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ABSTRACT

Recently, Graph Neural Networks (GNNs) have demonstrated remarkable success
in various graph learning tasks. However, most existing GNNs fail to generalize
under distribution shifts, namely testing and training graphs come from different
distributions. Graph invariant learning is proposed to tackle the out-of-distribution
(OOD) generalization problem by capturing the invariant relationships between
graph features and labels. To this end, most graph invariant learning methods
estimate the probabilities of nodes or edges belonging to the invariant subgraphs
by measuring these edges’ or nodes’ contribution degrees of the corresponding
edges or nodes to the model’s predictive performance. Nonetheless, relying solely
on the predictive performance of the model is insufficient to determine whether the
given edge or node belongs to an invariant subgraph. To solve this problem, we
propose a novel Contrastive Grouping-based Invariant Learning(CGIL) algorithm
for OOD generalization on graphs. Our algorithm incorporates the idea of node
grouping into the design of learning invariant features. Unlike existing methods
that simply employ a mask generator to learn node weights, CGIL tries to cluster
graph nodes into an invariant group and several contrast groups. Then CGIL takes
the graph connectivity information into account to enforce the graph connectivity
inside the invariant group. A contrastive loss constraint is adopted to promote
the grouping and invariant subgraph generating procedure. Compared with nine
state-of-the-art generalization methods, extensive experiments on four benchmark
datasets demonstrate the effectiveness of our proposed CGIL algorithm for the
graph classification tasks.

1 INTRODUCTION

Graph neural networks (GNNs) have recently gained increasing attention in the domain of graph
representation learning and have achieved impressive performance in various tasks on graph data,
including social networks Min et al. (2021), molecular graphs Wu et al. (2018), and knowledge
graphs Ji et al. (2021). Despite their success, GNN models still face the out-of-distribution (OOD)
problem, i.e. the performance of GNN models may significantly degrade when testing graphs have
different distributions from training graphs Hu et al. (2020); Wu et al. (2018).

To address the OOD problem, a series of graph learning methods have been proposed Chen et al.
(2022); Li et al. (2022a;b). The key idea behind these methods is to learn the invariant subgraphs,
of which class labels can stay invariant even if the training and testing graphs have mismatch dis-
tributions. To achieve this goal, these graph representation learning methods typically employ an
attention module to estimate the probabilities of each node or edge belonging to the invariant sub-
graphs Brody et al. (2021); Sui et al. (2022). The probability scores of edges or nodes are computed
based on the contributions of those nodes and edges to model predictive performance.

However, relying solely on the predictive performance of the model is insufficient to determine
whether the given edge or node belongs to an invariant subgraph. In practice, graph data exhibits
a widespread presence of shortcut features Knyazev et al. (2019); Fan et al. (2022). The shortcut
features usually come from data sampling biases, noisy features, or certain trivial patterns within
graphs. These shortcut features are non-causal but discriminative in training data, thereby estab-
lishing a spurious correlation with the class label. Consequently, even though the shortcut features
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are assigned higher probability weights due to their ability to yield superior predictive performance,
they do not actually belong to the set of invariant subgraphs.

(a) DIR:Crane-Wheel (b) DIR:House-Tree (c) CIGA:Crane-Wheel (d) CIGA:House-Tree

Figure 1: Visualization examples of invariant subgraphs in Spurious-Motif dataset. The learned
subgraphs in 1a and 1b are from DIR, and the learned subgraphs in 1c and 1d are from CIGA. The
invariant shapes corresponding with labels are Crane and House, and the base shapes are Wheel
and Tree. Structures with red color are the invariant subgraphs learned by the corresponding model.
Nodes with green color represent the ground truth invariant subgraphs.

As illustrated in Figure 1a ∼ 1d, only a small part of the invariant subgraphs learned by DIR and
CIGA are ground truth invariant edges, while most of them contain many shortcut features from the
base shape (Wheel and Tree). In this case, the shortcut features contained in the learned invariant
subgraphs will reduce the model’s generalization ability and prediction accuracy.

In this paper, we focus on designing a new strategy to seek invariant subgraphs and reduce the
adverse impact of shortcut features. Specifically, we propose to incorporate the graph connectivity
information into the design of the attention module. Different from current attention-based methods
that compute one weight of each node and identify an invariant subgraph with these weights, we
adopt a soft grouping strategy to compute multiple weights for each node and construct different
node groups. Group weights of nodes indicate their probabilities belonging to these groups. Then,
a connectivity constraint is introduced to enforce that nodes with higher weights in each group have
good connectivity. The node grouping procedure thus overcoming the limitation of the attention
module learns attention scores of features solely based on their predictive performance. Any one
of these groups is considered as an invariant group, and the others are as contrastive groups. As
training progresses, invariant features will gradually converge into the selected invariant group.

By incorporating the idea of soft grouping strategy into the design of learning invariant features, we
propose a novel Contrastive Grouping-based Invariant Learning(CGIL), a new algorithm to learn
the invariant subgraphs, which can make CGIL generalizable well on data with various distribution
shifts. Our CGIL consists of three modules: a node grouper to generate one invariant group and
several contrast groups, an invariant subgraph generator to learn potential invariant subgraph from
the invariant group, and an invariant subgraph constrainer to constrain the process of node grouping
and subgraph generation. In addition, a contrastive loss constraint based on combined invariant
subgraphs and groups is proposed to help promote node grouping and invariant subgraph generation.

Specifically, in the node grouper, we jointly optimize the node representation learning and node
grouping in an end-to-end way, resulting in one invariant group and several contrast groups. Each
group contains all graph nodes, and the weight score of a node reflects the probability that the cor-
responding node belongs to that group. Then the invariant subgraph generator selects nodes with
high weights in the invariant group to generate the potential invariant subgraph. Moreover, in the
invariant subgraph constrainer, we use three constraints from different perspectives to constraint the
generation of the invariant subgraph: a connectivity constraint to exploit graph connectivity in the
graph and classify different groups based on the connected subgraph, a contrastive loss constraint to
enforce the node grouping module focus on the invariance of the graph features, and a classification
loss to encourage the learned invariant subgraphs to have a strong label prediction ability. Experi-
ments on one synthetic and three real-world datasets with various distribution shifts, show that CGIL
can significantly outperform existing methods, demonstrating that our CGIL algorithm has a better
generalizable ability than existing methods.
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2 RELATED WORK

Recently, extensive efforts have been proposed to improve the transparency and generalization ca-
pability of graph neural networks (GNNs). According to different learning strategies, existing graph
learning methods can be categorized as graph self-supervised learning methods Qiu et al. (2020);
You et al. (2020); Yehudai et al. (2021), and graph invariant learning methods Wu et al. (2022); Li
et al. (2022b); Chen et al. (2022).

Graph self-supervised learning methods focus on improving model robustness against adversarial
attacks during the training procedure. Yehudai et al. (2021) study the ability of GNNs to generalize
from small to large graphs, by proposing a self-supervised pretext task that aims at learning useful
d-pattern representations. Another representative self-supervised learning method is based on graph
contrastive learning. Graph contrastive learning methods GraphCL You et al. (2020) is another rep-
resentative self-supervised learning method, which aims to obtain augmented graphs from different
perspectives, and apply a contrastive learning strategy to maximize their mutual information for
training, to enhance the generalizable ability.

Graph invariant learning methods aim to exploit the invariant relationships between the input graph
data and labels across distribution shifts while disregarding the variant spurious correlations. Fol-
lowing the recent invariant learning studies Li et al. (2022b), the causes of the label can stay invariant
to various distribution shifts.

When generalizing a GNN to graphs with distribution shifts, one of the main challenges is that the
environment labels are generally unobserved and highly expensive to obtain. DIR Wu et al. (2022)
conducts interventions on variant representations to create multiple interventional distributions, en-
abling the capturing of invariant rationales while filtering out spurious patterns for robust OOD
generalization. However, DIR struggles to find a reasonable ratio to split the invariant rationales
and spurious counterparts. In contrast, GSAT You et al. (2020) samples stochastic attention from
a parametric Bernoulli distribution to select task-relevant subgraphs and constrain the information
flowing from the task-irrelevant graphs to the prediction. GIL Li et al. (2022b) uses a GNN-based
subgraph generator to identify the invariant subgraph and defines the rest of the graph as the variant
subgraph. To infer the latent environments, GIL adopts an environment inference module to cluster
all identified variant subgraphs of the datasets. Recently, CIGA Chen et al. (2022) instantiates the
causal features as the critical subgraph that includes the information about the underlying causes
of the label, and proposes an information-theoretic objective to extract the desired subgraphs that
maximally preserve the invariant intra-class information.

3 METHODS

3.1 OVERVIEW

Our proposed CGIL framework is illustrated in Figure 2. It is formed by three main components:
node grouper, invariant subgraph generator, and invariant subgraph constrainer. Given a graph in-
stance, the node grouper aims to calculate K group weights of each node, including an invariant
grouping weight, and cluster graph nodes into one invariant subgraph and K − 1 contrast groups.
The weights of nodes in the invariant group indicate the probabilities that the corresponding nodes
belong to the invariant subgraph. Then, the invariant subgraph generator selects nodes with higher
weights to construct the invariant subgraph. Finally, the subgraph constrainer is used to guide the
optimization of node grouper and invariant subgraph generator with the goal of ensuring the accu-
racy of the learned invariant subgraphs. In the following, we will introduce the above three modules
in detail, and finally present the training objectives.

3.2 NODE GROUPER.

The main purpose of node grouper is to generate an invariant group with node invariant weights.
Current methods attempt to compute one weight of each node and identify an invariant subgraph
based on these weights. As we discussed in Section 1, with only one weight, these methods cannot
leverage the node attributes and graph topology information to find accurately invariant features.
To tackle this limitation, we adopt a soft grouping strategy to compute multiple weights for each
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Figure 2: Our proposed CGIL framework

node. Specifically, we generate K groups, Group1, Group2, ..., GroupK , and each group contains
all nodes in a graph instance. Assuming the first group Group1 is the invariant group Groupinv ,
the other groups are contrast groups, each node has K group weights indicating their probabilities
belonging to the invariant group and other K − 1 contrast groups. According to the connectivity
constraint introduced in Section 3.4.1, in each group, the soft grouping strategy makes the nodes in
a connective subgraph have higher weights than the other nodes and dominate this group. The final
aim of the soft grouping strategy is to make each group be dominated by distinct but connective
subgraphs. Then by the contrastive loss constraint and classification loss in Section 3.4.2 and 3.4.3,
the invariant features will be gathered together in the first group, while the non-invariant features are
driven to the other groups.

We define the j-th group as follows:

Groupj = {Zj
1 , Z

j
2 , ..., Z

j
N}

= {Sj
1X1, S

j
1X1, ..., S

j
NXN}

= [Sj
1, S

j
2, ..., S

j
N ]T · [X1, X2, ..., XN ]

= (Sj)T ·X

(1)

where Groupj contains all N graph nodes, and Zj
i denotes the representation of i-th node in j-

th group. According to eq.(1), to generate K different node groups, we need to obtain the node
representation X and the grouping weight matrix S.

In this part, we introduce the generation of node representation and grouping weight matrix. First
of all, we adopt a GNN encoder to generate node representation X . Given an input graph instance
with N nodes as a tuple G = (V, E), with the node set V and the edge set E. Assuming each node
has D features, denoted as F ∈ RN×D, and A ∈ {0, 1}N×N is the adjacency matrix. The GNN
encoder employs the following message-passing architecture to integrate neighbor information and
generate node embeddings (e.g. GCN Kipf & Welling (2016), GIN Xu et al. (2018)):

H(k) = ReLU(D̃− 1
2 ÃD̃− 1

2H(k−1)W (k−1)) (2)

where Ã = A+ I , D̃i =
∑

j Ãi,j . W (k−1) is a weight matrix. H(k) is generated from the results of
previous message passing H(k−1). The input node embeddings H(0) at the initial message-passing
iteration(k = 1), are initialized using the node features on the graph, H(0) = F . After the k steps
message passing procedure, the final node embedding is calculated as X = H(k) ∈ Rn×d. For
simplicity, the node encoding procedure can be denoted as X = GNN(G).

Next, we will calculate the grouping weight matrix S. K different groups can be seen as labels
of K different categories, and the corresponding K grouping weight vectors for each node can
be seen as the probability that the node belongs to each group. Therefore, the grouping process
can be implemented with a Multi-layer Perceptron(MLP), where the input is the calculated node
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Figure 3: Example of node grouping procedure. The colors of nodes represent their weights for each
group. The darker the color of a node, the higher its weight to the group.

embeddings X of N nodes, and the output is the grouping weight matrix S ∈ RN×K :
S = σ(MLP (X); θMLP ) (3)

where σ(·) is the softmax function.

Figure 3 is a node grouping example where a graph instance with 11 nodes is clustered into three
groups, where S ∈ R11×3 is the generated grouping weight matrix. Specifically, in Fig.3(a), four
nodes with the higher weights in the invariant group are Z1

1 , Z
1
2 , Z

1
3 and Z1

5 , the four nodes are
regarded as potential invariant nodes. After end-to-end iterative optimization, the invariant nodes
learned by the grouping module in Fig.3(b) are Z1

1 , Z
1
2 , Z

1
3 and Z1

4 , which have better connectivity
than those in Fig.3(a).

3.3 INVARIANT SUBGRAPH GENERATOR.

In order to further identify nodes with invariant properties, we select the K nodes with the higher
contribution degree from the invariant group Ginv as potential invariant nodes and construct invari-
ant subgraphs based on these nodes. The contribution of each node in Ginv can be determined by
the corresponding invariant grouping weight Sinv . Therefore, we directly sort the invariant group-
ing weights of the nodes in descending order, use the top-k strategy to select the K nodes with the
higher weights, and obtain the corresponding node representations Vinv:

Vinv = Topr(Z) (4)

where r is a pre-set sampling ratio(e.g. 40%), we select K = r × N nodes as potential invariant
nodes. Then, we sampled the corresponding adjacency matrix Ainv between K nodes from the
original graph G. Finally, we construct the potential invariant subgraph Ginv = (Vinv, Ainv).
We can use another GNN encoder to generate invariant node embeddings, and adopt a mean-max
pooling to integrate invariant node embeddings into an invariant subgraph representation SGinv:

SGinv = Pooling(GNN2(Vinv)) (5)

3.4 INVARIANT SUBGRAPH CONSTRAINER.

In the previous sections, we detailed the process of generating a potential invariant subgraph, but
we cannot guarantee that the generated invariant subgraph is accurate enough to predict the label
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in OOD scenarios. In general, an invariant subgraph has the following three characteristics: 1) In-
variant subgraphs usually have strong connectivity. 2) The inter-class distance of invariant subgraph
samples in the representation space should be small, while the intra-class distance should be large.
3) Invariant subgraphs should have strong label predictability.

Based on the above characteristics of invariant subgraphs, we constrain the generation process of
invariant subgraphs from three different perspectives: connectivity constraint, contrastive loss con-
straint, and classification loss.

3.4.1 CONNECTIVITY CONSTRAINT.

Due to the fact that invariant subgraphs usually have good connectivity, nodes with good connectivity
in each group should be assigned with high weights. For this purpose, our connectivity constraint
guides the grouping process from three aspects: 1) the nodes with higher weights in the group should
have good connectivity; 2) the nodes with higher weights in different groups should not overlap with
each other; 3) the numbers of nodes with higher weights in different groups should be similar.

For the first aspect, we consider each group as a supernode and edges among groups as superedges,
the original graph G can be summarized into a supergraph Gs. We leverage the properties of both
supernodes and node groups to make a connective subgraph with higher node weights dominate a
group. The representations of supernodes can be denoted as SNs = {SN inv, SN2, ..., SNK}. The
representations of invariant supernode SN inv can be obtained via a pooling operation:

SN inv = Pooling(

N∑
i=1

SN inv
i ) = Pooling(

N∑
i=1

Sinv
i ·Xi) (6)

where N is the total number of graph nodes, and Xi is the generated node embeddings previously.
The weight of the superedge is computed as a weighted sum of cross-group edges. Formally, the
weight of the superedge between the supernode m and the supernode n is defined as:

As
m,n =

N∑
i=1

N∑
j=1

Sm
i ·Ai,j · Sn

j (7)

Here, As = ST ÃS represents the weighted adjacency matrix of the supergraph after grouping
the nodes, and ST D̃S denotes the weighted degree matrix. The sum of the elements on the di-
agonal of the adjacency matrix Tr(STAS) represents the weights of the edges inside the supern-
odes, while the sum of the elements on the diagonal of the degree matrix ST D̃S represents the
sum weights of the edges inside and among supernodes. As shown in Fig.2(a), Tr(ST ÃS) =∑3

i=1 A
s
i,i and Tr(ST D̃S) =

∑3
i=1 D

s
i,i, where Tr(·) represents the trace of the matrix. Ob-

viously, the sum weights of the superedges among different supernodes can be calculated with
Tr(ST D̃S)− Tr(ST ÃS).

In order to make the nodes inside the supernodes as compact as possible, inspired by the Mincut prin-
ciple Bianchi et al. (2020), we implemented the connectivity constraint to minimize the superedge
weights Tr(ST D̃S)− Tr(ST ÃS) between among supernodes:

minLcnt = min
S

−Tr(ST ÃS)

Tr(ST D̃S)
(8)

It can be seen that when the value of Lcnt is smaller, the weights of the superedges among different
supernodes are smaller, and the weights of the edge inside the supernodes are larger. At this time,
the inside nodes of the supernodes are more compact and have better connectivity.

In addition, to make the nodes with higher weights in different groups not overlap with each other,
we adopt an orthogonality loss term Lo as a supplement to the connectivity constraint. Lo encour-
ages the grouping assignments to be orthogonal and different groups to have the same number of
nodes, followed by:

minLo = min
S

∥ STS

∥STS∥
− IK√

K
∥F (9)
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where ∥·∥F indicates the Frobenius norm, which helps to encourage K different grouping weights
to be orthogonal. And IK = STS encourages S to assign exactly N/K nodes to each group.
During the training procedure, we can find substructures with better connectivity by implementing
the connectivity constraint Lcnt + Lo. However, the found substructures are still not confirmed to
be invariant. To address this issue, we further propose a group-based contrastive loss constraint.

3.4.2 CONTRASTIVE LOSS CONSTRAINT.

For the invariance of the learned subgraphs, we hope that under different distribution shifts, even
if there are small differences in node attributes or graph structures among subgraphs with different
labels, there are still large differences in the representation space. For this purpose, we propose
a supernode-based contrastive loss constraint suitable for our CGIL. Different from the general
contrastive loss constraints based on learned invariant subgraph representations Chen et al. (2022),
our CGIL method uses contrastive loss constraint to constrain a concatenated representation, which
can be formalized as:

Gc = Concat(SGinv;SN inv) (10)
where SGinv and SN inv are representations of learned invariant subgraph and supernode. In our
proposed CGIL framework, the generation of potential invariant subgraphs is mainly learned from
nodes with higher weights inside the invariant supernodes. Meanwhile, the generation of invariant
supernodes mainly depends on the node grouping process. Therefore, we hope to guide the soft
grouping of nodes while constraining the intra-class compactness and inter-class difference repre-
sented by the invariant subgraph. The core idea of our contrastive loss constraint can be expressed
as: the learned invariant subgraph corresponding to the same label after grouping is as small as
possible in the representation space, while the invariant subgraph corresponding to different labels
should be as large as possible in the representation space. Notice that, we do not manually design
the soft grouping weight matrix S; instead, the node grouper learns S via back-propagation. Hav-
ing generated learned invariant supernode representations, our contrastive loss constraint guides the
generating of S via:

min
S

Lctr =

M∑
i=1

log
eϕ(Ĝ

c
i ,G̃

c
i )

eϕ(Ĝ
c
i ,G̃

c
i ) +

∑M
j=1 e

ϕ(Ĝc
i ,Ĝ

c
j)

(11)

where M is the number of total labels, Ĝc
i , G̃

c
i ∼ Pg(G|Y = y) are learned invariant supernodes

under different distributions that corresponding to the same label Y = y. While
∑M

j=1 Ĝ
c
j denotes

learned invariant supernodes corresponding to the label Y ̸= y. ϕ(·) denotes the similarity function,
i.e., cosine similarity. During the training procedure, we implement a contrastive loss constraint to
make the similarity distance in the representation space of invariant supernodes corresponding to the
same label in the equation as small as possible, while the similarity distance in the representation
space of the invariant supernodes with different labels as large as possible.

3.4.3 CLASSIFICATION LOSS.

In addition to the above connectivity constraint and contrastive loss constraint, the invariant rationale
we learned should also have stable label prediction capabilities. In the OOD task, the learned invari-
ant subgraphs are fed into a classifier to perform label prediction and generate prediction results ŷ.
The classification can be formalized as:

ŷ = h(SGinv)

Lcls = R(ŷ, y)
(12)

where SGinv is the learned invariant subgraph features previously, h is a classifier, ŷ is the predicted
result via the classifier h, and y is the ground truth label. R is an empirical risk loss function, such
as cross-entropy loss. The goal of classification precision constraint is to constrain the predicted
results of the invariant subgraphs learned by the model to be consistent with the ground truth labels.

In summary, by combining Eq.(8) ∼ Eq. (12), we obtain the final objectives as shown in Eq. (13):
L = min

g,h
α · Lctr + β · Lcnt + Lo + Lcls

where α and β represent the weight of the contrastive loss constraint and the connectivity constraint
Lcnt, respectively. g and h respectively represent the parameters of the invariant generator and the
classifier, respectively.
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End-to-end Training. Our proposed CGIL is an end-to-end algorithm. In the training procedure,
the node grouper first identifies an invariant group in the graph with good connectivity and strong
label prediction ability. Even though the initially generated invariant subgraphs may not be accu-
rate, our subgraph constraint will constrain the grouping process and subgraph generation process
from three perspectives: connectivity, invariance, label prediction ability, and update model param-
eters. As the training building progresses, the model parameters are constantly iterated and updated.
The grouping machine will continuously cluster nodes with invariance into our designated invari-
ant groups. Finally, our subgraph generator will select invariant nodes with higher weights from
the invariant groups to construct an invariant subgraphs with high connectivity and a strong label
prediction ability.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

In this section, we use one synthetic dataset Spurious-MotifWu et al. (2022), and three real-world
datasets: CMNISTArjovsky et al. (2019), Graph-SST5 and Graph-TwitterYuan et al. (2022), details
about datasets are illustrated in Appendix A. In different datasets, we use a pre-set hyperparameter K
to indicate that we expect to cluster graph nodes into K different target groups, and an early stopping
strategy is exploited during training. Here we briefly introduce baseline methods, implementation
details, main results, and ablation study. Further hyper-parameter analysis, and visualization analysis
are illustrated in Appendix B and Appendix C.

4.2 BASELINE METHODS.

We thoroughly compare our CGIL with the following baseline algorithms. Empirical Risk Mini-
mization (ERM) Vapnik (1991) minimizes the average error over multiple domains to learn a robust
predictor. Invariant risk minimization (IRM) Arjovsky et al. (2019) is an extension of ERM that reg-
ularizes the predictor model to extract invariant features and discard the spurious features. We also
compare with several SOTA OOD methods including ASAP Pooling Ranjan et al. (2020), DIR Wu
et al. (2022), EIIL Creager et al. (2021), V-REx Krueger et al. (2021), IB-IRM Ahuja et al. (2021),
CNC Zhang et al. (2022), and CIGA Chen et al. (2022). Our CGIL follows this class of algorithms
and improves the robustness and generalization for GNNs, which helps the models better generalize
in out-of-distribution datasets.

4.3 IMPLEMENTATION DETAILS

For a fair comparison, CGIL uses the same GNN architectures for GNN encoders as the baseline
methods. We set the causal feature ratio as (r = 0.45), (r = 0.6), (r = 0.65), (r = 0.7), (r = 0.4)
for Spurious-Motif, DrugOOD, Graph-SST5, Twitter and CMNIST datasets. We search contrastive
loss weight α and MinCut-based clustering loss weight β both from {0.5, 1, 2, 4, 6, 8, 16, 32} ac-
cording to the validation performance. During each round of training, we select the best parameters
according to the validation performance. For all experiments, each algorithm is repeated 5 times and
we report the mean and standard deviation of the classification accuracy.

4.3.1 MAIN RESULTS.

The experimental results of CGIL and its rivals on four datasets are reported in Table 1. The best
results are marked in bold. From the experimental results, we can see that, our GIL achieves the
top-performing results in 4 datasets. For Spurious-Motif datasets, as bias increases, the strength of
the distribution shifts also increases. We can see that in all three biases, including 0.33, 0.6, and
0.9, CGIL outstrips CIGA Chen et al. (2022) averagely by 20% across different degrees of spurious
bias. Even if the bias increases to 0.9, The performance of CGIL does not drop significantly. This
is due to the graph instance in the Spurious-Motif dataset consisting of one invariant shape and
one base shape, thus CGIL can easily cluster graph nodes into an invariant group and a contrast
group even under heavy distribution shifts. In the CMNIST, Graph-SST5, and Graph Twitter, CGIL
also surpasses CIGA by 3.15%, 0.95%, and 1.11%. These improvements strongly validate that
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Table 1: OOD generalization performance on various datasets

Spurious-Motif
CMNIST-SP Graph-SST5 Graph-Twitterbias=0.33 bias=0.60 bias=0.90

ERM 54.4±3.50 55.48±4.84 49.64±4.63 13.96±5.48 43.89±1.73 60.81±2.05
ASAP 64.87±13.8 64.85±10.6 57.29±14.5 10.23±0.51 44.16±1.36 60.68±2.10
DIR 58.73±11.9 48.72±14.8 41.90±9.39 15.50±8.65 41.12±1.96 59.85±2.98
IRM 57.15±3.98 61.74±1.32 45.68±4.88 31.58±9.52 43.69±1.26 63.50±1.23
EIIL 56.48±2.56 60.07±4.47 55.79±6.54 30.04±10.9 42.98±1.03 62.76±1.72
IB-IRM 58.30±6.37 54.37±7.35 45.14±4.07 39.86±10.5 40.85±2.08 61.26±1.20
CNC 70.44±2.55 66.79±9.42 50.25±10.7 12.21±3.85 42.78±1.53 61.03±2.49
CIGA 77.33±9.13 69.29±3.06 63.41±7.38 44.91±4.31 45.25±1.27 64.45±1.99

CGIL 93.27±5.70 90.63±3.28 86.22±7.81 48.06±3.63 46.20±1.86 65.56±1.34

CGIL can generalize better under complex distribution shifts. Meanwhile, the low variances on all
datasets guarantee the reliability of CGIL in various environments.

4.3.2 ABLATION STUDY.

In this section, we conduct ablation studies to verify the effectiveness of different promotion strate-
gies of the proposed CGIL. Firstly, in order to confirm the effectiveness of our grouping module,
we merely designed three variant GCIL models: 1) We drop the connectivity and the contrastive
loss constraints and denote this version as the Base-model. 2) We implement our CGIL framework
without the connectivity constraint, denoted as CGIL-Lcnt. 3) We implement our CGIL framework
without the contrastive loss constraint, denoted as CGIL-Lctr.

Table 2: OOD generalization performance of the variant CGIL models

Datasets Spurious-Motif CMNIST Graph-SST5 Graph-Twitter

Base-model 74.87 10.31 42.63 58.91
CGIL-Lcnt 79.40 14.81 44.02 62.23
CGIL-Lctr 78.23 31.36 45.49 62.89
CGIL 86.22 48.06 46.20 65.56

Table 2 shows our ablation experimental results and reveals several insights: (1) CGIL-Lcnt-Lctr

obviously outperforms the Base-model and demonstrates the effectiveness of the base idea of node
grouping, which is mainly affected by two reasons. Firstly, the graph instance in Spurious-Motif
dataset consists of one base subgraph and one motif, thus can easily cluster into two groups; (3)
The results of the CGIL-Lcnt are better than the CGIL-Lcnt-Lctr, proving the effectiveness of our
proposed connectivity constraint; (4) The results of the CGIL-Lctr outperform the Lcnt-Lctr, prove
the effectiveness of our proposed contrastive loss constraint. The result of CGIL attains the best
classification performance, further demonstrating the necessity and effectiveness of CGIL, which
combines the node grouper and invariant subgraph constrainer.

5 CONCLUSION

In this work, we proposed a novel graph invariant learning algorithm CGIL, to study the OOD
generalization on graphs via a graph classification task. Our starting point is to integrate node
grouping into representation learning. In addition, for existing graph invariant learning methods, we
proposed an improved method that combines node attributes and graph connectivity information.
Experimental results demonstrate that: 1) By integrating the idea of soft grouping into representation
learning, CGIL can learn node representations suitable for graph invariant learning tasks; 2) By
considering both node attributes and graph connectivity information, the proposed GIL framework
can achieve better generalization capability under various distribution shifts.
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A DATASETS

Table 3 summarizes the datasets used in our paper and introduces the details of dataset partitioning.

Table 3: Details about the datasets used in experiments. The numbers of nodes and edges are taking
average among all graphs.

Datasets Training Validation Testing Classes Nodes Edges

Spurious-Motif 9000 3000 3000 3 44.96 65.67
CMNIST 40000 5000 15000 2 56.90 373.85
Graph-SST5 6090 1186 2240 5 19.85 37.70
Graph-Twitter 3238 694 1509 3 21.10 40.20

Spurious-Motif is a synthetic dataset from DIR, which involves 15000 graphs, each graph is
composed of one base shape (Tree, Ladder, Wheel denoted by S = 0, 1, 2 respectively), and
one motif shape(Cycle, House, Crane denoted by C = 0, 1, 2 respectively). The ground truth
label Y is determined by the base shape C solely. Specifically, in the training set, we sam-
ple each motif from a uniform distribution, while the distribution of its base is determined by
P (S) = b × I(S = C) + 1−b

2 × I(S ̸= C). We manipulate b to create Spurious-Motif datasets of
distinct biases. In the testing set, the motifs and bases are randomly attached to each other.

Graph-SST5 and Twitter are two sentiment sentence classification datasets. Each graph is labeled
by its sentence sentiment and consists of nodes representing a word while edges reflect the relation-
ships between different words. The goal is to study explanations that can identify the words with
key meanings and the relationships among different words. For SST5, those that have a smaller or
equal to the 50th percentile average degree are assigned to training, and those that have an average
degree larger than the 50th percentile while smaller than the 80th percentile are assigned to the val-
idation set, and the left are assigned to the test set. For Twitter, we conduct the above split in an
inversed order to study the OOD generalization ability for GNNs trained on large-degree graphs to
small-degree graphs.

CMNIST The goal is to predict a binary label assigned to each image based on the digit. Whereas
MNIST images are grayscale, CMNIST colors each image either red or green in a way that correlates
strongly with the class label. By eliminating color as a predictive feature, the graph model can result
in better generalization.

B HYPER-PARAMETER ANALYSIS

In this section, we set a series of experiments to study the effect of three main hyper-parameters in
CGIL: the weight of contrastive loss constraint α, the weight of contrastive loss constraint β, and
the number of groups K. As shown in 4a, we find that when the connectivity constraint α increases
in the Spurious-Motif dataset with bias= 0.33 and bias= 0.6, the classification accuracy shows a
trend of initially ascending and then descending as the value of the parameter α increases, while the
classification accuracy in bias= 0.9 decreases from α = 2 to α = 12. This phenomenon shows that,
as bias increases, CGIL achieves its best performance with a small α. In 5a, we can see that the
contrastive loss constraint β increases in the Spurious-Motif dataset with bias= 0.33 and bias= 0.6,
the classification precision decreases since β = 2, while the classification precision first increases,
then has a slight drop when bias is set as 0.9. This illustrates that as bias increases, the performance
of CGIL can reach its best with a larger β. 5b shows that in real-world datasets Graph-SST5 and
Graph-Twitter, CGIL has stable performance on various group number K, and tends to achieve the
best results on a larger number of groups K.

C VISUALIZATION ANALYSIS

We evaluate our model’s ability for the OOD graph classification tasks by computing and visualizing
the predicted results on the Spurious-Motif dataset. As shown in Fig.5, we visualize the prediction
results of the graph samples corresponding to three different label values (circle, house, and crane).
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(a) (b) (c)

Figure 4: Visualization of CGIL with various hyper-parameters on classification performance

It can be observed that CGIL can learn more accurate invariant subgraphs for model prediction com-
pared to existing methods. Meanwhile, the learned invariant subgraphs contain very few boundary
edges. Fig.5a shows a hard example, due to there are two circle shapes in the graph. But in CGIL,
we cluster the nodes of two circle shapes into two groups considering the graph connectivity. Then
we learn the invariant subgraph from the invariant group in the lower right. This process can verify
the reliability of the CGIL framework well.

(a) circle (b) house (c) crane

Figure 5: Visualization examples of our CGIL on Spurious-Motif datasets
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