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Abstract
Most reinforcement learning methods are based
upon the key assumption that the transition dy-
namics and reward functions are fixed, that is, the
underlying Markov decision process is stationary.
However, in many real-world applications, this as-
sumption is violated and using existing algorithms
may result in a performance lag. To proactively
search for a good future policy, we present a pol-
icy gradient algorithm that maximizes a forecast
of future performance. This forecast is obtained
by fitting a curve to the counter-factual estimates
of policy performance over time, without explic-
itly modeling the underlying non-stationarity. The
resulting algorithm amounts to a non-uniform
reweighting of past data, and we observe that min-
imizing performance over some of the data from
past episodes can be beneficial when searching
for a policy that maximizes future performance.
We show that our algorithm, called Prognostica-
tor, is more robust to non-stationarity than two
online adaptation techniques, on three simulated
problems motivated by real-world applications.

1. Introduction
Policy optimization algorithms in RL are promising for
obtaining general purpose control algorithms. They are
designed for Markov decision processes (MDPs), which
model a large class of problems (Sutton & Barto, 2018).
This generality can facilitate application to a variety of real-
world problems. However, most existing algorithms assume
that the environment remains stationary over time.

This assumption is often violated in practical problems of
interest. For example, consider an assistive driving system.
Over time, tires suffer from wear and tear, leading to in-
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creased friction and thus, change in the system dynamics.
Similarly, in almost all human-computer interaction applica-
tions, e.g., automated medical care, dialogue systems, and
marketing, human behavior changes over time. In such sce-
narios, if the automated system is not adapted to take such
changes into account, or if it is adapted only after observing
such changes, then the system might quickly become sub-
optimal, incurring severe loss (Moore et al., 2014). This
raises our main question: how do we build systems that
proactively search for a policy that will be good for the
future MDP?1

In this paper we present a policy gradient based approach
to search for a policy that maximizes the forecasted fu-
ture performance when the environment is non-stationary.
To capture the impact of changes in the environment on a
policy’s performance, first, the performance of the policy
during the past episodes is estimated using counter-factual
reasoning. Subsequently, a regression curve is fit to these
estimates to model the performance trend of the policy over
time, thereby enabling the forecast of future performance.
By differentiating this performance forecast with respect
to the parameters of the policy being evaluated, we obtain
a gradient-based optimization procedure that proactively
searches for a policy that will perform well in the future.

Recently, Al-Shedivat et al. (2017) and Finn et al. (2019)
also presented methods that search for initial parameters
that are effective when the objective is changing over time.
These approaches are complementary to our own, as they
could be additionally applied to set the initial parameters of
our algorithms. In our empirical study, we show how the
adaptation procedure of their methods alone can result in
a performance lag that is mitigated by our method, which
explicitly captures the trend of the objective due to non-
stationarity. A detailed survey on other approaches can be
found in the work by Padakandla (2020).

1Note that even when an RL agent is being trained on a sta-
tionary environment, the observed transition tuples come from a
‘non-stationary’ distribution. This is due to the changing state distri-
bution induced by updates in the policy parameters over the course
of the training. While such non-stationarity exists in our setup as
well, it is not the focus of this work. Here, ‘non-stationarity’ refers
to the transition dynamics and reward function of an environment
changing across episodes as described in Section 3.
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Advantages: The proposed method has the following ad-
vantages: (a) It does not require modeling the transition
function, reward function, or how either changes in a non-
stationary environment, and thus scales gracefully with re-
spect to the number of states and actions in the environment.
(b) Irrespective of the complexity of the environment or
the policy parameterization, it concisely models the effect
of changes in the environment on a policy’s performance
using a univariate time-series. (c) It is data-efficient in that
it leverages all available data. (d) It mitigates performance
lag by proactively optimizing performance for episodes in
both the immediate and near future. (e) It degenerates to
an estimator of the ordinary policy gradient if the system is
stationary, meaning that there is little reason not to use our
approach if there is a possibility that the system might be
non-stationary.

Limitations: The method that we propose is limited to
settings where (a) non-stationarity is governed by an exoge-
nous process (i.e., past actions do not impact the underlying
non-stationarity), which has no auto-correlated noise, and
(b) performance of every policy changes smoothly over time
and has no abrupt breaks/jumps. Further, we found that our
method is sensitive to a hyper-parameter that trades off ex-
ploration and exploitation in the non-stationary setting. We
conclude the paper with a discussion of these limitations.2

2. Notation
An MDPM is a tuple (S,A,P,R, γ, d0), where S is the
set of possible states, A is the set of actions, P is the tran-
sition function,R is the reward function, γ is the discount
factor, and d0 is the start state distribution. LetR(s, a) de-
note the expected reward of taking action a in state s. For
any given set X , we use ∆(X ) to denote the set of distribu-
tions over X . A policy π : S → ∆(A) is a distribution over
the actions conditioned on the state. When π is parameter-
ized using θ ∈ Rd, we denote it as πθ. In a non-stationary
setting, as the MDP changes over time, we useMk to de-
note the MDP during episode k. In general, we will use
sub-script k to denote the episode number and a super-script
t to denote the time-step within an episode. Stk, A

t
k, and

Rtk are the random variables corresponding to the state,
action, and reward at time step t, in episode k. Let Hk

denote a trajectory in episode k: (s0
k, a

0
k, r

0
k, s

1
k, a

1
k, ..., s

T
k ),

where T is the finite horizon. The value function eval-
uated at state s, during episode k, under a policy π is
vπk (s) = E[

∑T−t
j=0 γ

jRt+jk |Stk = s, π], where condition-

2Note that there is a source of confusion that stems from the
misconception that a non-stationary MDP can be converted into
a stationary (PO)MDP by considering an ‘expanded’ (PO)MDP
consisting of all possible variants of the given problem. However,
this perspective only shifts the source of non-stationarity from the
transition function and the reward function to the starting-state
distribution.

ing on π denotes that the trajectory in episode k was sam-
pled using π. The start state objective for a policy π, in
episode k, is defined as Jk(π) :=

∑
s d0(s)vπk (s). Let

J∗k = maxπ Jk(π) be the performance of an optimal pol-
icy for Mk. Often we write θ in place of πθ when the
dependence on θ is important.

3. Problem Statement
To model non-stationarity, we let an exogenous process
change the MDP fromMk toMk+1, i.e., between episodes.
Let {Mk}∞k=1 represent a sequence of MDPs, where each
MDPMk is denoted by the tuple (S,A,Pk,Rk, γ, d0).

In many problems, like adapting to friction in robotics,
human-machine interaction, etc., the transition dynamics
and rewards function change, but every other aspect of the
MDP remains the same throughout. Therefore, we assume
that for any two MDPs,Mk andMk+1, the state set S , the
action set A, the starting distribution d0, and the discount
factor γ are the same.

If the exogenous process changing the MDPs is arbitrary
and changes it in unreasonable ways, then there is little hope
of finding a good policy for the future MDP asMk+1 can
be wildly different from everything the agent has observed
by interacting with the past MDPs,M1, ...,Mk. However,
in many practical problems of interest, such changes are
smooth and have an underlying (unknown) structure. To
make the problem tractable, we therefore assume that both
the transition dynamics (P1,P2, ...), and the reward func-
tions (R1,R2, ...) vary smoothly over time in a way that
ensures there are no abrupt jumps in the performance of any
policy.

Problem Statement. We seek to find a sequence of poli-
cies that minimizes lifelong regret:

arg min
{π1,π2,...πk,...}

∞∑
k=1

J∗k −
∞∑
k=1

Jk(πk).

4. Related Work
The problem of non-stationarity has a long history and no
effort is enough to thoroughly review it. Here, we briefly
touch upon the most relevant work and defer a more detailed
literature review to the appendix. A more exhaustive survey
can be found in the work by Padakandla (2020).

Perhaps the work most closely related to ours is that of Al-
Shedivat et al. (2017). They consider a setting where an
agent is required to solve test tasks that have different transi-
tion dynamics than the training tasks. Using meta-learning,
they aim to use training tasks to find an initialization vec-
tor for the policy parameters that can be quickly fine-tuned
when facing tasks in the test set. In many real-world prob-
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lems, however, access to such independent training tasks
may not be available a priori. In this work, we are inter-
ested in the continually changing setting where there is no
boundary between training and testing tasks. As such, we
show how their proposed online adaptation technique that
fine-tunes parameters, by discarding past data and only us-
ing samples observed online, can create performance lag
and can therefore be data-inefficient. In settings where train-
ing and testing tasks do exist, our method can be leveraged
to better adapt during test time, starting from any desired
parameter vector.

Recent work by Finn et al. (2019) aims at bridging both
the continuously changing setting and the train-test setting
for supervised-learning problems. They propose contin-
uously improving an underlying parameter initialization
vector and running a Follow-The-Leader (FTL) algorithm
(Shalev-Shwartz et al., 2012) every time new data is ob-
served. A naive adaption of this for RL would require
access to all the underlying MDPs in the past for contin-
uously updating the initialization vector, which would be
impractical. Doing this efficiently remains an open question
and our method is complementary to choosing the initial-
ization vector. Additionally, FTL based adaptation always
lags in tracking optimal performance as it uniformly maxi-
mizes performance over all the past samples that might not
be directly related to the future. Further, we show that by
explicitly capturing the trend in the non-stationarity, we can
mitigate this performance lag resulting from the use of an
FTL algorithm during the adaptation process.

The problem of adapting to non-stationarity is also related
to continual learning (Ring, 1994), lifelong-learning (Thrun,
1998), and meta-learning (Schmidhuber, 1999). Several
meta-learning based approaches for fine-tuning a (mixture
of) trained model(s) using samples observed during a simi-
lar task at test time have been proposed (Nagabandi et al.,
2018a;b). Other works have also shown how models of
the environment can be used for continual learning (Lu
et al., 2019) or using it along with a model predictive con-
trol (Wagener et al., 2019). Concurrent work by Xie et al.
(2020) also demonstrates how modeling the changes in a
dynamic-parameter MDP can be useful. We focus on the
model-free paradigm and our approach is complementary
to these model-based methods.

More importantly, in many real-world applications, it can
be infeasible to update the system frequently if it involves
high computational or monetary expense. In such a case,
even optimizing for the immediate future might be greedy
and sub-optimal. The system should optimize for a longer
term in the future, to compensate for the time until the next
update is performed. None of the prior approaches can
efficiently tackle this problem.

5. Optimizing for the Future
The problem of minimizing lifelong regret is straightforward
if the agent has access to sufficient samples, in advance,
from the future environment,Mk+1, that it is going to face
(where k denotes the current episode number). That is, if
we could estimate the start-state objective, Jk+1(π), for the
future MDP Mk+1, then we could search for a policy π
whose performance is close to J∗K+1. However, obtaining
even a single sample from the future is impossible, let alone
getting a sufficient number of samples. This necessitates
rethinking the optimization paradigm for searching for a pol-
icy that performs well when faced with the future unknown
MDP. There are two immediate challenges here:

1. How can we estimate Jk+1(π) without any samples
fromMk+1?

2. How can gradients, ∂Jk+1(π)/∂θ, of this future per-
formance be estimated?

In this section we address both of these issues using the fol-
lowing idea. When the transition dynamics (P1,P2, ...), and
the reward functions (R1,R2, ...) are changing smoothly
the performances (J1(π), J2(π), ...) of any policy π will
also vary smoothly over time. The impact of smooth
changes in the environment thus manifests as smooth
changes in the performance of any policy, π. In cases where
there is an underlying, unknown, structure in the changes
of the environment, one can now ask: if the performances
J1:k(π) := (J1(π), ..., Jk(π)) of π over the course of past
episodes were known, can we analyze the trend in its past
performances to find a policy that maximizes future perfor-
mance Jk+1(π)?

5.1. Forecasting Future Performance

In this section we address the first challenge of estimating
future performance Jk+1(π) and pose it as a time series
forecasting problem.

Broadly, this requires two components: (a) A procedure to
compute past performances, J1:k(π), of π. (b) A procedure
to create an estimate, Ĵk+1(π), of π’s future performance,
Jk+1(π), using these estimated values from component (a).
An illustration of this idea is provided in Figure 1.

a Component (a). As we do not have access to the past
MDPs for computing the true values of past performances,
J1:k(π), we propose computing estimates, Ĵ1:k(π), of them
from the observed data. That is, in a non-stationary MDP,
starting with the fixed transition matrix P1 and the reward
functionR1, we want to estimate the performance Ji(π) of
a given policy in episode i ≤ k. Leveraging the fact that the
changes to the underlying MDP are due to an exogenous
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Figure 1. An illustration, where the blue and red filled circles
represent counter-factually reasoned performance estimates of
policies π1 and π2, respectively, using data collected from a given
policy β. The open circles represent the forecasted performance
of π1 and π2 estimated by fitting a curve on the counter-factual
estimates represented by filled circles.

processes, we can estimate Ji(π) as,

Ji(π) =

T∑
t=0

γtE
[
Rti
∣∣π,Pi,Ri] , (1)

where Pi and Ri are also random variables. Next we de-
scribe how an estimate of Ji(π) can be obtained from (1)
using information only from the ith episode.

To get an unbiased estimate, Ĵi(π), of π’s performance
during episode i, consider the past trajectory Hi of the
ith episode that was observed when executing a policy βi.
By using counter-factual reasoning (Rosenbaum & Rubin,
1983) and leveraging the per-decision importance sampling
(PDIS) estimator (Precup, 2000), an unbiased estimate of
Ji(π) is thus given by:3

Ĵi(π) :=

H∑
t=0

(
t∏
l=0

π(Ali|Sli)
βi(Ali|Sli)

)
γtRti. (2)

It is worth noting that computing (2) does not require storing
all the past policies βi, one needs to only store the actions
and the probabilities with which these actions were chosen.

Component (b). To obtain the second component, which
captures the structure in Ĵ1:k(π) := (Ĵ1(π), ..., Ĵk(π)) and
predicts future performances, we make use of a forecast-
ing function Ψ that estimates future performance Ĵk+1(π)
conditioned on the past performances:

Ĵk+1(θ) := Ψ(Ĵ1(π), Ĵ2(π), ...., Ĵk(π)). (3)

While Ψ can be any forecasting function, we consider Ψ to
be an ordinary least squares (OLS) regression model with

3We assume that ∀i ∈ N the distribution of Hi has full support
over the set of all possible trajectories of the MDP Mi.

parameters w ∈ Rd×1, and the following input and output
variables,

X := [1, 2, ..., k]> ∈ Rk×1,

Y := [Ĵ1(π), Ĵ2(π), Ĵ2(π), ..., Ĵk(π)]> ∈ Rk×1.

For any x ∈ X , let φ(x) ∈ R1×d denote a d-dimensional
basis function for encoding the time index. For example, an
identity basis φ(x) := {x, 1}, or a Fourier basis, where

φ(x) := {sin(2πnx|n ∈ N>0)}∪{cos(2πnx)|n ∈ N>0}∪{1}.

Let Φ ∈ Rk×d be the corresponding basis matrix. The solu-
tion to above least squares problem is w = (Φ>Φ)−1Φ>Y
(Bishop, 2006) and the forecast of the future performance
can be obtained using,

Ĵk+1(π) = φ(k + 1)w = φ(k + 1)(Φ>Φ)−1Φ>Y. (4)

This procedure enjoys an important advantage – by just us-
ing a univariate time-series to estimate future performance,
it bypasses the need for modeling the environment, which
can be prohibitively hard or even impossible. Further, note
that Φ>Φ ∈ Rd×d, where d << k typically, and thus the
cost of computing the matrix inverse is negligible. These
advantages allows this procedure to gracefully scale to more
challenging problems, while being robust to the size, |S|, of
the state set or the action set |A|.

5.2. Differentiating Forecasted Future Performance

In the previous section, we addressed the first challenge
and showed how to proactively estimate future performance,
Ĵk+1(θ), of a policy πθ by explicitly modeling the trend in
its past performances Ĵ1:k(θ). In this section, we address
the second challenge to facilitate a complete optimization
procedure. A pictorial illustration of the idea is provided in
Figure 2.

Gradients for Ĵk+1(θ) with respect to θ can be obtained as
follows,

dĴk+1(θ)

dθ
=
dΨ(Ĵ1(θ), ..., Ĵk(θ))

dθ

=

k∑
i=1

∂Ψ(Ĵ1(θ), ..., Ĵk(θ))

∂Ĵi(θ)︸ ︷︷ ︸
(a)

· dĴi(θ)
dθ︸ ︷︷ ︸
(b)

. (5)

The decomposition in (5) has an elegant intuitive interpre-
tation. The terms assigned to (a) in (5) correspond to how
the future prediction would change as a function of past out-
comes, and the terms in (b) indicate how the past outcomes
would change due to changes in the parameters of the policy
πθ. In the next paragraphs, we discuss how to obtain the
terms (a) and (b).
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Figure 2. The proposed method from the lens of differentiable pro-
gramming. At any time k, we aim to optimize policy’s parameters,
θ, to maximize its performance in the future, Jk+1(θ). However,
conventional methods (dotted arrows) can not be used to directly
optimize for this. In this work, we achieve this as a composition
of two programs: one which connects the policy’s parameters to
its past performances, and the other which forecasts future perfor-
mance as a function of these past performances. The optimization
procedure then corresponds to taking derivatives through this com-
position of programs to update policy parameters in a direction
that maximizes future performance. Arrows (a) and (b) correspond
to the respective terms marked in (5).

To obtain term (a), note that in (4), Ĵi(θ) corresponds to the
ith element of Y , and so using (3) the gradients of the terms
(a) in (5) are,

∂Ĵk+1(θ)

∂Ĵi(θ)
=
∂φ(k + 1)(Φ>Φ)−1Φ>Y

∂Yi

= [φ(k + 1)(Φ>Φ)−1Φ>]i, (6)

where [Z]i represents the ith element of a vector Z. There-
fore, (6) is the gradient of predicted future performance with
respect to an estimated past performance.

The term (b) in (5) corresponds to the gradient of the PDIS
estimate Ĵi(θ) of the past performance with respect to policy
parameters θ. The following Property provides a form for
(b) that makes its computation straightforward.

Property 1 (PDIS gradient). Let ρi(0, l) :=∏l
j=0

πθ(Aji |S
j
i )

βi(A
j
i |S

j
i )

.

dĴi(θ)

dθ
=

T∑
t=0

∂ log πθ(Ati|Sti )
∂θ

(
T∑
l=t

ρi(0, l)γ
lRli

)
.

Proof. See Appendix B.

5.3. Algorithm

We provide a sketch of our proposed Prognosticator pro-
cedure for optimizing the future performance of the policy
in Algorithm 1. To make the method more practical, we
incorporated two additional modifications to reduce compu-
tational cost and variance.

Algorithm 1: Prognosticator

1 Input Learning-rate η, time-duration δ,
entropy-regularizer λ

2 Initialize Forecasting function Ψ, Buffer B
3 while True do

# Record a new batch of trajectories using πθ

4 for episode = 1, 2, ..., δ do
5 h = {(s0:T , a0:T ,Pr(a0:T |s0:T ), r0:T )}
6 B.insert(h)

# Update for future performance
7 for i = 1, 2, ... do

# Evaluate past performances
8 for k = 1, 2, ..., |B| do
9 Ĵk(θ) =

∑T
t=0 ρ(0, t)γtRtk . (2)

# Future forecast and its gradient
10 L(θ) = 1

δ

∑δ
∆=1 Ĵk+∆(θ) . (4)

11 θ ← θ + η ∂
∂θ (L(θ) + λH(θ)) . (5)

First, it is often desirable to perform an update only after a
certain episode interval δ to reduce computational cost. This
raises the question: if a newly found policy will be executed
for the next δ episodes, should we choose this new policy
to maximize performance on just the single next episode,
or to maximize the average performance over the next δ
episodes? An advantage of our proposed method is that we
can easily tune how far in the future we want to optimize for.
Thus, to minimize lifelong regret, we propose optimizing
for the mean performance over the next δ episodes. That is,
arg maxθ (1/δ)

∑δ
∆=1 Ĵk+∆(θ).

Second, notice that if the policy becomes too close to de-
terministic, there would be two undesired consequences.
(a) The policy will not cause exploration, precluding the
agent from observing any changes to the environment in
states that it no longer revisits—changes that might make
entering those states worthwhile to the agent. (b) In the
future when estimating Ĵk+1(θ) using the past performance
of θ, importance sampling will have high variance if the pol-
icy executed during episode k + 1 is close to deterministic.
To mitigate these issues, we add an entropy regularizer H
during policy optimization. More details are available in
Appendix D.

6. Understanding the Behavior of
Prognosticator

Notice that as the scalar term (a) is multiplied by the PDIS
gradient term (b) in (5), the gradient of future performance
can be viewed as a weighted sum of off-policy policy gradi-
ents. In Figure 3, we provide visualization of the weights
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Figure 3. The value of ∂Ĵ100(θ)
∂Ĵi(θ)

for all values of i ∈ [1, 99] using
different basis functions to encode the time index. Notice that
many weights are negative when using the identity or Fourier
bases.

∂Ĵ100(θ)/∂Ĵi(θ) for PDIS gradients of each episode i,
when the performance for 100th episode is forecasted using
data from the past 99 episodes. For the specific setting when
Ψ is an OLS estimator, these weights are independent of
Y in (6) and their pattern remains constant for any given
sequence of MDPs.

Importantly, note the occurrence of negative weights in
Figure 3 when the identity basis or Fourier basis is used,
suggesting that the optimization procedure should move
towards a policy that had lower performance in some of the
past episodes. While this negative weighting seems unusual
at first glance, it has an intriguing interpretation. We discuss
this in the following paragraphs.

To better understand these negative weights, consider a qual-
itative comparison when weights from different methods
in Figure 3 are used along with the performance estimates
of policies π1 and π2 in Figure 1. Despite having lower
estimates of return everywhere, π2’s rising trend suggests
that it might have higher performance in the future, that
is, Jk+1(π2) > Jk+1(π1). Existing online learning meth-
ods like FTL, maximize performance on all the past data
uniformly (green curve in Figure 3). Similarly, the expo-
nential weights (red curve in Figure 3) are representative
of approaches that only optimize using data from recent
episodes and discard previous data. Either of these meth-
ods that use only non-negative weights can never capture
the trend to forecast Jk+1(π2) > Jk+1(π1). However, the
weights obtained when using the identity basis would facil-
itate minimization of performances in the distant past and
maximization of performance in the recent past. Intuitively,
this means that it moves towards a policy whose perfor-
mance is on a linear rise, as it expects that policy to have
better performance in the future.

While weights from the identity basis are useful for forecast-
ing whether Jk+1(π2) > Jk+1(π1), it cannot be expected
that the trend will always be linear as in Figure 1. To be

more flexible and allow for any smooth trend, we opt to
use the Fourier basis in our experiments. Observe the alter-
nating sign of weights in Figure 3 when using the Fourier
basis. This suggests that the optimization procedure will
take into account the sequential differences in performances
over the past, thereby favoring the policy that has shown the
most performance increments in the past. This also avoids
restricting the performance trend of a policy to be linear.

7. Mitigating Variance
While model-free algorithms for finding a good policy are
scalable to large problems, they tend to suffer from high-
variance (Greensmith et al., 2004). In particular, the use of
importance sampling estimators can increase the variance
further (Guo et al., 2017). In our setup, high variance in
estimates of past performances Ĵ1:k(π) of π can hinder cap-
turing π’s performance trend, thereby making the forecasts
less reliable.

Notice that a major source of variance is the availability
of only a single trajectory sample per MDP Mi, for all
i ∈ N. If this trajectory Hi, generated using βi is likely
when using βi, but has near-zero probability when using π
then the estimated Ĵi(π) is also nearly zero. While Ĵi(π) is
an unbiased estimate of Ji(π), information provided by this
single Hi is of little use to evaluate Ji(π). Subsequently,
discarding this from time-series analysis, rather than setting
it to be 0, can make the time series forecast more robust
against outliers. In comparison, if trajectory Hi is unlikely
when using βi but likely when using π, then not only is
Hi very useful for estimating Ji(π) but it also has a lower
chance of occurring in the future, so this trajectory must
be emphasized when making a forecast. Such a process
of (de-)emphasizing estimates of past returns using the col-
lected data itself can introduce bias, but this bias might be
beneficial in this few-sample regime.

To capture this idea formally, we build upon the insights of
Hachiya et al. (2012) and Mahmood et al. (2014), who draw
an equivalence between weighted least-squares (WLS) esti-
mation and the weighted importance sampling (WIS) (Pre-
cup, 2000) estimator. Particularly, let Gi :=

∑T
t=0 γ

tRti be
the discounted return of the ith trajectory observed from a
stationary MDP, and ρ†i := ρi(0, T ) be the importance ratio
of the entire trajectory. The WIS estimator, Ĵ†(π), of the
performance of π in a stationary MDP can then be obtained
as,

Ĵ†(π) := argmin
c∈R

1

n

n∑
i=1

ρ†i (Gi − c)
2 =

∑n
i=1 ρ

†
iGi∑n

i=1 ρ
†
i

.

To mitigate variance in our setup, we propose extending
WIS. In the non-stationary setting, to perform WIS while
capturing the trend in performance over time, we use a
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modified forecasting function Ψ†, which is a weighted least-
squares regression model with a d−dimensional basis func-
tion φ, and parameters w† ∈ Rd×1,

w† := argmin
c∈Rd×1

1

n

n∑
i=1

ρ†i (Gi − c
>φ(i))2. (7)

Let Λ ∈ Rk×k be a diagonal weight matrix such that Λii =
ρ†i , let Φ ∈ Rk×d be the basis matrix, and let the following
be input and output variables,

X := [1, 2, ..., k]> ∈ Rk×1,

Y := [G1, G2, ..., Gk]> ∈ Rk×1.

The solution to the weighted least squares problem in (7) is
then given by w† = (Φ>ΛΦ)−1Φ>ΛY and the forecast of
the future performance can be obtained using,

Ĵ†k+1(π) := φ(k + 1)w† = φ(k + 1)(Φ>ΛΦ)−1Φ>ΛY.

Ĵ†k+1(π) has several desired properties. It incorporates a
notion of how relevant each observed trajectory is towards
forecasting, while also capturing the desired trend in perfor-
mance. The forecasts are less sensitive to the importance
sampling variances and the entire process is still fully differ-
entiable.

8. Strictly Generalizing the Stationary Setting
As the agent is unaware of how the environment is changing,
a natural question to ask is what if the agent wrongly as-
sumed a stationary environment was non-stationary? What
is the quality of of the agent’s performance forecasts? What
is the impact of the negative weights on past evaluations of
a policy’s performance? Here we answer these questions.

Before stating the formal results, we introduce some nec-
essary notation and two assumptions. Let J(π) be the per-
formance of policy π for a stationary MDP. Let Ĵk+δ(π)

and Ĵ†k+δ(π) be the non-stationary importance sampling
(NIS) and non-stationary weighted importance sampling
(NWIS) estimators of performance δ episodes in future. Fur-
ther, let the basis function φ used for encoding the time
index in both Ψ and Ψ† be such that it satisfies the follow-
ing conditions: (a) φ(·) always contains 1 to incorporate
a bias/intercept coefficient in least-squares regression (for
example, φ(·) = [φ1(·), ..., φd−1(·), 1], where φi(·) are ar-
bitrary functions). (b) Φ has full column rank such that
(Φ>Φ)−1 exists. Both these properties are trivially satisfied
by most basis functions.

With this notation and these assumptions, we then have
the following results indicating that NIS is unbiased and
consistent like ordinary importance sampling and NWIS is
biased and consistent like weighted importance sampling.

Figure 4. Blood-glucose level of an in-silico patient for 24 hours
(one episode). Humps in the graph occur at times when a meal is
consumed by the patient.

Theorem 1 (Unbiased NIS). For all δ ≥ 1, Ĵk+δ(π) is an
unbiased estimator of J(π), that is E[Ĵk+δ(π)] = J(π).

Theorem 2 (Biased NWIS). For all δ ≥ 1, Ĵ†k+δ(π) may
be a biased estimator of J(π), that is, E[Ĵ†k+δ(π)] 6= J(π)
always.

Theorem 3 (Consistent NIS). For all δ ≥ 1, Ĵk+δ(π)
is a consistent estimator of J(π), that is as N →
∞, ĴN+δ(π)

a.s.−→ J(π).

Theorem 4 (Consistent NWIS). For all δ ≥ 1, Ĵ†k+δ(π)
is a consistent estimator of J(π), that is as N →
∞, Ĵ†N+δ(π)

a.s.−→ J(π).

Proof. See Appendix A for all of these proofs.

Since NWIS is biased and consistent like the WIS estimator,
we expect it to have similar variance reduction properties
that can potentially make the optimization process more
efficient in a non-stationary MDP.

9. Empirical Analysis
This section presents empirical evaluations using several en-
vironments inspired by real-world applications that exhibit
non-stationarity. In the following paragraphs, we briefly
discuss each environment; a more detailed description is
available in Appendix D.

Non-stationary Diabetes Treatment:

This environment is based on an open-source implemen-
tation (Xie, 2019) of the FDA approved Type-1 Diabetes
Mellitus simulator (T1DMS) (Man et al., 2014) for treat-
ment of Type-1 Diabetes. Each episode consists of a day in
an in-silico patient’s life. Consumption of a meal increases
the blood-glucose level in the body and if the blood-glucose
level becomes too high, then the patient suffers from hyper-
glycemia and if the level becomes too low, then the patient
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Figure 5. Best performances of all the algorithms obtained by conducting a hyper-parameter sweep over 2000 hyper-parameter combina-
tions per algorithm, per environment. For each hyper-parameter setting, 30 trials were executed for the recommender system and the
goal reacher environments, and 10 trials for the diabetes treatment environment. Error bars correspond to the standard error. The x-axis
represents how fast the environment is changing and the y-axis represents regret (lower is better). Individual learning curves for each
speed, for each domain, is available in Appendix E.

suffers from hypoglycemia. The goal is to control the blood-
glucose level of a patient by regulating the insulin dosage
to minimize the risk associated with both hyper and hypo-
glycemia.

However, the insulin sensitivity of a patient’s internal body
organs vary over time, inducing non-stationarity that should
be accounted for. In the T1DMS simulator, we induce this
non-stationarity by oscillating the body parameters (e.g.,
insulin sensitivity, rate of glucose absorption, etc.) between
two known configurations available in the simulator.

Non-stationary Recommender System: In this environ-
ment a recommender engine interacts with a user whose
interests in different items fluctuate over time. In particular,
the rewards associated with each item vary in seasonal cy-
cles. The goal is to maximize revenue by recommending an
item that the user is most interested in at any time.

Non-stationary Goal Reacher: This is a 2D environment
with four (left, right, up, and down) actions and a continuous
state set representing the Cartesian coordinates. The goal is
to make the agent reach a moving goal position.

For all of the above environments, we regulate the speed
of non-stationarity to characterize an algorithms’ ability to
adapt. Higher speed corresponds to a greater amount of non-
stationarity; A speed of zero indicates that the environment
is stationary.

We consider the following algorithms for comparison:

Prognosticator: Two variants of our algorithm, Pro-OLS
and Pro-WLS, which use OLS and WLS estimators for Ψ.

ONPG: Similar to the adaptation technique presented by Al-
Shedivat et al. (2017), this baseline performs purely online
optimization by fine-tuning the existing policy using only
the trajectory being observed online.

FTRL-PG: Similar to the adaptation technique presented
by Finn et al. (2019), this baseline performs Follow-the-
(regularized)-leader optimization by maximizing perfor-
mance over both the current and all the past trajectories.

9.1. Results

In the non-stationary recommender system, as the exact
value of J∗k is available from the simulator, we can compute
the true value of regret. However, for the non-stationary
goal reacher and diabetes treatment environment, as J∗k
is not known for any k, we use a surrogate measure for
regret. That is, let J̃∗k be the maximum return obtained
in episode k by any algorithm, then we use (

∑N
k=1(J̃∗k −

Jk(π)))/(
∑N
k=1 J̃

∗
k ) as the surrogate regret for a policy π.

In the non-stationary recommender system, all the methods
perform nearly the same when the environment is stationary.
FTRL-PG has a slight edge over ONPG when the environ-
ment is stationary as all the past data is directly indicative of
the future MDP. It is interesting to note that while FTRL-PG
works the best for the stationary setting in the recommender
system and the goal reacher task, it is not the best in the
diabetes treatment task as it can suffer from high variance.
We discuss the impact of variance in later paragraphs.

With the increase in the speed of non-stationarity, perfor-
mance of both the baselines deteriorate quickly. Of the
two, ONPG is better able to mitigate performance lag as
it discards all the past data. In contrast, both the proposed
methods, Pro-OLS and Pro-WLS, can leverage all the past
data to better capture the impact of non-stationarity and thus
are consistently more robust to the changes in the environ-
ment.

In the non-stationary goal reacher environment, a similar
trend as above is observed. While considering all the past
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data equally is useful for FTRL-PG in the stationary set-
ting, it creates drastic performance lag as the speed of the
non-stationarity increases. Between Pro-OLS and Pro-WLS,
in the stationary setting, once the agent nearly solves the
task all subsequent trajectories come from nearly the same
distribution and thus the variance resulting from importance
sampling ratio is not severe. In such a case, where the vari-
ance is low, Pro-WLS has less advantage over Pro-OLS and
additionally suffers from being biased. However, as the non-
stationarity increases, the optimal policy keeps changing
and there is a higher discrepancy between distributions of
past and current trajectories. This makes the lower vari-
ance property of Pro-WLS particularly useful. Having the
ability to better capture the underlying trend, both Pro-OLS
and Pro-WLS consistently perform better than the baselines
when there is non-stationarity.

The non-stationary diabetes treatment environment is par-
ticularly challenging as it has a continuous action set. This
makes importance sampling based estimators subject to
much higher variance. Consequently, Pro-OLS is not able to
reliably capture the impact of non-stationarity and performs
similar to ONPG. In comparison, the combination of both
high variance and performance lag makes FTRL-PG per-
form poorly across all the speeds. The most advantageous
algorithm in this environment is Pro-WLS. As it is designed
to better tackle variance stemming from importance sam-
pling, Pro-WLS is able to efficiently use the past data to
capture the underlying trend and performs well across all
the speeds of non-stationarity.

10. Conclusion
We presented a policy gradient-based algorithm that com-
bines counter-factual reasoning with curve-fitting to proac-
tively search for a good policy for future MDPs. Irrespective
of the environment being stationary or non-stationary, the
proposed method can leverage all the past data, and in non-
stationary settings it can pro-actively optimize for future
performance as well. Therefore, our method provides a
single solution for mitigating performance lag and being
data-efficient.

While the proposed algorithm has several desired proper-
ties, many open questions remain. In our experiments, we
noticed that the proposed algorithm is particularly sensitive
to the value of the entropy regularizer λ. Keeping λ too
high prevents the policy from adapting quickly. Keeping λ
too low lets the policy overfit to the forecast and become
close to deterministic, thereby increasing the variance for
subsequent importance sampling estimates of policy per-
formance. While we resorted to hyper-parameter search,
leveraging methods that adapt λ automatically might be
fruitful (Haarnoja et al., 2018).

Our framework highlights new research directions for study-
ing bias-variance trade-offs in the non-stationary setting.
While tackling the problem from the point of view of a
univariate time-series is advantageous as the model-bias of
the environment can be reduced, this can result in higher
variance in the forecasted performance. Developing lower
variance off-policy performance estimators is also an active
research direction which directly complements our algo-
rithm. In particular, often a partial model of the environment
is available and using it through doubly-robust estimators
(Jiang & Li, 2015; Thomas & Brunskill, 2016) is an inter-
esting future direction.

Further, there are other forecasting functions, like kernel
regression, Gaussian Processes, ARIMA, etc., and some
break-point detection algorithms that can potentially be used
to incorporate more domain knowledge in the forecasting
function Ψ, or make Ψ robust to jumps and auto-correlations
in the time series.
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Appendix

A. Properties of NIS and NWIS Estimators
Here we provide proofs for the properties of NIS and NWIS estimators. While NIS and NWIS are developed for non-
stationary setting, these properties ensure that these estimators strictly generalize for the stationary setting as well. That is,
when used in stationary setting, NIS estimator is both unbiased and consistent like the PDIS estimator, and NWIS estimator
is biased and consistent like the WIS estimator; when NIS and NWIS are used in non-stationary setting they can provide
more accurate estimates of a future performance as they explicitly model the trend of policy’s performance over time.

Our proof technique draws inspiration from the results presented by Mahmood et al. (2014). The primary difference is
that their results are for estimators that are developed only for the stationary setting and can not be readily used for the
non-stationary setting, unlike ours. The key modification that we make to leverage their proof technique is that instead of
using the features of the state as the input and the observed return from that corresponding state as the output to the regression
function, we use the features of the time index of an episode as the input and the observed return for that corresponding
episode as the output. In their setup, as states are stochastically drawn from a distribution their analysis is not directly
applicable for our setting, where inputs (time indices) form a deterministic sequence. For analysis of our estimators, we
leverage techniques discussed by Greene (2003) for analyzing properties of the ordinary least squares estimator.

Before proceeding, we impose the following constraints on the set of policies, and the basis function φ used for encoding
the time index in both Ψ and Ψ†.

(a) φ(·) always contains 1 to incorporate a bias coefficient in least-squares regression (for example, φ(·) =
[φ1(·), ..., φd−1(·), 1], where φi(·) are arbitrary functions).

(b) There exists a finite constant C1, such that ∀i, |φi(·)| < C1.

(c) Φ has full column rank such that (Φ>Φ)−1 exists.

(d) We only consider set of policies Π that have non-zero probability of taking any action in any state. That is ∃C2 > 0,
such that ∀π ∈ Π,∀s ∈ S,∀a ∈ A, π(a|s) > C2.

Satisfying condition (a) is straightforward as it is already done by all basis functions. Intuitively, this constraint ensure that
the regression problem is not ill-defined and there exists a model in the model class that can capture a fixed constant, which
corresponds to absence of any trend. This is useful for our purpose as in the stationary setting, there exists no trend in the
expected performance between the episodes for any given policy. The forecaster should be capable to infer this fact from the
data and represent it. That is, the optimal model parameter is 4

w∗ = [0, 0, ..., 0, J(π)]>,

such that for any k,

φ(k)w∗ = [φ1(k), ..., φd−1(k), 1][0, ..., 0, J(π)]> = J(π). (8)

Conditions (b) and (c) are also readily satisfied by popular basis functions. For example, features obtained using Fourier
basis is bounded by [−1, 1], and features from polynomial/identity basis are also bounded when inputs are adequately
normalized. Further, when the basis function does not repeat any feature, and number of samples are more than number of
features, condition (c) is satisfied. This ensures the the least-squares problem is well-defined and has a unique-solution.

Condition (d) ensures that the denominator in any importance ratio is always bounded below, such that the importance
ratios are bounded above. This condition implies that the importance sampling estimator for any evaluation policy has finite
variance. Use of entropy regularization with common policy parameterizations (softmax/Gaussian) can prevent violation of
this condition.

4If the domain knowledge is available to select an appropriate basis function that can be used to represent the performance trend of all
the policies for the required non-stationary environment, then all the following finite-sample and large-sample properties can be extended
for that environment as well.
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A.1. Finite Sample Properties

In this subsection, finite sample properties of NIS and NWIS are presented. Specifically, it is established that NIS is an
unbiased estimator, whereas NWIS is a biased estimator of J(π), the performance of a policy π in a stationary MDP.
Theorem 1 (Unbiased NIS). For all δ ≥ 1, Ĵk+δ(π) is an unbiased estimator of J(π), that is E[Ĵk+δ(π)] = J(π).

Proof. Recall from (4) that

Ĵk+δ(π) = φ(k + δ)w = φ(k + δ)(Φ>Φ)−1Φ>Y.

Therefore, the expected value of Ĵk+δ(π) is

E[Ĵk+δ(π)] = E
[
φ(k + δ)(Φ>Φ)−1Φ>Y

]
= φ(k + δ)

(
Φ>Φ

)−1 (
Φ>E [Y ]

)
As Y = [Ĵ0(π), ..., Ĵk(π)]> and the MDP is stationary, expected value of each element of Y is J(π). Let [J(π)] denote the
vector of size similar to Y , where all elements are J(π), then

E[Ĵk+δ(π)] = φ(k + δ)
(
Φ>Φ

)−1 (
Φ>[J(π)]

)
(9)

Now using (8) in (9),

E[Ĵk+δ(π)] = φ(k + δ)
(
Φ>Φ

)−1 (
Φ>Φw∗

)
= φ(k + δ)

(
Φ>Φ

)−1 (
Φ>Φ

)
w∗

= φ(k + δ)w∗

= J(π).

Proof. (Alternate) Here we present an alternate proof for Theorem 1 which does not require invoking w∗.

E
[
Ĵk+δ(π)

]
= E

[
φ(k + δ)(Φ>Φ)−1Φ>Y

]
(a)
= E

[
k∑
i=0

[
φ(k + δ)(Φ>Φ)−1Φ>

]
i
Yi

]
(b)
=

k∑
i=0

[
φ(k + δ)(Φ>Φ)−1Φ>

]
i
E [Yi] ,

where (a) is the dot product written as summation, and (b) holds because the multiplicative constants are fixed values, as
given in (6). Since the environment is stationary, ∀i E [Yi] = J(π), therefore,

E
[
Ĵk+1(π)

]
= J(π)

k∑
i=0

[
φ(k + δ)(Φ>Φ)−1Φ>

]
i
. (10)

In the following we focus on the terms inside the summation in (10). Without loss of generality, assume that the for a given
matrix of features Φ, the feature corresponding to value 1 is in the last column of Φ. Let A := (Φ>Φ)−1Φ> ∈ Rd×k ,
and let B := Φ[1, ..., k; 1, ..., k − 1] ∈ Rk×(d−1) be the submatrix of Φ such that B has all features of Φ except the ones
column, 1 ∈ Rk×1. Let I be the identity matrix ∈ Rk×k, then it can seen that (Φ>Φ)−1(Φ>Φ) can be expressed as,[

A
] [

B 1
]

= I. (11)

In (11), as the jth row in last column of I corresponds to the dot product of the jth row of A, Aj, with 1,

Aj1 =

{
0 j 6= d,

1 j = d.
(12)
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Equation (12) ensures that the summation of all rows of A, except the last, sum to 0, and the last one sums to 1. Now, let
φ(k + δ) := [φ1(k + δ), φ2(k + δ), ..., φd−1(k + δ), 1] ∈ R1×d. Therefore,

k∑
i=1

[
φ(k + δ)(Φ>Φ)−1Φ>

]
i

=

k∑
i=1

[φ(k + δ)A]i

=

k∑
i=1

d∑
j=1

[φ(k + δ)]jAj,i

=

d∑
j=1

[φ(k + δ)]j

k∑
i=1

Aj,i

=

d−1∑
j=1

[φ(k + δ)]j

k∑
i=1

Aj,i

+

(
[φ(k + δ)]d

k∑
i=1

Ad,i

)

=

d−1∑
j=1

[φ(k + δ)]j (Aj1)

+ ([φ(k + δ)]d (Ad1))

=

d−1∑
j=1

[φ(k + δ)]j · 0

+ ([φ(k + δ)]d · 1)

= [φ(k + δ)]d
= 1. (13)

Therefore, combining (13) with (10), E
[
Ĵk+δ(π)

]
= J(π).

Theorem 2 (Biased NWIS). For all δ ≥ 1, Ĵ†k+δ(π) may be a biased estimator of J(π), that is, E[Ĵ†k+δ(π)] 6= J(π) always.

Proof. We prove this result using a simple counter-example. Consider the following basis function, φ(·) = [1], then,

J†k+δ(π) = φ(k + δ)w†

= φ(k + δ) argmin
c∈R1×1

1

n

n∑
i=1

ρi(0, T )(Gi − c>φ(i))2

= argmin
c∈R1×1

1

n

n∑
i=1

ρi(0, T )(Gi − c)2

=

∑n
i=1 ρi(0, T )Gi∑n
i=1 ρi(0, T )

,

which is the WIS estimator. Therefore, as WIS is a biased estimator, NWIS is also a biased estimator of J(π).

A.2. Large Sample Properties

In this subsection, large sample properties of NIS and NWIS are presented. Specifically, it is established that both NIS and
NWIS are consistent estimators of, J(π), the performance of a policy π in a stationary MDP.

Theorem 3 (Consistent NIS). For all δ ≥ 1, Ĵk+δ(π) is a consistent estimator of J(π), that is as N →∞, ĴN+δ(π)
a.s.−→

J(π).

Proof. Using (4),

lim
N→∞

ĴN+δ(π) = lim
N→∞

φ(N + δ)w

= lim
N→∞

φ(N + δ)(Φ>Φ)−1Φ>Y.
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As Y = [Ĵ0(π), ..., ĴN (π)]> and the MDP is stationary, each element of Y is an unbiased estimate of J(π). In other words,
∀i ∈ [0, k], Ĵi(π) = J(π) + εi, where εi is a mean zero error. Let ε ∈ RN×1 be the vector containing all the error terms εi.
Now using (8),

lim
N→∞

ĴN+δ(π) = lim
N→∞

φ(N + δ)
(
Φ>Φ

)−1 (
Φ>(Φw∗ + ε)

)
(14)

= lim
N→∞

φ(N + δ)
(
Φ>Φ

)−1 ((
Φ>Φ

)
w∗ +

(
Φ>ε

))
= lim
N→∞

φ(N + δ)w∗ + φ(N + δ)
(
Φ>Φ

)−1 (
Φ>ε

)
= lim
N→∞

J(π) + φ(N + δ)
(
Φ>Φ

)−1 (
Φ>ε

)
= lim
N→∞

J(π) + φ(N + δ)

(
1

N
Φ>Φ

)−1(
1

N
Φ>ε

)
.

Using Slutsky’s Theorem,

lim
N→∞

ĴN+δ(π) = J(π) + φ(N + δ)

(
lim
N→∞

1

N
Φ>Φ

)−1(
lim
N→∞

1

N
Φ>ε

)
= J(π) + φ(N + δ)Q−1

(
lim
N→∞

1

N
Φ>ε

)
, (15)

where Q =
(

lim
N→∞

1
NΦ>Φ

)
, and it holds from Grenander’s conditions that Q−1 exists. Informally, Grenander’s conditions

require that no feature degenerates to a sequence of zeros, no feature of a single observation dominates the sum of squares
of its series, and the Φ>Φ matrix always has full rank. These conditions are easily satisfied for most popular basis functions
used to create input features. For formal definitions of these conditions, we refer the reader to Chpt. 5, Greene (2003).

In the following, we restrict our focus to the term inside the brackets in the second term of (15). The mean of that term is,

E
[

1

N
Φ>ε

]
=

1

N
Φ>E [ε] = 0.

Since the mean is 0, variance of that term is given by,

V
[

1

N
Φ>ε

]
=

1

N2
V
[
Φ>ε

]
=

1

N2

(
Φ>ε

) (
Φ>ε

)>
=

1

N2

(
Φ>εε>Φ

)
.

As each policy has a non-zero probability of taking any action in any state, the variance of PDIS (or the standard IS)
estimator is bounded and thus each element of εε> is bounded. Further, as φi(·) is bounded, each element of Φ is also
bounded. Therefore, as

lim
N→∞

V
[

1

N
Φ>ε

]
a.s.−→ 0.

As mean is 0 and variance asymptotes to 0, then as N →∞, 1
NΦ>ε

a.s.−→ 0. Combining this with (15),

lim
N→∞

ĴN+δ(π)
a.s.→ J(π) + φ(N + δ)Q−10 = J(π).

Theorem 4 (Consistent NWIS). For all δ ≥ 1, Ĵ†k+δ(π) is a consistent estimator of J(π), that is asN →∞, Ĵ†N+δ(π)
a.s.−→

J(π).

Proof. Recall from (7),

Ĵ†N+δ(π) = φ(N + δ)w† = φ(N + δ)(Φ>ΛΦ)−1Φ>ΛY.
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Consistency of Ĵ†N+δ(π) can be proved similarly to the proof of Theorem 3. Note that over here Y = [G0, ..., Gk]> contains
the returns for each episode, ΛY denotes the unbiased estimates for J(π). Therefore, similar to (14),

lim
N→∞

Ĵ†N+δ(π) = lim
N→∞

φ(N + δ)(Φ>ΛΦ)−1(Φ>(Φw∗ + ε))

= lim
N→∞

φ(N + δ)(Φ>ΛΦ)−1((Φ>Φ)w∗ + Φ>ε)

= lim
N→∞

φ(N + δ)

(
1

N
Φ>ΛΦ

)−1((
1

N
Φ>Φ

)
w∗ +

1

N
Φ>ε

)
Using Slutsky’s Theorem,

lim
N→∞

Ĵ†N+δ(π) = φ(N + δ)

(
lim
N→∞

1

N
Φ>ΛΦ

)−1((
lim
N→∞

1

N
Φ>Φ

)
w∗ + lim

N→∞

1

N
Φ>ε

)
. (16)

Now restricting our focus to the terms in the first bracket in (16),(
lim
N→∞

1

N
Φ>ΛΦ

)−1

=

(
lim
N→∞

1

N

N∑
k=1

ρ†kφ(k)>φ(k)

)−1

(a)
=

(
E
[
ρ†k

](
lim
N→∞

1

N

N∑
k=1

φ(k)>φ(k)

))−1

(b)
=

(
lim
N→∞

1

N
Φ>Φ

)−1

, (17)

where to obtain (a), let ρ̃k := ρ†k − E[ρ†k] be a mean 0 random variable. Then (1/N)
∑
ρ†kφ(k)>φ(k) =

(1/N)(
∑N
k=1 ρ̃kφ(k)>φ(k) + E[ρ†k]

∑N
k=1 φ(k)>φ(k)). Now using the strong law for weighted sums of indepen-

dent random variables (Theorem 1.1, Cuzick (1995)) and under the condition that both ρ† and φ(·) are bounded,
(1/N)

∑N
k=1 ρ̃kφ(k)>φ(k)

a.s.→ 0 in limit. Therefore, (1/N)
∑
ρ†kφ(k)>φ(k) = E[ρ†k]((1/N)

∑N
k=1 φ(k)>φ(k)) in limit

as N → ∞. Consequently, (b) is obtained using the fact that the expected value of importance ratios is 1 (Lemma 3,
(Thomas, 2015)). Substituting (17) in (16),

lim
N→∞

Ĵ†N+δ(π) = φ(N + δ)

(
lim
N→∞

1

N
Φ>Φ

)−1((
lim
N→∞

1

N
Φ>Φ

)
w∗ + lim

N→∞

1

N
Φ>ε

)
= φ(N + δ)w∗ + φ(N + δ)

(
lim
N→∞

1

N
Φ>Φ

)−1(
lim
N→∞

1

N
Φ>ε

)
= J(π) + φ(N + δ)

(
lim
N→∞

1

N
Φ>Φ

)−1(
lim
N→∞

1

N
Φ>ε

)
a.s.−→ J(π), (18)

where (18) follows from simplification used for (15) in the proof of Theorem 3.

B. Gradient of PDIS Estimator
Recall that NIS and NWIS estimators build upon PDIS and WIS estimators by using them along with OLS and WLS
regression, respectively. Consequently, gradients of NIS and NWIS estimators with respect to the policy parameters can
be decomposed into terms which consists of gradients of PDIS and WIS estimators with respect to the policy parameters.
Here we provide complete derivations for obtaining a straightforward equation for computing the gradients of the PDIS and
the WIS estimators with respect to the policy parameters. These might also be of independent interest when dealing with
off-policy policy optimization in purely stationary MDPs.

Property 1 (PDIS Gradient). Let ρi(0, l) :=
∏l
j=0

πθ(Aji |S
j
i )

βi(A
j
i |S

j
i )

, then

∇Ĵi(θ) =

T∑
t=0

∂ log πθ(Ati|Sti )
∂θ

(
T∑
l=t

ρi(0, l) · γl ·Rli

)
.
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t \l 0 1 2 ... T
0 γ0ρi(0, 0)Ψ0

iR
0
i

1 γ1ρi(0, 1)Ψ0
iR

1
i γ1ρi(0, 1)Ψ1

iR
1
i

2 γ2ρi(0, 2)Ψ0
iR

2
i γ2ρi(0, 2)Ψ1

iR
2
i γ2ρi(0, 2)Ψ2

iR
2
i

...
...

...
...

...
...

T γT ρi(0, T )Ψ0
iR

T
i γT ρi(0, T )Ψ1

iR
T
i γT ρi(0, T )Ψ2

iR
T
i ... γT ρi(0, T )ΨT

i R
T
i

Table 1. let Ψt
i = ∂ log πθ(Ati|Sti )/∂θ. This table represents all the terms in (19) required for computing ∇Ĵi(θ). Gray color denotes

empty cells.

Proof. Recall from (2),

Ĵi(θ) =

T∑
t=0

(
t∏
l=0

πθ(Ali|Sli)
β(Ali|Sli)

)
γtRti.

Computing the gradient of Ĵi(θ),

∇Ĵi(θ) =

T∑
t=0

∂

∂θ

(
t∏
l=0

πθ(Ali|Sli)
β(Ali|Sli)

)
γtRti

=

T∑
t=0

(
t∏
l=0

πθ(Ali|Sli)
β(Ali|Sli)

)
∂ log

(∏t
l=0 π

θ(Ali|Sli)
)

∂θ
γtRti

=

T∑
t=0

(
t∏
l=0

πθ(Ali|Sli)
β(Ali|Sli)

)(
t∑
l=0

∂ log πθ(Ali|Sli)
∂θ

)
γtRti

=

T∑
t=0

ρi(0, t)

(
t∑
l=0

∂ log πθ(Ali|Sli)
∂θ

)
γtRti.

=

T∑
t=0

∂ log πθ(Ati|Sti )
∂θ

(
T∑
l=t

ρi(0, l) · γl ·Rli

)
, (19)

where, in the last step, instead of the summation over partial derivatives of log πθ for each weight ρ(·, ·), we consider the
alternate form where summation is over the importance weights ρ(·, ·) for each partial derivative of log πθ. To see this step
clearly, let Ψt

i = ∂ log πθ(Ati|Sti )/∂θ, then Table 1 shows all the terms in (19). The last step in simplification corresponds
to taking column-wise sum instead of row wise sum in Table 1.

C. Detailed Literature Review
The problem of non-stationarity has a long history. In the operations research community, many dynamic sequential decision-
making problems are modeled using infinite horizon non-homogeneous MDPs (Hopp et al., 1987). While estimating an
optimal policy is infeasible under an infinite horizon setting when the dynamics are changing and a stationary distribution
cannot be reached, researchers have been interested in identifying sufficient forecast horizons for performing near-optimal
planning (Garcia & Smith, 2000; Cheevaprawatdomrong et al., 2007; Ghate & Smith, 2013) or robust policy iteration (Sinha
& Ghate, 2016).

In contrast, non-stationary multi-armed bandits (NMAB) capture the setting where the horizon length is one, but the
reward distribution changes over time (Moulines, 2008; Besbes et al., 2014). Many variants of NMAB, like cascading
non-stationary bandits (Wang et al., 2019b; Li & de Rijke, 2019) and rotten bandits (Levine et al., 2017; Seznec et al., 2018)
have also been considered. In optimistic online convex optimization, researchers have shown that better performance can be
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achieved by updating the parameters using predictions of the gradient of the future loss, based on past gradients (Rakhlin &
Sridharan, 2013; Yang & Mohri, 2016; Mohri & Yang, 2016; Wang et al., 2019a).

Non-stationarity also occurs in multi-player games, like rock-paper-scissors, where each episode is a single one-step
interaction (Singh et al., 2000; Bowling, 2005; Conitzer & Sandholm, 2007). Opponent modeling in games has been shown
to be useful and regret bounds for multi-player games where players can be replaced with some probability p, i.e., the game
changes slowly over time, has also been established (Zhang & Lesser, 2010; Mealing & Shapiro, 2013; Foster et al., 2016;
Foerster et al., 2018). However, learning sequential strategies in a non-stationary setting is still an open research problem.

For episodic non-stationary MDPs, researchers have also looked at providing regret bounds for algorithms that exploit
oracle access to the current reward and transition functions (Even-Dar et al., 2005; Yu & Mannor, 2009; Abbasi et al., 2013;
Lecarpentier & Rachelson, 2019; Li et al., 2019). Alleviating oracle access by performing a count-based estimate of the
reward and transition function based on the recent history of interactions has also been proposed (Gajane et al., 2018; Cheung
et al., 2019). For tabular MDPs, past data from a non-stationary MDP can be used to construct a maximum-likelihood
estimate model (Ornik & Topcu, 2019) or a full Bayesian model (Jong & Stone, 2005) of the transition dynamics. Our focus
is on the setting which is not restricted to tabular representations.

A Hidden-Mode MDP is an alternate setting that assumes that the environment changes are confined to a small number of
hidden modes, where each mode represents a unique MDP. This provides a more tractable way to model a limited number of
MDPs (Choi et al., 2000; Basso & Engel, 2009; Mahmud & Ramamoorthy, 2013), or perform model-free updates using
mode-change detection (Padakandla et al., 2019). In this work, we are interested in the continuously changing setting, where
the number of possible MDPs is unbounded.

Tracking has also been shown to play an important role in non-stationary domains. Thomas et al. (2017) and Jagerman
et al. (2019) have proposed policy evaluation techniques in a non-stationary setting by tracking a policy’s past performances.
However, they do not provide any procedure for searching for a good future policy. To adapt quickly in non-stationary
tasks, TIDBD (Kearney et al., 2018) and AdaGain (Jacobsen et al., 2019) perform TD-learning while also automatically
(de-)emphasizing updates to (ir)relevant features by modulating the learning rate of the parameters associated with the
respective features. Similarly, Abdallah & Kaisers (2016) propose repeating a Q-value update inversely proportional to the
probability with which an action was chosen to obtain a transition tuple. In this work, we aim at going beyond tracking and
pro-actively optimizing for the future.

D. Implementation details
D.1. Environments

We provide empirical results on three non-stationary environments: diabetes treatment, recommender system, and a
goal-reacher task. Details for each of these environments are provided in this section.

Non-stationary Diabetes Treatment: This MDP models the problem of Type-1 diabetes management. At a high-level, the
body of a person with Type-1 diabetes does not produce enough insulin, a hormone that promotes absorption of glucose
from the blood. Consumption of a meal increases the blood-glucose level in the body and if the blood-glucose level becomes
too high, then the patient can suffer from Hyperglycemia. Insulin injections can be used externally to reduce the level
but if the level becomes too low, then the patient suffers from Hypoglycemia. While either of the extremes is undesirable,
Hypoglycemia is more dangerous and can triple the five-year mortality rate for a person with diabetes (Man et al., 2014).

Autonomous medical support system have been proposed to decide how much insulin should be injected to keep a person’s
blood glucose levels near ideal levels (Bastani, 2014). The parameters of such a medical support system are set by a doctor
specifically for each patient. However, due to non-stationarities induced over time as a consequence of changes in the body
mass index, the insulin sensitivity of the pancreas, diet, etc., the parameters of the controller need to be re-adjusted regularly.
Currently, this requires re-visiting the doctor. A viable reinforcement learning solution to this non-stationary problem could
enable the automatic tuning of these parameters for patients without regular access to a physician.

To model this MDP we use an open-source implementation (Xie, 2019) of the U.S. Food and Drug Administration (FDA)
approved Type-1 Diabetes Mellitus simulator (T1DMS) (Man et al., 2014) for treatment of Type-1 diabetes, where we
induce non-stationarity by oscillating the body parameters between two known configurations. Each episode consists of a
day (1440 timesteps, where each timestep corresponds to a minute) in an in-silico patient’s life and the transition dynamics
of a patient’s body for each second is governed by a continuous time ordinary differential equation (ODE) (Man et al., 2014).
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After each second the insulin controller is used to inject the desired amount of insulin for controlling the blood glucose.

For controlling the insulin injection, we use a parameterized policy based on the amount of insulin that a person with
diabetes is instructed to inject prior to eating a meal (Bastani, 2014):

injection =
current blood glucose− target blood glucose

CF
+

meal size
CR

,

where ‘current blood glucose’ is the estimate of the person’s current blood glucose level, ‘target blood glucose’ is the
desired blood glucose, ‘meal size’ is the estimate of the size of the meal the patient is about to eat, and CR and CF are two
real-valued parameters, that must be tuned based on the body parameters to make the treatment effective.

Non-stationary Recommender System: During online recommendation of movies, tutorials, advertisements and other
products, the system needs to interact and personalize for each user. However, the interests of an user for different items
among the products that can be recommended fluctuate over time. For example, interests during online shopping can vary
based on seasonality or other unknown factors.

This environment models the desired recommender system setting where reward (interest of the user) associated with
each item changes over time. Figure 6 (left) plots how the reward associated with each item changes over time, for each
of the considered ‘speeds’ of non-stationarity. The goal for the reinforcement learning agent is to maximize revenue by
recommending the item which the user is most interested at any time.

Non-stationary Goal Reacher: For an autonomous robot dealing with tasks in the open-world it is natural for the problem
specification to change over time. An ideal system should quickly adapt to the changes and still complete the task.

To model the above setting, this environment considers a task of reaching a non-stationary goal position. That is, the location
of the goal position keeps slowly moving around with time. The goal of the reinforcement learning agent is to control the
four (left, right, up, and down) actions to move the agent towards the goal as quickly as possible given the real valued
Cartesian coordinates of the agent’s current location. Maximum time given to the agent to reach the goal is 15 steps.

D.2. Hyper-parameters

For both the variants of the proposed Prognosticator algorithms, we use Fourier basis to encode the time index while
performing (ordinary/weighted) least squares estimation. Since Fourier basis requires inputs to be normalized with |x| ≤ 1,
we normalize each time index by dividing it by K + δ, where K is the current time and δ is the maximum time in future we
need the forecast for. Further, as we are regressing only on time (which are all positive values), is does not matter whether
the function of policy performance over time is odd (Ψ(x) = −Ψ(−x)) or not. Therefore, we drop all the terms in the
basis corresponding to sin(·) which are useful for modeling odd functions. This reduces the number of parameters to be
estimated by half. Finally, instead of letting n ∈ N, we restrict it to a finite set {1, ..., d− 1}, where d is a fixed constant that
determines the size of feature vector for each input. In all our experiments, d was a hyper-parameter chosen from {3, 5, 7}.

Other hyper-parameter ranges were common for all the algorithms. The discounting factor γ was kept fixed to 0.99 and
learning rate η was chosen from range [5e− 5, 5e− 2]. Entropy regularizer λ was chosen from range [0, 1e− 2] Batch size
δ was chosen from the set {1, 3, 5}. Inner optimization over past data for the proposed methods and FTRL-PG was run for
{10, 20, 30} × δ iterations. Inner optimization for ONPG corresponds to one iteration over all the trajectories collected in
the current batch. Past algorithms have shown that clipping the importance weights can improve stability of reinforcement
learning algorithms (Schulman et al., 2017). Similarly, we clip the maximum value of the importance ratio to a value
chosen from {5, 10, 15}. Additionally, value functions learned online is popularly used as a baseline/control-variate in
policy gradient based algorithms. Whether to use of such a value function or not was decided from {True, False}. As the
non-stationary diabetes treatment problem has a continuous action space, the policy was parameterized with a Gaussian
distribution having a variance chosen from [0.5, 2.5]. For the non-stationary goal-reacher environment, the policy was
parameterized using a two-layer neural network with number of hidden nodes chosen from {16, 32, 64}.

In total, 2000 settings for each algorithm, for each domain, were uniformly sampled (loguniformly for learning rates and λ)
from the mentioned hyper-parameter ranges/sets. Results from the best performing setting is reported in all the plots. Each
hyper-parameter setting was ran using 10 seeds for the non-stationary diabetes treatment (as it was time intensive to run
a continuous time ODE for each step) and 30 seeds for the other two environments to get the standard error of the mean
performances. The authors had shared access to a computing cluster, consisting of 50 compute nodes with 28 cores each,
which was used to run all the experiments.
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E. Detailed Empirical Results
Complexity analysis (space, time, and sample size) Space requirement for our algorithms and FTRL is linear in the
number of episodes seen in the past, whereas it is constant for ONPG as it discards all past data. Computational cost of our
algorithm is also similar to FTRL as the only additional cost is that of differentiating through least-squares estimators which
involves computing (Φ>Φ)−1 or (Φ>ΛΦ)−1. This additional overhead is negligible as these matrices are of size d × d,
where d is the size of feature vector for time index and d << N , where N is the number of past episodes. Figures 5, 6, and
7 present an empirical estimate of sample efficiency.

Performance over time: In Figure 5, summary statistics of the results were presented. In this section we present all the
results in details. Figure 6 plots the performances of all the algorithms for individual episodes as the user interests changes
over time in the recommender system environment. In this environment as the true rewards for each of the item is directly
available we provide a visual plot for it as well in Figure 6 (left). Notice the shape of the performance curve for the proposed
methods, which closely captures the trend of maximum reward attainable over time.

Figure 7 plots the performances of all the algorithms for non-stationary goal-reacher and diabetes treatment environments.
In these environments, the maximum achievable performance for each episode is not readily available.
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Figure 6. (Left) Fluctuations in the reward associated with each of the 5 items that can be recommended, for different speeds. (Right)
Running mean of the best performance of all the algorithms for different speeds; higher total expected return is better. Shaded regions
correspond to the standard error of the mean obtained using 30 trials. Notice the shape of the performance curve for the proposed methods,
which closely captures the trend of maximum reward attainable over time.
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Figure 7. Running mean of the best performance of all the algorithms for different speeds; higher total expected return is better. Shaded
regions correspond to the standard error of the mean obtained using 30 trials for NS Goal Reacher and 10 trials for NS Diabetes Treatment.


