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Abstract

We consider the bounded derived category of Sk-equivariant coherent she-
aves on (Pn)k. The goal of this paper is to construct in this category a rectan-
gular Lefschetz exceptional collection when this is possible, or a minimal Lef-
schetz exceptional collection when a rectangular one does not exist. The main
results of the paper include the construction of a rectangular Lefschetz excep-
tional collection in the case k = 3 and in the case n = 1 when gcd(n+1, k) = 1.
We also construct a minimal Lefschetz exceptional collection for n = 1 and
even k, and for n = 2 and k = 3.
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1 Introduction

The bounded derived category of coherent sheaves is the main homological invariant
of an algebraic variety which captures the most essential geometric information. It
stands in the focus of many recent research papers. One of the ways to describe it is
via an exceptional collection.

Recall that an object E in a C-linear triangulated category T is exceptional
if Ext0(E,E) = C and Exti(E,E) = 0 for i 6= 0. Furthermore, a collection E1, . . . , Er
of objects in T is an exceptional collection if each Ei is an exceptional object
and Ext•(Ei, Ej) = 0 for i > j. An exceptional collection is full if the smallest
full triangulated subcategory of T containing all Ei coincides with T .

Recently a special class of exceptional collections attracted much attention. Re-
call that an exceptional collection E1, . . . , Er in the bounded derived category of
coherent sheaves D(X) of a smooth projective variety X is Lefschetz with respect to
a line bundle L if there is a partition r = r0 + r1 + · · · + rd with r0 ≥ r1 ≥ · · · ≥ rd
such that

Er0+r1+···+ri−1+t
∼= Et ⊗ Li for all 1 ≤ t ≤ ri and 1 ≤ i ≤ d.

In other words, if the objects of the collection are obtained by L-twists from the
subcollection of the first r0 objects according to the pattern provided by the partition.

As it is clear from the definition, a Lefschetz collection with respect to a given
line bundle L is determined by its starting block E1, . . . , Er0 and the partition
(r0, r1, . . . , rd). It is less evident, but is still true, that if a Lefschetz collection is
full, then the partition is itself determined by the starting block of the collection [6,
Lemma 4.5]. Thus, extendability to a Lefschetz collection is just a property of an
exceptional collection E1, . . . , Er0 .

It follows that there is a natural partial order on the set of all Lefschetz collec-
tions in D(X) with respect to a given line bundle L — a Lefschetz collection with
a starting block E1, . . . , Er0 is smaller than a Lefschetz collection with a starting
block E ′1, . . . , E

′
s0

if E1, . . . , Er0 is a subcollection in E ′1, . . . , E
′
s0

, see [10, Defini-
tion 1.4].

A Lefschetz collection E1, . . . , Er with partition r0, r1, . . . , rd is called rectangular
of length d+ 1, if r0 = r1 = · · · = rd (equivalently, if the Young diagram representing
the partition is a rectangle of length d+ 1). Of course, a necessary condition for the
existence of a rectangular Lefschetz collection in D(X) is a factorization

rk
(
K0(D(X))

)
= r0(d+ 1) (1.1)

for the rank of the Grothendieck group of X. On the other hand, if a rectangular
Lefschetz decomposition in D(X) exists, and if its length d+ 1 has the property
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that Ld+1 ∼= ω−1
X where ωX is the canonical bundle of X, that is d + 1 equals the

index of X with respect to L, then this collection is automatically minimal (this
follows easily from Serre duality, see [10, Subsection 2.1]).

Lefschetz collections have many nice properties and are very important for ho-
mological projective duality and categorical resolutions of singularities [7], [9]. Espe-
cially nice and important are rectangular (resp. minimal) Lefschetz collections. So,
the following problem is very interesting.

Problem 1.1. Given a smooth projective variety X and a line bundle L, construct
a full rectangular Lefschetz collection in D(X) with respect to L of length equal to
the index of X, or, if the above is impossible, a minimal Lefschetz collection.

There are many varieties X for which the above problem was solved. Among
these are projective spaces, most of the Grassmannians, and some other homogeneous
spaces [2]. In this paper we discuss Problem 1.1 for a very simple variety

X = Xn
k := Pn × Pn × · · · × Pn︸ ︷︷ ︸

k copies

,

but replace the category D(Xn
k ) with the equivariant derived category DSk(Xn

k ) with
respect to the natural action of the symmetric group Sk (by permutation of fac-
tors). Note that this category can be considered as the derived category of the
quotient stack [Xn

k /Sk]. The line bundle L here is, of course, the ample genera-
tor O(1, 1, . . . , 1) of the invariant Picard group Pic(Xn

k )Sk . Note that the index
of Xn

k with respect to L is equal to n+ 1, so the goal of the paper can be formulated
as follows.

Problem 1.2. Find a full rectangular Lefschetz collection of length n+1 in DSk(Xn
k )

with respect to the line bundle O(1, 1, . . . , 1) or a minimal Lefschetz collection if the
above is impossible.

Note that without passing to the equivariant category the problem becomes triv-
ial. To construct a rectangular Lefschetz collection in D(Xn

k ) one can just choose any
full exceptional collection in D(Xn

k−1) and consider its pullback to Xn
k as the starting

block. Using the projective bundle formula it is elementary to check that it extends
to a rectangular Lefschetz collection of length n + 1. However, the Sk-symmetry in
this construction is broken, and it cannot be performed in the equivariant category.

For k = 1 the Problem 1.2 is trivial (the desired collection is just the Beilin-
son exceptional collection O,O(1), . . . ,O(n) of line bundles on Pn). Furthermore,
for k = 2 the Problem 1.2 was essentially solved in [11].
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The main result of our paper is a partial solution to the Problem 1.2.
First, we construct in Theorem 3.5 a Sk-invariant Lefschetz exceptional collection

of line bundles in D(Xn
k ) whose cardinality equals the rank of the Grothendieck group

of Xn
k (by Elagin’s Theorem, see Theorem 2.4, this gives an exceptional collection in

the equivariant category, whose length equals the rank of its Grothendieck group).
This collection is rectangular in case of coprime k and n + 1. The first block of the
collection is defined as 〈O(e)〉e∈Enk , where

Enk =

{
Sk · e

∣∣∣∣ e1 ≥ · · · ≥ ek = 0 and ei ≤
(n+ 1)(k − i)

k

}
⊂ Zk. (1.2)

So, it is natural to expect that this collection is full and (in the coprime case) gives
a solution to Problem 1.2. However, in general we could not prove its fullness.

Our second main result is a proof of fullness of the above collection for k = 3
and n = 3p or n = 3p+ 1 (this ensures that k and n+ 1 are coprime).

We also perform a first step in the direction of non-coprime k and n+ 1 by con-
structing a minimal S3-invariant Lefschetz exceptional collection in D(X2

3 ) (including
a proof of its fullness).

Besides that we also solve Problem 1.2 for n = 1, that is, construct a rectangular
Sk-invariant Lefschetz collection of length 2 in D(X1

k) when k is odd, and a minimal
Lefschetz collection when k is even. However, this case is much more simple than
the case k = 3 discussed above.

An interesting feature of the Lefschetz collections that we construct in Theo-
rem 3.5 is that they resemble very much the minimal Lefschetz collections in the de-
rived categories of the Grassmannians Gr(k, n+1+k) constructed by Anton Fonarev,
see [2]. It would be very interesting to understand the relations between these, since
on one hand, this suggests a possible solution to the Problem 1.2 for other values
of k (by considering analogues of Fonarev’s collections), and on the other hand, a
solution to the Problem 1.2 can help in dealing with the Grassmannians Gr(k, n)
when k and n are not coprime (in this case there is no rectangular collection on the
Grassmannian, and a minimal collection is not quite known).

This paper is organized as follows. In Section 2 we recall the definitions of full
exceptional collections, Lefschetz and rectangular decompositions, and Elagin’s The-
orem. In Section 3 we construct an Sk-invariant exceptional collection in D(Xn

k )
and discuss numerical restrictions for the existence of a rectangular Lefschetz col-
lection and some numerical bounds for a minimal Lefschetz collection. Finally, in
Section 4 we prove fullness of the constructed collections for X1

k , X3p
3 , X3p+1

3 and X2
3

respectively.
The author is grateful to A. Kuznetsov for constant attention to this work.
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2 Preliminaries

Given an algebraic variety X we denote the bounded derived category Db(coh(X))
of coherent sheaves on X by D(X). In this paper we concentrate on the case when X
is a power of a projective space

X = Xn
k = (Pn)k,

In some cases, we will omit the indices k and n and write D(X) instead D(Xn
k ).

We work over an algebraically closed field of characteristic zero.

2.1 Exceptional collections in D(Xn
k )

Clearly, Xn
k is a smooth projective variety with dim(X) = kn. Its Picard group is

isomorphic to Pic(Xn
k ) ∼= Zk and has a basis consisting of the pullbacks of hyperplane

classes of the factors. For a = (a1, . . . , ak) ∈ Zk we write

O(a) = O(a1, . . . , ak) = O(a1) � · · ·�O(ak)

for the corresponding line bundle on Xn
k . We note that by the Künneth formula

Ext•(O(a),O(b)) ∼=
k⊗
i=1

Ext•(O(ai),O(bi)). (2.1)

In particular, any line bundle on Xn
k is exceptional, and the line bundles O(a)

and O(b) are semiorthogonal, i.e., Ext•(O(a),O(b)) is equal to 0, if and only if
the pair (O(ai),O(bi)) on Pn is semiorthogonal for at least one i. In view of Bott’s
formula for the cohomology of line bundles on a projective space, we can rewrite the
semiorthogonality condition as

Ext•(O(a),O(b)) = 0 if and only if 0 < ai − bi ≤ n for some 1 ≤ i ≤ k. (2.2)

This property allows to verify easily semiorthogonality of collections of line bundles.
For fullness, the following observations are useful.

For a subset I ⊂ {1, . . . , k} of indices define the set [0, n]I ⊂ Pic(Xn
k ) as

[0, n]I =
{
a ∈ Zk | ai ∈ [0, n] if i ∈ I and ai = 0 if i /∈ I

}
.

If I = {1, . . . , k}, then denote [0, n]I by [0, n]k.
Similarly, we define ZI ⊂ Zk as

ZI =
{
a ∈ Zk | ai = 0 if i /∈ I

}
.
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Theorem 2.1. The collection {O(a)}a∈[0,n]k (lexicographically ordered) is a full ex-
ceptional collection in D(Xn

k ).

Proof. Semiorthogonality of the collection follows easily from (2.2). For fullness we
refer to [12].

We will also need the following simple consequence of the fullness of the above
collection.

Corollary 2.2. Let T be a triangulated subcategory of D(Xn
k ). Assume that for some

subset I ⊂ {1, . . . , k} and some a ∈ Pic(Xn
k ) one has O(a+b) ∈ T for any b ∈ [0, n]I .

Then the same holds true for any b ∈ ZI .

Proof. First assume a = 0. Then the collection {O(b)}b∈[0,n]I is just the pullback of
the full exceptional collection in

Xn
I =

∏
i∈I

Pn

with respect to the natural projection Xn
k → Xn

I . Consequently, by Theorem 2.1 the
category T contains the pullback of any line bundle on Xn

I , and this is just the claim
of the lemma in this case.

For arbitrary a just note that {O(a + b)}b∈[0,n]I is the twist of {O(b)}b∈[0,n]I

by O(a). Since a line bundle twist is an autoequivalence of D(Xn
k ), the general

claim follows.

2.2 Semiorthogonal and Lefschetz decompositions

In some cases it is slightly more convenient to work with semiorthogonal decompo-
sitions than with exceptional collections. Here, we remind the corresponding defini-
tions.

Definition 2.3. Suppose A0, . . . ,Ad are full triangulated subcategories of T such
that Hom(Ai,Aj) = 0 for all i > j. We say that A0, . . . ,Ad form a semiorthogonal
decomposition of T if the smallest full triangulated subcategory of T containing Ai
for all i coincides with T .

We will denote a semiorthogonal decomposition by

〈A0, . . . ,Ad〉 = T .
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Assume that T = D(X) and a line bundle L on X is given. For an object F
in D(X) we denote

F (i) := F ⊗ Li,

the image of F under the autoequivalence of T given by the Li-twist, and for a
subcategory A ⊂ T we denote

A(i) := {F (i) | F ∈ A} ⊂ T ,

the image of A under this autoequivalence.
A semiorthogonal decomposition

D(X) = 〈A0,A1(1), . . . ,Ad(d)〉 (2.3)

is called Lefschetz decomposition if Ai+1 ⊂ Ai for all 0 ≤ i < d.
We say that a Lefschetz decomposition (2.3) is rectangular if A0 = · · · = Ad. A

rectangular decomposition can be simply written as

D(X) = 〈A,A(1), . . . ,A(d)〉, (2.4)

where A = A0.

2.3 Exceptional collections in equivariant derived categories

Assume a finite group G acts on a smooth projective variety X. The following result
of Alexei Elagin gives a way to construct an exceptional collection in the equivariant
derived category DG(X).

Theorem 2.4 ([1, Theorem 2.3]). Assume that E1, . . . , Er is a full G-invariant
exceptional collection in D(X), that is, the G-action induces a permutation of ob-
jects of the collection. Assume s is the number of G-orbits on {E1, . . . , Er} and
let Ei1 , . . . Eis, i1 < · · · < is be their representatives. For each 1 ≤ t ≤ s let Ht be the
stabilizer of Eit and assume that for each t the object Eit admits an Ht-equivariant
structure. Then there exists a full exceptional collection of the equivariant category

DG(X) = 〈Ē(1)
i1
, . . . , Ē

(m1)
i1

, . . . , Ē
(1)
is
, . . . , Ē

(ms)
is
〉.

Here Ē
(j)
it

= Eit⊗V
(j)
t , where V

(1)
t , . . . , V

(mt)
t are all irreducible representations of Ht

up to isomorphism, and we consider the natural G-equivariant structure on Ē
(j)
it

.
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We note that any line bundle on X = Xn
k has a natural equivariant structure

with respect to the subgroup of Sk that stabilizes it. Indeed, for this it is enough
to note that the line bundle O(i, i, . . . , i) is Sk-equivariant for each i. Thus, the
above theorem applies to any exceptional collection formed by line bundles on Xn

k as
soon as it is Sk-invariant. To ensure that the resulting collection in the equivariant
category is Lefschetz we will use the following evident observation.

Corollary 2.5. Assume that L is a G-equivariant line bundle on X and E1, . . . , Er
is a Lefschetz exceptional collection with respect to L which satisfies the assumptions
of Theorem 2.4. Then the corresponding exceptional collection in the equivariant
category is also Lefschetz. Moreover, if the original collection is rectangular then so
is the equivariant one with the same number of blocks.

Proof. Let E1, . . . , Er0 be the starting block of the original Lefschetz collection and
let s0 be the number of G-orbits in the block E1, . . . , Er0 .

Then it is straightforward to check that Ē
(1)
i1
, . . . , Ē

(m1)
i1

, . . . , Ē
(1)
is0
, . . . , Ē

(ms0 )

is0
can

serve as the starting block of a Lefschetz collection in DG(X). From the equivariance
of L it is also clear that the property of being rectangular is preserved by this
construction.

Thus, to construct a (rectangular) Lefschetz collection in DSk(Xn
k ) it is enough

to construct a (rectangular) Sk-invariant Lefschetz collection in D(X) consisting of
line bundles. This is what we do in the next sections.

3 A Lefschetz collection and numerical minimality

In this section we construct a Lefschetz Sk-invariant exceptional collection on Xn
k and

find some numerical conditions for minimality of a Lefschetz exceptional collection.
In what follows we always denote

h := n+ 1.

3.1 A Lefschetz collection

We denote by Yh,k the set of Young diagrams inscribed in the rectangle of size h× k.
We identify them with nonincreasing integer sequences (e1, . . . , ek) such that n ≥
e1 ≥ · · · ≥ ek ≥ 0. We will use lexicographical order on this set of sequences.

Sometimes it is convenient to use other combinatorial interpretations of Young
diagrams. One of these is an integer path going from the lower left corner to the
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upper right corner of the rectangle that goes only rightward and upward. Another is
a binary sequence (i.e., a sequence of 0 and 1) of length h+ k containing 1 exactly k
times.

There is a natural action of the group Z/(h + k)Z on Yh,k. If t1, t2, . . . , th+k is a
binary sequence and g is a generator of Z/(h+ k)Z, then

g : (t1, t2, . . . , th+k) 7→ (t2, . . . , th+k, t1).

Concatenation of sequences is an operation

Yh1,k1 × Yh2,k2 → Y(h1+h2),(k1+k2)

which we will denote by (e′, e′′) 7→ e′ ∗ e′′. Explicitly,

(e′1, . . . , e
′
k1

) ∗ (e′′1, . . . , e
′′
k2

) = (e′1 + h2, . . . , e
′
k1

+ h2, e
′′
1, . . . , e

′′
k2

).

Note that
gh1+k1(e′ ∗ e′′) = e′′ ∗ e′.

In particular, the Young diagrams e′∗e′′, e′′∗e′ ∈ Y(h1+h2),(k1+k2) are in the same orbit
of the Z/(h1 + h2 + k1 + k2)Z-action.

We remind the following definition from [2].

Definition 3.1. A diagram (e1, . . . , ek) ∈ Yh,k is called upper triangular, if it (con-
sidered as a path in the rectangle) lies above the diagonal of the rectangle going from
the upper right to the lower left corner. Equivalently,

ei ≤
h(k − i)

k

for every 1 ≤ i ≤ k.

Lemma 3.2 ([2, Lemma 3.2]). Every orbit of the Z/(h+k)Z-action on Yh,k contains
an upper triangular element. If gcd(h, k) = 1 then each orbit has length h+ k.

For reader’s convenience we remind the proof.

Proof. Take any diagram e ∈ Yh,k and extend the corresponding path periodically in
both directions. This is the same as extending periodically the corresponding binary
sequence. Draw all the lines with slope k/h passing through all the vertices of the
extended path. As the path is (h + k)-periodic, one will get at most h + k distinct
lines and the path will lie above the lowest of them. Now draw the h × k rectangle
putting the upper right corner in any of the vertices lying on the intersection of the
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lowest line with the path. That new diagram in the rectangle is upper triangular
and lays in the orbit of e.

Now suppose that gcd(h, k) = 1. Consider any e ∈ Yh,k and the binary se-
quence t1, t2, . . . , th+k corresponding to e. Denote the length of orbit of e by l(e).
Then sequence t1, t2, . . . , th+k is a concatenation of h+k

l(e)
∈ N copies of the sequence

t1, t2, . . . , tl(e). Since t1, t2, . . . , th+k contains h zeros and k ones, we conclude (h+k
l(e)

)|h
and (h+k

l(e)
)|k. Since gcd(h, k) = 1 we get that h+k

l(e)
= 1 and l(e) = h+ k.

For every orbit of Z/(h + k)Z-action on Yh,k pick an upper triangular element.
If the orbit contains several upper triangular elements, pick the smallest one with
respect to lexicographical order. Denote this set of orbits representatives by Enk . As
we will see below this set will index (up to the Sk-action) objects in the first block of
the exceptional collection. As before for every e ∈ Enk denote the number of elements
in the Z/(h+ k)Z-orbit of e by l(e).

Notice that for every e = (e1, . . . , ek) ∈ Enk we have

e1 ≥ · · · ≥ ek = 0 and ei ≤
h(k − i)

k
, (3.1)

since e is upper triangular.
Next, we describe the index sets for objects of the other blocks of the Lefschetz

collection. For this we consider the following filtration of the set Sk · Enk :

Ēi =

{
Sk · e

∣∣∣∣ e ∈ Enk and l(e) > i
h+ k

h

}
⊂ Zk. (3.2)

Note that we have a chain of inclusions Sk · Enk = Ē0 ⊃ Ē1 ⊃ · · · ⊃ Ēn ⊃ Ēn+1 = ∅,
and the subset Enk ⊂ Ē0 is just the set of non-increasing representatives in the Sk-
orbits on Ē0 ⊂ Zk.

We denote
Ai := 〈O(e)〉e∈Ēi ⊂ D(Xn

k ), (3.3)

the category generated by the corresponding line bundles. Then we have

A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ 0.

We will show below that this gives a Lefschetz decomposition of a subcategory
of D(Xn

k ) (actually, we expect it to be a decomposition of the whole category). We
start by checking that each component Ai is generated by an exceptional collection.

Lemma 3.3. For every i the collection 〈O(e)〉e∈Ēi (lexicographically ordered) is an
exceptional collection in D(X).
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Proof. Notice that for every e = (e1, . . . ek) ∈ Ēi we have 0 ≤ ej ≤ n for every j by
definition of Enk . The collection 〈O(e)〉e∈Ēi is exceptional since it is a subcollection
of the exceptional collection 〈O(a)〉a∈[0,n]k (see Theorem 2.1).

The next observation shows when this collection is rectangular.

Lemma 3.4. If gcd(h, k) = 1, then Ē0 = · · · = Ēn and A0 = · · · = An.

Proof. Notice that if gcd(h, k) = 1 then l(e) = h+k for every e by Lemma 3.2. Thus
in that case we have

Ēi = {Sk · e | e ∈ Enk} (3.4)

for every 0 ≤ i ≤ n.

The main result of this section is the following theorem.

Theorem 3.5. For any n ≥ i > j ≥ 0 we have Hom(Ai(i),Aj(j)) = 0.
In particular, the category

T := 〈A0,A1(1) . . .An(n)〉 ⊂ D(Xn
k ) (3.5)

is generated by an Sk-invariant Lefschetz collection.

The proof of Theorem 3.5 is similar to the proof of Theorem 4.3 in [2].

Proof. By Lefschetz property, it is enough to prove the theorem for j = 0, i > 0. In
other words, it is enough to prove that for any a ∈ Ēi, b ∈ Ē0 we have

Hom(O(a(i)),O(b)) = 0.

Furthermore, by Sk-invariance of the sets Ē0 and Ēi, we can assume that a ∈ Enk and
thus a1 ≥ · · · ≥ ak = 0. Suppose

Hom(O(a(i)),O(b)) 6= 0, (3.6)

where recall a(i) = (ai + i, a2 + i, . . . , ak + i).
We start by rewriting (3.6) in a more convenient form. First, note that a1 +i ≥ h.

Indeed, otherwise we would have 0 < at + i < h for all t. On the other hand, since
b ∈ Ē0 = Sk ·Enk , by property (3.1) we have bt = 0 for some t. Then 0 < (at+i)−bt =
at + i ≤ n, hence we have Hom(O(a(i)),O(b)) = 0 by (2.2), which contradicts (3.6).

Let r be the maximal index such that

ar + i ≥ h and ar+1 + i < h. (3.7)
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Since ak + i = i < h, we have 1 ≤ r < k.
Using (2.2) we rewrite (3.6). If aj+i ≥ h > bj ≥ 0 then Hom(O(aj+i),O(bj)) 6= 0

is equivalent to bj + h ≤ aj + i by (2.2). If 0 ≤ aj + i < h, 0 ≤ bj < h then
Hom(O(aj + i),O(bj)) 6= 0 is equivalent to bj ≥ aj + i by (2.2). Thus

bj + h ≤ aj + i for j ≤ r, (3.8)

bj ≥ aj + i for j > r. (3.9)

Next, we replace b by an element in the same Sk-orbit such that

br+1 ≥ br+2 ≥ · · · ≥ bk ≥ b1 ≥ b2 ≥ · · · ≥ br (3.10)

holds. Indeed, suppose bj1 > bj2 for j1 ≤ r < j2. From inequalities (3.8) and (3.9)
we see that we can exchange bj1 and bj2 without violating (3.6). Thus, replacing b
appropriately, we can assume that bj1 < bj2 for any j1 ≤ r < j2.

Similarly, suppose bj1 < bj2 for j1 < j2 ≤ r. Since

bj1 + h < bj2 + h ≤ aj2 + i,

bj2 + h ≤ aj2 + i ≤ aj1 + i,

we see that we can also exchange bj1 and bj2 without violating (3.6). Thus, replacing b
appropriately, we can assume that b1 ≥ b2 ≥ · · · ≥ br.

Finally, suppose bj1 < bj2 for r < j1 < j2. Since

bj1 > aj1 + i ≥ aj2 + i,

bj2 > bj1 ≥ aj1 + i,

we see that we can also exchange bj1 and bj2 without violating (3.6). Thus, replacing b
appropriately, we can assume that br+1 ≥ br+2 ≥ · · · ≥ bk. Altogether, we conclude
that if (3.6) holds then there is another b in the same Sk-orbit such that (3.10)
and (3.6) (or its reformulations (3.8) and (3.9)) still hold. This implies that

b̄ := (br+1, . . . , bk, b1, . . . , br) ∈ Enk .

We will use these assumptions from now on. We will need the following

Lemma 3.6. If (3.8), (3.9), and (3.10) hold then we have

ar =
h(k − r)

k
and bk = i =

hr

k
.
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Proof. The first of inequalities (3.7) defining r implies

i ≥ h− ar ≥ h− h(k − r)/k = hr/k. (3.11)

On the other hand, by (3.1) we have

bk = b̄k−r ≤ hr/k.

Since ak = 0, we deduce from (3.9) that

i ≤ bk ≤ hr/k.

Combining this with (3.11), we conclude that

bk = i = h− ar = hr/k,

hence the lemma.

We get the following picture:

Figure 1: Picture for Theorem 3.5

0 hi = hr
k

r

k

a1 + i

ar + i = h

ak + i = bk

b1

br

br+1

b′

b′′

a′

a′′

We split the Young diagrams a(i) and b into two pieces each, that correspond to
the paths in the rectangles on the picture. The path a′ is contained in the rectangle

13



[h, h+ i]× [0, r], the path b′ is contained in the rectangle [0, i]× [0, r]. The paths a′′

and b′′ are contained in the rectangle [i, h]× [r, k]. Explicitly,

a′ = (a1 − h(k − r)/k, . . . , ar − h(k − r)/k),

a′′ = (ar+1, . . . , ak),

b′ = (b1, . . . , br),

b′′ = (br+1 − hr/k, . . . , bk − hr/k).

Then inequalities (3.8) and (3.9) combined with Lemma 3.6 give

b′ ≤ a′, and a′′ ≤ b′′. (3.12)

Further, from Lemma 3.6 we see that a′, b′ ∈ Y r
k

(h+k),r, while a′′, b′′ ∈ Y k−r
k

(h+k),k−r,

and all these Young diagrams are upper-triangular since a, b̄ ∈ Enk are upper-triangular
by definition of Enk . Note also that a and b̄ can be represented as concatenations

a = a′ ∗ a′′, b̄ = b′′ ∗ b′.

Moreover, a′ ∗ a′′ and a′′ ∗ a′ are both upper-triangular, and as we noticed in the
beginning of the section, they are in the same Z/(h + k)Z-orbit. Similarly b′ ∗ b′′
and b′′ ∗ b′ are both upper-triangular and lie in the same Z/(h+ k)Z-orbit. Thus, by
definition of Enk we have:

a′ ∗ a′′ ≤ a′′ ∗ a′, (3.13)

b′′ ∗ b′ ≤ b′ ∗ b′′. (3.14)

Using these inequalities, we can make the last step of the proof.

Lemma 3.7. Inequalities (3.12) are equalities.

Proof. Suppose (3.12) are strict inequalities, that is b′ < a′ and a′′ < b′′. From that
and inequality (3.13) we get:

b′ ∗ b′′ < a′ ∗ a′′ ≤ a′′ ∗ a′ < b′′ ∗ b′,

which contradicts inequality (3.14).
Thus we have either a′ = b′ or a′′ = b′′.
Case 1. Suppose we have a′ = b′ and a′′ < b′′. We replace b′′ by smaller ele-

ment a′′ on both sides of inequality (3.14). On the left side of (3.14) substring b′′ is
closer to the beginning of the string, than on on the right side. Thus by lexicograph-
ical order the inequality remains true and becomes strict. So we get:

14



a′′ ∗ b′ < b′ ∗ a′′.
Since b′ = a′ we replace b′ by a′:

a′′ ∗ a′ < a′ ∗ a′′,
which contradicts inequality (3.13).

Case 2. Suppose we have b′ < a′ and a′′ = b′′. We replace b′ by greater element a′

on both sides of inequality (3.14). On the left side of (3.14) substring b′ is further
from the beginning of the string, than on on the right side. Thus by lexicographical
order the inequality remains true and becomes strict. So we get:

b′′ ∗ a′ < a′ ∗ b′′,
Since b′′ = a′′ we replace b′′ by a′′:

a′′ ∗ a′ < a′ ∗ a′′,

which contradicts inequality (3.13).
Therefore we have a′ = b′ and a′′ = b′′.

From Lemma 3.7 and (3.13), (3.14) we get:

a′ ∗ a′′ ≤ a′′ ∗ a′ = b′′ ∗ b′ ≤ b′ ∗ b′′ = a′ ∗ a′′, (3.15)

thus a′ ∗ a′′ = a′′ ∗ a′. This means that

gr(h+k)/h(a) = a,

where g is the generator of the Z/(h + k)Z-action. Consequently, the length l(a) of
the Z/(h+ k)Z-orbit of a divides both r(h+ k)/h and h+ k, hence

l(a) ≤ r(h+ k)

k
=
hr

k

h+ k

h
.

By Lemma 3.6 the right side is equal to ih+k
h

, and so the above inequality contra-
dicts (3.2). This completes the proof of Theorem 3.5.

Conjecture 3.8. The category T is equal to D(Xn
k ) and the collection (3.5) is a

minimal Lefschetz collection.

Later we will prove that the category T defined by (3.5) is equal to D(Xn
k ) in

case n = 1 and any k (Subection 4.1), n 6= 2 mod 3, k = 3 (Subection 4.2), and in
the case n = 2, k = 3 (Subsection 4.3).
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3.2 Numerical restrictions

We keep the notation h = n + 1 and let V be a vector space of dimension h, so
that P(V ) = Pn. Denote by

KC := K0(P(V ))⊗ C,

the complexified Grothendieck group of coherent sheaves on P(V ). It is also a vector
space of dimension h. Moreover, we have

K0(Xn
k )⊗ C = K0(P(V )k)⊗ C ∼= K⊗kC .

The group GL(KC) acts naturally on the vector space K⊗kC , and the group Sk
acts on K⊗kC by permutation of factors (this action is induced by the action of Sk
on Xn

k ). These two actions commute, therefore K⊗kC is a (GL(KC), Sk)-bimodule. In
the next lemma we describe the decomposition of K⊗kC into a direct sum of irreducible
representations, provided by the Schur–Weyl duality.

We denote by ρ(h, k) the set of all Young diagrams of k boxes with at most h
rows, by ΣλKC the irreducible representation of GL(KC) corresponding to the Young
diagram λ, (it is also known as the Schur functor assoicated with λ), and by RλT the
irreducible representation of Sk corresponding to the transposed Young diagram λT .

Lemma 3.9 (Schur–Weyl duality, [4]). There exists an isomorphism of GL(KC)×Sk
representations:

K⊗kC =
⊕

λ∈ρ(h,k)

ΣλKC ⊗RλT .

In other words, the decomposition of K⊗kC into a direct sum of irreducible Sk-repre-
sentations contains dim(ΣλKC) copies of the irreducible representation RλT .

The above decomposition allows to give a simple necessary condition for the
existence of a rectangular Sk-invariant Lefschetz collection in D(Xn

k ). In what follows
we call it the divisibility criterion.

Corollary 3.10. If a rectangular Sk-invariant Lefschetz decomposition of length h
of D(Xn

k ) exists, then h divides dim ΣλKC for all λ ∈ ρ(h, k).

Proof. Assume D(Xn
k ) = 〈A0,A0(1), . . . ,A0(n)〉 is a rectangular Sk-invariant Lef-

schetz decomposition. Then we have

K⊗kC = K0(Xn
k )⊗ C = (K0(A0)⊗ C)⊕h.

Since A0 is Sk-invariant, K0(A0) ⊗ C ⊂ K0(Xn
k ) ⊗ C is an Sk-subrepresentation,

so the above equality shows that the multiplicity of each irreducible Sk-summand
of K⊗kC is divisible by h.

16



The same argument as above gives the following bound for the ranks of the
Grothendieck groups of components of an arbitrary Sk-invariant Lefschetz decompo-
sition of D(Xn

k ). Denote by btc and dte the lower and upper integral parts of t.

Corollary 3.11. Suppose D(Xn
k ) = 〈A0,A1(1), . . . ,An(n)〉 is a Lefschetz Sk-invariant

decomposition. Let ri be the rank of K0(Ai). Then

r0 ≥
∑

λ∈ρ(h,k)

⌈
dim ΣλKC

h

⌉
dimRλT and rn ≤

∑
λ∈ρ(h,k)

⌊
dim ΣλKC

h

⌋
dimRλT .

Proof. Suppose that

K0(Ai)⊗ C =
⊕

λ∈ρ(h,k)

R
⊕aλi
λT

is the decomposition into Sk-irreducibles with multiplicities. From Lemma 3.9 we get
that

∑
0≤i≤n

aλi = dim ΣλKC for any λ. Since Aj ⊂ Ai for any i < j, we have aλj ≤ aλi

for any λ and i < j. Thus

aλ0 ≥
⌈

dim ΣλKC

h

⌉
and aλn ≤

⌊
dim ΣλKC

h

⌋
.

This completes the proof.

As an example we consider the case n = 1 and k = 2m.

Corollary 3.12. Suppose D(X1
2m)) = 〈A0,A1(1)〉 is a Lefschetz S2m-invariant de-

composition. Let ri be the rank of K0(Ai). Then r0 − r1 ≥
(

2m
m

)
.

In Subsection 4.1 we will provide an example of A0,A1 such that r0− r1 =
(

2m
m

)
.

Proof. Any diagram in ρ(2, 2m) is of the shape

λ(l) := (2m− l, l).

for some 0 ≤ l ≤ m. By Weyl dimension formula we have

dim(Σλ(l)KC) = 2m− 2l + 1,

and by the hook-length formula

dimRλ(l)T =
2m! (2m− 2l + 1)

(2m− l + 1)! l!
=

2m− 2l + 1

2m+ 1

(
2m+ 1

l

)
.
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For each l we have d2m−2l+1
2
e − b2m−2l+1

2
c = 1, hence by Corollary 3.11, we have

r0 − r1 ≥
m∑
l=0

dimRλ(l)T =
m∑
l=0

2m− 2l + 1

2m+ 1

(
2m+ 1

l

)
=

m∑
l=0

(
2m+ 1

l

)
− 2

m∑
l=0

(
2m

l − 1

)
.

The first sum is equal to 22m, and the second is equal to 22m −
(

2m
m

)
, so we conclude

that r0 − r1 ≥
(

2m
m

)
.

If we replace Sk-invariant Lefschetz semiorthogonal decompositions by Sk-invariant
Lefschetz collections, the inequalities of Corollary 3.11 can be, in general, improved,
because in this case each K0(Ai) is a permutation representation of Sk.

As an example, we consider the case k = 3, n = 2 (so that h = 3). In this case
the set ρ(3, 3) consists of three Young diagrams: (3), (2, 1), and (1, 1, 1), with

dim Σ(3)KC = 10, dim Σ(2,1)KC = 8, dim Σ(1,1,1)KC = 1,

while
dimR(3)T = 1, dimR(2,1)T = 2, dimR(1,1,1)T = 1.

Consequently, if D(X) = 〈A0,A1(1),A2(2)〉 is an Sk-invariant Lefschetz decomposi-
tion and ri is the rank of K0(Ai), then Corollary 3.11 gives bounds

r0 ≥
⌈

10

3

⌉
· 1 +

⌈
8

3

⌉
· 2 +

⌈
1

3

⌉
· 1 = 4 + 6 + 1 = 11

and

r2 ≤
⌊

10

3

⌋
· 1 +

⌊
8

3

⌋
· 2 +

⌊
1

1

⌋
· 1 = 3 + 4 + 0 = 7.

On the other hand, we can prove the following result.

Proposition 3.13. Assume 〈A0,A1(1),A2(2)〉 = D(X2
3 ) is a Lefschetz decomposi-

tion, such that each component Ai is generated by an S3-invariant exceptional col-
lection {Ei,j}rij=1. Then r0 ≥ 13 and r2 ≤ 7.

Proof. The classes of exceptional objects Ei,j form a basis of the Grothendieck
group K0(Ai). Since the collection is S3-invariant, this basis is permuted by the
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group action, i.e., K0(Ai) ⊗ C is a sum of permutation representations. There are
three such representations:

C[S3] ∼= R(3)T ⊕R⊕2
(2,1)T

⊕R(1,1,1)T , C[S3/S2] ∼= R(3)T ⊕R(2,1)T , C[S3/S3] ∼= R(3)T .

Note that R(1,1,1)T only appears as a summand of C[S3].
On the other hand, by Lemma 3.9 we have

K0(A0)⊕K0(A1)⊕K0(A2) ∼= K0(X2
3 ) ∼= R⊕10

(3)T
⊕R⊕8

(2,1)T
⊕R(1,1,1)T .

Finally, by the Lefschetz property, we have K0(A2) ⊂ K0(A1) ⊂ K0(A0). This
means that R(1,1,1) has to be a direct summand of K0(A0), hence K0(A0) contains
the entire regular representation C[S3], and implies r0 ≥ r1 + 6 ≥ r2 + 6. Therefore

3r0 ≥ r0 + (r1 + 6) + (r2 + 6) = 27 + 6 + 6 = 39,

and hence r0 ≥ 13.
Since

2r2 ≤ r1 + r2 = 27− r0 ≤ 27− 13 = 14,

we have r2 ≤ 7.

In Section 4.3 we will prove that the collection constructed in Theorem 3.5
for k = 3, n = 2 is a full S3-invariant Lefschetz exceptional collection in D(X2

3 )
with (r0, r1, r2) = (13, 7, 7).

3.3 Verifications of divisibility

To check divisibility of the dimensions of ΣλKC the following corollary of Littlewood–
Richardson rule is useful.

Lemma 3.14 ([4]). Let µ = (µ1, µ2, . . . , µm) be a Young diagram. Then

Λµ1KC ⊗ Λµ2KC ⊗ · · · ⊗ ΛµmKC ∼= ΣµTKC ⊕

⊕
λ≺µT

(ΣλKC)⊕c(λ,µ)

 ,

where ≺ stands for the dominance order [3, Section 2.2], and c(λ, µ) are nonnegative
integers.

The next proposition gives some necessary and sufficient conditions for divisibility.
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Proposition 3.15. (1) If h divides k, then dim ΣλKC is not divisible by h for some
Young diagram λ ∈ ρ(h, k).
(2) If k is not divisible by h and for any integer r such that 1 ≤ r ≤ min(k, h − 1)
the binomial coefficient

(
h
r

)
is divisible by h, then dim(ΣλKC) is divisible by h for

any Young diagram λ ∈ ρ(h, k).

Proof. (1) Suppose k = ht. Consider the Young diagram ξ with t columns of height h.
Then ΣξKC ∼= (detKC)⊗t, hence dim(ΣξKC) = 1. Since h = n + 1 ≥ 2, we see
that dim(ΣξKC) is not divisible by h.

(2) We use ascending induction on Young diagrams in ρ(h, k) with respect to the
dominance order.

Base. Suppose k = ht + r, where t ∈ Z≥0 and 1 ≤ r ≤ h − 1. It is clear that
the smallest diagram ω ∈ ρ(h, k) is the diagram with t columns of height h and one
column of height r. Then ΣωKC ∼= (detKC)⊗t ⊗ ΛrKC, hence dim(ΣωKC) =

(
h
r

)
,

which is divisible by h by the assumption of the proposition.
Induction step. Consider a diagram µ such that µT ∈ ρ(h, k). Suppose that for

any λ ≺ µT , λ ∈ ρ(h, k), the dimension dim(ΣλKC) is divisible by h. Let us prove
that dim(ΣµTKC) is also divisible by h. Using Lemma 3.14, we get

dim(ΣµTKC) =
m∏
i=1

dim(ΛµiKC)− dim

⊕
λ≺µT

(ΣλKC)⊕c(λ)

 =

=
m∏
i=1

(
h
µi

)
−
∑
λ≺µT

c(λ, µ) · dim(ΣλKC).

By induction hypothesis,
∑
λ≺µT

c(λ, µ) ·dim(ΣλKC) is divisible by h. Since k is not

divisible by h we see that there exist i such that 1 ≤ µi ≤ h − 1. Clearly, µi ≤ k.
Therefore, 1 ≤ µi ≤ min(k, h− 1). Thus

(
h
µi

)
is divisible by h by the assumption of

the proposition. Hence
m∏
i=1

(
h
µi

)
and consequently dim(ΣµTKC) is divisible by h.

Note that to prove the inductive step we need only one
(
h
µi

)
to be divisible by h

for each µ = (µ1, µ2, . . . , µm) with µT ∈ ρ(h, k). This suggests that the assumption
of Proposition 3.15(2) can be weakened.

Next, we discuss the divisibility criterion of Corollary 3.10 in the case k = 3.

Proposition 3.16. If n = 3p+ 2, then the category D(Xn
3 ) does not have a rectan-

gular S3-invariant Lefschetz decomposition of length n+ 1.
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Proof. If n = 3p + 2, then n > 1 and h = n + 1 ≥ 3. Thus for k = 3 all Young
diagrams of three boxes are in ρ(h, k). These diagrams are (1, 1, 1), (2, 1), and (3).
The dimensions of the corresponding Schur functors are given by

dim Σ(3)KC = (h+2)(h+1)h
6

,

dim Σ(2,1)KC = (h+1)h(h−1)
3

,

dim Σ(1,1,1)KC = h(h−1)(h−2)
6

(see for instance the dimension formula from [4, Exercise 6.4]).
Thus, a necessary condition for the existence of a rectangular S3-invariant Lef-

schetz decomposition of length h is that the three numbers above are divisible by h.
This is equivalent to the integrality of the fractions

(h+ 2)(h+ 1)

6
,

(h+ 1)(h− 1)

3
, and

(h− 1)(h− 2)

6
.

It is easy to see that this condition holds if and only if h is not divisible by 3.
Since h = n+ 1 we obtain that this condition holds if and only if n 6= 3p+ 2.

In other words, we can expect the existence of the desired rectangular decompo-
sition only if n = 3p or n = 3p+ 1. In the Subsection 4.2 we prove that the desired
rectangular decomposition exists in these cases.

4 Fullness

In this section we prove that the Sk-invariant Lefschetz collection (3.5) generates the
category D(Xn

k ) when n = 1 and any k (Subection 4.1), k = 3 and n 6= 2 mod 3
(Subsection 4.2) and k = 3, n = 2 (Subsection 4.3) and moreover provides a mini-
mal Sk-invariant Lefschetz collection in it.

4.1 Minimal Lefschetz decomposition for D(X1
k)

First, we consider the case n = 1. Recall the definition (3.3) and (3.2) of Sk-invariant
subcategories A1 ⊂ A0 ⊂ D(X1

k). In this case it can be rewritten as Ai = 〈O(a)〉a∈Ēi ,
where

Ēi = {a ∈ [0, 1]k | Card {j | aj = 0} ≥ k + i

2
}, (4.1)

and Card stands for the cardinality of a set. If k is odd, A0 = A1.
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Theorem 4.1. We have Sk-invariant Lefschetz decomposition

D(X1
k) = 〈A0,A1(1)〉

Moreover, this is a minimal Lefschetz collection.

Proof. By definition both subcategories A1 and A0 are generated by Sk-invariant
exceptional collections. Moreover, by Theorem 3.5 they are semiorthogonal. Thus for
the first part of the theorem it is enough to show that A0 and A1(1) generate D(X1

k).
For this we show that

O(b) ∈ A1(1) if b ∈ [0, 2]k and Card {j | bj = 1} ≥
⌊
k

2

⌋
+ 1. (4.2)

Indeed, by definition of A1(1) we have

O(b) ∈ A1(1) if b ∈ [1, 2]k and Card {j | bj = 1} ≥
⌊
k

2

⌋
+ 1. (4.3)

Note that O(1, . . . , 1) ∈ A1(1). We apply Corollary 2.2 to a = (1, . . . , 1) and
any I of cardinality

⌊
k
2

⌋
. It proves that for any b ∈ [0, 2]k such that bj = 1 for j /∈ I

we have O(b) ∈ A0(1). This proves (4.2).
Combining (4.2) with the definition of A0, we deduce that all line bundles O(a)

with a ∈ [0, 1]k are contained in the subcategory ofD(X1
k) generated byA0 andA1(1).

By Theorem 2.1 this proves the first part of Theorem 4.1.
It remains to show the minimality of the constructed Lefschetz collection. For

odd k the collection is rectangular of length d = 2, hence minimal (see [10, Subsec-
tion 2.1]), so there is nothing to prove. For even k we note that the ranks of the
Grothendieck groups of A0 and A1 are given by

r0 = 22m +
1

2

(
2m

m

)
and r1 = 22m − 1

2

(
2m

m

)
respectively. In particular, r0 − r1 =

(
2m
m

)
, hence the collection is minimal by Corol-

lary 3.12.

4.2 Lefschetz decompositions for D(X3p
3 ) and D(X3p+1

3 )

In this subsection we prove the following

Theorem 4.2. Let n = 3p or n = 3p + 1, k = 3. The collection constructed in
Theorem 3.5 gives S3-invariant rectangular Lefschetz decomposition

D(Xn
3 ) = 〈A0,A1(1), . . . ,An(n)〉.
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The proof takes the rest of the section.
Note that by Lemma 3.4 we have A := A0 = · · · = An. As in the case of

Theorem 3.5 we denote by T the triangulated subcategory of D(Xn
3 ) generated by the

above Lefschetz collection. Note that T is S3-invariant. By subsequent applications
of Corollary 2.2 we will show that many other line bundles are contained in T , until
in the end we have O(a) ∈ T for all a ∈ [0, n]3 and conclude by Theorem 2.1.

We will prove the statement of Theorem 4.2 for n = 3p and n = 3p+1 in parallel.
Denote by T the set of all a ∈ Z3 such that O(a) ∈ T . Note that T is S3-invariant.

Proposition 4.3. For each i ∈ [n− p, n] and a ∈ Z3 with a3 = i, we have a ∈ T .

Proof. Let us fix i ∈ [n − p, n]. Consider a plane and mark on it all integral
points (a1, a2) such that (a1, a2, i) ∈ T . By definition (3.2) all integral points of
the polygon in Figure 2 are marked. The coordinates of its vertices x1, . . . , x12 are
listed in the table below.

Figure 2: Illustration for Step 1 of Proposition 4.3.

x1

x2

x3

x4

x5 x6

x7 x8

x9

x10x11

x12

a1

a2

(n− p− i+ c, n− 2p− i+ c)
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n = 3p n = 3p+ 1
x1 (i− 2p, i− 2p) (i− 2p− 1, i− 2p− 1)
x2 (i− 2p, i− p) (i− 2p− 1, i− p− 1)
x3 (i− p, i) (i− p, i)
x4 (i− p, i+ p) (i− p, i+ p+ 1)
x5 (i, i+ 2p) (i, i+ 2p+ 1)
x6 (i+ p, i+ 2p) (i+ p, i+ 2p+ 1)
x7 (i+ p, i+ p) (i+ p, i+ p)
x8 (i+ 2p, i+ p) (i+ 2p+ 1, i+ p)
x9 (i+ 2p, i) (i+ 2p+ 1, i)
x10 (i+ p, i− p) (i+ p+ 1, i− p)
x11 (i, i− p) (i, i− p)
x12 (i− p, i− 2p) (i− p− 1, i− 2p− 1)

Our goal is to show that all integral points of the plane are in T . We do this in
several steps.

Step 1. We apply Corollary 2.2 with a any integral point on the union of the
edges [x10, x11] and [x11, x12] of the polygon in Figure 2, i.e., with a = (i+ c, i− p, i),
c ∈ [0, p], I = {2} or a = (i + p + c, i − 2p + c, i), c ∈ [0, p], I = {2}. Each dashed
segment in Figure 2 contains n integral points in T .

By Corollary 2.2 we conclude that all points (i + c, t, i), (i + p + c, t, i) are in T
for any t ∈ Z. In other words, all points in the grey vertical stripe in Figure 2 are
in T .

Step 2. Using S3-symmetry of T we conclude that all points in the horizontal
grey stripe on Figure 3 are in T .

Step 3. Combining the results of Step 1 and Step 2 above, we see that a ∈ T for
any a such that (a1, a2) ∈ [i+ p− n, i+ p]2, a3 = i. In other words, all points in the
square with vertices x1, y1, x7, y2 in Figure 3 are in T , where y1 = (i+ p− n, i+ p)
and y2 = (i + p, i + p− n). Therefore we can apply Corollary 2.2 with a = (i + p−
n, i+ p− n, i) and I = {1, 2}. We conclude that if a3 = i, then a ∈ T .
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Figure 3: Illustration for Steps 2–3 of Proposition 4.3.

x7

x1
y2

y1

a1

a2

This completes the proof of Proposition 4.3.

Proposition 4.4. For any i ∈ [p, n−p−1], a ∈ Z3 such that a3 = i, we have a ∈ T .

Proof. Let us fix i ∈ [p, n − p − 1]. Consider a plane and mark on it all integral
points (a1, a2) such that (a1, a2, i) ∈ T . By definition of (3.2) all integral points of
the polygon in Figure 4 are marked. The coordinates of its vertices x1, . . . , x12 are
listed in the table below.

Figure 4: Illustration for Step 1 of Proposition 4.4.
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n = 3p n = 3p+ 1
x1 (0, 0) (0, 0)
x2 (0, p) (0, p)
x3 (i− p, i) (i− p, i)
x4 (i− p, i+ p) (i− p, i+ p+ 1)
x5 (i, i+ 2p) (i, i+ 2p+ 1)
x6 (i+ p, i+ 2p) (i+ p, i+ 2p+ 1)
x7 (i+ p, i+ p) (i+ p, i+ p)
x8 (i+ 2p, i+ p) (i+ 2p+ 1, i+ p)
x9 (i+ 2p, i) (i+ 2p+ 1, i)
x10 (i+ p, i− p) (i+ p+ 1, i− p)
x11 (i, i− p) (i, i− p)
x12 (p, 0) (p, 0)

Our goal is to show that all integral points of the plane are in T . We do this in
several steps.

Step 1. We apply Corollary 2.2 with a any integral point on the union of the
edges [x10, x11] and [x11, x12] of the polygon in Figure 4, i.e., with a = (i+ c, i− p, i),
c ∈ [0, i − p], I = {2} or a = (p + c, c, n − i), c ∈ [0, i − p], I = {2}. Each dashed
segment in Figure 4 contains n integral points in T .

By Corollary 2.2 we conclude that all points (p + c, t, i), (i + c, t, i) are in T for
any t ∈ Z. In other words, all points in the grey vertical stripe in Figure 4 are in T .

Step 2. Using S3-symmetry of T we conclude that all points in the horizontal
grey stripe on Figure 5 are in T .

Step 3. Combining the results of Step 1 and Step 2 above, we see that a ∈ T
for any a such that (a1, a2) ∈ [0, i + p]2, a3 = i. Since i ∈ [p, n − p − 1], we have
i+ p ≥ 2p.

Figure 5: Illustration for Step 2 of Proposition 4.4.
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Note that by Proposition 4.3 and S3-symmetry of T we have a ∈ T if a1 ∈ [n−p, n]
or a2 ∈ [n− p, n]. Using Step 2 and the inequality n− p ≤ 2p+ 1 we get that a ∈ T
for any a such that (a1, a2) ∈ [0, n]2, a3 = i. Therefore we can apply Corollary 2.2
with a = (0, 0, i) and I = {1, 2}. We conclude that if a3 = i, then a ∈ T .

Figure 6: Illustration for Step 3 of Proposition 4.4.
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n

i+ p

a1
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This completes the proof of Proposition 4.4.

Proposition 4.5. For any i ∈ [0, p− 1] and a ∈ Z3 with a3 = i, we have a ∈ T .

Proof. Let us fix i ∈ [0, p − 1]. Consider a plane and mark on it all integral
points (a1, a2) such that (a1, a2, i) ∈ T . By definition of (3.2) all integral points
of the polygon in Figure 7 are marked. The coordinates of its vertices x1, . . . , x8 are
listed in the table below.

Figure 7: Illustration for Proposition 4.5.
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n = 3p n = 3p+ 1
x1 (0, 0) (0, 0)
x2 (0, 2p) (0, 2p+ 1)
x3 (i, i+ 2p) (i, i+ 2p+ 1)
x4 (i+ p, i+ 2p) (i+ p, i+ 2p+ 1)
x5 (i+ p, i+ p) (i+ p, i+ p)
x6 (i+ 2p, i+ p) (i+ 2p+ 1, i+ p)
x7 (i+ 2p, i) (i+ 2p+ 1, i)
x8 (2p, 0) (2p+ 1, 0)

Our goal is to show that all integral points of the plane are in T .
We see that a ∈ T for any a such that (a1, a2) ∈ [0, i + p]2, a3 = i. Since i is

in [0, p− 1], we have i+ p ≥ p.
Note that by Propositions 4.3 and 4.4 and S3-symmetry of T we have a ∈ T

if a1 ∈ [p, n] or a2 ∈ [p, n]. Thus we get that a ∈ T for any a such that (a1, a2) is
in [0, n]2, a3 = i. In other words, all points in the grey square in Figure 8 are in T .
Therefore we can apply Corollary 2.2 with a = (0, 0, i) and I = {1, 2}. We conclude
that if a3 = i, then a ∈ T .

Figure 8: Illustration for Proposition 4.5.
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n

p n a1
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This completes the proof of Proposition 4.5.

Proof of Theorem 4.2. We combine Propositions 4.3–4.5 to conclude that if a3 be-
longs to [0, n], then a ∈ T . Therefore we can apply Corollary 2.2 with a = (0, 0, 0)
and I = {1, 2, 3}. This concludes the proof of Theorem 4.2.

4.3 Minimal Lefschetz decomposition for D(X2
3)

Consider the case n = 2, k = 3. We have h = n + 1 = 3, dimKC = 3. By Propo-
sition 3.16, there is no rectangular S3-invariant Lefschetz decomposition of D(X2

3 ).
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In this section we prove that the collection constructed in Theorem 3.5 gives a min-
imal (non-rectangular) S3-invariant Lefschetz decomposition of D(X2

3 ). In partic-
ular, we prove its fullness. The same method was used for proving fullness for
any n 6= 2 mod 3.

The collection constructed in Theorem 3.5 has the following components:

A0 A1(1) A2(2) Cardinality of the S3-orbit
O(0, 0, 0) O(1, 1, 1) O(2, 2, 2) 1
O(1, 0, 0) O(2, 1, 1) O(3, 2, 2) 3
O(1, 1, 0) O(2, 2, 1) O(3, 3, 2) 3
O(2, 1, 0) 6

The starting component A0 is generated by 1 + 3 + 3 + 6 = 13 line bundles, while
the other two components are generated by 1 + 3 + 3 = 7 line bundles.

Theorem 4.6. The categories A0, A1(1) and A2(2) described above generate a min-
imal S3-invariant Lefschetz collection in D(X2

3 ). In particular,

D(X2
3 ) = T := 〈A0,A1(1),A2(2)〉. (4.4)

Proof. From Theorem 3.5 we know that (A0,A1(1),A2(2)) is semiorthogonal and S3-
invariant. Let us show that it generates D(X2

3 ).
Applying Corollary 2.2 several times we will show that more line bundles are

contained in T . We note that T is S3-invariant, so as soon as a line bundle is proved
to be contained in T , its entire S3-orbit is also contained in T .

Step 1. We note that O(2, 2, 1), O(2, 2, 2), and O(2, 2, 3) are all in T (the first is
in A1(1), while the other two are in A2(2)). Applying Corollary 2.2 with a = (2, 2, 1)
and I = {3} we conclude that all line bundles O(2, 2, t) are in T . In particular,

O(2, 2, 0) ∈ T .

Step 2. We note that O(1, 2, 0), O(1, 2, 1), and O(1, 2, 2) are in T (the first is
in A0, while the other two are in A1(1)). Applying Corollary 2.2 with a = (1, 2, 0)
and I = {3} we conclude that all line bundles O(1, 2, t) are in T . In particular,

O(1, 2, 3) ∈ T .

Step 3. We note that O(3, 2, 1), O(3, 2, 2), and O(3, 2, 3) are in T (for the first
of them we use the result of Step 2). Applying Corollary 2.2 with a = (3, 2, 1)
and I = {3} we conclude that all line bundles O(3, 2, t) are in T . In particular,

O(3, 2, 0) ∈ T .
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Step 4. We note that O(2, 0, 1), O(2, 0, 2), and O(2, 0, 3) are in T (for the
last two of them we use the results of Step 1 and Step 3 and S3-invariance of T ).
Applying Corollary 2.2 with a = (2, 0, 1) and I = {3} we conclude that all line
bundles O(2, 0, t) are in T . In particular,

O(2, 0, 0) ∈ T .

Combining the original collection with the results of Steps 1–4 above and S3-
invariance, we see that all line bundles O(a) with a ∈ [0, 2]3 are contained in T .
Therefore, by Theorem 2.1 we have T = D(X2

3 ).
Finally, the minimality of the constructed Lefschetz collection follows from Propo-

sition 3.13.

In this case we can also compute the residual category.

Definition 4.7 ([10, Definition 1.3]). Let 〈B0,B1(1), . . . ,Bd(d)〉 be a Lefschetz de-
composition of a triangulated category T . Its rectangular part is the subcate-
gory 〈Bd,Bd(1), . . . ,Bd(d)〉 of T , and its residual category is the orthogonal

RB• = 〈Bd,Bd(1), . . . ,Bd(d)〉⊥

to the rectangular part.

Theorem 4.8. The residual category of the Lefschetz decomposition (4.4) is gener-
ated by the S3-orbit of the line bundle O(1,−1, 0). Thus the residual category in the
equivariant category is generated by a single exceptional object.

Proof. The pullback from the first factor P2 of X2
3 of the Koszul complex

0→ O(−1, 1, 0)→ O(0, 1, 0)⊕3 → O(1, 1, 0)⊕3 → O(2, 1, 0)→ 0

implies that O(−1, 1, 0) is right orthogonal both to A1(1) = A2(1) and A2(2). It is
also easy to see that it is right orthogonal to A2, hence it is contained in the residual
category R. Using S3-invariance of the category A2, we conclude that the whole
S3-orbit of O(−1, 1, 0) is contained in R.

On the other hand, the same Koszul complex shows that together with the rect-
angular part of (4.4), the S3-orbit of O(−1, 1, 0) generates the same subcategory of
D(X2

3 ) as the right side of (4.4) does, hence by Theorem 4.6 it generates the whole
category. This proves that the S3-orbit of O(−1, 1, 0) generates the residual category
of (4.4).
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