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ABSTRACT

Training a high-quality deep neural network requires choosing suitable hyper-
parameters, which is a non-trivial and expensive process. Current works try
to automatically optimize or design principles of hyperparameters, such that
they can generalize to diverse unseen scenarios. However, most designs or op-
timization methods are agnostic to the choice of network structures, and thus
largely ignore the impact of neural architectures on hyperparameters. In this
work, we precisely characterize the dependence of initializations and maximal
learning rates on the network architecture, which includes the network depth,
width, convolutional kernel size, and connectivity patterns. By pursuing every
parameter to be maximally updated with the same mean squared change in pre-
activations, we can generalize our initialization and learning rates across MLPs
(multi-layer perception) and CNNs (convolutional neural network) with sophis-
ticated graph topologies. We verify our principles with comprehensive experi-
ments. More importantly, our strategy further sheds light on advancing current
benchmarks for architecture design. A fair comparison of AutoML algorithms
requires accurate network rankings. However, we demonstrate that network rank-
ings can be easily changed by better training networks in benchmarks with our
architecture-aware learning rates and initialization. Our code is available at https:
//github.com/VITA-Group/principled_scaling_lr_init.

1 INTRODUCTION

An important theme in the success of modern deep learning is the development of novel neural
network architectures: ConvNets (Simonyan & Zisserman, 2014), ResNets (He et al., 2016), Trans-
formers (Dosovitskiy et al., 2020) to name a few. Whether a given architecture works well in practice,
however, depends crucially on having reliable principles for selecting training hyperparameters.
Indeed, even using more or less standard architectures at scale often requires considerable hyper-
parameter tuning. Key examples of such hyperparameters are the learning rate and the network
initialization, which play a crucial role in determining the quality of trained models. How to choose
them in practice depends non-trivially on the interplay between data, architecture, and optimizer.

Principles for matching deep networks to initialization and optimization schemes have been devel-
oped in several vibrant lines of work. This includes approaches — typically based on analysis in the
infinite width limit — to developing initialization schemes suited to specific architectures, including
fully connected architectures (Jacot et al., 2018; Perrone et al., 2018), ConvNets (Ilievski & Feng,
2016; Stoll et al., 2020), ResNets (Horváth et al., 2021; Li et al., 2022b;a), and Transformers (Zhu
et al., 2021; Dinan et al., 2023). It also includes several approaches to zero-shot hyperparameter
transfer, which seek to establish the functional relationships between a hyperparameter (such as a
good learning rate) and the architecture characteristics, such as depth and width. This relation then
allows for hyperparameter tuning on small, inexpensive models, to be transferred reliably to larger
architectures (Yang et al., 2022; Iyer et al., 2022; Yaida, 2022).

Architectures of deep networks, with complicated connectivity patterns and heterogeneous opera-
tions, are common in practice and especially important in neural architectures search (Liu et al., 2018;
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Dong & Yang, 2020). This is important because long-range connections and heterogeneous layer
types are common in advanced networks (He et al., 2016; Huang et al., 2017; Xie et al., 2019). How-
ever, very little prior work develops initialization and learning rate schemes adapted to complicated
network architectures. Further, while automated methods for hyperparameter optimization (Bergstra
et al., 2013) are largely model agnostic, they cannot discover generalizable principles. As a partial
remedy, recent works (Zela et al., 2018; Klein & Hutter, 2019; Dong et al., 2020b) jointly design
networks and hyperparameters, but still ignore the dependence of learning rates on the initialization
scheme. Moreover, ad-hoc hyperparameters that are not tuned in an intelligent way will further
jeopardize the design of novel architectures. Without a fair comparison and evaluation of different
networks, benchmarks of network architectures may be misleading as they could be biased toward
architectures on which “standard” initializations and learning rates we use happen to work out well.

This article seeks to develop principles for both initialization schemes and zero-shot learning rate
selection for general neural network architectures, specified by a directed acyclic graph (DAG).
These architectures can be highly irregular (Figure 1), significantly complicating the development
of simple intuitions for training hyperparameters based on experience with regular models (e.g.
feedforward networks). At the beginning of gradient descent training, we first derive a simple
initialization scheme that preserves the variance of pre-activations during the forward propagation of
irregular architectures, and then derive architecture-aware learning rates by following the maximal
update (µP) prescription from (Yang et al., 2022). We generalize our initialization and learning
rate principles across MLPs (multi-layer perception) and CNNs (convolutional neural network)
with arbitrary graph-based connectivity patterns. We experimentally verify our principles on a
wide range of architecture configurations. More importantly, our strategy further sheds light on
advancing current benchmarks for architecture design. We test our principles on benchmarks for
neural architecture search, and we can immediately see the difference that our architecture-aware
initializations and architecture-aware learning rates could make. Accurate network rankings are
required such that different AutoML algorithms can be fairly compared by ordering their searched
architectures. However, we demonstrate that network rankings can be easily changed by better
training networks in benchmarks with our architecture-aware learning rates and initialization. Our
main contributions are:

• We derive a simple modified fan-in initialization scheme that is architecture-aware and can provably
preserve the flow of information through any architecture’s graph topology (§ 3.2).

• Using this modified fan-in initialization scheme, we analytically compute the dependence on
the graph topology for how to scale learning rates in order to achieve the maximal update (µP)
heuristic (Yang et al., 2022), which asks that in the first step of optimization neuron pre-activations
change as much as possible without diverging at large width. For example, we find that (§ 3.3)
for a ReLU network of a graph topology trained with MSE loss under gradient descent, the µP

learning rate scales as
(∑P

p=1 L
3
p

)−1/2

, where P is the total number of end-to-end paths from the
input to the output, Lp is the depth of each path, p = 1, · · · , P .

• In experiments, we not only verify the superior performance of our prescriptions, but also further
re-evaluate the quality of standard architecture benchmarks. By unleashing the potential of
architectures (higher accuracy than the benchmark), we achieve largely different rankings of
networks, which may lead to different evaluations of AutoML algorithms for neural architecture
search (NAS).

2 RELATED WORKS

2.1 HYPERPARAMETER OPTIMIZATION

The problem of hyperparameter optimization (HPO) has become increasingly relevant as machine
learning models have become more ubiquitous (Li et al., 2020; Chen et al., 2022; Yang et al., 2022).
Poorly chosen hyperparameters can result in suboptimal performance and training instability. Beyond
the basic grid or random search, many works tried to speed up HPO. (Snoek et al., 2012) optimize
HPO via Bayesian optimization by jointly formulating the performance of each hyperparameter
configuration as a Gaussian process (GP), and further improved the time cost of HPO by replacing the
GP with a neural network. Meanwhile, other efforts tried to leverage large-scale parallel infrastructure
to speed up hyperparameter tuning (Jamieson & Talwalkar, 2016; Li et al., 2020).
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Our approach is different from the above since we do not directly work on hyperparameter opti-
mization. Instead, we analyze the influence of network depth and architecture on the choice of
hyperparameters. Meanwhile, our method is complementary to any HPO method. Given multiple
models, typical methods optimize hyperparameters for each model separately. In contrast, with our
method, one only needs to apply HPO once (to find the optimal learning rate for a small network),
and then directly scale up to larger models with our principle (§ 4).

2.2 HYPERPARAMETER TRANSFER

Recent works also tried to propose principles of hyperparameter scaling and targeted on better
stability for training deep neural networks (Glorot & Bengio, 2010; Schoenholz et al., 2016; Yang &
Schoenholz, 2017; Zhang et al., 2019; Bachlechner et al., 2021; Huang et al., 2020; Liu et al., 2020).
Some even explored transfer learning of hyperparameters (Yogatama & Mann, 2014; Perrone et al.,
2018; Stoll et al., 2020; Horváth et al., 2021). (Smith et al., 2017; Hoffer et al., 2017) proposed to
scale the learning rate with batch size while fixing the total epochs of training. (Shallue et al., 2018)
demonstrated the failure of finding a universal scaling law of learning rate and batch size across a
range of datasets and models. Assuming that the optimal learning rate should scale with batch size,
(Park et al., 2019) empirically studied how the optimal ratio of learning rate over batch size scales for
MLP and CNNs trained with SGD.

More recently, Yang & Hu (2020) found that standard parameterization (SP) and NTK parameteriza-
tion (NTP) lead to bad infinite-width limits and hence are suboptimal for wide neural networks. Yang
et al. (2022) proposed µP initialization, which enabled the tuning of hyperparameters indirectly on a
smaller model, and zero-shot transfer them to the full-sized model without any further tuning. In (Iyer
et al., 2022), an empirical observation was found that, for fully-connected deep ReLU networks, the
maximal initial learning rate follows a power law of the product of width and depth. Jelassi et al.
(2023) recently studied the depth dependence of µP learning rates vanilla ReLU-based MLP networks.
Two core differences between µP and our method: 1) µP mainly gives width-dependent learning rates
in the first and last layer, and is width-independent in other layers (see Table 3 in (Yang et al., 2022)).
However, there is a non-trivial dependence on both network depth and topologies; 2) Architectures
studied in µP mainly employ sequential structures without complicated graph topologies.

2.3 BECHMARKING NEURAL ARCHITECTURE SEARCH

Neural architecture search (NAS), one research area under the broad topic of automated machine
learning (AutoML), targets the automated design of network architecture without incurring too much
human inductive bias. It is proven to be principled in optimizing architectures with superior accuracy
and balanced computation budgets (Zoph & Le, 2016; Tan et al., 2019; Tan & Le, 2019). To fairly
and efficiently compare different NAS methods, many benchmarks have been developed (Ying et al.,
2019; Dong & Yang, 2020; Dong et al., 2020a). Meanwhile, many works explained the difficulty
of evaluating NAS. For example, (Yang et al., 2019) emphasized the importance of tricks in the
evaluation protocol and the inherently narrow accuracy range from the search space. However, rare
works point out one obvious but largely ignored defect in each of these benchmarks and evaluations:
diverse networks are blindly and equally trained under the same training protocol. It is questionable
if the diverse architectures in these benchmarks would share the same set of hyperparameters. As a
result, to create a credible benchmark, it’s necessary to find optimal hyperparameters for each network
accurately and efficiently, which our method aims to solve. This also implied, NAS benchmarks
that were previously regarded as “gold standard”, could be no longer reliable and pose questions on
existing NAS algorithms that evaluated upon it.

3 METHODS

For general network architectures of directed acyclic computational graphs (DAGs), we propose
topology-aware initialization and learning rate scaling. Our core advantage lies in that we precisely
characterize the non-trivial dependence of learning rate scales on both networks’ depth, DAG
topologies and CNN kernel sizes, beyond previous heuristics, with practical implications (§ 3.5).

1. In a DAG architecture (§ 3.1), an initialization scheme that depends on a layer’s in-degree is
required to normalize inputs that flow into this layer (§ 3.2).

3



Published as a conference paper at ICLR 2024

2. Analyzing the initial step of SGD allows us to detail how changes in pre-activations depend on the
network’s depth and learning rate (§ B.1.

3. With our in-degree initialization, by ensuring the magnitude of pre-activation changes remains
Θ(1), we deduce how the learning rate depends on the network topology (§ 3.3) and the CNN
kernel size (§ 3.4).

3.1 DEFINITION OF DAG NETWORKS

a DAG space = {MLP, ResNet, ⋯ }
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Figure 1: A neural network’s architecture can be rep-
resented by a direct acyclic graph (DAG). x is the in-
put, z(1), z(2), · · · , z(L) are pre-activations (vertices), and
z(L+1) is the output. W is the layer operation (edge). Our
DAG space includes architectures of different connections
and layer types (“Linear + ReLU”, “Skip-connect”, and
“Zero”). For example, by disabling some edges (gray) or
replacing with identity I (skip connection, dashed arrow),
a DAG can represent practical networks such as MLP and
ResNet (He et al., 2016).

We first define the graph topology of compli-
cated neural architectures. This formulation
is inspired by network structures designed
for practical applications (Xie et al., 2019;
You et al., 2020; Dong & Yang, 2020).

By definition, a directed acyclic graph is a
directed graph G = (V,E) in which the edge
set has no directed cycles (a sequence of
edges that starts and ends in the same vertex).
We will denote by L+ 2 := |V | the number
of vertices (the input x and pre-activations
z) in V and write:

V = [0, L+ 1] := {0, 1, . . . , L+ 1} .
We will adopt the convention that edges ter-
minating in vertex ℓ originate only in ver-
tices ℓ′ < ℓ. We define a DAG neural net-
work (with computational graph G = (V,E),
the number of vertices |V | = L + 2, hid-
den layer width n, output dimension 1, and
ReLU activations) to be a function x ∈ Rn 7→ z(L+1)(x) ∈ R given by

z(ℓ)(x) =

{
x, ℓ = 0∑

(ℓ′,ℓ)∈E W (ℓ′,ℓ)σ(z(ℓ
′)(x)), ℓ = 1, . . . , L+ 1

, (1)

σ(t) = ReLU(t) = max{0, t}. W (ℓ′,ℓ) are n× n matrices of weights initialized as follows:

W
(ℓ′,ℓ)
ij ∼

{
N (0, C(ℓ′,ℓ)/n), ℓ = 1, . . . , L

N (0, C(ℓ′,ℓ)/n2), ℓ = L+ 1
, (2)

where C(ℓ′,ℓ) is a scaling variable that we will determine based on the network topology (equation 4).
We choose 1/n2 as the variance for the output layer mainly for aligning with µP’s desiderata.

3.2 TOPOLOGY-AWARE INITIALIZATION SCHEME

A common way to combine features from multiple layers is to directly sum them up, often without
normalization (He et al., 2016; Dong & Yang, 2020) as we do in equation 1. This summation implies
that the weight magnitude of each pre-activation layer should scale proportionally regarding the
number of inputs (in-degree). However, most commonly used weight initialization schemes, such as
He initialization (He et al., 2015) and Xavier initialization (Glorot & Bengio, 2010), only consider
forward or backward propagation between consecutive layers, ignoring any high-level structures, i.e.
how layers are connected with each other (see also (Defazio & Bottou, 2022)). This strategy can be
problematic in the presence of a bottleneck layer that has a large number of inputs.

Motivated by this issue, we propose an architecture-aware initialization strategy. We target deriving
the normalizing factor C(ℓ′,ℓ) in the initialization (equation 2) adapted to potentially very different
in-degrees of the target layer. Like many theoretical approaches to neural network initialization, we
do this by seeking to preserve the “flow of information” through the network at initialization. While
this dictum can take various guises, we interpret it by asking that the expected norm of changes in
pre-activations between consecutive layer have the same typical scale:

E
[∥∥∥z(ℓ)∥∥∥2] = E

[∥∥∥z(ℓ′)∥∥∥2] for all ℓ, ℓ′, (3)
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where E [·] denotes the average over initialization. This condition essentially corresponds to asking
for equal scales in any hidden layer representations. Our first result, which is closely related to the
ideas developed for MLPs (Theorem 2 in (Defazio & Bottou, 2022)), gives a simple criterion for
ensuring that equation 3 holds for a DAG-structured neural network with ReLU layers:

Initialization scaling for DAG. For a neural network with directed acyclic computational graph
G = (V,E), V = [0, L+1], width n, and ReLU activations, the information flow condition equation 3
is satisfied on average over a centred random input x if

C(ℓ′,ℓ) =
2

d
(ℓ′)
in

, (4)

where for each vertex ℓ ∈ [0, L+1], we’ve written d
(ℓ)
in for its in-degree in G. This implies that, when

we initialize a layer, we should consider how many features flow into it. We include our derivations
in Appendix A.

3.3 TOPOLOGY-AWARE LEARNING RATES

The purpose of this section is to describe a specific method for choosing learning rates for DAG
networks. Our approach follows the maximal update (µP) heuristic proposed in (Yang et al., 2022).
Specifically, given a DAG network recall from equation 1 that

z(ℓ)(x) =
(
z
(ℓ)
i (x), i = 1, . . . , n

)
denotes the pre-activations at layer ℓ corresponding to a network input x. The key idea in (Yang et al.,
2022) is to consider the change ∆z

(ℓ)
i of z(ℓ)i from one gradient descent step on training loss L:

∆z
(ℓ)
i =

∑
µ≤ℓ

∂µz
(ℓ)
i ∆µ = −η

∑
µ≤ℓ

∂µz
(ℓ)
i ∂µL, (5)

where µ denotes a network weight, µ ≤ ℓ means that µ is a weight in W (ℓ′,ℓ) for some ℓ′ ≤ ℓ− 1,
∆µ for the change in µ after one step of GD, η is the learning rate. By symmetry, all weights in layer
ℓ should have the same learning rate at initialization and we will take as an objective function the
MSE loss:

L(θ) = 1

|B|
∑

(x,y)∈B

1

2

∥∥∥z(L+1)(x; θ)− y
∥∥∥2 (6)

over a batch B of training datapoints. The µP heuristic posited in (Yang et al., 2022) states that the best
learning rate is the largest one for which ∆z(ℓ)

i remains O(1) for all ℓ = 1, . . . , L+1 independent of
the network width n. To make this precise, we will mainly focus on analyzing the average squared
change (second moment) of ∆z(ℓ)

i and ask to find learning rates such that

E
[(

∆z
(ℓ)
i

)2]
= Θ(1) for all ℓ ∈ [1, L+ 1] (7)

with mean-field initialization, which coincides with equation 2 except that the final layer weights are
initialized with variance 1/n2 instead of 1/n. Our next result provides a way to estimate how the µP
learning rate (i.e. the one determined by equation 7) depends on the graph topology. To state it, we
need two definitions:

• DAG Width. Given a DAG G = (V,E) with V = {0, . . . , L+ 1} we define its width P to be the
number of unique directed paths from the input vertex 0 to output vertex L+ 1.

• Path Depth. Given a DAG G = (V,E), the number of ReLU activations in a directed path p from
the input vertex 0 to the output vertex L+ 1 is called its depth, denoted as Lp (p = 1, · · · , P ).

We are now ready to state the main result of this section:
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Learning rate scaling in DAG. Consider a ReLU network with associated DAG G = (V,E),
hidden layer width n, hidden layer weights initialized as in § 3.2 and the output weights initialized with
mean-field scaling. Consider a batch with one training datapoint (x, y) ∈ R2n sampled independently
of network weights and satisfying

E
[
1

n
∥x∥2

]
= 1, E [y] = 0, Var[y] = 1.

The µP learning rate (η∗) for hidden layer weights is independent of n but has a non-trivial dependence
of depth, scaling as

η∗ ≃ c ·

(
P∑

p=1

L3
p

)−1/2

, (8)

where the sum is over P unique directed paths through G, and the implicit constant c is independent
of the graph topology and of the hidden layer width n.

This result indicates that, we should use smaller learning rates for networks with large depth and
width (of its graph topology); and vice versa. We include our derivations in Appendix B.

3.4 LEARNING RATES IN DAG NETWORK WITH CONVOLUTIONAL LAYERS

In this section, we further expand our scaling principles to convolutional neural networks, again, with
arbitrary graph topologies as we discussed in § 3.1.

Setting. Let x ∈ Rn×m be the input, where n is the number of input channels and m is the number
of pixels. Given z(ℓ) ∈ Rn×m for ℓ ∈ [1, L+ 1], we first use an operator ϕ(·) to divide z(ℓ) into m
patches. Each patch has size qn and this implies a mapping of ϕ(z(ℓ)) ∈ Rqn×m. For example, when
the stride is 1 and q = 3, we have:

ϕ(z(ℓ)) =


(
z
(ℓ)
1,0:2

)⊤
, . . . ,

(
z
(ℓ)
1,m−1:m+1

)⊤
. . . , . . . , . . .(

z
(ℓ)
n,0:2

)⊤
, . . . ,

(
z
(ℓ)
n,m−1:m+1

)⊤
 ,

where we let z(ℓ):,0 = z
(ℓ)
:,m+1 = 0, i.e., zero-padding. Let W (ℓ) ∈ Rn×qn. we have

z(ℓ)(x) =

{
x, ℓ = 0∑

(ℓ′,ℓ)∈E W (ℓ′,ℓ)σ(ϕ(z(ℓ
′)(x))), ℓ = 1, . . . , L+ 1

.

Learning rate scaling in CNNs. Consider a ReLU-CNN network with associated DAG G = (V,E),
kernel size q, hidden layer width n, hidden layer weights initialized as in § 3.2, and the output weights
initialized with mean-field scaling. The µP learning rate η∗ for hidden layer weights is independent
of n but has a non-trivial dependence of depth, scaling as

η∗ ≃ c ·

(
P∑

p=1

L3
p

)−1/2

· q−1. (9)

This result implies that in addition to network depth and width, CNNs with a larger kernel size should
use a smaller learning rate. We include our derivations in Appendix C.

3.5 IMPLICATIONS ON ARCHITECTURE DESIGN

We would like to emphasize that, beyond training deep networks to better performance, our work
will imply a much broader impact in questioning the credibility of benchmarks and algorithms for
automated machine learning (AutoML).

Designing novel networks is vital to the development of deep learning and artificial intelligence.
Specifically, Neural Architecture Search (NAS) dramatically speeds up the discovery of novel
architectures in a principled way (Zoph & Le, 2016; Pham et al., 2018; Liu et al., 2018), and
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meanwhile many of them archive state-of-the-art performance. The validation of NAS algorithms
largely hinges on the quality of architecture benchmarks. However, in most literature, each NAS
benchmark adapts the same set of training protocols when comparing diverse neural architectures,
largely due to the prohibitive cost of searching the optimal hyperparameter for each architecture.

To our best knowledge, there exist very few in-depth studies of “how to train” architectures sampled
from the NAS search space, thus we are motivated to examine the unexplored “hidden gem” question:
how big a difference can be made if we specifically focus on improving the training hyperparameters?
We will answer this question in § 4.3.

4 EXPERIMENTS

In our experiments, we will apply our learning rate scaling to weights and bias. We study our
principles on MLPs, CNNs, and networks with advanced architectures from NAS-Bench-201 (Dong
& Yang, 2020). All our experiments are repeated for three random runs. We also include more results
in the Appendix (§ E.1 for ImageNet, § E.2 for the GeLU activation).

We adapt our principles as follows:

1. Find the base maximal learning rate of the base architecture with the smallest depth (L = 1 in our
case: “input→hidden→output”): conduct a grid search over a range of learning rates, and find the
maximal learning rate which achieves the smallest training loss at the end of one epoch1

2. Initialize the target network (of deeper layers or different topologies) according to equation 4.
3. Train the target network by scaling the learning rate based on equation 8 for MLPs or equation 9

for CNNs.

The above steps are much cheaper than directly tuning hyperparameters for heavy networks, since the
base network is much smaller. We verify this principle for MLPs with different depths in Appendix D.

4.1 MLPS WITH TOPOLOGY SCALING
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Figure 2: MLPs with different topologies (graph
structures). X-axis: “ground truth” maximal
learning rates found by grid search. Y-axis: esti-
mated learning rates by our principle (equation 8).
The red line indicates the identity. Based on the
“ground truth” maximal learning rate of the basic
MLP with L = 1, we scale up both learning rates
and initialization to diverse architectures. The
radius of a dot indicates the variance over three
random runs. Data: CIFAR-10.

We study MLP networks by scaling the learning rate
to different graph structures based on equation 8. In
addition to the learning rate, variances of initializations
are also adjusted based on the in-degree of each layer
in a network.

To verify our scaling rule of both learning rates and ini-
tializations, we first find the “ground truth” maximal
learning rates via grid search on MLPs with differ-
ent graph structures, and then compare them with our
scaled learning rates. As shown in Figure 2, our estima-
tion strongly correlates with the “ground truth” max-
imal learning rates (r = 0.838). This result demon-
strates that our learning rate scaling principle can be
generalized to complicated network architectures.

4.2 CNNS WITH TOPOLOGY SCALING

We further extend our study to CNNs. Our base CNN
is of L = 1 and kernel size q = 3, and we scale the
learning rate to CNNs of both different graph structures and kernel sizes, based on equation 9. Both
the learning rate and the variances of initializations are adjusted for each network.

1Rationales for finding maximal learning rates for the 1st epoch: 1) Finding hyperparameters in early training is
both practically effective and widely adopted (Tab. 1 and 4 of (Bohdal et al., 2022), Fig. 2 and 3a of (Egele
et al., 2023). Analyzing subsequent training epochs will require more computations and careful design of HPO
algorithms. 2) µP Yang et al. (2022) finds optimal learning rates in early training (Fig. 4 and 19). Exploiting
more training epochs (for HPO purposes) is orthogonal to our method and is beyond the scope of our work.

7



Published as a conference paper at ICLR 2024

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Maximal LR (Experiments)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ax

im
al

L
R

(O
ur

E
st

im
at

io
n)

CNNs (Topology & Kernel Scaling)

r = 0.856

kernel = 3

kernel = 5

kernel = 7

Figure 3: CNNs with different graph structures
and kernel sizes. The x-axis shows the “ground
truth” maximal learning rates found by grid
search. The y-axis shows the estimated learn-
ing rates by our principle (equation 9). The red
line indicates the identity. Based on the “ground
truth” maximal learning rate of the CNN with
L = 1 and kernel size as 3, we scale up both
learning rates and initialization to diverse archi-
tectures. The radius of a dot indicates the vari-
ance over three random runs. Data: CIFAR-10.

Again, we first collect the “ground truth” maximal
learning rates by grid search on CNNs with different
graph structures and kernel sizes, and compare them
with our estimated ones. As shown in Figure 3, our esti-
mation strongly correlates with the “ground truth” maxi-
mal learning rates of heterogeneous CNNs (r = 0.856).
This result demonstrates that our initialization and learn-
ing rate scaling principle can be further generalized to
CNNs with sophisticated network architectures and dif-
ferent kernel sizes.

4.3 BREAKING NETWORK RANKINGS IN NAS

Networks’ performance ranking is vital to the compar-
ison of NAS algorithms (Guo et al., 2020; Mellor et al.,
2021; Chu et al., 2021; Chen et al., 2021). If the rank-
ing cannot faithfully reflect the true performance of
networks, we cannot trust the quality of architecture
benchmarks. Here we will show that: by simply better
train networks, we can easily improve accuracies and
break rankings of architectures (those in benchmarks or searched by AutoML algorithms).

We will use NAS-Bench-201 (Dong & Yang, 2020) as the test bed. NAS-Bench-201 provides a
cell-based search space NAS benchmark, the network’s accuracy is directly available by querying
the database, benefiting the study of NAS methods without network evaluation. It contains five
heterogeneous operator types: none (zero), skip connection, conv1 × 1, conv3 × 3 convolution,
and average pooling3 × 3. Accuracies are provided for three datasets: CIFAR-10, CIFAR-100,
ImageNet16-120. However, due to the prohibitive cost of finding the optimal hyperparameter set
for each architecture, the performance of all 15,625 architectures in NAS-Bench-201 is obtained
with the same protocol (learning rate, initialization, etc.). Sub-optimal hyperparameters may setback
the maximally achievable performance of each architecture, and may lead to unreliable comparison
between NAS methods.

We randomly sample architectures from NAS-Bench-201, and adopt the same training protocol
as Dong & Yang (2020) (batch size, warm-up, learning rate decay, etc.). The only difference is that
we use our principle (§ 3.4) to re-scale learning rates and initializations for each architecture, and
train networks till converge. Results are shown in Figure 4. We derive three interesting findings from
our plots to contribute to the NAS community from novel perspectives:

1. Compared with the default training protocol on NAS-Bench-201, neural architectures can benefit
from our scaled learning rates and initialization with much better performance improvements
(left column in Figure 4). This is also a step further towards an improved “gold standard” NAS
benchmark. Specifically, on average we outperform the test accuracy in NAS-Bench-201 by 0.44
on CIFAR-10, 1.24 on CIFAR-100, and 2.09 on ImageNet16-120. We also show our superior
performance over µP in Appendix E.3.

2. Most importantly, compared with the default training protocol on NAS-Bench-201, architectures
exhibit largely different performance rankings, especially for top-performing ones (middle
column in Figure 4). This implies: with every architecture better-trained, state-of-the-art NAS
algorithms evaluated on benchmarks may also be re-ranked. This is because: many NAS methods
(e.g. works summarized in (Dong et al., 2021)) are agnostic to hyperparameters (i.e. search
methods do not condition on training hyperparameters). Changes in the benchmark’s training
settings will not affect architectures they searched, but instead will lead to different training
performances and rankings of searched architectures.

3. By adopting our scaling method, the performance gap between architectures is mitigated (right
column in Figure 4). In other words, our method enables all networks to be converged similarly
well, thus less distinguishable in performance.
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Figure 4: We adopt our scaling principles to existing architecture benchmarks. Left column: better accu-
racy. For different network architectures, we plot the accuracy trained with different scaling principles (y-axis
“Re-scaled”) against the accuracy trained with a fixed training recipe (x-axis “NAS-Bench-201”). Each dot
represents a unique architecture with different layer types and topologies (Figure 1 in (Dong & Yang, 2020)).
Our principle (blue dots) achieves better accuracy compared to the benchmark (red line y = x). Middle column:
network rankings in benchmarks are fragile. We compare networks’ performance rankings at different top
K% percentiles (K = 100, 90, · · · , 10, 5, 1; bottom right dots represent networks on the top-right in the left
column), trained by our method vs. benchmarks, and find better networks are ranked more differently from the
benchmark. This indicates current network rankings in benchmarks (widely used to compare NAS algorithms)
can be easily broken by simply better train networks. Right column: less distinguishable architectures. We plot
the pairwise performance gaps between different architectures, and find our principle makes networks similar
and less distinguishable in terms of their accuracies.

5 CONCLUSION

Training a high-quality deep neural network requires choosing suitable hyperparameters, which
are non-trivial and expensive. However, most scaling or optimization methods are agnostic to the
choice of networks, and thus largely ignore the impact of neural architectures on hyperparameters. In
this work, by analyzing the dependence of pre-activations on network architectures, we propose a
scaling principle for both the learning rate and initialization that can generalize across MLPs and
CNNs, with different depths, connectivity patterns, and kernel sizes. Comprehensive experiments
verify our principles. More importantly, our strategy further sheds light on potential improvements
in current benchmarks for architecture design. We point out that by appropriately adjusting the
learning rate and initializations per network, current rankings in these benchmarks can be easily
broken.Our work contributes to both network training and model design for the Machine Learning
community. Limitations of our work: 1) Principle of width-dependent scaling of the learning rate.
2) Characterization of depth-dependence of learning rates beyond the first step / early training of
networks. 3) Depth-dependence of learning rates with the existence of normalization layers.
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A ARCHITECTURE-AWARE INITIALIZATION

Derivations for § 3.2. Consider a random network input x sampled from a distribution for which x
and −x have the same distribution. Let us first check that the joint distribution of the pre-activation
vectors z(ℓ

′)(x) with ℓ′ = 0, . . . , L + 1 is symmetric around 0. We proceed by induction on ℓ.
When ℓ = 0 this statement is true by assumption. Next, suppose we have proved the statement for
0, . . . , ℓ. Then, since z(ℓ+1)(x) is a linear function of z(0)(x), . . . , z(ℓ)(x), we conclude that it is also
symmetric around 0. A direct consequence of this statement is that, by symmetry,
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, ∀j = 1, . . . , n, ℓ = 0, . . . , L+ 1 (10)

Let us fix k = 1, . . . , n and a vertex ℓ we calculate CW in equation 2:
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We ask E
[∥∥z(ℓ)∥∥2] = E

[∥∥∥z(ℓ′)∥∥∥2], which yields

C
(ℓ′,ℓ)
W =

2

d
(ℓ)
in

. (12)

We now seek to show

E
[∥∥∥z(ℓ)∥∥∥2] = E

[∥∥∥z(ℓ′)∥∥∥2] ∀ℓ, ℓ′ ∈ V. (13)

To do so, let us define for each ℓ = 0, . . . , L+ 1

d(ℓ, L+ 1) := {length of longest directed path in G from ℓ to L+ 1} .
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The relation equation 13 now follows from a simple argument by induction show that by induction
on d(ℓ, L+ 1), starting with d(ℓ, L+ 1) = 0. Indeed, the case d(ℓ, L+ 1) = 0 simply corresponds
to ℓ = L+ 1. Next, note that if d(ℓ, L+ 1) > 0 and if (ℓ′, ℓ) ∈ E, then d(ℓ, L+ 1) < d(ℓ′, L+ 1)
by the maximality of the path length in the definition of d(ℓ, L+ 1). Hence, substituting equation 12
into equation 11 completes the proof of the inductive step.

B ARCHITECTURE-DEPENDENT LEARNING RATES (FOR § 3.3)

We start by setting some notation. Specifically, we fix a network input x ∈ Rn0 at which we study
both the forward and backward pass. We denote by

z
(ℓ)
i := z

(ℓ)
i (x), z(ℓ) := z(ℓ)(x)

the corresponding pre-activations at vertex ℓ. We assume our network has a uniform width over layers
(nℓ ≡ n), and parameter-dependently learning rates:

ηµ = learning rate of µ.

We will restrict to the case ηµ = η at the end. Further, recall from equation 6 that we consider the
empirical MSE over a batch B with a single element (x, y) and hence our loss is

L =
1

2

(
z(L+1) − y

)2
.

The starting point for derivations in § 3.3 is the following Lemma

Lemma B.1 (Adapted from Lemma 2.1 in Jelassi et al. (2023)). For ℓ = 1, . . . , L, we have
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Proof. The proof of this result follows very closely the derivation of Lemma 2.1 in Jelassi et al.
(2023) which considered only the case of MLPs. We first expand ∆z

(ℓ)
i by applying the chain rule:

∆z
(ℓ)
i =

∑
µ≤ℓ

∂µz
(ℓ)
i ∆µ, (17)

where the sum is over weights µ that belong to some weight matrix W (ℓ′′,ℓ′) for which there is a
directed path from ℓ′ to ℓ in G and we’ve denoted by ∆µ the change in µ after one step of GD. The
SGD update satisfies:

∆µ = −ηµ
2
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)
, (18)
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where we’ve denoted by (x, y) the training datapoint in the first batch. We now combine equation 17
and equation 18 to obtain:
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Using equation 19, we obtain
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Here, we’ve used that by symmetry the answer is independent of i. Taking into account the distribution
of z(L+1) and y, we have

Ey

[(
z(L+1) − y

)2]
= (z(L+1))2 + 1 (21)

We plug equation 21 in equation 20 and obtain

E[(∆z
(ℓ)
i )2] = A(ℓ) +B(ℓ), (22)

where

A(ℓ) = E

 ∑
µ1,µ2≤ℓ

ηµ1
ηµ2

∂µ1
z(ℓ)∂µ2

z(ℓ)∂µ1
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(
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)2 (23)

B(ℓ) = E

 ∑
µ1,µ2≤ℓ

ηµ1
ηµ2

∂µ1
z
(ℓ)
1 ∂µ2

z(ℓ)∂µ1
z(L+1)∂µ2

z(L+1)

 . (24)

By definition, we have

z(L+1) =
∑

(ℓ′,L+1)∈E

n∑
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W
(ℓ′,L+1)
j σ

(
z
(ℓ′)
j

)
, W
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j ∼ N

(
0,

1

n2

)
.

Therefore, integrating out weights of the form W (ℓ′,L+1) in equation 24 yields

B(ℓ) = E

 1
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∑
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j

 ,

where in the last equality we used equation 10. This yields the desired formula for B(ℓ). A similar
computation yields the expression for A(ℓ).

As in the proof of Theorem 1.1 in Jelassi et al. (2023), we have

A(ℓ) = O(n−1)

due to the presence of an extra pre-factor of 1/n. Our derivation in § 3.3 therefore comes down to
finding how B(ℓ) is influenced by the topology of the graph G.
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We then re-write the high-level change of pre-activations (equation 5) in an arbitrary graph topology.
We need to accumulate all changes of pre-activations that flow into a layer (summation over in-degrees
ℓ′ → L+ 1):

∆z
(L+1)
i =

∑
ℓ′→L+1

∑
µ≤ℓ′

∂µz
(ℓ′)
i ∆µ (25)

Therefore, for the change of pre-activation of layer L + 1, we can simplify the analysis to each
individual layer ℓ′ that connects L+ 1 (i.e. edge (ℓ′ → L+ 1) ∈ E), and then sum up all layers that
flow into layer ℓ.

Next, we focus on deriving B(ℓ) of each individual path in the case of the DAG structure of network
architectures. It is important that here we adopt our architecture-aware initialization (§ 3.2).

B(ℓ) = E

 ∑
µ1,µ2≤ℓ

ηµ1
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∂µ1
z
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= · · ·
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i ∂µ2
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 .

(26)

Thus, we can see that with our architecture-aware initialization, B(ℓ) reduce back to the basic
sequential MLP case in Theorem 1.1 in Jelassi et al. (2023).

Therefore, we have:

B(L+1) ≃
P∑

p=1

Θ(η2L3
p).

Thus

η ≃

(
P∑

p=1

L3
p

)−1/2

.

where P is the total number of end-to-end paths that flow from the input to the final output zL+1, and
Lp is the number of ReLU layers on each end-to-end path.

C LEARNING RATE SCALING FOR CNNS

Derivations for § 3.4. In addition to B(ℓ) in equation 24, we further refer to the contributing term of
B(ℓ) in Jelassi et al. (2023) when µ1 ≤ ℓ− 1 and µ2 ∈ ℓ (or vice versa), denoted as C(ℓ):

C(ℓ) := E

 1

n

∑
µ≤ℓ

ηµ
1

n2

n∑
j1,j2=1

(
z
(ℓ)
j1

∂µz
(ℓ)
j2

)2 . (27)

We start from deriving the recursion of B(ℓ) of each individual end-to-end path for convolutional
layers of a kernel size as q. Again, we assume our network has a uniform width over layers (nℓ ≡ n).

If µ1, µ2 ∈ ℓ then the contribution to equation 24 is(
η(ℓ)
)2

q2E

 1

n2
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σ
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4
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∥x∥2 e5
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1
n

When µ1 ≤ ℓ− 1 and µ2 ∈ ℓ (or vice versa) the contribution to equation 24 is

2η(ℓ)qE

 1

n

∑
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ηµ1

1

n

n∑
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(
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)2 1
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(
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j

)2 = η(ℓ)qC(ℓ−1).
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Finally, when µ1, µ2 ≤ ℓ− 1 we find the contribution to equation 24 becomes

E
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Therefore, we have
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We further derive C(ℓ). When µ ∈ ℓ the contribution to equation 27 is
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When µ ≤ ℓ− 1 the contribution to equation 27 is
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Finally, for each end-to-end path, we have

B(ℓ) ≃ Θ(η2ℓ3q2).

Therefore, together with § 3.3, we want

η ≃

(
P∑

p=1

L3
p

)−1/2

· q−1.

D MLPS WITH DEPTH SCALING

We verify the depth-wise scaling rule in Jelassi et al. (2023). We scale a vanilla feedforward network
by increasing its depth (adding more Linear-ReLU layers). Starting from the most basic feedforward
network with L = 3 (an input layer, a hidden layer, plus an output layer), we first scan a wide range
of learning rates and find the maximal learning rate. We then scale the learning rate to feedforward
networks of different depths according to equation 8. Different feedforward networks share the same
initialization since both the out-degree and in-degree of all layers are 1.

To verify the scaling results, we also conduct the grid search of learning rates for feedforward
networks of different depths, and compare them with the scaled learning rates. As shown in Figure 5,
on CIFAR-10 the estimation strongly correlates with the “ground truth” maximal learning rates
(r = 0.962), and the plotted dots are very close to the identity line. This result demonstrates that the
depth-wise learning rate scaling principle in Jelassi et al. (2023) is highly accurate across feedforward
neural networks of different depths and across different datasets.
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Figure 5: MLP networks of different depths on CIFAR-10. The x-axis shows the “ground truth” maximal
learning rates found by our grid search experiments. The y-axis shows the estimated learning rates by our
principle in equation 8. The red line indicates the identity. Based on the true maximal learning rate of the
feedforward networks of L = 3, we scale up to L = 10. The radius of a dot indicates the variance over three
random runs.
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Figure 6: MLP networks (ReLU activation) of different depths (left) and graph topologies (right) on Ima-
geNet Deng et al. (2009). The x-axis shows the “ground truth” maximal learning rates found by our grid search
experiments. The y-axis shows the estimated learning rates by our principle in equation 8. The red line indicates
the identity. The radius of a dot indicates the variance over three random runs.
Similar to Figure 5 and Figure 2, we further verify the learning rate scaling rule on ImageNet Deng
et al. (2009). We scale up a vanilla feedforward network by increasing its depth (adding more
Linear-ReLU layers) or changing its graph topology. As shown in Figure 7, our estimations achieve
strong correlations with the “ground truth” maximal learning rates for both depth-wise scaling
(r = 0.856) and topology-wise scaling (r = 0.729). This result demonstrates that our learning rate
scaling principle is highly accurate across feedforward neural networks of different depths and across
different datasets.

E.2 THE GELU ACTIVATION

To demonstrate that our learning rate scaling principle can generalize to different activation functions,
we further empirically verify MLP networks with GELU layers (on CIFAR-10). We scale up a vanilla
feedforward network by increasing its depth (adding more Linear-ReLU layers) or changing its
graph topology. Again, our estimations achieve strong correlations with the “ground truth” maximal
learning rates for both depth-wise scaling (r = 0.920) and topology-wise scaling (r = 0.680).
Moreover, for CNNs, our estimation can also achieve r = 0.949.

E.3 THE µP HEURISTICS

We further compare the µP heuristics (Yang et al., 2022) with our architecture-aware initial-
ization and learning rate scaling by training architectures defined in NAS-Bench-201 (Dong &
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Figure 7: MLP networks with GELU activations of different depths (left) and graph topologies (middle), and
CNNs (right), on CIFAR-10. The x-axis shows the “ground truth” maximal learning rates found by our grid
search experiments. The y-axis shows the estimated learning rates by our principle in equation 8. The red line
indicates the identity. The radius of a dot indicates the variance over three random runs.

Yang, 2020). We follow the usage from https://github.com/microsoft/mup?tab=
readme-ov-file#basic-usage to set up the base model, and train with MuSGD. The learn-
ing rate is set as 0.1 following the original setting in NAS-Bench-201. From Figure 8, we can see that
µP initialization and scaling strategy yields inferior results.
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Figure 8: Comparison between the µP heuristics Yang et al. (2022) (x-axis) and our architecture-aware initial-
ization and learning rate scaling (y-axis) on NAS-Bench-201 Dong & Yang (2020). Left: CIFAR-10. Middle:
CIFAR-100. Right: ImageNet-16-120.

E.4 NETWORK RANKINGS INFLUENCED BY RANDOM SEEDS

To delve deeper into Figure 4, we analyze how the random seed affects network rankings. Specifically,
NAS-Bench-201 reports network performance trained with three different random seeds (seeds =
[777, 888, 999]). For CIFAR-100, we created a plot similar to Figure 4 middle column, but it shows
pairwise ranking correlations among those three random seeds. As shown in Figure 9, although we
observe different ranking correlations between seeds, they are consistently higher (i.e., their rankings
are more consistent) than those produced by our method. This confirms that changes in network
rankings by our architecture-aware hyperparameters are meaningful, which can train networks to
better performance.
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Figure 9: Comparison of network rankings influenced by our method versus random seeds. NAS-Bench-
201 Dong & Yang (2020) provides training results with three different random seeds (777, 888, 999). Blue dots
represent the Kendall-Tau correlations between networks trained by our method and the accuracy from NAS-
Bench-201 (averaged over three seeds). We also plot correlations between random seeds in a pairwise manner.
We compare networks’ performance rankings at different top K% percentiles (K = 100, 90, · · · , 10, 5, 1;
bottom right dots represent networks on the top-right in the left column). This indicates that, although network
rankings can be influenced by randomness during training, our method leads to significant changes in their
rankings while still enabling these networks to achieve better accuracy.

20


	Introduction
	Related Works
	Hyperparameter Optimization
	Hyperparameter Transfer
	Bechmarking Neural Architecture Search

	Methods
	Definition of DAG Networks
	Topology-aware Initialization Scheme
	Topology-aware Learning Rates
	Learning Rates in DAG Network with Convolutional Layers
	Implications on Architecture Design

	Experiments
	MLPs with Topology Scaling
	CNNs with Topology Scaling
	Breaking Network Rankings in NAS

	Conclusion
	Architecture-aware Initialization
	Architecture-dependent Learning Rates (for § 3.3)
	Learning Rate Scaling for CNNs
	MLPs with Depth Scaling
	More Experiments
	ImageNet
	The GELU Activation
	The P Heuristics
	Network Rankings Influenced by Random Seeds


