
Under review as a conference paper at ICLR 2024

TREE-BASED ACTION-MANIPULATION ATTACK
AGAINST CONTINUOUS REINFORCEMENT LEARNING
WITH PROVABLY EFFICIENT SUPPORT

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to the widespread application of reinforcement learning, research on its adver-
sarial attacks is necessary for building secure reinforcement learning applications.
However, most of the current security research focuses only on reinforcement
learning with discrete states and actions, and these methods cannot be directly
applied to reinforcement learning in continuous state and action spaces. In this
paper, we investigate attacks on continuous reinforcement learning. Rather than
manipulating rewards, observations, or environments, our focus lies in action-
manipulation attacks that impose more restrictions on the attacker. Our study
investigates the action-manipulation attack in both white-box and black-box sce-
narios. We propose a black-box attack method called LCBT, which uses a layered
binary tree structure-based refinement and segmentation method to handle contin-
uous action spaces. Additionally, we prove that under the condition of a sublinear
relationship between the dynamic regret and total step counts of the reinforcement
learning agent, LCBT can force the agent to frequently take actions according to
specified policies with only sublinear attack cost. We conduct experiments to
evaluate the effectiveness of the LCBT attack on three widely-used reinforcement
learning algorithms: DDPG, PPO, and TD3.

1 INTRODUCTION

Figure 1: Action-manipulation attack model. Step
1, the intelligent agent selects action ah based on
its own policy and is intercepted by the attacker.
Step 2, the attacker manipulates action ah to ãh
based on their own strategy and submits it to the
environment. Step 3, the environment responds to
ãh, and the attacker and the intelligent agent re-
ceive the current state and reward.

Reinforcement learning (RL) aims to maximize
the accumulated rewards through the interac-
tion between the agent and the environment.
With the increasing complexity of scenarios,
in many cases, reinforcement learning algo-
rithms for discrete state-action environments
are no longer applicable, while the application
of continuous reinforcement learning is becom-
ing more and more widespread in various do-
mains, such as robot control (Xu et al., 2020),
autonomous driving (Elallid et al., 2022), game
intelligence (Jeerige et al., 2019) and etc. How-
ever, these scenarios demand high levels of se-
curity, thus, investigating its security problems
such as adversarial attacks is crucial (Garcıa &
Fernández, 2015).

In reinforcement learning, the interaction information between the agent and the environment is
crucial for training. Therefore, manipulating observations, rewards, actions, and the environment
can all have an impact on the training process. Attackers can exploit these different attack methods
to influence the agent and achieve their own goals. In this paper, we focus on action manipulation.
Specifically, the attacker operates as a third party between the agent and the environment, accessing
interaction data such as state s, reward r, and action a. In this type of attack, the attacker achieves
the attack by manipulating the actions generated by the intelligent agent into other actions in the
action space. For example, in autonomous driving or robotics applications, the attacker can hijack

1

Under review as a conference paper at ICLR 2024

and tamper with the action signals. The attack process is illustrated in Fig. 1. It is evident that
compared to manipulating observations, rewards, or the environment, action-manipulation is not
as direct and efficient. Therefore, under such conditions, attackers need to intricately design their
attack strategies to achieve their objectives.

Under the condition of manipulating actions for attack, the attacker can only manipulate within the
agent’s action space. Therefore, assessing actions and selecting appropriate action substitutions for
the original actions are crucial for achieving efficient attacks. Based on action-manipulation attack,
(Liu & Lai, 2021) proposed an attack algorithm that can force the agent to learn a specified policy
while providing an upper bound on the attack cost. Prior to each tampering attempt, the algorithm
evaluates all actions in the action space and then determines which action to select as a replacement
for the original action. However, this method in paper (Liu & Lai, 2021) is clearly not applicable in
a continuous action space. The attack strategy proposed in (Sun et al., 2020) also allows attackers
to achieve an attack by manipulating actions. Its principle involves training an adversarial critic
network using RL trajectories and then manipulating the interaction information between the agent
and the environment to mislead the agent. Although the algorithm in (Sun et al., 2020) supports
continuous action spaces, the attack cost bound is not given, and it requires knowledge of the RL
algorithm used by the agent.

This study aims to explore methods for enabling an intelligent agent to learn specified policies
through action-manipulation while minimizing the associated attack cost. Our research includes
investigations in both white-box and black-box scenarios. We develop corresponding attack algo-
rithms and establish bounds on the attack cost. In the white-box attack scenario, the attacker pos-
sesses comprehensive knowledge of the involved Markov decision processes (MDPs), enabling a
more intuitive evaluation of actions and the design of attack strategies. Conversely, in the black-box
attack scenario, the attacker lacks awareness of the underlying MDP and solely relies on information
extracted from the RL trajectory to devise attack strategies. Additionally, in the black-box setting,
a binary tree-based dynamic partitioning method is employed to thoroughly assess the action space.
This method ensures the continual partitioning and refinement of the action space and achieves ac-
tion evaluation through the utilization of importance sampling and probability-based mathematical
methods. Our main contributions are as follows:

• We have constructed a threat model for action-manipulation attacks under continuous state and ac-
tion spaces, considering the attacker’s goal, knowledge, and capability. To adapt to the continuous
action space, we propose the concept of target action space.

• In the white-box scenario, we utilize our understanding of the underlying MDP to intuitively
propose the oracle attack method. We show that the oracle attack can force the agent who runs
a sub-linear-regret RL algorithm to choose actions according to the target policies with sublinear
attack cost.

• In the black-box scenario, we introduce an attack method called Lower Confidence Bound Tree
(LCBT). It can be demonstrated that the effectiveness of this attack method closely approximates
the oracle attack.

• We employ the proposed attack methods to target three popular reinforcement learning algorithms:
DDPG (Lillicrap et al., 2015), PPO (Schulman et al., 2017), and TD3 (Fujimoto et al., 2018). The
experimental results demonstrate the effectiveness of our proposed methods.

2 RELATED WORK

We elucidate the work related to the security of reinforcement learning from the perspectives of
different attack methods.

Reward manipulation: (Ma et al., 2019), (Zhang et al., 2020), (Ma et al., 2018) and (Huang &
Zhu, 2019) employ reward manipulation to train the agent to learn a specified policy, while (Majadas
et al., 2021) focuses on minimizing the total rewards of the agent using this attack approach. In the
study by (Wu et al., 2022), the modification of rewards was implemented in a multi-agent system to
facilitate the learning of several agents’ target policies.

Observation manipulation: (Foley et al., 2022) employs observation manipulation to cause agent
misbehavior only at specific target states. (Zhang et al., 2021), (Yang et al., 2020), (Pan et al.,
2019) minimize the total rewards of the intelligent agent using the observation manipulation method.

2

Under review as a conference paper at ICLR 2024

Moreover, (Behzadan & Munir, 2017) utilizes the method of observation manipulation to achieve
policy induction attacks.

Environment manipulation: (Xu et al., 2021) train agents to use a target policy for specific obser-
vations through environment manipulation. (Tanev et al., 2021) and (Huang et al., 2017) minimize
the total rewards of the agent through environment manipulation. In (Boloor et al., 2019), the envi-
ronment is manipulated to reach a target state.

Action manipulation: In RL with discrete state and action spaces, (Liu & Lai, 2021) manipulates
actions to force the intelligent agent to learn the specified policy. (Lee et al., 2020) minimizes the
overall reward of the intelligent agent through action manipulation. In addition, (Tessler et al., 2019)
focuses on action robust RL in the presence of noisy environments.

3 PRELIMINARY

This paper considers a finite-horizon MDP over the continuous domains. Such an MDP can be de-
fined as a 6-tuple M = (S,A, P, r,H, µ). where S and A are respectively bounded continuous state
and action spaces, and H denotes the number of steps per episode. µ is the initial state distribution.
P is the transition matrix so that Ph(·|s, a) gives the distribution over states if action a is taken for
state s at step h ∈ [H], and rh : S×A→ [0, 1] is the deterministic reward function at step h. Define
K is the total number of episodes. For each episode k ∈ [K], through the interaction between the
agent and the environment over H steps, the trajectory {s1, a1, r1, s2, a2, r2, ..., sH , aH , rH} can be
obtained. This trajectory provides essential data for further training.

We represent the agent’s Markov policy by π. Here, πh : S → A depicts the policy at the step h,
while πh (·|sh) portrays the probability distribution of actions selected by policy πh, corresponding
to the state sh. A deterministic policy is a policy that maps each state to a particular action. For no-
tation convenience, for a deterministic policy π, we use πh(s) to denote the action a which satisfies
πh(a|s) = 1.

A policy π can be evaluated by the expected reward. Formally, We use the Qπ
h : S × A → R to

express the expected value obtained by selecting action ah at the state sh according to the policy π,
which is defined as Qπ

h (s, a) := rh (s, a) + E
[∑H

h′=h+1 rh′(sh′ , πh′(sh′))|sh = s, ah = a
]
.

Accordingly, we define V π
h : S → R to represent the total expected rewards in state sh under policy

π, and it is denoted by V π
h (s, a) := Eπ

[∑H
h′=h rh′(sh′ , πh′(sh′))|sh = s

]
. For a finite-horizon

MDP, we set V π
H+1 = 0 and Qπ

H+1 = 0.

The purpose of reinforcement learning is to find the optimal policy π∗, which gives the optimal
value function V ∗

h (s) = supπ V
π
h (s). To assess a reinforcement learning algorithm’s performance

over K episodes, we quantify a metric known as regret, which is defined as

Regret(K) =

K∑
k=1

[
V ∗
1

(
sk1
)
− V πk

1

(
sk1
)]
. (1)

We now state an additional geometrical definition for the state and action spaces.
Definition 1. The state space S is equipped with a dissimilarity function ls : S2 → R such that
ls(s, s

′) ≥ 0 for all (s, s′) ∈ S2 and ls(s, s) = 0. Likewise, The action space A is equipped with a
dissimilarity function la : A2 → R such that la(a, a′) ≥ 0 for all (a, a′) ∈ A2 and la(a, a) = 0.

For a subset D ⊆ S, the diameter of it is defined as diams(D) := supx,y∈D ls(x, y). Likewise, we
define diama(P) := supx,y∈P la(x, y) where P ⊆ A.

4 ATTACK STRATEGY AND ANALYSIS

Firstly, we introduce the attack model. In each step h ∈ [H] at episode k ∈ [K], the attacker has
to decide whether to take action-manipulation method, i.e., launch attack when receives the action
a generated by the agent, and ã ∈ A is the potential action taken by the attacker. If the attacker

3

Under review as a conference paper at ICLR 2024

decides not to attack, ã = a. Also, the attacker has a deterministic target policy π† and a radius ra.
Define A†

h(s) = {a : la(a, π
†
h(s)) ≤ ra} as the target action space.

We describe the threat model in this paper from the perspective of attacker’s goal, attacker’s knowl-
edge, and attacker’s capability.

• Attacker’s Goal: Let τ be the step set whose element is the step when the attacker launches
attack, i.e., τ = {(k, h) : akh ̸= ãkh, k ∈ [1,K], h ∈ [1, H]}. And let α be the step set whose
element is the step when the action akh meets the condition akh /∈ A†

h(s
k
h), i.e., α = {(k, h) : akh /∈

A†
h(s

k
h), k ∈ [1,K], h ∈ [1, H]}. The attacker’s goal is to manipulate the agent into picking its

actions in the target action space, in other words, following the policies similar to the target policy
π†. At the same time, the attacker aims to minimize both the cost |τ | and loss |α|.

• Attacker’s Knowledge: In the context of the black-box attack, the attacker has no prior knowl-
edge about the underlying environment and the agent’s policy. It only has access to the interaction
information between the agent and the environment, i.e., skh, akh, and rkh.

• Attacker’s Capability: The attacker can manipulate the action akh generated by the agent and
change it to another action ãkh. In addition, the attacker has a certain amount of computational
resources and storage space to run the attack algorithms.

4.1 ORACLE ATTACK

In the white-box attack scenario, the attacker has the full information of the underlying MDPM.
Therefore, the attacker can compute the Q-values and V -values of any policy.

Define a policy set

Π† = {π : πh(s) ∈ A†
h(s), V

π
h (s) ≥ V †

h (s),∀s ∈ S, h ∈ [H]}, (2)
which represents a set of policies that produce actions within the target action space and are superior
to policy π†, and let πo = supπ∈Π† V π

h (s). For notation simplicity, we denote V †
h (s) := V π†

h (s)

and V o
h (s) := V πo

h (s). We define a−h (s) = argmina∈A Q†
h(s, a) as the worst action for a given

target policy π† and state s in the step h.

Based on the above, a possible attack approach intuitively is that the attacker can mislead the agent
by manipulating actions to make it believe that policies in the set Π† are better than policies that
generate actions outside the target action space. We now introduce an effective oracle attack strategy.
Specifically, at the step h and state s, if the action selected by the agent is within the target action
space, i.e., ah ∈ A†

h(s), the attacker does not launch an attack, i.e., ãh = ah. Otherwise, i.e.,
ah /∈ A†

h(s), the attacker launches attack and sets ãh = a−h (s). It should be noted that if the target
policy is the worst policy, there may potentially exist V o

h (s) = V †
h (s) = infπ V

π
h (s) for the state s

and step h, in this case, the attacker can not mislead the agent to learn the policies in the set Π†. To
ensure the feasibility of the attack, the target policy π† needs to satisfy the following condition

V †
h (s) > Q†

h(s, a
−
h (s)),∀s ∈ S, h ∈ [H], (3)

which means that π† is not the worst policy. Define the minimum gap ∆†
min by ∆†

min =

min
h∈[H],s∈S

(
V †
h (s)−Q†

h(s, a
−
h (s))

)
. Under (3), ∆†

min > 0 also holds. Then, we have:

Lemma 1. When ∆†
min > 0 holds, in the observation of the agent, the policies in set Π† are superior

to other policies that do not align with the attacker’s target.
Proof. Please refer to the supplementary.

With the condition ∆†
min > 0, the upper bounds of τ and α under the oracle attack can be obtained.

Theorem 1. With a probability at least 1 − δ2, the oracle attack will force the agent to learn the
policies in Π† with τ and α bounded by

|τ | ≤ |α| ≤
Regret(K) + 2H2

√
ln(1/δ2) · Regret(K)

∆o
† +∆†

min

, (4)

where ∆o
† = minh∈[H],s∈S

(
V o
h (s)− V †

h (s)
)

.
Proof: Please refer to the supplementary.

4

Under review as a conference paper at ICLR 2024

Algorithm 1 LCBT attack strategy on continuous RL algorithm
Input:

Target policy π†.
Initialize T h

1 = {(0, 1), (1, 1), (1, 2)}, Q̂h
1,1(1) = Q̂h

1,2(1) = 0, Lh
1,1(1) = Lh

1,2(1) = −∞, and
Th
1,1(1) = Th

1,2(1) = 0, for all h ∈ [1, H].
for episode k = 1, 2, . . . ,K do

Receive sk1 . Initialize the set of trajectory traj = {sk1}.
for step h = 1, 2, . . . ,H do

The agent chooses an action akh.
if akh ∈ A

†
h(s

k
h) then

The attacker does not attack, i.e., ãkh = akh, and sets wh = 1.
else

Take {(Dh
k , I

h
k), P

h
k } ←WorTraverse(T h

k), and set ãkh = aDh
k ,I

h
k

, wh = 0.
end if
The environment receives action ãkh, and returns the reward rkh and the next state skh+1.
Update the trajectory by plugging ãkh, rkh and skh+1 into traj.

end for
Set the cumulative reward GH+1:H+1 = 0 and the importance ratio ρH+1:H+1 = 1.
for step h = H,H − 1, . . . , 1 do

if ãkh ∈ A
†
h(s

k
h) then

Continue
end if
Gh:H+1 = rkh +Gh+1:H+1, ρh:H+1 = ρh+1:H+1 · wh, thk = Th

Dh
k ,I

h
k

(k)← Th
Dh

k ,I
h
k

(k) + 1.

Use Eq.(5) to update the value Q̂h
Dh

k ,I
h
k

(k)

if ν1ρD
h
k ≥ H−h+1√

2thk

√
ln
(

2Mk
∑H

h=1 |T h
k |

δ1

)
AND (Dh

k , I
h
k) ∈ leaf(T h

k) then

T h
k ← T h

k ∪ {(Dh
k + 1, 2Ihk − 1), (Dh

k + 1, 2Ihk)}
LDh

k+1,2Ih
k−1(k) = LDh

k+1,2Ih
k
(k) = −∞

end if
for all (D, I) ∈ T h

k do
Use Eq.(7) to update the value Lh

D,I(k);
Use Eq.(8) to update the value Bh

D,I(k) backward from leaf nodes.
end for

end for
end for

We can see that the oracle attack relies on the knowledge of a−h (s), which hinders the direct appli-
cation of it to many real-world scenarios. In the next subsection, we will introduce the black-box
attack method.

4.2 LCBT ATTACK

In the black-box attack scenario, the attacker has no knowledge of the underlying MDP process and
the algorithm used by the agent, and only knows the interaction information: skh, akh, and rkh. Without
the knowledge of a−h (s), the attacker can not determine ã and fails to attack. To overcome this issue,
the attacker can use a method to estimate a−h (s). Specifically, the attacker utilizes the hierarchical
binary tree structure to discretize the action space, with the state as the context to evaluate Q†

h(s, a),
and then construct an attack algorithm that approximates the oracle attack. The attack algorithm
has been designated as LCBT (Lower Confidence Bound Tree), in relation to its utilization of a tree
structure.

Action Cover Tree: As the action space A is continuous, we use a binary tree T to discretize the
action space and reduce the possible options for selection. In the cover tree, we denote by (D, I) the
node at depth D ≥ 0 with index I ∈ [1, 2D] among the nodes at the same depth. Clearly, the root

5

Under review as a conference paper at ICLR 2024

node is (0, 1). The two children nodes of (D, I) are denoted by (D + 1, 2I − 1) and (D + 1, 2I)
respectively. For each node (D, I), a continuous subset PD,I ∈ A of actions is divided from the
action space and associated with this node. The PD,I can be determined recursively as P0,1 = A,
PD,I = PD+1,2I−1 ∪ PD+1,2I , and PD,I ∩ PD,J = ∅. For each node (D, I), an action aD,I is
selected to represent the node. Whenever (D, I) is sampled, action aD,I is selected. Moreover, the
nodes in T need also satisfy the following assumption,
Assumption 1. We assume that there exist constants ν1 and 0 < ρ < 1, such that for each node
(D, I): diama(PD,I) ≤ ν1ρ

D.

In addition, until the beginning of episode k, an action coverage tree is maintained for each step
h ∈ [H] and it is denoted as T h

k , and |T h
k | is the node number.

State Partition: In order to better evaluate Q-values, we also need to discretize the continuous state
space. Here, we partition it into M subintervals S1, S2, ..., SM−1, SM which satisfy the following
conditions: S = ∪Mi=1 Si , and Si ∩ Sj = ∅ for ∀i, j ∈ [1,M]. To ensure the functionality of the
LCBT algorithm, the state division must satisfy the following assumption, avoiding rough partitions.

Assumption 2. There exist constants Ls and ds which satisfy Lsds < ∆o
† +∆†

min such that for all
Si,∀i ∈ [1,M]: diams(Si) ≤ Lsds.

Define i(s) : s ∈ Si(s), which represents the number of the subinterval to which state s belongs.

LCB Calculation: LCB is the pessimistic estimate of unknown Q†
h(s, a). In the black-box attack,

at the step h in episode k, the attacker will select a node (D, I) and set ãkh as aD,I when akh /∈
A†

h(s
k
h). In the LCBT attack algorithm, for each node (D, I), Q̂h

D,I(s
k
h, aD,I) is used to evaluate

Q†
h(s

k
h, aD,I), which is calculated by

Q̂h
D,I(s

k
h, aD,I) = (1− 1

Th
D,I(k)

)Q̂h
D,I(s

γh
D,I(k)

h , aD,I)+
1

Th
D,I(k)

(rkh+Gk
h+1:H+1·ρkh+1:H+1), (5)

where Th
D,I(k) = |ϕh

D,I(k)|, and ϕh
D,I(k) = {γ : γ < k, sγh ∈ Si(skh)

, aγh = aD,I}, is defined as the
set of episodes in which the current state belonged to subinterval Si(skh) and node (D, I) was selected
by the attacker at the step h until the beginning of the episode k. γh

D,I(k) = max{γ : γ ∈ ϕh
D,I(k)}

represents the latest episode before k in which the current state belonged to the subinterval Si(skh) and

node (D, I) was selected. Gk
h:H =

∑H
h′=h r

k
h is the cumulative reward. The importance sampling

ratio is calculated by ρkh:H =
∏H

h′=h

P(ãk
h′ |skh′ ,π

†
h′)

P(ãk
h′ |skh′ ,b

k
h′)

, where bk is the behavior policy that generates

trajectory {sk1 , ãk1 , rk1 , sk2 , ãk2 , rk2 , ..., skH−1, ã
k
H−1, r

k
H−1, s

k
H , ãkH , rkH , skH+1} and P(ãkh|skh, bkh) is,

P(ãkh|skh, bkh)=


1 if ãkh = akh and akh ∈ A

†
h(s

k
h),

1 if ãkh = aDh
k ,I

h
k

and akh /∈ A†
h(s

k
h),

(6)

otherwise, the value is 0. Since we assume that the target policy is a deterministic function, we
have P(ãh|sh, π†

h) = I{ã ∈ A†
h(s)}. For the indicator function I{ξ}, if event ξ is established

I{ξ} = 1, otherwise I{ξ} = 0. We set ρkH+1:H+1 = 1, Gk
H+1:H+1 = 0 and ρkh:H = ρkh:H+1,

Gk
h:H = Gk

h:H+1. According to the definition of bk, we have V bk

h (s) = E[Gk
h:H |skh = s] and

V †
h (s) = E[ρkh:HGk

h:H |skh = s].

The states used to calculate the Q̂h
D,I(s, aD,I) value are limited to a subinterval, instead of being

fixed. Also, each tree node (D, I) covers the action space PD,I , despite being represented by action
aD,I . Thus, the lower confidence bound of node (D, I) can be calculated by,

Lh
D,I(k) = Q̂h

D,I(s
k
h, aD,I)−

H − h+ 1√
2Th

D,I(k)

√
ln
(2Mk

∑H
h=1 |T h

k |
δ1

)
− Lsds − ν1ρ

D. (7)

We use coefficients Lsds and ν1ρ
D to measure the level of uncertainty generated by the state subin-

terval and the node’s action space, respectively. The second term is the confidence interval radius
obtained by Hoeffding’s inequality.

6

Under review as a conference paper at ICLR 2024

Algorithm 2 The WorTraverse function.
Input:
T h
k

1: (D, I)← (0, 1), P ← (0, 1)
2: while (D, I) = (0, 1) OR (D, I) /∈ leaf(T h

k) do
3: if Bh

D+1,2I−1 ≤ Bh
D+1,2I then

4: (D, I)← (D + 1, 2I − 1)
5: else
6: (D, I)← (D + 1, 2I)
7: end if
8: P ← P ∪ {(D, I)}
9: end while

10: return (D, I) and P

Worst Node Selection: When in the step h of episode k, if the action akh chosen by the agent is
not in A†

h(s
k
h), then the attacker will utilize the L-values to choose a node (D, I), and use aD,I to

replace akh, that is, set ãkh to aD,I . Furthermore, due to ν1ρ
D+1 < ν1ρ

D, the child node has a smaller
structural resolution, which reduces the uncertainty in the LCB estimate. Define the B-values,

Bh
D,I(k)=


Lh
D,I(k) if (D, I)∈ leaf(T h

k),

max
[
Lh
D,I(k), min

j∈{2I−1,2I}
Bh

D+1,j(k)
]

otherwise.
(8)

The B-values are designed to have a tighter lower bound on Q†
h(s

k
h, aD,I) by taking the maximum

between Lh
D,I(k) for the current node, and the minimum lower bound of the node’s two child nodes.

Based on the B-values, the attacker traverses the tree T h
k from the root node with smaller B-values

to the leaf node, and the path is represented as Ph
k . The traverse function is shown in Algorithm 2.

After one episode, the attacker begins to utilize the interaction data between the agent and the en-
vironment to update the Q̂, L, and B values of nodes. A critical step is deciding when to expand a
node into two child nodes to reduce the uncertainty that is caused by the size of the node. Intuitively,
a node should be expanded when it is chosen a particular number of times such that the radius of
the confidence interval is approximately equal to the node’s size. This occurs when the uncertainty
brought by the node’s size begins to dominate. Therefore, for node (Dh

k , I
h
k), the attacker expands

it into its two child nodes when the following equation is true, i.e.,

ν1ρ
Dh

k ≥ H − h+ 1√
2thk

√
ln
(2Mk

∑H
h=1 |T h

k |
δ1

)
, (9)

and set the L-values of the two child nodes as −∞. Essentially, because the WorTraverse func-
tion selects nodes with smaller B-values, nodes containing a−h (s

k
h) are more likely to be expanded,

thereby reducing the uncertainty caused by node size and sufficiently approximating action a−h (s
k
h).

4.3 MAIN RESULTS

Next, we present the lemmas and theorems concerning the LCBT attack in the black-box setting.
Lemma 2. Under the LCBT attack, the following confidence bound:∣∣∣Q̂h

D,I(s
k
h, aD,I)− E[Q̂h

D,I(s
k
h, aD,I)]

∣∣∣ ≤ H − h+ 1√
2Th

D,I(k)

√
ln
(2Mk

∑H
h=1 |T h

k |
δ1

)
(10)

holds for ∀h ∈ [H],m ∈ [M], (D, I) ∈ T k
h , Th

D,I(k) ∈ [1, k] with a probability at least 1 −
δ1. It should be noted that for E[Q̂h

D,I(s
k
h, aD,I)], there exists a state s0k,h ∈ Si(skh)

such that

Q†
h(s

0
k,h, aD,I) = E[Q̂h

D,I(s
k
h, aD,I)] holds.

Proof: Please refer to the supplementary.

7

Under review as a conference paper at ICLR 2024

The lemma offers a confidence bound for Q̂h
D,I(s

k
h, aD,I). According to the Algorithm 2, the

attacker traverses the tree with smaller B-values, which means Q̂h
D,I(s

k
h, aD,I) will converge to

Q†
h(s

k
h, a

−
h (s

k
h)). Lemma 3 gives the relationship between E[Q̂h

D,I(s
k
h, aD,I)] and Q†

h(s
k
h, a

−
h (s

k
h)).

Lemma 3. In the LCBT algorithm, based on the lemma 2, there exists,

E[Q̂h
D,I(s

k
h, aD,I)]−Q†

h(s
k
h, a

−
h (s

k
h)) ≤ 3 · H − h+ 1√

2Th
D,I(k)

√
ln
(2Mk

∑H
h=1 |T h

k |
δ1

)
+ Lsds. (11)

Proof: Please refer to the supplementary.

Before presenting the main theorem, it is important to note that if the attacker and the environ-
ment are considered as a single entity, the resulting environment is non-stationary. Therefore,
there may be different optimal policies corresponding to different episodes, especially at the be-
ginning of the black-box attack. As a result, the measurement of regret also undergoes changes.
In plain terms, dynamic regret measures the degree of regret resulting from comparing the pol-
icy adopted by an agent with the optimal policy of each specific episode in hindsight. On the
other hand, static regret only compares the agent’s policy with the optimal fixed policy derived
from combining all episodes. According to Fei et al. (2020),the definition of the dynamic regret
is D-Regret(K) :=

∑
k∈[K]

[
V π∗,k,k
1

(
sk1
)
− V πk,k

1

(
sk1
)]

, where π∗,k = supπ V
π,k
1

(
sk1
)

is the
optimal policy of episode k.

Our main theorem is the upper bound of cost |τ | and loss |α| in the context of using the LCBT attack
algorithm.

Theorem 2. With a probability at least 1 − δ1 − δ2, the LCBT attack will force the agent to learn
the policies in Π† with τ and α bounded by

|τ | ≤ |α| ≤
D-Regret(K) + 2H2

√
ln(1/δ2) ·D-Regret(K)

∆o
† +∆†

min − Lsds
+

18MH2 ln(2MHK2

δ1
)
∑H

h=1 |T h
K |

(∆o
† +∆†

min − Lsds)2
,

(12)

with |T h
K | = O(KE), E = log2ρ−2 2 < 1 for ∀h ∈ [H].

Proof: Please refer to the supplementary.

Remark. When D-Regret(K) ≤ MH3KE ln(2MHK2/δ1)

∆o
†+∆†

min−Lsds
, we have the upper bound

MH3KE ln(2MHK2/δ1)

(∆o
†+∆†

min−Lsds)2
. In other words, a lower attack cost may be incurred when the reinforce-

ment learning algorithm utilized by the agent works better in non-stationary environments. The
denominator of ∆o

† + ∆†
min − Lsds indicates that the attack cost is higher when the target policy

approaches the worst policy or ra is smaller.

5 NUMERICAL RESULTS

In this section, we provide numerical experiments of our oracle attack and LCBT attack on the three
popular continuous reinforcement learning algorithms, including DDPG, PPO, and TD3, in two
different environments. The experiments are run on a machine with NVIDIA Quadro RTX 5000.

Environment 1 involves a one-dimensional continuous control problem with s ∈ [−1, 1] and a ∈
[−1, 1] where a slider moves on a rail, receiving positive rewards proportional to the move distance,
with a negative reward when it falls off. Environment 2 describes a two-dimensional continuous
control problem with s ∈ [0, 8]

2 and a ∈ [−1, 1]2 where a vehicle moves on a two-dimensional
plane, receiving linear rewards proportional to the distance from the central point for every step.
The target policy π† is trained by constraining the movement range of both the slider and vehicle.
The oracle attack and LCBT attack algorithms are utilized to attack against the DDPG and PPO
algorithms in Environment 1, while attacking against DDPG and TD3 algorithms in Environment 2.
The results for each environment are depicted in Fig. 2 and Fig. 3.

8

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time steps 1e5

0

2

4

6

8

Av
er

ag
e

Ep
is

od
ic

 R
ew

ar
d

DDPG

Attack-free reward
LCBT attack reward
Oracle attack reward
Target policy reward

(a) Attack DDPG

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time steps 1e5

0

2

4

6

8

Av
er

ag
e

Ep
is

od
ic

 R
ew

ar
d

PPO

Attack-free reward
LCBT attack reward
Oracle attack reward
Target policy reward

(b) Attack PPO

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time steps 1e5

0.0

0.5

1.0

1.5

2.0

1e4

Cost of PPO Oracle attack
Cost of PPO LCBT attack
Cost of DDPG Oracle attack
Cost of DDPG LCBT attack

(c) Attack Cost

Figure 2: Reward and cost results of Environment 1. In this experiment, we set the similarity action
radius ra = 0.0625, the state sub-interval quantity M = 16, the number of steps per episode
H = 10, and the total time steps T = 3 ∗ 105. ρ is set to be 1/2. The x-axis represents the time step
t with the total time step. In (a, b), the y-axis represents the average reward of the last 10 episodes.
In (c), the y-axis represents the cumulative cost that changes over time steps.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

0

2

4

6

8

Av
er

ag
e

Ep
is

od
ic

 R
ew

ar
d

DDPG

Attack-free reward
LCBT attack reward
Oracle attack reward
Target policy reward

(a) Attack DDPG

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

0

2

4

6

8

10

Av
er

ag
e

Ep
is

od
ic

 R
ew

ar
d

TD3

Attack-free reward
LCBT attack reward
Oracle attack reward
Target policy reward

(b) Attack TD3

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

0

1

2

3

4

1e5

Cost of TD3 Oracle attack
Cost of TD3 LCBT attack
Cost of DDPG Oracle attack
Cost of DDPG LCBT attack

(c) Attack Cost

Figure 3: Reward and cost results of Environment 2. In this experiment, we set ra = 0.31, M = 81,
H = 10, and T = 106. ρ is set to be 1/

√
2.

In Fig. 2(a, b) and Fig. 3(a, b), the target policy reward (- - -) is the average reward achieved by
the π† over 103 episodes. The convergence of rewards obtained by the intelligent agent under three
different conditions (attack-free, LCBT attack, and oracle attack) is represented by the remaining
three curves. The experimental results reveal that the LCBT attack and oracle attack cause the agent
to learn policies near the π†, this indicates the effectiveness of our attack algorithm. Fig. 2(c)
and Fig. 3(c) show the cumulative cost of each attack algorithm as a function of the time steps.
Specifically, Compared with the oracle attack, the LCBT attack based on the black-box setting
requires more cost to achieve the attack target. Furthermore, the cost is sublinear to time steps in
both the oracle attack and the LCBT attack, which is in line with our theoretical expectations.

In addition, it can be observed that the convergence speed of the algorithm in environment 2 is
slower compared to environment 1. This is because environment 2 has higher complexity, requiring
the attacker to take more steps to approach the worst action, thus increasing the non-stationarity of
the environment. Furthermore, from Fig. 3(c), it can be seen that the corresponding attack cost
of TD3 is smaller, indicating that TD3 algorithm has a stronger ability to deal with non-stationary
environments, resulting in a smaller D-Regret. Due to the limited space, more results can be found
in the appendix.

6 CONCLUSION

In this study, we investigated the action-manipulation attack to disrupt reinforcement learning in con-
tinuous state and action spaces. We defined the attack model based on the attacker’s goal, knowl-
edge, and capability. We investigated the impact of two attack models, the oracle and black-box
attacks, that vary in the attacker’s level of knowledge. Our theoretical analysis and empirical exper-
iments validate the efficacy of the proposed black-box attack method in forcing the intelligent agent
to follow the attacker’s target policies at a sublinear cost. Additionally, the black-box attack LCBT
can achieve a result approaching the oracle attack as runtime increases. In future research, we will
develop a robust reinforcement learning algorithm to resist the examined attacks and enhance the
defense mechanisms.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement learning to policy induc-
tion attacks. In Machine Learning and Data Mining in Pattern Recognition: 13th International
Conference, MLDM 2017, New York, NY, USA, July 15-20, 2017, Proceedings 13, pp. 262–275.
Springer, 2017.

Adith Boloor, Xin He, Christopher Gill, Yevgeniy Vorobeychik, and Xuan Zhang. Simple physical
adversarial examples against end-to-end autonomous driving models. In 2019 IEEE International
Conference on Embedded Software and Systems (ICESS), pp. 1–7. IEEE, 2019.

Badr Ben Elallid, Nabil Benamar, Abdelhakim Senhaji Hafid, Tajjeeddine Rachidi, and Nabil Mrani.
A comprehensive survey on the application of deep and reinforcement learning approaches in
autonomous driving. Journal of King Saud University-Computer and Information Sciences, 2022.

Yingjie Fei, Zhuoran Yang, Zhaoran Wang, and Qiaomin Xie. Dynamic regret of policy optimization
in non-stationary environments. Advances in Neural Information Processing Systems, 33:6743–
6754, 2020.

Harrison Foley, Liam Fowl, Tom Goldstein, and Gavin Taylor. Execute order 66: Targeted data
poisoning for reinforcement learning. arXiv preprint arXiv:2201.00762, 2022.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial attacks
on neural network policies. arXiv preprint arXiv:1702.02284, 2017.

Yunhan Huang and Quanyan Zhu. Deceptive reinforcement learning under adversarial manipula-
tions on cost signals. In Decision and Game Theory for Security: 10th International Conference,
GameSec 2019, Stockholm, Sweden, October 30–November 1, 2019, Proceedings 10, pp. 217–
237. Springer, 2019.

Anoop Jeerige, Doina Bein, and Abhishek Verma. Comparison of deep reinforcement learning ap-
proaches for intelligent game playing. In 2019 IEEE 9th Annual Computing and Communication
Workshop and Conference (CCWC), pp. 0366–0371. IEEE, 2019.

Xian Yeow Lee, Sambit Ghadai, Kai Liang Tan, Chinmay Hegde, and Soumik Sarkar. Spatiotem-
porally constrained action space attacks on deep reinforcement learning agents. In Proceedings
of the AAAI conference on artificial intelligence, volume 34, pp. 4577–4584, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Guanlin Liu and Lifeng Lai. Provably efficient black-box action poisoning attacks against reinforce-
ment learning. Advances in Neural Information Processing Systems, 34:12400–12410, 2021.

Yuzhe Ma, Kwang-Sung Jun, Lihong Li, and Xiaojin Zhu. Data poisoning attacks in contextual
bandits. In Decision and Game Theory for Security: 9th International Conference, GameSec
2018, Seattle, WA, USA, October 29–31, 2018, Proceedings 9, pp. 186–204. Springer, 2018.

Yuzhe Ma, Xuezhou Zhang, Wen Sun, and Jerry Zhu. Policy poisoning in batch reinforcement
learning and control. Advances in Neural Information Processing Systems, 32, 2019.

Rubén Majadas, Javier Garcı́a, and Fernando Fernández. Disturbing reinforcement learning agents
with corrupted rewards. arXiv preprint arXiv:2102.06587, 2021.

Xinlei Pan, Chaowei Xiao, Warren He, Shuang Yang, Jian Peng, Mingjie Sun, Jinfeng Yi, Zijiang
Yang, Mingyan Liu, Bo Li, et al. Characterizing attacks on deep reinforcement learning. arXiv
preprint arXiv:1907.09470, 2019.

10

Under review as a conference paper at ICLR 2024

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Yanchao Sun, Da Huo, and Furong Huang. Vulnerability-aware poisoning mechanism for online rl
with unknown dynamics. arXiv preprint arXiv:2009.00774, 2020.

Atanas Tanev, Svetlana Pavlitskaya, Joan Sigloch, Arne Roennau, Ruediger Dillmann, and J Marius
Zollner. Adversarial black-box attacks on vision-based deep reinforcement learning agents. In
2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR), pp. 177–181.
IEEE, 2021.

Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and appli-
cations in continuous control. In International Conference on Machine Learning, pp. 6215–6224.
PMLR, 2019.

Joel Tropp. Freedman’s inequality for matrix martingales. Electronic Communications in Probabil-
ity, 16(none):262 – 270, 2011. doi: 10.1214/ECP.v16-1624. URL https://doi.org/10.
1214/ECP.v16-1624.

Young Wu, Jermey McMahan, Xiaojin Zhu, and Qiaomin Xie. Reward poisoning attacks on offline
multi-agent reinforcement learning. arXiv preprint arXiv:2206.01888, 2022.

Hang Xu, Rundong Wang, Lev Raizman, and Zinovi Rabinovich. Transferable environment poi-
soning: Training-time attack on reinforcement learning. In Proceedings of the 20th international
conference on autonomous agents and multiagent systems, pp. 1398–1406, 2021.

Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Wojciech Matusik.
Prediction-guided multi-objective reinforcement learning for continuous robot control. In In-
ternational conference on machine learning, pp. 10607–10616. PMLR, 2020.

Chao-Han Huck Yang, Jun Qi, Pin-Yu Chen, Yi Ouyang, I-Te Danny Hung, Chin-Hui Lee, and Xi-
aoli Ma. Enhanced adversarial strategically-timed attacks against deep reinforcement learning. In
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3407–3411. IEEE, 2020.

Huan Zhang, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. Robust reinforcement learning on
state observations with learned optimal adversary. arXiv preprint arXiv:2101.08452, 2021.

Xuezhou Zhang, Yuzhe Ma, Adish Singla, and Xiaojin Zhu. Adaptive reward-poisoning attacks
against reinforcement learning. In International Conference on Machine Learning, pp. 11225–
11234. PMLR, 2020.

APPENDIX

The organization of the appendix is as follows. Firstly, We will introduce the experimental environ-
ments in detail in Section A. Then we will show the proofs of Lemma 1 and Theorem 1 in Section
B and C respectively. The proofs of Lemma 2 and Lemma 3 are represented in Section D and E,
respectively. In section F, the proof of Theorem 2 is represented. In Section G, we present additional
results. Finally, in Section H, we will have a discussion. Table 1 summarizes the notations used in
our paper.

A EXPERIMENTAL SETTINGS

Environment 1. The objective of this environment, as depicted in Fig. 4, is to control the slider to
slide on the rod and maximize the reward within H = 10 steps. Specifically, for any h ∈ [H], the
state space s ∈ [−1, 1] represents the current position of the slider on the rod, where 0 represents
the center point of the rod. The action space a ∈ [−1, 1] represents the base sliding distance, with
negative values signifying leftward movement and positive values signifying rightward movement.
The final sliding distance d = a ∗ 2, and a reward of |a| is obtained for each step taken. If the
slider falls off the rod (i.e., the slider’s position coordinate is outside of [−1, 1]), the round of the

11

https://doi.org/10.1214/ECP.v16-1624
https://doi.org/10.1214/ECP.v16-1624

Under review as a conference paper at ICLR 2024

Table 1: Notation Table
Notation Meaning

S The state space

A The action space

H The number of total steps in each episode

µ The initial state distribution

K The number of total episodes

skh The state at step h in episode k

akh The action taken by the agent at step h in episode k

ãkh The action taken by the attacker and submitted to the environment at step h in episode k

rkh The reward generated at step h in episode k

ls The dissimilarity function of the state space

la The dissimilarity function of the action space

diams(D) The largest difference of all the states in set D ⊆ S w.r.t ls
diama(P) The largest difference of all the actions in set P ⊆ A w.r.t la

π† The target policy specified by the attacker

bk The behavior policy of episode k

π†
h(s) The target action for state s at step h

ra The radius specified by the attacker

A†
h(s) The target action space, which is defined as {a : la(a, π

†
h(s)) ≤ ra}

Π† The set of target policies that produce actions within the target action space and are superior to policy π†

τ The step set whose element is the step when the attacker launches the attack

α The step set whose element is the step when action akh does not belong to the target action space A†
h(s

k
h)

V †
h (s) The value which is equivalent to V π†

h (s)

Q†
h(s, a) The value which is equivalent to Qπ†

h (s, a)

a−h (s) The worst action for a given target policy π† and state s at step h

∆o
† The minimum gap between the policies πo and π†

∆†
min The minimum gap between the policy π† and the worst action

T h
k The action cover tree that has been built by the attacker until the beginning of episode k w.r.t step h

Ph
k The traverse path at step h in episode k

|T h
k | The node number of tree T h

k

ν1 The maximum distance w.r.t. la in the action space

ρ The reduction ratio of nodes in T h
k at different depth

(D, I) The node at depth D with index I in action cover trees

aD,I The represented action of node (D, I)

M The number of total subintervals of the state space

Sm A subinterval of the state space with m ∈ [1,M]

i(s) The number of the subinterval to which state s belongs, i.e., s ∈ Si(s).

ds The diameter of subintervals of the state space

Ls The coefficient of ds

ϕh
D,I(k)

The set of episodes in which the current state belonged to subinterval Si(skh)
and node (D, I) was selected

by the attacker at step h until the beginning of the episode k

γh
D,I(k)

The latest episode before k in which the current state belonged to
the subinterval Si(skh)

and node (D, I) was selected

Th
D,I(k) The value is equal to |ϕh

D,I(k)|

Q̂h
D,I(s

k
h, aD,I) The calculated value used to evaluate Q†

h(s
k
h, aD,I)

Lh
D,I(k) The lower confidence bound of node (D, I)

Bh
D,I(k) The tighter lower confidence bound of node (D, I)

12

Under review as a conference paper at ICLR 2024

game ends immediately and a reward of −1 is received. The slider’s initial position s1 is arbitrarily
set between −0.7 and 0.7. Our target policy π† for the slider is to move only within the interval
[−0.7, 0.7]. We generate the target policy model by training and obtaining the optimal policy within
the limited interval [−0.7, 0.7] through augmentation of the environment constraints. The optimal
policy is then employed to act as the target policy. Obviously, π† is not the globally optimal policy.

Environment 2. As depicted in Fig. 5, the objective of this environment is to control a vehicle to
move on a two-dimensional plane surrounded by a boundary and obtain maximum reward within
H = 10 steps. For any h ∈ [H], the state space of Environment 2 includes the current two-
dimensional position of the vehicle, denoted as s = (s1, s2) ∈ [0, 8]

2. The action space, denoted as
a = (a1, a2) ∈ [−1, 1]2, denotes the distance of the vehicle’s movement. The vehicle’s next position
is (s1 + a1, s2 + a2) and the reward gained is linearly proportional to the distance d between the
vehicle and the center point (the yellow dot at [4, 4]). The closer the distance, the higher the reward.
The initial position s1 of the vehicle is at any point outside the red circle (d > 1). Our target policy
π† for the vehicle is to move only outside the red circle. Similarly, we train and obtain the optimal
policy that only moves outside the red circle by increasing the environmental constraints, which
serves as the target policy. Obviously, π† is not the globally optimal policy.

Environment 3. Environment 3 is a five-dimensional version of environment 3, where the goal
remains the same: to control an object to move as close as possible to the center point within H = 10

steps to obtain maximum reward. The state space is denoted as s = (s1, s2, s3, s4, s5) ∈ [0, 8]
4, the

action space as a = (a1, a2, a3, a4, a5) ∈ [−1, 1]5, and the next state is given by (s1 + a1, s2 +
a2, s3 + a3, s4 + a4, s5 + a5). The center point is located at [4, 4, 4, 4, 4]. In this environment, the
Euclidean distance is used as the metric. The attacker’s target policy π† is defined as getting as close
to the center point as possible without entering the range less than 1 unit distance from the center
point.

Figure 4: Environment 1. The objective of this environment is to control the slider to slide on the rod

Figure 5: Environment 2. The objective of this environment is to control a vehicle to move on a
two-dimensional plane

13

Under review as a conference paper at ICLR 2024

B THE PROOF OF LEMMA 1

In the action-manipulation settings, the attacker sits between the agent and the environment. We
can regard the combination of the agent and the environment as a new environment. For the new
environment, we represent the Q-value and V -value as Q and V . Assume that the attacker selects
actions according to the target policy π†, and the attacker will not launch the attack, then we have

Q
†
h(s, π

†
h(s)) = Q†

h(s, π
†
h(s)) = V †

h (s). (13)

If the attacker selects an action a /∈ A†
h(s), the attacker will change it to a−h (s), then we have,

Q
†
h(s, π

−
h (s)) = Q†

h(s, a
−
h (s))

(i)
< Q†

h(s, π
†
h(s))

= V †
h (s)

(ii)
= Q

†
h(s, π

†
h(s)),∀π

− : π−
h (s) /∈ A†

h(s), h ∈ [H],

where (i) is because ∆†
min > 0, (ii) is according to (13). Then we have, i.e.,

Q
†
h(s, π

−
h (s)) < V †

h (s) ≤ V π
h (s)

(i)
= V

π

h(s), for ∀π ∈ Π†, (14)

where (i) is because when the agent follows the policies π ∈ Π†, the attacker will not launch the
attack. The proof is completed.

C PROOF OF THEOREM 1

Define ∆
k

h = V
o

h(s
k
h) − Q

o

h(s
k
h, a

k
h). From Lemma 1 and the definition of π0 =

supπ∈Π† V π
h (s),∀s, h, in the observation of the agent under the oracle attack, πo is the optimal

policy, then the regret of the agent’s performance can be defined as

Regret(K) =

K∑
k=1

[V
∗
1(s

k
1)− V

πk

1 (sk1)]

=

K∑
k=1

[V
o

1(s
k
1)− V

πk

1 (sk1)], (15)

where πk is the policy followed by the agent for each episode k.

For episode k,

V
o

1(s
k
1)− V

πk

1 (sk1)

= V
o

1(s
k
1)− Ea∼πk

1 (·|sk1)[Q
o

1(s
k
1 , a)] + Ea∼πk

1 (·|sk1)[Q
o

1(s
k
1 , a)]− V

πk

1 (sk1)

= ∆
k

1 + rk1 + Es′∼P(·|sk1 ,a∼πk
1 (·|sk1))V

o

2(s
′)− (rk1 + Es′∼P(·|sk1 ,a∼πk

1 (·|sk1))V
πk

2 (s′))

= ∆
k

1 + Es′∼P(·|sk1 ,a∼πk
1 (·|sk1))[V

o

2(s
′)− V

πk

2 (s′)]

= ∆
k

1 + Es′∼P(·|sk1 ,a∼πk
1 (·|sk1))

[
V

o

2(s
′)− Es′′∼P(·|s′,a′∼πk

2 (·|s′))[Q
o

2(s
′, a′)] + Es′′∼P(·|s′,a′∼πk

2 (·|s′))[Q
o

2(s
′, a′)]− V

πk

2 (s′)
]

= ∆
k

1 + Es′∼P(·|sk1 ,a∼πk
1 (·|sk1))[∆

k

2]+

Es′∼P(·|sk1 ,a∼πk
1 (·|sk1))

[
rk2 + Es′′∼P(·|s′,a′∼πk

2 (·|s′))V
o

3(s
′′)− rk2 − Es′′∼P(·|s′,a′∼πk

2 (·|s′))V
πk

3 (s′′)
]

= ∆
k

1 + Es′∼P(·|sk1 ,a∼πk
1 (·|sk1))[∆

k

2] + Es′∼P(·|sk1 ,a∼πk
1 (·|sk1))

[
Es′′∼P(·|s′,a′∼πk

2 (·|s′))[V
o

3(s
′′)− V

πk

3 (s′′)]
]

= ... = E[
H∑

h=1

∆
k

h|Fk
1]

where Fk
h represents the σ-field generated by all the random variables until episode k, step h begins.

So there exists
K∑

k=1

(
V

o

1(s
k
1)− V

πk

1 (sk1)
)
=

K∑
k=1

E[
H∑

h=1

∆
k

h|Fk
1] = E[

K∑
k=1

H∑
h=1

∆
k

h|Fk
1]. (16)

14

Under review as a conference paper at ICLR 2024

Next, we will show that with a probability of at least 1− δ2, we have

K∑
k=1

H∑
h=1

∆
k

h ≤
K∑

k=1

(
V

o

1(s
k
1)− V

πk

1 (sk1)
)
+ 2H2

√√√√ln(1/δ2)

K∑
k=1

(
V

o

1(s
k
1)− V

πk

1 (sk1)
)
. (17)

Since E[
∑H

h=1 ∆
k

h|Fk
1] = V

o

1(s
k
1)− V

πk

1 (sk1), we can regard

Yk :=

k∑
i=1

(
H∑

h=1

∆
k

h −
(
V

o

1(s
k
1)− V

πk

1 (sk1)

))
(18)

as a martingale with the difference sequence {Xk}Kk=1, which is

Xk :=

H∑
h=1

∆
k

h −
(
V

o

1(s
k
1)− V

πk

1 (sk1)

)
. (19)

And we have the difference sequence bounded, i.e., |Xk| ≤ H2,∀k ∈ [1,K]. Define the predictable
quadratic variation process of the martingale: WK :=

∑K
k=1 E[X2

k |Fk
1], with

WK ≤
K∑

k=1

E

[(H∑
h=1

∆
k

h

)2|Fk
1

]
≤ H2

K∑
k=1

E

[
H∑

h=1

∆
k

h|Fk
1

]
= H2

K∑
k=1

(
V

o

1(s
k
1)− V

πk

1 (sk1)

)
.

(20)
By Freeman’s inequality Tropp (2011), we have

P

 K∑
k=1

Xk > 2H2

√√√√ln(1/δ2)

K∑
k=1

(
V

†
1(s

k
1)− V

πk

1 (sk1)
)

≤ exp

− 4H4 ln(1/δ2)
∑K

k=1

(
V

†
1(s

k
1)− V

πk

1 (sk1)
)
/2

WK +H2 · 2H2

√
ln(1/δ2)

∑K
k=1

(
V

†
1(s

k
1)− V

πk

1 (sk1)
)
/3


≤ exp{− ln(1/δ2)} = δ2.

Under the oracle attack, when the agent chooses an action satisfying ah ∈ A†
h(sh), the attacker

does nothing, and we have Q
o

h(s
k
h, a

k
h) = Qo

h(s
k
h, a

k
h) ≤ V o

h (s
k
h). Otherwise, the attacker launches

the attack, and the action akh will be replaced by a−h (s
k
h). In other words, we have Q

o

h(s
k
h, a

k
h) =

Q†
h(s

k
h, a

−
h (s

k
h)). Then, we can obtain

K∑
k=1

H∑
h=1

∆
k

h

=

K∑
k=1

H∑
h=1

(
V

o

h(s
k
h)−Q

o

h(s
k
h, a

k
h)
)
=

K∑
k=1

H∑
h=1

(
V o
h (s

k
h)−Q

o

h(s
k
h, a

k
h)
)

=
∑

(k,h)/∈α

V o
h (s

k
h)−Qo

h(s
k
h, a

k
h) +

∑
(k,h)∈α

V o
h (s

k
h)−Q†

h(s
k
h, a

−
h (s

k
h))

≥
∑

(k,h)∈α

V o
h (s

k
h)−Q†

h(s
k
h, a

−
h (s

k
h))

=
∑

(k,h)∈α

V o
h (s

k
h)− V †

h (s
k
h) + V †

h (s
k
h)−Q†

h(s
k
h, a

−
h (s

k
h))

≥
∑

(k,h)∈α

∆o
† +∆†

min

= |α|(∆o
† +∆†

min).

15

Under review as a conference paper at ICLR 2024

Lastly, we have

|α| ≤
∑K

k=1

∑H
h=1 ∆

k

h

∆o
† +∆†

min

(i)

≤
Regret(K) + 2H2

√
ln(1/δ2) · Regret(K)

∆o
† +∆†

min

,

(i) is obtained by (17). With |τ | ≤ |α|, the proof is completed.

D PROOF OF LEMMA 2

Firstly, we will transform Q̂-value into a non-recursive form, i.e.,

Q̂h
D,I(s

k
h, aD,I)

= (1− 1

Th
D,I(k)

)Q̂h
D,I(s

γh
D,I(k)

h , aD,I) +
1

Th
D,I(k)

(rkh +Gk
h+1:H+1 · ρkh+1:H+1)

=
Th
D,I(k)− 1

Th
D,I(k)

[
(1− 1

Th
D,I(k)− 1

)Q̂h
D,I(s

γh
D,I(γ

h
D,I(k))

h , aD,I)

+
1

Th
D,I(k)− 1

(r
γh
D,I(k)

h +G
γh
D,I(k)

h+1:H+1 · ρ
γh
D,I(k)

h+1:H+1)
]
+

1

Th
D,I(k)

(rkh +Gk
h+1:H+1 · ρkh+1:H+1)

= ... =
1

Th
D,I(k)

k∑
i=1

I{sih ∈ Si(skh)
, aih = aD,I}(rih +Gi

h+1:H+1 · ρih+1:H+1).

Then we have

E
[
Q̂h

D,I(s
k
h, aD,I)

]
=

1

Th
D,I(k)

k∑
i=1

I{sih ∈ Si(skh)
, aih = aD,I}E

[
rih +Gi

h+1:H+1 · ρih+1:H+1

]
=

1

Th
D,I(k)

k∑
i=1

I{sih ∈ Si(skh)
, aih = aD,I}Q†

h(s
i
h, a

i
h).

Define the event:

ξk =
{
∀Th

D,I(k) ∈ [1, k], h ∈ [H],m ∈ [M], (D, I) ∈ T h
k ,∣∣∣Q̂h

D,I(s
k
h, aD,I)− E

[
Q̂h

D,I(s
k
h, aD,I)

]∣∣∣ ≤ β
(
k, Th

D,I(k), δ1
) }

,

where β-function is calculated by

β (k,N, δ) =
H − h+ 1√

2N

√√√√ln

(
2Mk

∑H
h=1 |T h

k |
δ

)
. (21)

16

Under review as a conference paper at ICLR 2024

Define ξck as the opposite event of ξk, then, we have

P(ξck) =
H∑

h=1

M∑
m=1

∑
(D,I)∈T h

k

k∑
Th
D,I(k)=1

P
(∣∣∣Q̂h

D,I(s
k
h, aD,I)− E

[
Q̂h

D,I(s
k
h, aD,I)

]∣∣∣ > β(k, Th
D,I(k), δ1)

)
(i)
<

H∑
h=1

M∑
m=1

∑
(D,I)∈T h

k

k∑
Th
D,I(k)=1

2 exp

[
−
2β(k, Th

D,I(k), δ1)
2Th

D,I(k)
2

Th
D,I(k)(H − h+ 1)2

]

=

H∑
h=1

M∑
m=1

∑
(D,I)∈T h

k

k∑
Th
D,I(k)=1

2 exp

[
−
2β(k, Th

D,I(k), δ1)
2Th

D,I(k)

(H − h+ 1)2

]

=

H∑
h=1

M∑
m=1

∑
(D,I)∈T h

k

k∑
Th
D,I(k)=1

2 exp

[
− ln

(
2Mk

∑H
h=1 |T h

k |
δ1

)]

=

H∑
h=1

M∑
m=1

∑
(D,I)∈T h

k

k∑
Th
D,I(k)=1

2 · δ1

2Mk
∑H

h=1 |T h
k |

= δ1,

where (i) is using Hoeffding’s inequality. So there exists P(ξk) ≥ 1− δ1, the proof is completed.

E PROOF OF LEMMA 3

From the traverse function, along the path Ph
k , we have

Bh
D,I(k) = max

[
Lh
D,I(k), min

j∈{2I−1,2I}
Bh

D+1,j(k)

]
(22)

≥ min
j∈{2I−1,2I}

Bh
D+1,j(k)

= Bh
D+1,I′(k)

(
(D + 1, I ′) ∈ Ph

k

)
.

We make an assumption that at the step h in episode k, the attacker launches the attack and chooses
a node (D, I) along the path Ph

k , then we have

Bh
D′,I′(k) ≥ Bh

D,I(k) ≥ Lh
D,I(k)

(
D′ < D, (D′, I ′) ∈ Ph

k

)
. (23)

Because the root node includes a−h (s
k
h), so in the path Ph

k , except (D, I), there must exist a node
(Dmin, Imin)(Dmin < D) containing action a−h (s

k
h). So we have

Bh
Dmin,Imin

(k) ≥ Bh
D,I(k) ≥ Lh

D,I(k) (24)

established. Otherwise, from the definition of Lh
D,I(t), we can obtain

Lh
Dmin,Imin

(k) = Q̂h
Dmin,Imin

(skh, aDmin,Imin
)− β

(
k, Th

Dmin,Imin
(k), δ1

)
− Lsds − ν1ρ

Dmin

(i)

≤ E
[
Q̂h

Dmin,Imin
(skh, aDmin,Imin

)
]
− Lsds − ν1ρ

Dmin

≤ Q†
h(s

k
h, aDmin,Imin

)− ν1ρ
Dmin

≤ Q†
h(s

k
h, a

−
h (s

k
h)),

where (i) is under Lemma 2. We assume that a leaf node (Dm, Im) contains action a−h (s
k
h), there

exists
Bh

Dm,Im(k) = Lh
Dm,Im(k) ≤ Q†

h(s
k
h, a

−
h (s

k
h)),

and obviously, all the nodes containing action a−h (s
k
h) with H > Hm are descendants of (Dm, Im).

Now by propagating the upper bound of nodes containing a−h (s
k
h), i.e., Q†

h(s
k
h, a

−
h (s

k
h)) backward

17

Under review as a conference paper at ICLR 2024

from (Dm, Im) to (Dmin, Imin) through (22), we can show that Q†
h(s

k
h, a

−
h (s

k
h)) is a valid upper

bound of Bh
Dmin,Imin

.

Then from (24), we have, i.e.,

Q†
h(s

k
h, a

−
h (s

k
h)) ≥ Bh

Dmin,Imin
(k) ≥ Bh

D,I(k) ≥ Lh
D,I(k)

= Q̂h
D,I(s

k
h, aD,I)− β(k, Th

D,I(k), δ1)− Lsds − ν1ρ
D

(i)

≥ E
[
Q̂h

D,I(s
k
h, aD,I)

]
− 2β(k, Th

D,I(k), δ1)− Lsds − ν1ρ
D

(ii)

≥ E
[
Q̂h

D,I(s
k
h, aD,I)

]
− 3β(k, Th

D,I(k), δ1)− Lsds, (25)

(i) is under Lemma 2, and (ii) is because the selected node is always a leaf node, which satisfies
β(k, Th

D,I(k), δ1) > ν1ρ
D.

Based on (25), we can obtain

E
[
Q̂h

D,I(s
k
h, aD,I)

]
−Q†

h(s
k
h, a

−
h (s

k
h)) ≤ 3β(k, Th

D,I(k), δ1) + Lsds. (26)

The proof is completed.

F PROOF OF THEOREM 2

Since the attacker will not launch the attack when the agent chooses an action satisfying ah ∈
A†

h(sh), we have Q
o

h(s
k
h, a

k
h) = Qo

h(s
k
h, a

k
h) ≤ V o

h (s
k
h). Otherwise, the attacker selects a

node (D, I) according to the Q̂-values, and replaces akh to the corresponding action aD,I , i.e.,
Q

o

h(s
k
h, a

k
h) = E[Q̂h

D,I(s
k
h, aD,I)]. Then we have

K∑
k=1

H∑
h=1

∆
k

h

=

K∑
k=1

H∑
h=1

(
V

o

h(s
k
h)−Q

o

h(s
k
h, a

k
h)
)
=

K∑
k=1

H∑
h=1

(
V o
h (s

k
h)−Q

o

h(s
k
h, a

k
h)
)

=
∑

(k,h)/∈α

V o
h (s

k
h)−Qo

h(s
k
h, a

k
h) +

∑
(k,h)∈α

V o
h (s

k
h)− E[Q̂h

D,I(s
k
h, aD,I)]

≥
∑

(k,h)∈α

V o
h (s

k
h)− E[Q̂h

D,I(s
k
h, aD,I)]

(i)

≥
∑

(k,h)∈α

V o
h (s

k
h)−Q†

h(s
k
h, a

−
h (s

k
h))− 3β(k, Th

D,I(k), δ1)− Lsds

=
∑

(k,h)∈α

V o
h (s

k
h)− V †

h (s
k
h) + V †

h (s
k
h)−Q†

h(s
k
h, a

−
h (s

k
h))− 3β(k, Th

D,I(k), δ1)− Lsds

≥
∑

(k,h)∈α

∆o
† +∆†

min − 3β(k, Th
D,I(k), δ1)− Lsds

= |α|(∆o
† +∆†

min − Lsds)− 3
∑

(k,h)∈α

β(k, Th
D,I(k), δ1), (27)

where (i) is under Lemma 3. Next, we analyze
∑

(k,h)∈α β(k, Th
D,I(k), δ1). Define Nh

D,I(Sm) :=

{γ : γ ≤ K, sγh ∈ Sm, aγh = aD,I} as the total number of episodes that in step h, the corresponding
state belongs to subinterval Sm and the attacker launches the attack and selects node (D, I).

18

Under review as a conference paper at ICLR 2024

∑
(k,h)∈α

1√
Th
D,I(k)

=

H∑
h=1

M∑
m=1

∑
(D,I)∈T h

K

Nh
D,I(Sm)∑
N=1

1√
N

≤
H∑

h=1

M∑
m=1

∑
(D,I)∈T h

K

∫ Nh
D,I(Sm)

1

1√
N

dN

≤
H∑

h=1

M∑
m=1

∑
(D,I)∈T h

K

2
√
Nh

D,I(Sm)

= M ·
H∑

h=1

∣∣T h
K

∣∣ · 1

M ·
H∑

h=1

∣∣T h
K

∣∣
H∑

h=1

M∑
m=1

∑
(D,I)∈T h

K

2
√
Nh

D,I(Sm)

≤ 2M ·
H∑

h=1

∣∣T h
K

∣∣
√√√√∑H

h=1

∑M
m=1

∑
(D,I)∈T h

K
Nh

D,I(Sm)

M ·
∑H

h=1

∣∣T h
K

∣∣
= 2

√√√√√M ·
H∑

h=1

∣∣T h
K

∣∣ H∑
h=1

M∑
m=1

∑
(D,I)∈T h

K

Nh
D,I(Sm)

= 2

√√√√M

H∑
h=1

∣∣T h
K

∣∣ · |α|.
Then combine (27), we have
K∑

k=1

H∑
h=1

∆
k

h ≥ |α|(∆o
† +∆†

min − Lsds)− 3
∑

(k,h)∈α

β(k, Th
D,I(k), δ1)

= |α|(∆o
† +∆†

min − Lsds)− 3
∑

(k,h)∈α

H − h+ 1√
2Th

D,I(k)

√√√√ln

(
2Mk

∑H
h=1 |T h

k |
δ1

)

≥ |α|(∆o
† +∆†

min − Lsds)− 3
∑

(k,h)∈α

H − h+ 1√
2Th

D,I(k)

√√√√ln

(
2MK

∑H
h=1 |T h

K |
δ1

)

≥ |α|(∆o
† +∆†

min − Lsds)− 3(H − h+ 1) ·

√
ln

(
2MK ·HK

δ1

)
·
√
2 ·

√√√√M
H∑

h=1

∣∣T h
K

∣∣ · |α|
= |α| (∆o

† +∆†
min − Lsds)− 3

√
|α|(H − h+ 1) ·

√
ln

(
2MK ·HK

δ1

)
·

√√√√2M ·
H∑

h=1

∣∣T h
K

∣∣.
(28)

Use (17) to bound
∑K

k=1

∑H
h=1 ∆

k

h, i.e.,

K∑
k=1

H∑
h=1

∆
k

h ≤
K∑

k=1

(
V

o

1(s
k
1)− V

πk

1 (sk1)

)
+ 2H2

√√√√ln(1/δ2)

K∑
k=1

(
V

o

1(s
k
1)− V

πk

1 (sk1)
)

(i)

≤
K∑

k=1

(
V

π∗,k,k

1 (sk1)− V
πk,k

1 (sk1)

)
+ 2H2

√√√√ln(1/δ2)

K∑
k=1

(V
π∗,k,k

1 (sk1)− V
πk,k

1 (sk1))

= D-Regret(K) + 2H2
√
log(1/δ2)D-Regret(K), (29)

19

Under review as a conference paper at ICLR 2024

where π∗,k = supπ V
π,k
1 (sk1) is the optimal policy of episode k. The reason for (i) is that because

of the existence of the attacker, the environment is non-stationary in the observation of the agent.
Combine (28) and (29), we can obtain

D-Regret(K) + 2H2
√

ln(1/δ2)D-Regret(K) ≥

|α| (∆o
† +∆†

min − Lsds)− 3
√
|α|(H − h+ 1) ·

√
ln

(
2MK ·HK

δ1

)
·

√√√√2M ·
H∑

h=1

∣∣T h
K

∣∣.
(30)

Finally, we can obtain

|α| ≤
D-Regret(K) + 2H2

√
ln(1/δ2) ·D-Regret(K)

∆o
† +∆†

min − Lsds
+

18MH2 ln(2MHK2

δ1
)
∑H

h=1 |T h
K |

(∆o
† +∆†

min − Lsds)2
,

(31)
with |τ | ≤ |α|, the proof is completed.

F.1 THE NODE NUMBER OF THE COVER TREE

In this subsection, we bound the node number of the cover tree, i.e., |T h
K | for ∀h ∈ [1, H].

A node (D, I) will be expanded when it satisfies the condition

ν1ρ
D ≥ H − h+ 1√

2Th
D,I(k)

·

√√√√ln

(
2Mk ·

∑H
h=1

∣∣T h
k

∣∣
δ1

)
.

We make some transformations, i.e.,

Th
D,I(k) ≥

(H − h+ 1)
2

2ν21ρ
2D

· ln

(
2Mk ·

∑H
h=1

∣∣T h
k

∣∣
δ1

)

>
(H − h+ 1)

2

2ν21ρ
2D

· ln
(
2M · 3H

δ1

)
=

(H − h+ 1)
2

2ν21ρ
2D

· ln
(
6MH

δ1

)
.

From the inequality above, we can see that as the depth D increases, the Th
D,I(k)-value which can

make the inequality above established will also increase, so it’s obvious that when the tree T h
k is a

complete binary tree, its total number of nodes is the most. Based on this, we assume that the depth
is Dm, i.e., the nodes at depth 1, 2, ..., Dm − 1 have been expanded, then we have

K ≥
Dm−1∑
D=1

2D · (H − h+ 1)
2

2ν21ρ
2D

· ln
(
6MH

δ1

)

=

Dm−1∑
D=1

(
2ρ−2

)D · (H − h+ 1)
2

2ν21
· ln
(
6MH

δ1

)

=
(H − h+ 1)

2

ν21
· ln
(
6MH

δ1

)
·
(
2ρ−2

)Dm−1 − 1

2− ρ2
.

Then we can get the upper bound of Dm, i.e.,

Dm ≤ log2ρ−2

[
K · ν21 ·

(
2− ρ2

)
(H − h+ 1)

2 · ln (6MH/δ1)
+ 1

]
+ 1. (32)

Through 2Dm+1 − 1, we get the upper bound of the node number of tree T h
K , i.e.,

∣∣T h
K

∣∣ ≤ 4

[
K · ν21 ·

(
2− ρ2

)
(H − h+ 1)

2 · ln (6MH/δ1)
+ 1

]log2ρ−22

= O
(
K

log
2ρ−22)

. (33)

20

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Episodes 1e4

0.0

0.5

1.0

1.5

2.0

2.5

N
od

e
nu

m
be

rs

1e2 Environment 1

Node numbers of PPO LCBT attack
Node numbers of DDPG LCBT attack

(a) Attack DDPG

0.0 0.2 0.4 0.6 0.8 1.0
Episodes 1e5

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
od

e
nu

m
be

rs

1e3 Environment 2

Node numbers of TD3 LCBT attack
Node numbers of DDPG LCBT attack

(b) Attack PPO

0.0 0.2 0.4 0.6 0.8 1.0
Episodes 1e5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
od

e
nu

m
be

rs

1e4 Environment 3

Node numbers of TD3 LCBT attack
Node numbers of DDPG LCBT attack

(c) Attack Cost

Figure 6: The total number of nodes of the cover trees.

Note that because 0 < ρ < 1, we always have log2ρ−2 2 < 1. At the same time, based on the
characteristics of the LCBT algorithm itself, it is highly unlikely to have a complete binary tree due
to the algorithm’s preference for expanding nodes containing action a−h (s

k
h), with only one such

node in the same depth.

In Fig. 6, the graph shows the relationship between the number of episodes and the total number of
nodes of all the cover trees, i.e.,

∑H
h=1 |T h

k |. The x-axis indicates the number of episodes during
the training phase, while the y-axis represents the total number of nodes of all the cover trees after
each corresponding episode. It is evident that compared to the increase in the number of episodes,
the increase in the number of nodes is slow, and the final number of nodes is far smaller than the
number of total episodes. In addition, The number of nodes within all the cover trees is not primarily
impacted by the algorithm chosen by the agent, but instead depends more upon the environment in
which the agent is placed, as well as the hyperparameters applied to the LCBT attack algorithm.

G ADDITIONAL RESULTS

We measured the percentage of target actions executed by the attacked policy in identical states as a
metric for quantifying the similarity between the attacked and target policies. The results are shown
in Table 2 and Table 3.

In these two tables, the similarity calculation formula we adopt is as follows:

sim =

∑
(I {la(a1, a2) < ra})

steps

The steps refers to the total number of steps during the similarity testing period. In this case,
steps = 1.0 ∗ 105. a1 represents the action output of the target policy, while a2 represents the
action output of the attacked policy. la(·, ·) denotes the distance between the two actions, where
the Euclidean distance is used. For the indicator function I{ξ}, if event ξ is established I{ξ} = 1,
otherwise I{ξ} = 0.

From the tables, we can observe that the attacked policy shows a high degree of similarity with
the target policy. Similarly, as the complexity of the environment increases, the similarity tends to
decrease accordingly. In the same environment, different algorithms and corresponding D−Regret
can also have an impact on the results.

Additionally, we have introduced a new experiment in environment 3. The corresponding exper-
imental outcomes are presented in Fig. 7. Remarkably, under the conditions of a 5-dimensional
space, the LCBT algorithm demonstrates commendable performance. Hence, in practical terms,
factors influencing the efficacy of the LCBT algorithm encompass not only its intrinsic parameters
such as ν1, ρ, ds, but also encompass the environment and the algorithms employed by the agent.
Similarly, in Table 4, we have provided the results concerning the similarity between the attack strat-
egy and the target strategy. We recorded the time taken to execute the attack algorithm and the total
time during the experimental process, calculated the ratio between the two, and obtained the results
as depicted in Fig. 8.

21

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

2

0

2

4

6

8

Av
er

ag
e

Ep
is

od
ic

 R
ew

ar
d

DDPG

Attack-free reward
LCBT attack reward
Target policy reward

(a) Attack DDPG

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

4

2

0

2

4

6

8

Av
er

ag
e

Ep
is

od
ic

 R
ew

ar
d

TD3

Attack-free reward
LCBT attack reward
Target policy reward

(b) Attack TD3

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1e5

Cost of TD3 LCBT attack
Cost of DDPG LCBT attack

(c) Attack Cost

Figure 7: Reward and cost results of Environment 3. In this experiment, we set ra = 0.497, M =
59049, H = 10, and T = 106. ρ is set to be 1/

√
5.

Table 2: The similarity between the original target policy and attacked policy in environment 1.
We have selected attacked policies trained for 3 ∗ 105 steps and 4 ∗ 105 steps under either Oracle
attack or LCBT attack. Then, in the testing phase, we calculated the percentage of target actions
executed by the attacked strategy within 1∗105 steps. In this experiment, we set the similarity radius
ra = 0.0625, which is consistent with the training phase mentioned in the paper.

Environment 1
Training steps DDPG PPO

Oracle attack LCBT attack Oracle attack LCBT attack
3e5 99.339% 97.884% 99.930% 99.920%
4e5 99.828% 99.787% 100.00% 100.00%

Table 3: The similarity between the original target policy and attacked policy in environment 2.
Using a similar method as in Table 2, we separately select the attacked policies for 1.0 ∗ 106 steps
and 1.8 ∗ 106 steps and match their similarity with the original target policy. In this experiment,
we set the similarity radius ra = 0.31, which is consistent with the training phase mentioned in the
paper.

Environment 2
Training steps DDPG TD3

Oracle attack LCBT attack Oracle attack LCBT attack
1e6 85.502% 76.771% 99.864% 98.564%

1.8e6 90.471% 82.421% 99.914% 99.076%

Table 4: The similarity between the original target policy and attacked policy in environment 3.
Using a similar method as in Table 2, we select the attacked policies for 8∗105 steps and match their
similarity with the original target policy. In this experiment, we set the similarity radius ra = 0.497,
which is consistent with the training phase mentioned in the paper.

Environment 3 Training steps DDPG LCBT attack TD3 LCBT attack
8e5 78.488% 97.812%

Table 5: A comparison between the two attack algorithms. R(T) is the upper bound of
D-Regret(K) of the agent’s RL algorithm, where T = KH .

Attack Algorithm Scenario Cost Bound

LCB-H Liu & Lai (2021) Discrete state and action spaces
H

(
R(T)+2H2

√
log(1/p)R(T)

)
∆min

+ 307SAH4 log(2SAT/p)
∆2

min

LCBT (Ours) Continuous state and action spaces R(T)+2H2
√

ln(1/δ2)·R(T)

∆o
†+∆†

min−Lsds
+

18MH2 ln(2MHK2

δ1
)
∑H

h=1 |T h
K |

(∆o
†+∆†

min−Lsds)2

H DISCUSSION

In this section, we will compare our work with that in Liu & Lai (2021), which focuses on the
action-manipulation attack in discrete state and action spaces. Table 5 represents the cost bounds

22

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0.2

0.4

0.6

0.8

1.0

Ti
m

e
Pe

rc
en

ta
ge

Environment 3

Attack Time Percentage in LCBT on TD3
Attack Time Percentage in LCBT on DDPG

Figure 8: In the initial phase, the reinforcement learning algorithm undergoes a completely random
exploration period, during which the algorithm consumes minimal time. As a result, the time propor-
tion for LCBT attack is notably high. Subsequently, as the neural network within the reinforcement
learning process intervenes, this proportion rapidly decreases. In the subsequent phases, due to
the increasing number of nodes in the LCBT algorithm’s tree, the proportion of time consumed by
running the LCBT algorithm gradually escalates.

for LCB-H attack Liu & Lai (2021) and our LCBT attack. In the LCB-H attack, the denominator
is ∆min = minh∈[H],s∈S

(
V †
h (s)−mina∈A Q†

h(s, a)
)

, whose definition is the same as ∆†
min in

our work. In our denominator, ∆o
† represents the gap between the policies πo and π†, and Lsds

represents the uncertainty generated by the state subinterval. In addition, there both exists R(T) +
2H2

√
log(1/p)R(T) in the two cost bounds because the effectiveness of the algorithm used by the

agent has an important impact on the cost. In other words, the agent with a more efficient algorithm
can learn the target policies faster when under attack. In LCB-H, The reason for multiplying with H
is that when the attacker launches an attack, the original action has only a 1/H probability of being
replaced with the worst action, otherwise, it will be replaced with the target action. The number
of states S in LCB-H is replaced by the number of subintervals M in LCBT. And the number of
actions A is replaced by the total node number

∑H
h=1 |T h

K | while we use the cover trees to discretize
the action space.

23

	Introduction
	Related Work
	Preliminary
	Attack Strategy and Analysis
	Oracle Attack
	LCBT Attack
	Main results

	Numerical Results
	Conclusion
	Experimental Settings
	The Proof of Lemma 1
	Proof of Theorem 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 2
	The Node Number of the Cover Tree

	Additional results
	Discussion

