values
of k, allowing the representation to capture both local and global structures effectively. Building on
this insight, we design WLKS-K, a mixture of WLKS for multiple hops k ∈ K where its kernel
matrix KWLS-K is a linear combination of Kk

WLS.

KWLS-K =
∑

k∈K αkK
k
WLS where αk ∈ R+. (3)

Note that WLKS-K can be defined even when only one k is used (e.g., KWLS-{0} = α0K
0
WLS for

WLKS-{0}). WLKS-K is a valid kernel since a positive linear combination of p.s.d. kernels is
p.s.d. (Shervashidze et al., 2011).

3.4 SELECTING k FOR MINIMAL COMPLEXITY

In WLKS, selecting appropriate values of k during the k-hop subgraph sampling is crucial for bal-
ancing expressive power and complexity. As the number of nodes in the k-hop neighborhood grows
exponentially with increasing k (Hamilton et al., 2017), an unbounded increase in k can result in
substantial computation and memory overhead. To mitigate this, we strategically limit the choice of
k to two specific values: k = 0 and k = D, where D is the diameter of the global graph G.

When k = 0, the WLKS consumes the least computation and memory by using only the internal
structure of the subgraph without neighborhood sampling. In contrast, when k is set to diameter D,
every subgraph has the same k-hop neighborhood, which is the global graph G; thus, the WLS is
performed just once on G without per-subgraph computations. By using 0 and D, WLKS-{0, D}
can capture both the local and the largest global structure of subgraphs. This approach offers a
practical model that balances expressive power and efficiency, avoiding excessive computation and
memory consumption from intermediate k values.

3.5 COMPUTATIONAL COMPLEXITY

The original WL Kernel has a computational complexity of O
(
T
∑

i E
sub
i +MT

∑
i N

sub
i

)
for M

subgraphs, T iterations, and the number of nodes N sub
i and edges Esub

i of the subgraph i (Sher-
vashidze & Borgwardt, 2009). When k is 0, a set of subgraphs is identical to a set of individ-
ual graphs, so its complexity is the same as the original’s. When k is D, after performing the
WL algorithm on the global graph once (i.e., O(TE)), the coloring of each subgraph is aggre-
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gated to a histogram (i.e., O(
∑

i N
sub
i )). Thus, the computational complexity of WLKS-{0, D} is

O
(
T (E +

∑
i E

sub
i ) +MT

∑
i N

sub
i

)
.

We note that WLKS-{0, D} do not perform k-hop neighborhood sampling, which adds a complexity
of O(N sub,k +Esub,k) per subgraph from a breadth-first search from Vsub. Learning SVM with pre-
computed kernels has a complexity of O(M2) dependent on the number of subgraphs M , but this
step is typically secondary to the WLS in practice.

4 INCORPORATING CONTINUOUS FEATURES FOR WLKS

WLKS is designed to capture structural information but it can be simply integrated with continuous
features. This section introduces four methods to incorporate continuous features for WLKS.

4.1 COMBINATION WITH KERNELS ON CONTINUOUS FEATURES

WLKS can be linearly combined with kernel matrices KX derived from continuous features as in
Equation 4. This combination enables the model to account for structure and feature similarities
between subgraphs. One straightforward way is to directly compute a kernel on features, which
measures the similarity between subgraphs based on their feature vectors. Another approach in-
volves applying the Continuous Weisfeiler-Lehman operator (Togninalli et al., 2019) to features,
generating a kernel matrix. This operator extends the original WL framework to include continuous
feature spaces and enhances structural information with interactions from continuous features.

αstructure ·KWLS-K+ αfeature ·KX where α· ∈ R+. (4)

In both cases, the kernel matrix from continuous features tends to be denser and has a different scale
compared to those from the WL histogram. To address this, we apply standardization pre-processing
and use the RBF and linear kernels.

4.2 GNNS WITH THE WLKS KERNEL MATRIX AS ADJACENCY MATRIX

Another way to integrate features with WLKS is to use the kernel matrix as an adjacency matrix.
Specifically, we consider the WLKS kernel matrix KWLS as the adjacency matrix of a weighted
graph where subgraphs S serve as nodes. The rationale for this approach is that a kernel represents
the similarity between data points.

In this graph, the edge weight between subgraphs i and j corresponds to KWLS[i, j]. By applying
deep GNNs to this graph, we can leverage the expressive power of WLKS for structural information
and the capabilities of GNNs for feature representation. For this paper, we adopt state-of-the-art
GNN-based models, S2N+0 and S2N+A (Kim & Oh, 2024), for the graph created by WLKS-{0, D}
as an instantiation of this approach.

Given the original feature X ∈ RN×# features, in S2N+0, the hidden feature H ∈ RM×# features is
a sum of original features in the subgraph, and then a GNN on KWLS ∈ RM×M is applied to get
the logit matrix Y ∈ RM×# classes for the prediction. S2N+A first encodes each subgraph as an
individual graph with a GNN, readout its output to get the hidden feature H , then the other GNN
on KWLS is applied for the prediction. Formally,

WLKS for S2N+0: H[i, :] = 1⊤
N subX[Vsub

i , :], Y = GNN(H,KWLS), (5)

WLKS for S2N+A: H[i, :] = 1⊤
N subGNN1(X[Vsub

i , :],Asub
i ), Y = GNN2(H,KWLS), (6)

where 1n ∈ Rn×1 is a vector of ones. Since the kernel matrix is dense for GPUs, we sparsify and
normalize it using the same method in the S2N’s paper.

5 EXPERIMENTS

This section outlines the experimental setup, covering the datasets, training details, and baselines.

6
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Table 1: Statistics of real-world and synthetic datasets.

PPI-BP HPO-Neuro HPO-Metab EM-User Density Cut-Ratio Coreness Component

# nodes in G 17,080 14,587 14,587 57,333 5,000 5,000 5,000 19,555
# edges in G 316,951 3,238,174 3,238,174 4,573,417 29,521 83,969 118,785 43,701
# subgraphs (S) 1,591 2,400 4,000 324 250 250 221 250
# nodes / S 10.2±10.5 14.4±6.2 14.8±6.5 155.4±100.2 20.0±0.0 20.0±0.0 20.0±0.0 74.2±52.8

# components / S 7.0±5.5 1.6±0.7 1.5±0.7 52.1±15.3 3.8±3.7 1.0±0.0 1.0±0.0 4.9±3.5

Density (G) 0.0022 0.0304 0.0304 0.0028 0.0024 0.0067 0.0095 0.0002
Avg. density (S) 0.216 0.757 0.767 0.010 0.232 0.945 0.219 0.150
# classes 6 10 6 2 3 3 3 2
Labels Single Multi Single Single Single Single Single Single
Dataset splits 80/10/10 80/10/10 80/10/10 70/15/15 80/10/10 80/10/10 80/10/10 80/10/10

Datasets We employ four real-world datasets (PPI-BP, HPO-Neuro, HPO-Metab, and EM-User) and
four synthetic datasets (Density, Cut-Ratio, Coreness, and Component) introduced by Alsentzer et al.
(2020). Given the global graph G and subgraphs S, the goal of the real-world benchmark is subgraph
classification on various domains: protein-protein interactions (PPI-BP), medical knowledge graphs
(HPO-Neuro and HPO-Metab), and social networks (EM-User). For synthetic benchmarks, the goal is
to determine the structural properties (density, cut ratio, the average core number, and the number of
components) formulated as a classification. Note that WLKS does not need pretrained embeddings.
We summarize dataset statistics in Table 1.

Models We experiment with five WLKS-K where K is {0}, {1}, {2}, {D}, {0, D}. Coefficients
α is set to 1 when one k is selected, and α0 + αD = 1 for WLKS-{0, D}. We do a grid search
of five hyperparameters: the number of iterations ({1, 2, 3, 4, 5}), whether to combine kernels of all
iterations, whether to normalize histograms, L2 regularization ({23/100, 24/100, ..., 214/100}), and
the coefficient α0({0.999, 0.99, 0.9, 0.5, 0.1, 0.01, 0.001}). For fusing WLKS-{0, D} to S2N, we
follow the GCNII-based (Chen et al., 2020) architecture and settings presented in Kim & Oh (2024).

Baselines We use state-of-the-art GNN-based models for subgraph classification tasks as base-
lines: Subgraph Neural Network (SubGNN; Alsentzer et al., 2020), GNN with LAbeling trickS
for Subgraph (GLASS; Wang & Zhang, 2022), Variational Subgraph Autoencoder (VSubGAE; Liu
et al., 2023), Stochastic Subgraph Neighborhood Pooling (SSNP; Jacob et al., 2023) and Subgraph-
To-Node Translation (S2N; Kim & Oh, 2024). Baseline results are taken from the corresponding
research papers.

Efficiency Measurement When measuring the complete training time, we run models of the best
hyperparameters from each model’s original code, including batch sizes and total epochs, using
Intel(R) Xeon(R) CPU E5-2640 v4 and a single GeForce GTX 1080 Ti (for deep GNNs).

Implementation All models are implemented with PyTorch (Paszke et al., 2019) and PyTorch
Geometric (Fey & Lenssen, 2019). We use the implementation of Support Vector Machines (SVMs)
in Scikit-learn (Pedregosa et al., 2011).

6 RESULTS AND DISCUSSIONS

In this section, we compare the classification performance and efficiency of WLKS and baselines.
In addition, the performance of WLKS according to K is demonstrated to exhibit the usefulness of
the kernel combination. Finally, we investigate how structure and features across subgraph datasets
affect downstream performance by fusing WLKS and GNNs.

Performance and Efficiency In Table 2, the classification performance of WLKS-{0, D} and
baselines on eight datasets is summarized. Our results show that our model outperforms the best-
performing baseline in five out of eight datasets. Specifically, WLKS-{0, D} achieves the highest
micro F1-score on PPI-BP, EM-User, Density, Coreness, and Component. For HPO-Neuro, HPO-Metab,
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Table 2: Mean performance in micro F1-score on real-world and synthetic datasets over 10 runs. A
subscript indicates the standard deviation. The higher the performance, the darker the blue color.
The results of baselines are reprinted from respective papers.

Model PPI-BP HPO-Neuro HPO-Metab EM-User Density Cut-Ratio Coreness Component

SubGNN 59.9±2.4 63.2±1.0 53.7±2.3 81.4±4.6 91.9±1.6 62.9±3.9 65.9±9.2 95.8±9.8

GLASS 61.9±0.7 68.5±0.5 61.4±0.5 88.8±0.6 93.0±0.9 93.5±0.6 84.0±0.9 100.0±0.0

VSubGAE - 65.2±1.4 56.3±0.9 85.0±3.5 - - - -
SSNP-NN 63.6±0.7 68.2±0.4 58.7±1.0 88.8±0.5 - - - -

S2N+0 GCNII 63.5±2.4 66.4±1.1 61.6±1.7 86.5±3.2 67.2±2.4 56.0±0.0 57.0±4.9 100.0±0.0

S2N+A GCNII 63.7±2.3 68.4±1.0 63.2±2.7 89.0±1.6 93.2±2.6 56.0±0.0 85.7±5.8 100.0±0.0

WLKS-{0, D} 64.8±0.0 65.3±0.0 57.9±0.0 91.8±0.0 96.0±0.0 60.0±0.0 91.3±0.0 100.0±0.0

Table 3: Runtime in seconds for the entire training stage and 1-epoch inference on the validation set
for our model and baselines on real-world datasets.

Stage Entire Training Inference (1 epoch)
Model PPI-BP HPO-Neuro HPO-Metab EM-User PPI-BP HPO-Neuro HPO-Metab EM-User

SubGNN N/A 1798.2 1082.1 108.1 N/A 432.9 257.1 35.8
GLASS 1009.6 2462.6 1397.0 4597.4 8.2 27.0 26.4 39.0

S2N+0 GCNII 16.7 36.7 37.1 31.0 9.9 9.3 8.3 14.6
S2N+A GCNII 14.9 78.0 72.2 39.0 8.4 11.1 9.6 13.4
WLKS-{0,D} 3.5 25.2 10.9 9.6 1.0 11.7 2.7 1.8

and Cut-Ratio, our model shows similar performance to SubGNN but relatively lower performance
than the state-of-the-art model.

In terms of efficiency, we present the training and inference time of our model and four representative
baselines on real-world datasets in Table 3. Specifically, we measure the runtime for the entire
training stage (including data and model loading, training steps, validation steps, and logging) and
1-epoch inference on the validation set. Note that an experiment on PPI-BP with SubGNN cannot
be conducted since it takes more than 48 hours in pre-computation. WLKS-{0, D} demonstrates
significantly faster training and inference times across all real-world datasets compared to other
models (e.g., the shorter training time of ×0.01 – ×0.25 and inference time of ×0.12 – ×0.43).
This metric does not include the pre-computation or embedding pretraining required in baselines,
so the actual training of WLKS is more efficient. Additionally, WLKS does not require a GPU in
training and inference, unlike other GNN baselines.

Our results highlight the balance between efficiency and representation quality of WL histograms.
Despite the loss of structural information from simplicity, the empirical evidence underscores the
task-relevant nature of the retained information in WLKS-{0, D}. This is reflected in the supe-
rior performance of WLKS-{0, D} on five out of eight datasets with significantly less training and
inference time. However, the WL histogram lacks expressiveness in some subgraph tasks. The ex-
pressiveness can be enhanced by using the structural encoding (or labeling tricks) (Zhang & Chen,
2018; Li et al., 2020; Zhang et al., 2021; Dwivedi et al., 2022) in these cases. For example, on the
Cut-Ratio dataset, where the performance of WLKS is low compared to the state-of-the-art, a linear
combination with the inner product kernel of Random Walk Structural Encoding (Dwivedi et al.,
2022) significantly improves the performance from 60.0 to 96.0. However, this improvement is not
observed on other datasets. Detailed discussions are in Appendix D.

Performance of WLKS-K by K We highlight the importance of selecting the appropriate K in
Table 4. Specifically, the performance of WLKS-K varies significantly depending on the choice of
K. WLKS-{0, D}, which combines kernels of 0 and D, consistently delivers strong results across
datasets. WLKS-{0} and WLKS-{D} perform well independently in certain datasets, but their com-
bination makes the better performance. This is clearly demonstrated in the Coreness experiment for
predicting the average core number of nodes within a subgraph. This benchmark requires modeling
internal structures, global structures, and subgraph positions. A significant improvement when com-
bining kernels on Coreness aligns with our research motivation of capturing arbitrary interactions
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Table 4: Mean performance of WLKS-K in micro F1-score by K: {0}, {1}, {2}, {D}, and {0, D}.
The standard deviations are omitted (all 0). The higher the performance, the darker the blue color.

Model PPI-BP HPO-Neuro HPO-Metab EM-User Density Cut-Ratio Coreness Component

WLKS-{0, D} 64.8 65.3 57.9 91.8 96.0 60.0 91.3 100.0

WLKS-{0} 34.0 31.4 26.4 67.3 96.0 36.0 87.0 100.0

WLKS-{1} 39.0 OOM OOM 79.6 68.0 56.0 39.1 100.0

WLKS-{2} 64.2 OOM OOM 89.8 68.0 56.0 39.1 100.0

WLKS-{D} 64.2 65.1 57.9 89.8 68.0 56.0 39.1 100.0

Table 5: Mean performance in micro F1-score of WLKS variants integrated with continuous fea-
tures over 10 runs. Used S2N models are based on GCNII (Chen et al., 2020). The higher the
performance, the darker the blue color.

Model PPI-BP HPO-Neuro HPO-Metab EM-User Density Cut-Ratio Coreness Component

WLKS-{0, D} 64.8±0.0 65.3±0.0 57.9±0.0 91.8±0.0 96.0±0.0 60.0±0.0 91.3±0.0 100.0±0.0

WLKS-{0, D} + Kernel on X 64.8±0.0 65.8±0.0 59.1±0.0 91.8±0.0 96.0±0.0 64.0±0.0 91.3±0.0 100.0±0.0

WLKS-{0, D} + Cont. WL Kernel on X 64.8±0.0 66.0±0.0 59.6±0.0 93.9±0.0 96.0±0.0 64.0±0.0 91.3±0.0 100.0±0.0

WLKS-{0, D} for S2N+0 64.8±1.5 66.3±0.6 62.4±1.1 86.5±2.4 92.0±0.0 51.2±3.9 69.6±1.9 100.0±0.0

WLKS-{0, D} for S2N+A 65.4±2.4 68.4±1.1 62.9±1.9 90.0±3.3 95.6±2.8 48.0±0.0 87.4±4.1 100.0±0.0

between and within subgraph structures. This ability is necessary when multiple k-hop neighbor-
hoods are associated with the labels of the subgraph, and the performance can be improved from the
complementary nature of WLKS capturing different k-hop structures.

The selection of k is analogous to determining the number of layers in GNNs and can be treated
as a hyperparameter optimized for specific tasks. Intermediate values of k may capture important
substructures in datasets with large diameters. However, the model empirically performs well even
when k is substantially smaller than the graph’s diameter D. For instance, PPI-BP’s largest compo-
nent has a diameter of 8, yet k = 2 performs as well as k = D. In addition, our empirical results
showed no clear relation between the size of the graph, its global density, or the average density of
subgraphs (as presented in Table 1) and task performance with different k values. This suggests that
such structural properties are not key factors in determining the optimal k. Instead, the nature of the
task and its structural requirements should guide the selection of k.

Performance of WLKS Variants Integrated with Continuous Features Table 5 presents the
results of WLKS variants combining WLKS-{0, D} and continuous features. The performance
of WLKS-{0, D} for S2N improves over vanilla WLKS-{0, D} on PPI-BP, HPO-Neuro, and HPO-
Metab. However, performance decreases on EM-User, Density, Cut-Ratio, and Coreness. Applying
GNNs to the WLKS kernel matrix requires kernel sparsification, which leads to some loss of struc-
tural information. The enhanced features provided by deep neural networks can mitigate this trade-
off. We interpret that the former set of benchmarks prioritizes features over structure, while the latter
relies more on structural information. Using kernels on continuous features improves performance
on HPO-Neuro, HPO-Metab, EM-User, and Cut-Ratio. Notably, on EM-User, it achieves the best per-
formance of 93.9 among all methods. For other datasets, no changes in performance are observed.
Unlike the combination of GNN-based models, which can leverage the feature processing of neural
networks, kernels on features seem to provide limited performance gains from features.

Sensitivity Analysis of Hyperparameters Figures 3 and 4 demonstrate the performance sensitiv-
ity of the WLKS-{0, D} with respect to the number of iterations T and the kernel mixing coefficient
α0. The best performance is achieved at iterations of T = 2 or T = 3, beyond which the WL color-
ing stabilizes and no further improvement is observed. For α0, the WLKS-{0, D} is best-performed
between 10−3 and 10−1, while performance drops sharply as α0 approaches 1. Since αD = 1− α0

is larger than α0 in this range, this suggests that the subgraph labels rely more on global structures
(k = D) than internal ones (k = 0).
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Figure 3: Performance of WLKS-{0, D} by the number of iterations T .
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Figure 4: Performance of WLKS-{0, D} by the coefficient α0 in α0K
0
WLS + (1− α0)K

D
WLS.

7 CONCLUSION

We proposed WLKS, a simple but powerful model for subgraph-level tasks that generalizes the
Weisfeiler-Lehman (WL) kernel on induced k-hop neighborhoods. WLKS can enhance expressive-
ness by linearly combining kernel matrices from multiple k-hop levels, capturing richer structural
information without redundant neighborhood sampling. Through extensive experiments on eight
real-world and synthetic benchmarks, WLKS outperformed state-of-the-art methods on five datasets
with reduced training times—ranging from ×0.01 to ×0.53 compared to existing models. Fur-
thermore, WLKS does not need pre-computation, pre-training, GPUs, or extensive hyperparameter
tuning.

Our method offers a promising and accessible alternative to GNN-based approaches for subgraph
representation learning, but some tasks can still benefit from deep neural networks. We leave as
future work the seamless integration of WLKS with GNNs to leverage the expressive power of both
structures and features.
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A FORMAL COMPARISON WITH REPRESENTATIVE RELATED WORK

In this section, we compare WLKS with highly related prior work including Subgraph Neural Net-
work (SubGNN; Alsentzer et al., 2020), GNN with LAbeling trickS for Subgraph (GLASS; Wang &
Zhang, 2022), Subgraph-To-Node Translation (S2N; Kim & Oh, 2024), and GNN As Kernel (GNN-
AK; Zhao et al., 2022).

While SubGNN employs message-passing within subgraphs, its reliance on ad hoc patch sam-
pling and its separation of hand-crafted channels (e.g., position, neighborhood, structure) introduces
complexity and potential sub-optimality in information aggregation. Without requiring handcrafted
patch designs or sampling strategies, WLKS captures a unified and expressive structural representa-
tion based on the theoretical rationale that structures at multiple levels are important.

GLASS uses separate message-passing for node labels that distinguish internal and global struc-
tures. This can enhance expressiveness by mixing representations from local and global structures
similar to WLKS. However, GLASS has a limited ability to handle multiple labels in batched sub-
graphs; thus, a small batch size is required for GLASS. WLKS provides a generalized framework to
represent fine-grained levels of structures around subgraphs, which can process multiple subgraphs
efficiently by leveraging kernel methods.

Conceptually, node labeling based on membership (Zhang et al., 2021; Wang & Zhang, 2022), dis-
tances (Zhang & Chen, 2018; Li et al., 2020) or structures (Dwivedi et al., 2022) can be integrated
as additional features into the kernel methods. However, our current design may not benefit from
existing node labeling techniques. Node labeling encodes information about a node’s membership
within a subgraph (e.g., GLASS) or its distance to the target structure (distance-based). When aggre-
gated into histograms, GLASS’s label-histograms capture distributions of sizes of the subgraph and
its neighborhoods, and distance-based label-histograms capture the distribution of distances with
the target within an enclosing subgraph. While such distributions are somewhat informative, size
and distances represent coarser structural summaries compared to the fine-grained subtree patterns
encoded by WL color histograms. The expressive power of WLKS arises from its ability to cap-
ture these detailed structural features across multiple k-hop neighborhoods, obviating the need for
additional node-level labeling.

S2N efficiently learns subgraph representations by compressing the global graph. However, this
compression results in a loss of structural information and expressiveness in tasks where the global
structure is important. In particular, since the approximation bound of S2N depends on how many
subgraphs are spread out in the global graph, we cannot always expect a robust approximation. In
contrast, WLKS does not rely on lossy compression and can yield informative representations using
efficient kernel methods.

GNN-AK generates a graph representation by aggregating the information of each node’s locally in-
duced encompassing subgraph. Although there are local and global interactions, there are fundamen-
tal differences between WLKS. First, GNN-AK is designed for graph-level tasks, so the interactions
between the graph itself and its local subgraphs are modeled. However, dealing with subgraph-level
tasks is more challenging since modeling both the inside and the outside of the subgraph is required.
WLKS encodes them by using multiple k-hop kernels. Second, GNN-AK has a large complexity
that depends on the total number of neighbors and the sum of edges between neighbors, so it cannot
be applied to a large global graph, unlike WLKS. In fact, the average number of nodes covered by
the GNN-AK paper is much smaller, ranging from 25 to 430. In these perspectives, our study takes
a complementary approach to GNN-AK, addressing aspects not covered in their work.

B DISCUSSION ON RELATIONS BETWEEN WL ISOMORPHISM TEST AND WL
KERNELS

In this section, we provide a detailed discussion to clarify the distinctions between Weisfeiler-
Lehman (WL) isomorphism test and WL kernels, elaborating on how our work builds upon these
foundational concepts.

The WL algorithm is recognized for testing graph isomorphism by iteratively refining node labels
to capture the structural similarity between graphs. Its ability to distinguish non-isomorphic graphs
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Figure 5: A step-by-step visualization of WLSk algorithm (Algorithm 2) for k ∈ {0, 1, 2} using an
example in Figure 1.

is often considered a benchmark for evaluating the expressiveness of graph representation methods.
While isomorphism distinguishability is theoretically significant, it can be overly restrictive in prac-
tical applications where the exact topological equivalence of graphs is not the primary concern. For
example, many real-world tasks involve identifying structural similarities between graphs that may
not be strictly isomorphic but share functional or semantic similarities.

Our work aligns more closely with the WL kernel framework (Shervashidze & Borgwardt, 2009;
Shervashidze et al., 2011), which extends the application of the WL algorithm beyond isomorphism
testing. WL kernels compute graph similarity based on histogram representations of subtree patterns
generated by the WL algorithm. These histograms serve as compact summaries of graph structure,
allowing for the comparison of graphs even when they are not isomorphic. In this context, WL
kernels prioritize capturing similarities between graphs over distinguishing isomorphic structures.
This broader perspective makes WL kernels particularly suitable for various graph-structured data,
where the goal is to quantify structural resemblance rather than to test for isomorphism.

Building upon the WL kernel framework, our work introduces the WLKS method, which leverages
WL histograms as measures of subgraph similarity. The key insight here is that WL histograms
provide a rich representation of subtree patterns within graphs, enabling a nuanced comparison of
internal and external structures of subgraphs.

C STEP-BY-STEP VISUALIZATION OF WLSk ALGORITHM

In Figure 5, we visualize each iteration of WLSk algorithm using an example of Figure 1.

D USING KERNELS OF DISTANCE OR STRUCTURAL ENCODING

It is well-known that additional structural features (often called labeling tricks, distance encoding, or
structural encoding) can enhance the expressiveness of message-passing mechanisms under certain
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conditions (Zhang & Chen, 2018; Li et al., 2020; Zhang et al., 2021; Dwivedi et al., 2022; Wang &
Zhang, 2022).

We argue that these approaches can have different effectiveness for subgraph-level tasks and kernel-
based methods:

• Zero-one labeling (Zhang et al., 2021; Wang & Zhang, 2022): This binary labeling (as-
signing 0 to internal nodes and 1 to external nodes) shows limited expressiveness when
aggregating labels to histograms as kernel inputs. Its histogram is represented as a length-2
vector (0 or 1), which only counts the number of nodes inside and outside the subgraph,
thereby omitting finer structural details.

• SEAL’s Double-radius node labeling (Zhang & Chen, 2018): SEAL computes distances
with respect to target structures (e.g., links) and can be applicable to k-hop neighborhoods
of subgraphs but computationally challenging. While efficient for link prediction tasks due
to the smaller size of enclosing subgraphs, extending this approach to general subgraphs
becomes infeasible due to the computational overhead of calculating all pairwise distances.

• Distance Encoding (DE) (Li et al., 2020) and Random Walk Structural Encoding
(RWSE) (Dwivedi et al., 2022): DE uses landing probabilities of random walks from nodes
in the node set to a given node, and RWSE uses diagonal elements of random walk matrices.
In this line of work, random walk matrices are shown to encode structures in an expressive
way efficiently even on large-scale graphs.

We linearly combine WLKS-{0, D} with an inner product kernel of RWSE (the walk length of
1 – 64) sum-aggregated per subgraph, yielding a significant performance boost on the Cut-Ratio
dataset (from 60.0 to 96.0). However, this improvement was not shown across the other seven
benchmarks we tested. We leave investigating which specific node labeling methods are effective,
which aggregations of node labels are effective, and which kernels (e.g., linear, polynomial, RBF)
best complement the specific node labeling as future work.
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