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Abstract

The task of video-to-audio (V2A) generation focuses on producing audio clips
that are semantically aligned and temporally synchronized with silent video inputs.
Despite recent progress, achieving precise audio-visual synchronization remains
a significant challenge. Existing methods often rely on onset detection models,
post-ranking or contrastive audio-visual pretraining to improve synchronization,
overlooking the critical role of positional embeddings. In this work, we argue
that positional embeddings are key to achieve accurate synchronization. Given
the strict temporal correspondence between video and audio signals, we present
two key arguments: first, visual features and audio tokens should employ identical
positional embeddings to enhance temporal correspondence; second, the scale dif-
ference between visual features and audio tokens introduces alignment difficulties
that negatively affect cross-modal alignment. To address these issues, we propose
scale-adapted positional embeddings (SAPE) which are designed to account for
discrepancies in sequence lengths and scales between visual features and contin-
uous audio tokens. Experiments on the Greatest Hits dataset show that SAPE
significantly improves audio-visual synchronization, achieving a state-of-the-art
onset accuracy of 65.8%.

1 Introduction

Recent advancements in video-to-audio (V2A) generation have significantly enhanced the quality
and coherence of audio outputs relative to video inputs, marking substantial progress in the field
(1; 2; 3). Despite these advancements, achieving precise audio-visual synchronization remains a
critical challenge. Accurate alignment of audio with corresponding visual content is essential, as
even slight mismatches between sound and visual events can be distinctly noticeable and diminish
the overall user experience. To address this issue, researchers have proposed several approaches to
improve the audio-visual synchronization in V2A systems, such as contrastive audio-visual pretraining
(CAVP) (4; 5), using separate models to predict onsets as conditions (6; 7; 8), and post-ranking
(9). While these approaches have shown promise, they also increase system complexity and do not
completely resolve the synchronization challenges.

Video and audio are inherently sequential data, and achieving precise synchronization requires
not only capturing the temporal dynamics within each modality but also accurately aligning the
correspondence between them. In the era of Transformers (10), positional embeddings play a crucial
role for encoding temporal information within sequences. Despite their importance, the specific
role of positional embeddings in video-to-audio generation systems has been largely underexplored
in existing literature. In this work, we specifically address the synchronization challenge through
the lens of positional embeddings. We develop a flow matching-based V2A system that employs
a non-autoregressive Transformer to generate continuous and compressed audio embeddings. The
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Figure 1: Overview of the flow matching based V2A system. Positional embeddings are applied to
visual features and audio tokens.

Transformer attends to visual features via a cross-attention block. Given the strict correspondence
between video and audio, we make two arguments: first, visual features and audio tokens should use
identical positional embeddings to enhance temporal correspondence; second, the different scales of
visual features and audio tokens negatively affect the correspondence. We experiment with Sinusoidal
positional embeddings and Rotary Position Embedding (RoPE) (11), adapting RoPE for the cross-
attention scenario. Our experiments lead to the introduction of scale-adapted positional embeddings,
designed to account for discrepancies in sequence lengths and resolutions between visual features and
audio tokens. Our findings underscore the critical role of positional embeddings in achieving precise
audio-visual synchronization and demonstrate that our proposed scale-adapted positional embeddings
significantly improve synchronization, eliminating the need for separate models, post-processing, or
pretraining.

2 Proposed Method

2.1 System Overview

We adapt the flow matching-based text-to-audio generation model, MelodyFlow (12), for video-to-
audio generation by replacing the text encoder with a visual encoder. The visual encoder extracts
one visual embedding for each frame from the video input. Variational auto-encoder (VAE) based
continuous audio codec is used to encode raw waveforms into continuous audio embeddings. A
non-autoregressive Transformer generates continuous audio embeddings from Gaussian noise1,
conditioned on visual features through cross-attention blocks. These generated continuous audio
embeddings are then converted back to waveforms using the decoder of the VAE audio codec. The
overview of the system is illustrated in Figure 1, where audio codec is not shown for simplicity. It’s
important to note that different positional embeddings can be applied differently, such as RoPE being
used in attention operations. In Figure1, we use Sinusoidal as an example.

Assume we sample a video of duration T seconds at a frame-per-second (FPS) rate of F , and that the
visual encoder extracts one embedding per frame. Consequently, the total number of visual features
will be T × F . For audio, assume the corresponding clip is compressed into continuous tokens at a

1The flow matching model involves more complex processes, please refer to (12; 13) for a more detailed
explanation.
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rate of S embeddings per second using a VAE-based audio codec. Therefore, the total number of
audio embeddings will be S × T . In most cases, S is significantly larger than F .

2.2 Scale-Adapted Positional Embeddings

Given that both video and audio are temporally sequential data, achieving precise audio-visual
synchronization depends on two critical aspects: first, effectively capturing the sequential characteris-
tics inherent within each modality; and second, accurately capturing the temporal correspondence
between video and audio. It is intuitive to employ positional embeddings to address the first objective,
as they naturally facilitate the modeling of temporal relationships within each modality. Consequently,
we need to use two sets of positional embeddings for this purpose: visual positional embeddings for
visual features and audio positional embeddings for audio tokens.

Given the strict temporal correspondence between video and audio, we first argue that using identical
positional embeddings for both visual features and audio tokens can enhance temporal alignment,
enabling the Transformer model to better capture the temporal relationships between the two modali-
ties. Specifically, the visual positional embeddings Pv and the audio positional embeddings Pa are
defined as follows:

Pv = {p1, p2, . . . , pF×T }
Pa = {p1, p2, . . . , pS×T }

(1)

where each pi represents any kind of positional embedding at a position i.

However, this approach introduces a significant challenge: the resolution mismatch between visual
features and audio tokens. Visual frames are typically sampled at a much lower rate than audio,
leading to a difference in temporal granularity between the two modalities. As a result, even if
identical positional embeddings are applied to both, the positional embeddings for higher-resolution
audio tokens are not aligned correctly with those for lower-resolution visual features. For instance, pi
in Pv and pi in Pa correspond to different time interval, which makes the model difficult to learn the
correct alignment.

To address this issue, we propose the use of scale-adapted positional embeddings (SAPE), which
adjusts the positional embeddings of the modality with a lower resolution (such as video) by selecting
positional embeddings at intervals defined by the ratio of the higher-resolution and lower-resolution.
This ensures that positional embeddings for video and audio corresponding to the same time intervals
are aligned. Specifically, given the ratio between the audio frame rate and the visual frame rate,
defined as r = S

F , we adjust the visual positional embeddings by selecting every r-th positional
embedding to align with the audio positional embeddings. The modified visual positional embeddings
P ′
v are computed as:

P ′
v = {p1, p2×r, . . . , pF×T×r} (2)

This approach ensures that the visual positional embeddings are temporally aligned with those of the
corresponding audio embeddings, maintaining temporal correspondence between the two modalities
despite their different scales. SAPE can be used in any positional embeddings and architectures
requiring positional embeddings, here we experiment with Sinusoidal positional embeddings and
RoPE. To apply RoPE for visual features, we adapt it for the cross-attention scenario, where queries
are from the audio tokens and keys are from the visual features.

3 Experiments

3.1 Dataset

Open-domain videos often contain non-visible actions or objects emitting sounds, posing significant
challenges for objectively evaluating temporal synchronization. To facilitate a reliable objective
evaluation of temporal synchronization, we focus on visually indicated sounds, where sounds are
directly caused by the physical interactions or actions shown in the video. We conduct experiments
on the Greatest Hits dataset with de-noised audio version (14). Greatest Hits contains 977 videos of
people using a drumstick to hit, scratch different objects. Given the variable duration of the videos in
Greatest Hits, we segment each video into 10-second non-overlapping clips. Following the official
dataset split, our training set consists of 2251 clips, while the test set includes 744 clips.
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Table 1: Experimental results on Greatest Hits dataset. PE denotes positional embeddings.

Video FPS Ratio Visual PE Audio PE Onset ACC (%) ↑ Onset AP (%) ↑ FAD ↓
5 10 Sin Sin 44.4 59.7 0.35
5 10 SAPE Sin Sin 55.7 67.3 0.40
5 10 Sin RoPE 31.1 54.3 0.26
5 10 Sin + RoPE RoPE 47.9 60.7 0.39
5 10 Sin + SAPE RoPE RoPE 55.7 66.5 0.40
5 10 RoPE RoPE 32.4 53.0 0.35
5 10 SAPE RoPE RoPE 57.6 67.7 0.43

10 5 Sin Sin 61.1 71.4 0.36
10 5 SAPE Sin Sin 61.5 70.3 0.37
10 5 Sin RoPE 31.1 54.1 0.28
10 5 Sin + RoPE RoPE 60.4 68.8 0.38
10 5 Sin + SAPE RoPE RoPE 65.4 72.5 0.36
10 5 RoPE RoPE 32.3 52.2 0.38
10 5 SAPE RoPE RoPE 65.8 72.9 0.41

Table 2: Comparison results with baselines. Videos are 2-seconds with a FPS of 15.

Methods Onset ACC (%) ↑ Onset AP (%) ↑ FAD ↓
CondFoleyGen (9) 26.5 60.0 6.10

SyncFusion (6) 56.9 84.4 5.50
Flow (ours) 62.1 78.2 0.39

3.2 Implementation Details

For the video input, we use the ViT-B/16 version from the CLIP model (15) as the visual encoder. Each
video frame is processed independently, and the CLS tokens from each frame are sequentially arranged
as the visual features. The visual encoder is kept frozen during training, and a linear projection layer
maps the visual features into the dimension of the Transformer model. We experiment with video
frame rates of 5 and 10. For audio input, we resample all audio clips to 48 kHz. A VAE audio codec
is employed to compress the waveforms into continuous embeddings with a feature dimension of
128 and a temporal rate of 50 embeddings per second. The VAE codec is pretrained on the Pond5
sound effects dataset 2. The Transformer model has 12 layers, each with 16 attention heads and a
dimensionality of 1024.

Our models are trained for 15k steps using a batch size of 256. We use the AdamW (16) optimizer
with β1 = 0.9 and β2 = 0.95. The learning rate is set to 1e-4, with a warm-up phase spanning the
first 4,000 steps. Classifier-free guidance (17) is also applied during training, where 20% of the visual
features are randomly replaced with zero vectors. For inference, we use a classifier-free guidance
scale of 4.0. RMSNorm (18) is employed inside Transformer layers to stabilize training.

To ensure a fair comparison with previous work, we compare our best model against SyncFusion (6)
and CondFoleyGen (9). Since these baselines were trained on 2-second video clips at 15 FPS, we
train an additional model under the same conditions (2-seconds and 15 video FPS). This model is
trained for 30k steps with other settings same as above.

3.3 Evaluation Metrics

We follow SyncFusion (6) to evaluate the system’s performance from two key aspects: audio quality
using Fréchet Audio Distance (FAD) (19) and audio-visual synchronization using onset accuracy and
onset average precision (14). FAD is the most popular audio quality metric used in sound effects
generation works, which measures the distributional difference between generated and reference audio
by comparing feature representations extracted using the VGGish model (20). For onset metrics, they
first detect the onsets in both the generated and ground truth audio, and then calculate the accuracy
and precision by comparing the detected onsets. The confidence of each onset is determined by the

2https://www.pond5.com/sound-effects/

4



normalized wave amplitude, and a window size of 0.1 second is used to account for small timing
discrepancies. We use the same confidence interval of 0.05 second as prior works (6; 9).

3.4 Results

Table 1 presents the results across different combinations of positional embeddings and audio-visual
scale ratios. We first compare the impact of positional embeddings on synchronization. When using
different positional embeddings for visual features and audio tokens (Sinusoidal for visual tokens and
RoPE for audio tokens), the synchronization performance is consistently the worst across both scale
ratios. In contrast, using Sinusoidal positional embeddings for both visual features and audio tokens
leads to significant improvements in synchronization performance, particularly when the video FPS
is higher. However, using RoPE for both visual and audio tokens also leads to bad synchronization
performance. We found it is important to use a separate visual positional embeddings (Sinusoidal
here) when using RoPE for both visual and audio positional embeddings. These results highlights
our first argument, using identical positional embeddings for visual features and audio tokens could
improve the synchronization significantly.

When SAPE is used in conjunction with Sinusoidal positional embeddings at a lower frame rate,
the onset accuracy is improved from 44.4% to 55.7%. This suggests that SAPE effectively compen-
sates for the scale mismatch between visual features and audio tokens, ensuring that the positional
embeddings remain aligned across modalities. Interestingly, as the FPS increases, the marginal
benefit of using SAPE with Sinusoidal positional embeddings diminishes. This can be explained by
the fact that the difference between consecutive Sinusoidal embeddings becomes smaller at higher
frame rates, reducing the impact of scale adaptation. When SAPE is combined with RoPE, we
observe the best synchronization results across both FPS settings. This underscores the flexibility
of SAPE in handling various embedding schemes and demonstrates its robustness in improving
synchronization performance, even without the need of separate Sinusoidal positional embeddings for
the visual modality. Overall, these findings validate our arguments and show that our proposed SAPE
substantially improved synchronization performance for different positional embeddings, particularly
in low FPS scenarios.

For the audio quality comparison, all methods achieve low FAD scores, likely due to the strong flow
matching-based V2A model and the state-of-the-art VAE audio codec. For different scale ratios,
models with different visual and audio positional embeddings achieve the lowest FAD scores, while
others show similar performance. However, the pretrained model used for calculating FAD scores
was trained on open-domain audios. The extent to which FAD correlates with true audio quality
under this specific scenario remains an open question.

Table 3.2 compares our results with CondFoleyGen (9) and SyncFusion (6), where we use SAPE
RoPE for visual positional embedding and RoPE for audio positional embedding. Our model achieves
the highest onset accuracy but slightly falls behind SyncFusion in terms of onset average precision.
This difference could be due to a higher rate of false positives or lower waveform amplitudes, as
the confidence score is calculated based on waveform amplitude. Importantly, our model with
proposed SAPE demonstrates state-of-the-art synchronization performance without the need for
separate models. Additionally, our FAD score is significantly lower than the baselines. Compared
with 10-seconds results in Table 1, the accuracy is lower and the average precision is higher possibly
due to the short duration.

4 Conclusions

Achieving precise audio-visual synchronization is a significant challenge in video-to-audio generation.
In this work, we demonstrated the critical role of positional embeddings in achieving accurate
synchronization. We argued that identical positional embeddings should be used in both modalities
to enhance temporal correspondence. We then proposed Scale-Adapted Positional Embeddings
(SAPE) to address the scale mismatch between visual and audio modalities. Our experimental
results confirmed the effectiveness of SAPE in enhancing cross-modal alignment, achieving state-
of-the-art synchronization performance. Future work will focus on validating the approach in more
open-domain scenarios.
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A Related Works

A.1 Temporally-Synchronized Video-to-Audio Generation

Initial efforts in video-to-audio generation have primarily focused on enhancing semantic correspon-
dence between generated audio and input video (21; 1; 2). More recent studies have shifted focus
towards improving audio-visual synchronization. One line of work involves aligning audio and visual
features in latent space through contrastive audio-visual pretraining (CAVP). For example, Diff-Foley
(4) proposes to learn semantically and temporally aligned latent features, which serve as conditions
in a Diffusion model. Frieren (5) regulates CAVP-pretrained visual features to the same length as
audio tokens and employs channel-wise concatenation to enforce synchronization. Additionally,
approaches like SyncFusion (6), FoleyCrafter (8), and Video-Foley (7) incorporate separate onset
detection models. These models predict temporal onsets or timestamps from videos, which are then
used as conditions to guide the audio generation. Furthermore, CondFoleyGen (9) generated multiple
audio clips for a single input video and used an audio-visual synchronization model to select the most
aligned clip among the generations. These methods, which rely heavily on separate models, post
re-ranking, or contrastive pretraining, not only increase the overall system complexity but still do not
completely resolve the synchronization challenges.

A.2 Positional Embeddings

Positional embeddings are essential in Transformer-based architectures (10) to compensate for the
absence of inherent sequential structure in the attention mechanism. These embeddings enable the
model to incorporate sequence or spatial order information across various types of data. While various
positional embeddings have been developed (22; 10; 11), most are designed for tasks involving a
single modality, such as text and vision. The impact of positional embeddings on cross-modal
alignment remains largely unexplored. In this study, we experiment with both Sinusoidal (10) and
Rotary Positional Embeddings (11) to assess their impact on cross-modal tasks, specifically in the
context of video-to-audio generation.

Sinusoidal positional embeddings (10) is a type of absolute positional embedding, using fixed sine
and cosine functions with varying wavelengths to encode the positions of tokens in a sequence. These
embeddings are typically added directly to the contextual representations, providing a smooth and
continuous representation of positional information. On the other hand, Rotary Positional Embeddings
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(RoPE) (11) apply a rotation matrix to both the query and key vectors within the attention mechanism.
In this way, RoPE encodes absolute positional information using a rotation matrix and naturally
incorporates relative position dependency into the self-attention formulation, effectively unifying
absolute and relative positioning methods. RoPE has shown superior performance in most NLP tasks.
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