
Deep graph kernel point processes

Zheng Dong†, Matthew Repasky†, Xiuyuan Cheng⋆, and Yao Xie†∗
† H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology

⋆ Department of Mathematics, Duke University
{zdong76, mwrepasky}@gatech.edu

xiuyuan.cheng@duke.edu, yao.xie@isye.gatech.edu

Abstract
Point process models are widely used for continuous asynchronous event data,
where each data point includes time and additional information called “marks”,
which can be locations, nodes, or event types. In this paper, we present a novel
point process model for discrete event data over graphs, where the event interaction
occurs within a latent graph structure. Our model builds upon the classic influence
kernel-based formulation by Hawkes in the original self-exciting point processes
work to capture the influence of historical events on future events’ occurrence. The
key idea is to represent the influence kernel by Graph Neural Networks (GNN) to
capture the underlying graph structure while harvesting the strong representation
power of GNN. Compared with prior works that focus on directly modeling the
conditional intensity function using neural networks, our kernel presentation herds
the repeated event influence patterns more effectively by combining statistical and
deep models, achieving better model estimation/learning efficiency and superior
predictive performance. Our work significantly extends the existing deep spatio-
temporal kernel for point process data, which is inapplicable to our setting due to
the fundamental difference in the nature of the observation space being Euclidean
rather than a graph. We present comprehensive experiments on synthetic and real-
world data to show the superior performance of the proposed approach against the
state-of-the-art in predicting future events and uncovering the relational structure
among data.

1 Introduction
Asynchronous discrete event data, where each data point includes time and additional information
called “marks”, are ubiquitous in modern applications such as crime (Zhu and Xie, 2022), health care
(Wei et al., 2023), earthquake events (Ogata, 1988; Zhu et al., 2021a), and so on. In contemporary
applications, the collection of discrete events often reveals an underlying latent graph structure,
leading to the widespread adoption of models incorporating graph structures for various purposes.
Point processes over latent graphs are a popular model for such data, where the graph nodes can be
introduced to capture event marks, which can for example be locations or event types.

Classic one- and multi-dimensional temporal, self-exciting point process models introduced by
Hawkes (Hawkes, 1971) leverage an event influence kernel function to capture the impact of historical
events on future events’ occurrence. The influence kernel takes an exponentially decaying form, often
not expressive enough to capture complex influence mechanisms. Recently, there have been many
successes in deep point process models that represent the influence kernel using neural networks for
temporal-only kernels (Zhu et al., 2021b), spatio-temporal kernels (Okawa et al., 2021), and non-
stationary kernels (Dong et al., 2022). Such works achieve competitive performance through efficient
modeling of the influence kernel compared to point processes that model the conditional intensity
function using neural networks. The key lies in that modeling event influence through a kernel
captures the repeated influence patterns more effectively by combining statistical and deep models,
thus achieving better model estimation/learning efficiency and superior predictive performance.

∗Email: yao.xie@isye.gatech.edu

Temporal Graph Learning Workshop @ (NeurIPS 2023).

Despite much success in prior work on deep kernel modeling of point processes, there has been
limited work in exploiting underlying graph structures of multi-dimensional point processes by
harvesting the representation power of Graph Neural Networks (GNNs). Although GNNs provide
flexible frameworks for modeling graph data, how to properly adopt GNNs into point processes while
preserving the statistical model interpretability remains an open question.

In this paper, we present a novel point process model for discrete event data over graphs, where the
event interaction occurs within a latent graph structure. We represent the influence kernel by a GNN to
capture the underlying dynamics of event influence. Specifically, the proposed graph-based influence
kernel approach provides a unified framework for integrating various GNN structures with point
processes via localized graph filter basis functions. It is completely flexible to capture non-stationary
inter-node event promotion, inhibition, and multi-hop effects. We also present a computationally
efficient and flexible learning scheme by considering two types of loss functions, the commonly used
maximum likelihood estimation (MLE) and a new least-square estimation (LSE) scheme. We can
allow general types of influence (which can be negative), and the non-negative constraint for the
conditional intensity function is ensured by a log-barrier penalty in the loss function.

Our work significantly extends the existing deep spatio-temporal kernel for point process data, which
cannot apply in our setting since the observation space is fundamentally different: the spatio-temporal
point processes are for events that occurred in geophysical Euclidean space, and point processes over
graphs represent vicinity using nodes and edges. Our contributions can be summarized as follows:

1. Our proposed method explicitly models the influence kernel in point processes via GNNs instead
of typical intensity-based models. This permits greater expressivity of inter-event-category
contributions, including non-stationary, multi-hop exciting, and inhibiting effects. Furthermore,
the graph kernel can be directly interpreted, yielding clear information about the relational
structure in the modeled graph point process.

2. The proposed deep kernel can be efficiently scaled to large graphs by taking advantage of the
localized graph filter basis. The basis allows the deep kernel to go beyond simple distance-based
influence for graphs representing events in space, providing a model structure for non-spatial
graphs such as traffic or social networks. Meanwhile, a larger class of GNN models can be
incorporated within our framework, enabling broader versatility in real-world applications.

3. Comprehensive experiments demonstrate that including the latent graph structure in the deep
kernel modeling yields benefits over the state-of-the-art in both simulated and real data settings.
Our method applies to a wide array of point process data settings, including events generated by
infrastructural, climatic, and social phenomena.

2 Background
Self-exciting point process. A self-exciting point process (Reinhart, 2018) models the occurrence
of time-stamped discrete events that depend on the observed history. Consider a simple temporal point
process that only models event times. LetH = {t1, . . . , tn} be an observed event sequence, where
ti ∈ [0, T] ⊂ R is the time of i-th event. We denote the history before a given time t asHt = {ti|ti <
t}. The conditional intensity of events is defined as λ(t) = lim∆t↓0 E [N([t, t+∆t])|Ht] /∆t, where
the counting measure N is defined as the number of events occurring in [t, t+∆t]. For notational
simplicity, we omit the dependency of historyHt in λ(t). The well-known Hawkes process (Hawkes,
1971) models the self-excitation effect from history in an additive manner. The conditional intensity
function is defined as

λ(t) = µ+
∑
t′∈Ht

k(t′, t),

where µ is the background intensity, and k is the so-called influence kernel measuring the effects of
historical events.

In a marked point process, each event is associated with an additional attribute called mark denoted
by v ∈ V . The mark represents specific characteristics of the event and can be either continuous or
categorical, such as event location or event type. LetH = {(ti, vi)}ni=1 andHt = {(ti, vi)|ti < t}
be the observed event sequence and history before time t, respectively. The conditional intensity with
influence kernel k can be written as:

λ(t, v) = µ+
∑

(t′,v′)∈Ht

k(t′, t, v′, v). (1)

2

The influence kernel is crucial when learning the conditional intensity λ(t, v) from event sequences.
Our kernel goes beyond the parametric kernel in the classic Hawkes process and leverages latent data
structures, enabling us to better capture the underlying event-generating mechanism.

Graph convolution. Graph convolutions in graph neural networks (Wu et al., 2020b) extend the
convolution strategy to the graph and address the problem of cyclic mutual dependencies architec-
turally. Graph convolutions fall into two categories: spectral- and spatial-based models. Spectral
graph convolutions introduce graph filters gθ based on the full eigen-decomposition of the graph
Laplacian. The graph signal X is convoluted by X ∗G gθ = UgθU

TX , where U is the matrix of the
eigenvectors of the graph Laplacian ordered by eigenvalues. For instance, in Spectral Convolutional
GNNs (Bruna et al., 2013), the graph filter gθ = Θi,j contains a set of learnable parameters that
characterize the relations between node pairs. On the other hand, spatial-based graph convolution is
performed by information propagation along edges. The weight matrix in each layer is constructed
based on the node’s spatial relations (i.e., adjacency matrix). Either the localized filter or the weight
matrix plays a pivotal role in capturing the nodal dependencies. Various structures of graph convolu-
tions, both spectral and spatial, can be integrated into our proposed influence kernel to describe a
wide spectrum of intricate inter-event-category dependencies.

3 Point processes on graphs
The objective of this study is to construct a point process model for the occurrence of multiple types
of events within a latent graph structure. Let G = (V,E) denote the underlying graph, where each
node v ∈ V represents one event type. An undirected edge connecting nodes u and v indicates the
existence of potential interaction between type-u and type-v events. Note that the edges merely
suggest the support of possible inter-event-category interactions without dictating the directions.

Consider a set of event sequences S = {H1,H2, . . . ,H|S|}, where each Hs = {(tsi , vsi)}ns
i=1 is a

collection of events (tsi , v
s
i) occurring on node vsi at time tsi . Our proposed graph point process is

expected to: (i) jointly predict the times and types of forthcoming events based on the observed histor-
ical data and (ii) provide an interpretable understanding of the event generation process by revealing
the interdependences among multiple types of events and uncovering the latent graph structure with
no prior information. Toward this end, we adopt the statistical formulation of conditional intensity in
(1) and introduce an influence kernel built on localized graph filters in GNNs, aiming to explicitly
characterize the complicated contributing relationship between any binary event pair (e.g., excitation,
inhibition, or other dynamic influences).

3.1 Deep temporal graph kernel

Modeling the multi-dimensional influence kernel k for intricate event dependency is crucial yet
challenging. To go beyond simple parametric forms of the kernel while maintaining the model
efficiency, we represent the multi-dimensional kernel by taking advantage of the kernel singular value
decomposition (SVD) (Mercer, 1909; Mollenhauer et al., 2020). Specifically, the influence kernel
k(t′, t, v′, v) in (2) is decomposed into basis kernel functions as follows:

k(t′, t, v′, v) =

D∑
d=1

σdgd(t
′, t− t′)hd(v′, v), (2)

where {gd, hd}Dd=1 are sets of basis kernels in terms of event time and type, respectively. The scalar
σd is the corresponding weight (or “singular value”) at each rank d. Instead of directly learning the
multi-dimensional event dependency, we simplify the task by “separately” modeling specific modes
of event dependency over time or graph using different basis kernels. It is worth noting that the
weighted combination of basis kernels covers a broad range of non-stationary influence kernels used
in point processes, and our kernel k is not decoupled over time and graph space. While functional
SVD is usually infinite-dimensional, in practice, we can truncate the decomposition as long as the
singular values σk decay sufficiently fast, only considering a finite rank representation.

The temporal basis kernels are carefully designed to capture the heterogeneous temporal dependencies
between past and future events. First, the parametrization of temporal kernels {gd}Dd=1 using
displacements t− t′ instead of t provides us a low-rank way to approximate general kernels (Dong
et al., 2022). To proceed, we approximate {gd}Dd=1 using shared basis functions:

gd(t
′, t− t′) =

L∑
l=1

βdlψl(t
′)φl(t− t′), ∀d = 1, . . . , D.

3

Here {ψl, φl : [0, T] → R}Ll=1 are two sets of one-dimensional basis functions characterizing the
temporal impact of an event occurring at t′ and the pattern of that impact spread over t − t′. The
scalar βd,l is the corresponding weight. Each of the basis functions {ψl, φl}Ll=1 are represented by a
fully-connected neural network. The universal approximation power of neural networks enables the
model to go beyond specific parametric forms of the influence kernel or conditional intensity.

3.2 Graph kernel with localized graph filters

We develop a novel framework for the graph basis kernels by leveraging the localized graph filters in
graph convolution to extract informative inter-event-category patterns from graph-structured data.
Specifically, the basis kernels {hd}Dd=1 are represented as follows:

hd(v
′, v) =

R∑
r=1

γdrBr(v
′, v), ∀d = 1, . . . , D,

where {Br(v
′, v) : V ×V → R}Rr=1 are R bases of localized graph filters, and γdr is the correspond-

ing weight for each Br. The bases can be constructed either from a spatial or a spectral approach,
corresponding to two categories of commonly seen graph convolutions. Formally, the temporal graph
influence kernel k can be represented as:

k(t′, t, v′, v) =

R∑
r=1

L∑
l=1

αrlψl(t
′)φl(t− t′)Br(v

′, v), (3)

where αrl =
∑D

d=1

∑R
r=1

∑L
l=1 σdβdlγdr. To showcase the model flexibility of our graph basis

kernel to incorporate various GNN structures, we implement two examples of L3Net (Cheng et al.,
2020) and GAT (Velickovic et al., 2017) in our numerical experiments (Section 4). L3Net provides
a unified framework for both spatial- and spectral-based graph convolutions, and GAT can predict
the presence or absence of an edge in a graph. Note that our framework is compatible with general
GNN layer types, such as those in Chebnet (Defferrard et al., 2016) and GPS Graph Transformer
(Dwivedi and Bresson, 2020). An example is given the Appendix B. Technical details of the GNN
incorporation are presented in Appendix C.

By integrating the idea of localized graph filters in GNNs, the benefits of our design for the influence
kernel k lie in the following concepts. (i) The kernel enables the adoption of various spectral and
spatial filter bases. The combination of R bases allows us to represent complex local and global
patterns of inter-node influences with great model expressiveness. (ii) Our framework substantially
reduces the number of model parameters to O(RC|V |) for modeling graph-structured point process
data with |V | event types, while classic multivariate point processes and other neural point processes
typically require more than O(|V |2) parameters. Here C represents the average local patch size
(Cheng et al., 2020). In practice, we have C,R ≪ |V | when dealing with sparse graphs and
considering only up to o-hop influence (commonly 2 or 3), which significantly improves the scalability
of our model when applied to large graphs. Details can be found in Appendix C.

Choice of the network hyperparameters. We provide two strategies for choosing the kernel rank L
and R in Appendix G. In practice, we can learn αrl directly and absorb the hyperparameter D.

3.3 Model estimation

Previous studies of point processes primarily use two types of loss functions for model estimation,
including the (negative) log-likelihood function (NLL) (Dong et al., 2023; Reinhart, 2018) and the
least square loss function (LS) (Bacry et al., 2020; Cai et al., 2022). In the following, we consider
two types of losses, which are designed following the commonly used likelihood and least-square
types. This shows that our framework is not specific to a particular choice of loss and, in fact, can be
quite general. In practice, we verify by numerical experiments in Section 4 that models equipped
with LS and NLL are able to capture the underlying data dynamics and accurately predict future
events. For the completeness, we present derivations of two loss functions in Appendix D.

Negative Log-Likelihood (NLL). The model parameters can be estimated by minimizing the
negative log-likelihood of observing event sequences S on [0, T]× V (Reinhart, 2018):

min
θ
ℓNLL(θ) :=

1

|S|

|S|∑
s=1

(∑
v∈V

∫ T

0

λ(t, v)dt−
ns∑
i=1

log λ (tsi , v
s
i)

)
. (4)

4

Note that the model parameter θ is incorporated into the intensity function λ. Minimizing the
negative log-likelihood is equivalent to the maximum likelihood estimation approach, and the model
log-likelihood indicates how well the model fits the occurrences of events.

Least Square (LS) loss. Another approach based on least square loss (Hansen et al., 2015) can be
adopted to estimate the model parameters. The optimization problem given observed events S on
[0, T]× V is expressed as

min
θ
ℓLS(θ) :=

1

|S|

|S|∑
s=1

(∑
v∈V

∫ T

0

λ2(t, v)dt−
ns∑
i=1

2λ(tsi , v
s
i)

)
. (5)

The least square loss function can be derived from the empirical risk minimization principle (Geer,
2000). Intuitively, we expect that the integral of intensity over infinitesimal time intervals containing
event times is approximately one, while during non-event times, it is approximately zero.

Since negative values of the influence kernel are allowed for indicating inhibiting effects from
past events, an additional constraint is required for ensuring the non-negativity of the conditional
intensity function. To achieve this, we leverage the log-barrier method for optimization in point
processes (Dong et al., 2022), which maintains the model interpretability while being computationally
efficient. The final objective function to be minimized is formulated as L1(θ) := ℓ1(θ) +

1
wp(θ, b)

and L2(θ) := ℓ2(θ) +
1
wp(θ, b) for two loss functions, respectively. Here p(θ, b) is the log-barrier

penalization, where smaller intensity values will incur a greater penalty in comparison to larger
values. The scalar w > 0 is a weight to control the trade-off between log-likelihood and log-barrier,
and b > 0 is a lower bound of the intensity value over space to guarantee the feasibility of the
logarithm. Both loss functions can be efficiently computed in a numerical way, as illustrated by the
computational complexity analysis and computation time comparison in Appendix E.

4 Experiment
In this section, we compare our method using a deep graph kernel, referred to as GraDK, with seven
state-of-the-art point process methods on large-scale synthetic and real-world data sets.

Baselines. We include two groups of baselines with distinctive model characteristics. Models in
the first group treat the associated node information of each event as one-dimensional event marks
without considering the graph structure, including (i) Recurrent Marked Temporal Point Process
(RMTPP) (Du et al., 2016) that uses a recurrent neural network to encode dependence through time; (ii)
Fully Neural Network model (FullyNN) (Omi et al., 2019) that models the cumulative distribution
via a neural network; and (iii) Deep Non-Stationary Kernel (Dong et al., 2022) with a low-rank
neural marked temporal kernel (DNSK-mtpp). The second group includes two models that encode the
latent graph structure information when modeling event times and marks, including (iv) Structured
Transformer Hawkes Process (THP-S) (Zuo et al., 2020) and (v) Graph Self-Attentive Hawkes
Process (SAHP-G) (Zhang et al., 2020) with a given graph structure, which both use self-attention
mechanisms to represent the conditional intensity. The comparison with the above baselines enables
us to comprehensively investigate the benefits of incorporating latent graph structures in discrete
event modeling within a graph, as well as showcase our model capability to capture the complex
multi-hop and non-Euclidean event dependencies.

Experimental setup. We demonstrate the adaptability of the proposed method to various advanced
GNN architectures and loss functions using three different architectures: (i) GraDK with L3Net and
NLL (GraDK+L3net+NLL), (ii) GraDK with L3Net and LS (GraDK+L3net+LS), and (iii) GraDK with
GAT and NLL (GraDK+GAT+NLL). Details about the experimental setup and model architectures can
be found in Appendix H.

4.1 Synthetic data
We evaluate the efficacy of our model on large-scale synthetic data sets. We generate four data sets
using point processes with the following kernels and latent graph structures: (i) a non-stationary
temporal kernel on a 3-node graph with negative influence; (ii) a non-stationary temporal kernel on
a 16-node graph with 2-hop graph influence; (iii) an exponentially decaying temporal kernel on a
50-node graph with central nodes; and (iv) an exponentially decaying temporal kernel on a 225-node
graph. Data sets are simulated using the thinning algorithm (Daley and Vere-Jones, 2007). Each data
set contains 1,000 sequences with an average length of 50.9, 105.8, 386.8, and 498.3, respectively.
Details regarding synthetic data are presented in Appendix H.

5

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node
n
od

e
event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time
n
od

e
node

n
od

e

event
ev

en
t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e
node

n
od

e

event
ev

en
t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node
n
od

e
event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

G
ra

ph
 k

er
ne

l
Ev

en
t

de
pe

nd
en

cy
In

te
ns

ity

True model GraDK+L3net+NLL GraDK+L3net+LS GraDK+GAT+NLL SAHP-G DNSK-mtpp

node

n
od

e

Figure 1: Graph kernel, inter-event dependence, and conditional intensity recovery for the 16-node
synthetic data set with 2-hop graph influence. The first column reflects the ground truth, while the
subsequent columns reflect the results obtained by GraDK, SAHP-G, and DNSK, respectively.

Table 1: Synthetic data results.
3-node graph with negative influence 16-node graph with 2-hop influence 50-node graph 225-node graph

Model Testing ℓ Time MAE Type KLD Testing ℓ Time MAE Type KLD Testing ℓ Time MAE Type KLD Testing ℓ Time MAE Type KLD

RMTPP −3.473(0.087) 0.528 0.093 −7.239(0.193) 0.301 0.142 −27.915(1.251) 37.666 0.103 −16.294(1.047) 29.329 0.252
FullyNN −2.086(0.009) 0.291 0.006 −3.347(0.018) 0.198 0.018 −1.736(0.019) 13.295 0.058 −3.241(0.026) 9.672 0.174

DNSK-mtpp −2.127(0.003) 0.149 0.012 −3.005(0.002) 0.085 0.002 −1.165(0.003) 1.074 0.076 −2.511(0.001) 3.958 0.086

THP-S −2.089(0.008) 0.413 0.006 −3.079(0.004) 0.108 0.011 −1.091(0.005) 3.940 0.019 −2.550(0.008) 4.109 0.087
SAHP-G −2.113(0.005) 0.172 0.003 −3.036(0.008) 0.155 0.005 −1.099(0.004) 1.119 0.014 −2.506(0.005) 3.578 0.094

GraDK+L3net+NLL −2.062(0.003) 0.048 <0.001 −2.995(0.004) 0.028 0.002 −1.065(0.005) 1.023 0.004 −2.487(0.005) 1.779 0.015
GraDK+L3net+LS –2.059(0.002) 0.021 <0.001 –2.993(0.003) 0.001 0.001 –1.056(0.003) 0.957 0.005 –2.485(0.003) 0.146 0.012
GraDK+GAT+NLL −2.073(0.004) 0.068 <0.001 −2.997(0.005) 0.148 <0.001 −1.690(0.001) 0.690 0.007 −2.493(0.006) 2.458 0.092

*Numbers in parentheses are standard errors for three independent runs.

4.1.1 Unobserved graph
We first justify the capability of the proposed framework to recover the structure of the event
dependency when we have no prior information about the latent graph structure. This is achieved
by incorporating GAT into the graph kernel and uncovering the graph support through the learned
attention weights. In particular, we exploit a fully connected graph support in the experiments of
GraDK+GAT+NLL, assuming possible interactions between any pair of graph nodes. The estimated
localized graph filters can indicate the knowledge about the node interactions that the model has
learned from the data. As we can see in Figure 1, the recovered graph kernels and event dependencies
by GraDK+GAT+NLL closely resemble the ground truth. The model’s capability to capture the
underlying patterns of node interactions or dependencies is crucial in various real-world applications
in which one does not have access to the latent graph structure.

4.1.2 Observed graph
We demonstrate the exceptional performance of GraDK in modeling point process data by leveraging
observed latent graph structures using synthetic data sets. These experiments aim to simulate scenarios
where prior knowledge of the latent space is available.

Kernel and intensity recovery. Figure 1 contains the recovered graph kernel by each method
for the synthetic data generated by the kernel on a 16-node ring graph with 2-hop influence. Our
method and DNSK directly learn the kernel, and the graph kernel in SAHP-G is constructed as in the
original paper (Zhang et al., 2020) by computing the empirical mean of the learned attention weights
between nodes. It is worth noting that our model learns an accurate representation, reconstructing the
self-exciting and multi-hop influential structures in the ring graph, while SAHP-G only recovers the
mutual dependencies within one-hop neighbors, restricted by their model formulation. The multi-hop
influence along the graph structure is also reflected in the true and recovered event intensity by GraDK
(the first four panels at the bottom row of Figure 1). The conditional intensities of SAHP-G and DNSK,
however, either fail to capture the magnitude of this interdependence or do not accurately decay node
dependence along the ring-structure connections.

Event dependency. Our model also exhibits exceptional performance in capturing sequential event
dependencies. The second row of Figure H6 visualizes the learned inter-event dependency given

6

a sample sequence from the testing set. The dependency between a prior and a future event is
characterized by the influence kernel ((2)) in GraDK, DNSK, and the true model. For SAHP-G, the
event dependency is indicated by the scaled self-attention weight (Equation 10 (Zhang et al., 2020)).
While SAHP-G is capable of discovering long-term dependencies, the decaying influence of recent
events is not represented. The event dependency of DNSK does well to capture the decaying influence
of recent events, but fails to capture long-term effects by certain event types. Our method learns both
of these features, capturing long-term dependence and decaying influence similar to that of the true
model. Similarly, the second row of Figure 1 shows the inter-event dependency for the data on the
16-node ring graph with 2-hop influence. Still, SAHP-G erroneously presents some long-term effects
and DNSK fails to capture intermediate-time influence from past events, whereas GraDK captures the
influence at all proper timescales.
Predictive ability. The superior predictive performance of GraDK is further demonstrated through
a comprehensive evaluation. Apart from assessing the fitted log-likelihood (ℓ) of the testing data, for
each data set, we generate 100 event sequences using each learned model (one of three independent
runs) and provide two metrics: (i) the mean absolute error of predicted event frequency (Time MAE)
compared to that in the testing data, and (ii) the Kullback–Leibler Divergence of predicted event types
(Type KLD), which compares the empirical distributions of event types (nodes) in the testing data
and generated sequences. These metrics (proposed in a previous study (Juditsky et al., 2020)) reflect
the model’s predictive capacity for future events, as opposed to individual event prediction accuracy,
which tends to be noisy when applied to large graphs. The quantitative results in Table 1 demonstrate
that the GraDK method excels in fitting sequential data on a latent graph. It achieves the highest
log-likelihood across all datasets and significantly outperforms all baseline methods in predicting
future events, which holds immense importance within the domain of point process modeling.
Comparison of NLL and LS. The empirical results indicate that both loss functions can be well-
suited for learning graph point processes. In particular, models with LS show consistently better
performance by a slight margin. In terms of the model complexity, we show in Appendix E that both
loss functions enjoy efficient computation of complexity O(n), where n is the total number of events,
and their computation times are similar.

4.2 Real data
We test the performance of our proposed approach on real-world point process data. Since the
applications of graph point processes involve discrete events over networks with asynchronous time
information, most of the traditional benchmark graph data sets are not applicable. In the following,
we collect three publicly available data sets for numerical experiments: (i) traffic congestion data in
Atlanta; (ii) wildfire data in California; and (iii) theft data in Valencia, Spain. Details of the real data
sets can be found in Appendix H.

4.2.1 Ablation study
For real-world applications involving discrete event data observed in geographic space, spatio-
temporal point processes (STPPs) with Euclidean-distance-based influence kernel can be used.
Nevertheless, through an ablation study where we compare GraDK with three STPP baselines, we
showcase that our proposed graph point process model is more flexible and powerful in capturing
the more complicated event influence across discretized locations (represented by nodes) that are
distant but strongly influence each other. Such influences are captured by direct edges between nodes
or through multiple hops, which can be harder to capture using spatio-temporal kernels.

Table 2: Ablation study: Comparison with Spatio-
Temporal Point Processes (STPP).

Wildfire (25 nodes) Theft (52 nodes)

Model #parameters Testing ℓ Time MAE Type KLD Testing ℓ Time MAE Type KLD

MHP 625 −3.846(0.003) 1.103 0.072 −3.229(0.005) 1.912 0.483
ETAS 2 −3.702(0.002) 1.134 0.385 −3.049(0.001) 3.750 0.685

DNSK-stpp 4742 –3.647(0.005) 0.861 0.214 −3.004(0.002) 1.342 0.600
GraDK 411 −3.650(0.002) 0.580 0.018 –2.998(0.002) 0.127 0.292

*Numbers in parentheses are standard errors for three independent runs.

We compare GraDK against three STPP
baselines including (i) Multivariate
Hawkes process (MHP) (Hawkes, 1971)
(ii) Epidemic Type Aftershock Sequence
(ETAS) model (Ogata, 1988); (iii) Deep
Non-Stationary Kernel with a low-rank
spatio-temporal kernel (DNSK-stpp).
Each baseline represents one type of approach for modeling the spatial effect of historical events.
MHP discretizes the entire space by several geographic units and models the dependency among
units using a spatial kernel matrix. On the contrary, ETAS and DNSK-stpp adopt parametric and
neural-network-based spatial kernels and model the event dependencies over continuous Euclidean
space, respectively. We estimate each of the four models with a fixed exponentially decaying
temporal kernel on wildfire and theft data sets which are originally observed within Euclidean
geographic space.

7

node

n
od

e

(a) GraDK+L3net+NLL

node

n
od

e

(b) GraDK+GAT+NLL

node

n
od

e

(c) SAHP-G

node

n
od

e

(d) DNSK

Figure 2: Learned graph kernels for the theft data set; our proposed method can capture complex
inter-node dependence compared with prior work DNSK using a spatio-temporal kernel.

Table 3: Real data results.
Traffic congestion (5 nodes) Wildfire (25 nodes) Theft (52 nodes)

Model Testing ℓ Time MAE Type KLD Testing ℓ Time MAE Type KLD Testing ℓ Time MAE Type KLD

RMTPP −5.197(0.662) 2.348 0.021 −6.155(1.589) 1.180 0.178 −11.496(1.474) 5.871 0.124
FullyNN −3.292(0.108) 0.511 0.012 −4.717(0.119) 0.817 0.026 −3.468(0.068) 6.457 1.169

DNSK-mtpp −2.401(0.011) 0.934 0.010 −3.706(0.008) 0.711 0.083 −3.347(0.012) 0.507 0.177

THP-S −2.254(0.007) 0.378 0.003 −4.523(0.018) 1.183 0.134 −2.982(<0.001) 0.739 0.189
SAHP-G −2.453(0.013) 0.729 0.021 −3.919(0.040) 0.551 0.032 –2.970(0.032) 0.464 0.096

GraDK+L3net+NLL −2.178(0.005) 0.314 0.001 –3.625(0.002) 0.207 0.006 −2.980(0.003) 0.640 0.079
GraDK+L3net+LS –2.159(0.004) 0.247 0.001 −3.628(0.002) 0.347 0.013 −2.982(0.004) 0.391 0.067
GraDK+GAT+NLL −2.281(0.011) 0.356 0.015 −3.629(0.007) 0.898 0.085 −2.995(0.006) 0.942 0.173

*Numbers in parentheses are standard errors for three independent runs.

Table 2 presents the quantitative results of three metrics used in synthetic data sets for each model,
which demonstrate the superior performance of GraDK in fitting the data and predicting future events.
It is worth noting that the performance gain of our model does not rely on the increasing of parameters,
indicating the model benefits of the proposed graph kernel framework.

4.2.2 Comparison with baselines on real-data

Results in Table 3 underscore the efficacy of the GraDK approach in acquiring knowledge about
graph point processes across a diverse array of real-world domains. These settings cover diverse
event dependency dynamics, as the influence mechanisms include infrastructure (roadways for
traffic patterns), nature (weather and climate for wildfire patterns), and social dynamics (criminal
behavior for theft patterns). Despite the inherent complexity of these scenarios, our method excels in
providing a robust framework capable of capturing the intricate dependencies and facilitating accurate
predictions, demonstrated by the low Time MAE and Type KLD from our method in each setting,
which is better than or comparable to the best baselines in each of the three real data sets. Note that
we adopt GraDK+GAT+NLL to learn the latent graph structure for each real data set. We then evaluate
the models by leveraging the recovered graph supports, which are presented in Appendix H.

In Figure 2, the learned graph kernels of (a) GraDK+L3net+NLL, (b) GraDK+GAT+NLL, (c) SAHP-G,
and (d) DNSK are visualized for the theft data set. The third panel reveals that SAHP-G learns a very
noisy graph kernel, resulting in a conditional intensity that depends very slightly on inter-event
influence. In fact, this approach learns a homogeneous Poisson process for each node with a relatively
high likelihood. The last panel shows that DNSK fails to present meaningful or discernible patterns of
self-influence or event-type interdependence. Lastly, GraDK+GAT captures complex self-influence
and inter-node dependencies, and GraDK+L3net recovers multi-hop event influence with the aid of
the flexible graph kernel, indicating the complex inhomogeneous dynamics in real data with great
model interpretability.

5 Conclusion
We develop a novel deep kernel for graph point processes using localized graph filters in GNNs. This
construction enables efficient learning of intricate and non-stationary event dynamics on a latent
graph structure. The modeling of the kernel enhances interpretability, as one can parse the learned
kernel to understand event type interdependence. We demonstrate that our approach outperforms
existing methods in terms of dependency recovery and event prediction using simulation and extensive
real-data experiments. While we showcase four examples of adopting GNN structures via local filters,
we provide a flexible framework that can conveniently incorporate alternative GNN architectures.

8

References

Atwood, J. and Towsley, D. (2016). Diffusion-convolutional neural networks. Advances in Neural
Information Processing Systems, 29.

Bacry, E., Bompaire, M., Gaïffas, S., and Muzy, J.-F. (2020). Sparse and low-rank multivariate
hawkes processes. Journal of Machine Learning Research, 21(50):1–32.

Bianchi, F. M., Grattarola, D., Livi, L., and Alippi, C. (2021). Graph neural networks with convolu-
tional arma filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7):3496–
3507.

Brody, S., Alon, U., and Yahav, E. (2021). How attentive are graph attention networks? arXiv
preprint arXiv:2105.14491.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2013). Spectral networks and locally connected
networks on graphs. arXiv preprint arXiv:1312.6203.

Cai, B., Zhang, J., and Guan, Y. (2022). Latent network structure learning from high-dimensional
multivariate point processes. Journal of the American Statistical Association, pages 1–14.

Cheng, X., Miao, Z., and Qiu, Q. (2020). Graph convolution with low-rank learnable local filters.
arXiv preprint arXiv:2008.01818.

Daley, D. J. and Vere-Jones, D. (2007). An introduction to the theory of point processes: volume II:
general theory and structure. Springer Science & Business Media.

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural networks on graphs
with fast localized spectral filtering. Advances in Neural Information Processing Systems, 29.

Dong, Z., Cheng, X., and Xie, Y. (2022). Spatio-temporal point processes with deep non-stationary
kernels. arXiv preprint arXiv:2211.11179.

Dong, Z., Zhu, S., Xie, Y., Mateu, J., and Rodríguez-Cortés, F. J. (2023). Non-stationary spatio-
temporal point process modeling for high-resolution covid-19 data. Journal of the Royal Statistical
Society Series C: Applied Statistics, 72(2):368–386.

Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., and Song, L. (2016). Recurrent
marked temporal point processes: Embedding event history to vector. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data mining, pages
1555–1564.

Dwivedi, V. P. and Bresson, X. (2020). A generalization of transformer networks to graphs. arXiv
preprint arXiv:2012.09699.

Fang, G., Xu, G., Xu, H., Zhu, X., and Guan, Y. (2023). Group network hawkes process. Journal of
the American Statistical Association, (just-accepted):1–78.

Geer, S. A. (2000). Empirical processes in M-estimation, volume 6. Cambridge University Press.

Hansen, N. R., Reynaud-Bouret, P., and Rivoirard, V. (2015). Lasso and probabilistic inequalities for
multivariate point processes.

Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes.
Biometrika, 58(1):83–90.

Juditsky, A., Nemirovski, A., Xie, L., and Xie, Y. (2020). Convex parameter recovery for interacting
marked processes. IEEE Journal on Selected Areas in Information Theory, 1(3):799–813.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907.

9

Longa, A., Lachi, V., Santin, G., Bianchini, M., Lepri, B., Lio, P., Scarselli, F., and Passerini,
A. (2023). Graph neural networks for temporal graphs: State of the art, open challenges, and
opportunities. arXiv preprint arXiv:2302.01018.

Mei, H. and Eisner, J. M. (2017). The neural hawkes process: A neurally self-modulating multivariate
point process. Advances in Neural Information Processing Systems, 30.

Mercer, J. (1909). Xvi. functions of positive and negative type, and their connection the theory of
integral equations. Philosophical Transactions of the Royal Society of London. Series A, containing
papers of a mathematical or physical character, 209(441-458):415–446.

Mollenhauer, M., Schuster, I., Klus, S., and Schütte, C. (2020). Singular value decomposition of
operators on reproducing kernel hilbert spaces. In Advances in Dynamics, Optimization and
Computation: A volume dedicated to Michael Dellnitz on the occasion of his 60th birthday, pages
109–131. Springer.

Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point
processes. Journal of the American Statistical Association, 83(401):9–27.

Okawa, M., Iwata, T., Tanaka, Y., Toda, H., Kurashima, T., and Kashima, H. (2021). Dynamic
hawkes processes for discovering time-evolving communities’ states behind diffusion processes.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 1276–1286.

Omi, T., Aihara, K., et al. (2019). Fully neural network based model for general temporal point
processes. Advances in Neural Information Processing Systems, 32.

Pan, Z., Wang, Z., and Zhe, S. (2023). Graph-informed neural point process with monotonic nets.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf, G., and Beaini, D. (2022). Recipe
for a general, powerful, scalable graph transformer. Advances in Neural Information Processing
Systems, 35:14501–14515.

Reinhart, A. (2018). A review of self-exciting spatio-temporal point processes and their applications.
Statistical Science, 33(3):299–318.

Shang, J. and Sun, M. (2019). Geometric hawkes processes with graph convolutional recurrent neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
4878–4885.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing
Systems, 30.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., et al. (2017). Graph
attention networks. stat, 1050(20):10–48550.

Wei, S., Xie, Y., Josef, C. S., and Kamaleswaran, R. (2023). Granger causal chain discovery for
sepsis-associated derangements via continuous-time hawkes processes. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 2536–2546.

Wen, Z. and Fang, Y. (2022). Trend: Temporal event and node dynamics for graph representation
learning. In Proceedings of the ACM Web Conference 2022, pages 1159–1169.

Wu, W., Liu, H., Zhang, X., Liu, Y., and Zha, H. (2020a). Modeling event propagation via graph
biased temporal point process. IEEE Transactions on Neural Networks and Learning Systems.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S. Y. (2020b). A comprehensive survey on
graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1):4–24.

Xia, W., Li, Y., and Li, S. (2022). Graph neural point process for temporal interaction prediction.
IEEE Transactions on Knowledge and Data Engineering.

Yang, C., Mei, H., and Eisner, J. (2021). Transformer embeddings of irregularly spaced events and
their participants. arXiv preprint arXiv:2201.00044.

10

Zhang, Q., Lipani, A., Kirnap, O., and Yilmaz, E. (2020). Self-attentive hawkes process. In
International Conference on Machine Learning, pages 11183–11193. PMLR.

Zhang, Q., Lipani, A., and Yilmaz, E. (2021). Learning neural point processes with latent graphs. In
Proceedings of the Web Conference 2021, pages 1495–1505.

Zhu, H. and Koniusz, P. (2021). Simple spectral graph convolution. In International Conference on
Learning Representations.

Zhu, S., Li, S., Peng, Z., and Xie, Y. (2021a). Imitation learning of neural spatio-temporal point
processes. IEEE Transactions on Knowledge and Data Engineering, 34(11):5391–5402.

Zhu, S. and Xie, Y. (2022). Spatiotemporal-textual point processes for crime linkage detection. The
Annals of Applied Statistics, 16(2):1151–1170.

Zhu, S., Zhang, M., Ding, R., and Xie, Y. (2021b). Deep fourier kernel for self-attentive point
processes. In International Conference on Artificial Intelligence and Statistics, pages 856–864.
PMLR.

Zuo, S., Jiang, H., Li, Z., Zhao, T., and Zha, H. (2020). Transformer hawkes process. In International
Conference on Machine Learning, pages 11692–11702. PMLR.

11

A Related Works

There are various deep learning point process models based on modeling the conditional intensity
function using neural networks (rather than the influence kernel), such as recurrent neural networks
(RNNs) (Du et al., 2016; Mei and Eisner, 2017). Due to advances in attention models for sequential
data modeling (Vaswani et al., 2017), RNN approaches have been surpassed by self-attention-based
approaches (Zuo et al., 2020; Zhang et al., 2020). These RNN and self-attention methods provide
expressive models for the conditional intensity; however, they often lack statistical interpretability
coming from the original “influence kernel” approach and they do not consider graph structures.

Various approaches have been explored in point process modeling using graph information. Classical
multivariate Hawkes processes (Reinhart, 2018) assume a parametric form of the conditional intensity.
A recent work (Fang et al., 2023) develops a novel method of the Group Network Hawkes Process
that can account for the heterogeneous nodal characteristics using a parametric network model. Our
approach differs from parametric point processes by assuming a deep graph-based influence kernel.
Many modern approaches (Yang et al., 2021; Zhang et al., 2021; Zuo et al., 2020; Pan et al., 2023)
adopt neural networks incorporated with the graph structure. These studies focus on combining
non-graph neural network architectures (e.g., fully-connected neural networks, RNNs, etc.) along
with certain graph information (e.g., adjacency matrix), rather than directly incorporating GNN
structures in the models. For example, A-NHP (Yang et al., 2021) and THP-S (Zuo et al., 2020) adopt
attention-based mechanisms with additional constraints on the learned attention weights posted by
the graph structure, which differs from the Graph Attention Network (GAT) (Velickovic et al., 2017).
These approaches mainly consider the single-hop, adjacency-based influence over the latent graph.
Another attempt of the Geometric Hawkes Process (GHP) (Shang and Sun, 2019) integrates graph
convolution RNNs with the Hawkes process and achieves enhanced model expressiveness. Compared
with our approach, they use GNN to estimate the parameters of the conditional intensity function
with a parametric (exponentially decaying) kernel. In our work, incorporating GNN architectures in
the influence kernel without any parametric constraints permits the flexible and interpretable recovery
of complex event dependency, such as multi-hop influence mechanisms over the graph topology.
Other previous studies (Wen and Fang, 2022; Wu et al., 2020a; Xia et al., 2022) on modeling point
processes resort to message-passing GNNs. However, they do not use influence kernels and focus on
a different problem of graph node interaction prediction rather than modeling the dependencies and
occurrences of discrete marked events.

Our work is related to GNNs, which have seen wide applications in areas including temporal
phenomena on graphs (Longa et al., 2023; Wu et al., 2020b). Graph convolutions have been popular
recently, and they incorporate spatial or spectral convolutions based upon the adjacency matrix
or graph Laplacian (Bruna et al., 2013). An early attempt applying spatial convolutions is the
Diffusion-convolutional Neural Network (DCNN) (Atwood and Towsley, 2016). Other spatial-based
approaches also include attention models (Brody et al., 2021; Velickovic et al., 2017; Dwivedi and
Bresson, 2020). Prototypical spectral convolutions are utilized in Chebnet (Defferrard et al., 2016)
and graph convolutional networks (GCN) (Kipf and Welling, 2016), with recent extensions including

(a) The latent graph structure (b) Events dependencies over graph nodes

Figure A1: An example of modeling events on an 8-node graph using graph filter bases in L3Net:
(a) The latent graph structure. Blue and red nodes represent the 1st and 2nd order neighbors of v0,
denoted by N (1)

v0 and N (2)
v0 , respectively. (b) Three graph filter bases B(0), B(1), and B(2) capture

the dependencies between events. Hollow circles are events observed on each node. Colored lines
indicate the potential influence of the earliest type-v0 event on future events captured by different
bases.

12

auto-regressive moving average (ARMA) spectral convolutions (Bianchi et al., 2021) and the Simple
Spectral Graph Convolution (SSGC) (Zhu and Koniusz, 2021). Modern approaches incorporate both
local and global features, such as L3Net (Cheng et al., 2020) and General, Powerful, Scalable (GPS)
Graph Transformer (Rampášek et al., 2022).

B Example: Graph filter bases in L3Net

Figure A1 illustrates the mechanism of the graph filter bases in L3Net to capture the event depen-
dencies during the modeling of sequential events on an 8-node graph. The neighborhood orders are
highlighted as the superscripts of each graph filter basis.

C Incorporation of localized graph filters in graph kernel

We provide the details of incorporating different localized graph filters in graph convolutions into our
proposed graph basis kernel, including the model formulation and complexity (number of trainable
parameters). A graph convolution layer maps the input node feature X to the output feature Y .
Particularly, for the graph convolutions in the graph neural networks discussed in Section 3.2, we
have:

(1) Chebnet (Defferrard et al., 2016): The filtering operation in Chebnet is defined as

Y =

R−1∑
r=0

θrTr(L̃)X,

where Tr is the Chebyshev polynomial of order r evaluated at the scaled and normalized graph
Laplacian L̃ = 2L/λmax − I , where L = I −D−1/2AD−1/2, D is the degree matrix, A is the
adjacency matrix, and λmax is the largest eigenvalue of L.
We let Br = Tr−1(L̃) ∈ R|V |×|V |, which can be computed by the recurrence relation of
Chebyshev polynomial Br = 2LBr−1 − Br−2. Since {Br}Rr=1 are calculated by the graph
Laplacian, the trainable parameters are polynomial coefficients (in our case, the weights that
combine basis kernels) of O(R).

(2) L3Net (Cheng et al., 2020): In L3Net, the graph convolution layer for single channel graph signal
is specified as (omitting the bias, non-linear mapping)

Y =

R∑
r=1

arB
(or)
r (v′, v)X.

Each B(or)
r (v′, v) ̸= 0 only if v ∈ N (or)

v′ .
In our model, we choose an integer or for each Br and formulate them the same way in L3Net.
Thus, each Br(v

′, v) models the influence from v′ to its or-th order neighbors on the graph. All
bases {Br}Rr=1 are learnable. Assuming the average number of neighbors of graph nodes is C,
the total number of trainable parameters is of O(RC|V |).

(3) GAT (Velickovic et al., 2017): Considering GAT with R attention heads, the graph convolution
operator in one layer can be written as

Y =

R∑
r=1

A(r)XΘr, A(r)
v′,v =

ec
(r)

v′v∑
v∈N

(1)

v′
ec

(r)

v′v

, c
(r)
v′v = σ((a(r))⊤[W (r)Xv′ ||W (r)Xv]).

Here {a(r),W (r)}Rr=1 are trainable model parameters, and Θr = W (r)C(r), where C(r) is a
fixed matrix for concatenating outputs from R attention heads. Mask attention is applied to inject
the graph structure, that is, A(r)

v′,v ̸= 0 only when v ∈ N (1)
v′ .

Therefore, each Br(v
′, v) in our graph basis kernel can be a learnable localized graph filter with

positive entries and column-wise summation normalized to one to mimic the affinity matrix A(r).
When global attention is allowed (i.e., every node can attend on every other node), the number of
trainable parameters is of O(R|V |2). When mask attention is applied (which is commonly used
in GAT), the total number of trainable parameters is O(RC|V |).

13

(4) GPS Graph Transformer (Rampášek et al., 2022): At each layer of GPS Graph Transformer, the
graph node features are updated by aggregating the output of a message-passing graph neural
network (MPNN) layer and a global attention layer. Assuming a sum aggregator in the MPNN
layer, the filter operation can be expressed as

Y =

R∑
r=1

(
A(r)XW

(r)
1 +XW

(r)
2

)
C(r).

Here A(r) is the affinity matrix in the attention layer, and W (r)
1 ,W

(r)
2 are weight matrices in

the attention layer and MPNN layer, respectively. The fixed matrices {C(r)} concatenate the R
attention heads and MPNN layers.
We can integrate such a GPS Graph Transformer structure by introducing 2R localized graph
filter bases. For each r, Br takes the form of a learnable affinity matrix, and B2r = A, where A
is the graph adjacency matrix. Here {Br}Rr=1 are learnable and {Br}2Rr=R+1 are fixed. The total
number of trainable parameters with mask attention adopted is of O(RC|V |).

D Derivation of two loss functions

Considering one event sequence with n events, we present the detailed derivation of loss functions
NLL and LS in the following:

Negative log-likelihood (NLL). The model likelihood of point processes can be derived from the
conditional intensity ((1)). For the i+ 1-th event at (t, v), by definition, we can re-write λ(t, v) as
follows:

λ(t, v) = E (Nv([t, t+∆t]× v))|Ht) /dt

= P{ti+1 ∈ [t, t+∆t], vi+1 = v|Hti+1
∪ {ti+1 ≥ t}}/dt

=
P{ti+1 ∈ [t, t+∆t], vi+1 = v, ti+1 ≥ t, vi+1 = v|Hti+1

}/dt
P{ti+1 ≥ t|Hti+1}

.

=
f(t, v)

1− F (t) .

Here Nv is the counting measure on node v, F (t) = P(ti+1 < t|Hti+1
) is the conditional cumulative

probability and f(t, v) is the corresponding conditional probability density for the next event happen-
ing at (t, v) given observed history. We multiply the differential dt on both sides of the equation and
sum over all the graph nodes V :

dt ·
∑
v∈V

λ(t, v) =
dt ·∑v∈V f(t, v)

1− F (t) = −d log (1− F (t)).

Integrating over t on [ti, t) with F (ti) = 0 leads to the fact that

F (t) = 1− exp

(
−
∫ t

ti

∑
v∈V

λ(t, v)dt

)
,

then we have

f(t, v) = λ(t, v) · exp
(
−
∫ t

ti

∑
v∈V

λ(t, v)dt

)
.

Using the chain rule, we have the model log-likelihood to be:

ℓNLL = − log f((t1, v1), . . . , (tn, vn)) = − log

n∏
i=1

f(ti, vi)

=
∑
v∈V

∫ T

0

λ(t, v)dt−
n∑

i=1

λ(ti, vi).

14

Least square (LS) loss. We expect that the integral of the conditional intensity over infinitesimal
time intervals containing event times should be approximately one, while during non-event times, it
should be approximately zero. Specifically, involving each graph node’s counting process Nv, we
have

ℓLS =
∑
v∈V

∫ T

0

(λ(t, v)− 1)
2
dNv(t) +

∫ T

0

(λ(t, v)− 0)
2
(dt− dNv(t))

=
∑
v∈V

∫ T

0

λ2(t, v)dNv(t)− 2
∑
v∈V

∫ T

0

λ(t, v)dNv(t) + n+
∑
v∈V

∫ T

0

λ2(t, v)dt

−
∑
v∈V

∫ T

0

λ2(t, v)dNv(t)

=
∑
v∈V

∫ T

0

λ2(t, v)dt−
n∑

i=1

2λ(ti, vi) + n.

Omitting the constant we can have the ℓLS in (5).

The log-likelihood of |S| observed event sequences can be conveniently obtained by summing over
the loss over all the sequences with counting measure Nv replaced by Ns for s-th sequence.

E Effiecient model computation

In our optimization problem, the log-barrier term p(θ, b) guarantees the validity of the learned models
by penalizing the value of conditional intensity function on a dense enough grid over space, denoted
as Ubar,t × V where Ubar,t ⊂ [0, T]. The optimization problems with two loss functions are expressed
as
min
θ
L1(θ) :=

1

|S|

|S|∑
s=1

(∑
v∈V

∫ T

0

λ(t, v)dt−
ns∑
i=1

log λ (tsi , v
s
i)

)
− 1

w|S||Ubar,t × V |

|S|∑
s=1

∑
t∈Ubar,t

∑
v∈V

log(λ(t, v)− b),

(E1)
and
min
θ
L2(θ) :=

1

|S|

|S|∑
s=1

(∑
v∈V

∫ T

0

λ2(t, v)dt−
ns∑
i=1

2λ(tsi , v
s
i)

)
− 1

w|S||Ubar,t × V |

|S|∑
s=1

∑
t∈Ubar,t

∑
v∈V

log(λ(t, v)− b),

(E2)
respectively. The computational complexity associated with calculating the objective function has
consistently posed a limitation for neural point processes. The evaluations of neural networks
are computationally demanding, and traditional numerical computation requires model evaluations
between every pair of events. Consider one event sequence {(ti, vi)}ni=1 in S with a total number
of n events; traditional methods have a complexity of O(n2) for neural network evaluation. In the
following, we showcase our efficient model computation of complexity O(n) for two different loss
functions using a domain discretization strategy.

Negative log-likelihood. We identify three distinct components in the optimization objective ((E1))
as log-summation, integral, and log-barrier, respectively. We introduce a uniform grid Ut over time
horizon [0, T], and the computation for each term can be carried out as follows:

• Log-summation. We plug in the influence kernel ((3)) to the log-summation term and have

n∑
i=1

log λ(ti, vi) =

n∑
i=1

log

µ+
∑
tj<ti

R∑
r=1

L∑
l=1

αlrψl(tj)φl(ti − tj)Br(vj , vi)

.
Each ψl is only evaluated at event times {ti}ni=1. To prevent redundant evaluations of the
function φl for every pair of event times (ti, tj), we restrict the evaluation of φl on the grid

15

Table E1: Comparison of the computation time for two loss functions on each synthetic data set.
Model 3-node graph with negative influence 16-node graph with 2-hop influence 50-node graph 225-node graph

GraDK+NLL 0.931 3.993 25.449 4.948
GraDK+LS 0.985 3.927 26.182 5.619

*Unit: seconds per epoch.

Ut. By adopting linear interpolation between two neighboring grid points of ti − tj , we can
determine the value of φl(ti − tj). In practice, the influence of past events is limited to a finite
range, which can be governed by a hyperparameter τmax. Consequently, we can let φl(·) = 0
when ti − tj > τmax without any neural network evaluation. The computation of Br(vj , vi) is
accomplished using matrix indexing, a process that exhibits constant computational complexity
when compared to the evaluation of neural networks.

• Integral. The efficient computation of the integral benefits from the formulation of our conditional
intensity function. We have∑

v∈V

∫ T

0

λ(t, v)dt = µ|V |T +

n∑
i=1

∑
v∈V

∫ T

0

I(ti < t)k(ti, t, vi, v)dt

= µ|V |T +

n∑
i=1

R∑
r=1

V∑
v=1

Br(vi, v)

L∑
l=1

αrlψl(ti)

∫ T−ti

0

φl(t)dt.

Similarly, the evaluations ofBr(vi, v) are the extractions of corresponding entries in the matrices,
and ψl is only evaluated at event times {ti}ni=1. We leverage the evaluations of φl on the grid Ut
to facilitate the computation of the integral of φl. Let Fl(t) :=

∫ t

0
φl(τ)dτ . The value of Fl on

j-th grid point in Ut equals the cumulative sum of φl from the first grid point up to the j-th point,
multiplied by the grid width. Then Fl(T − ti) can be computed by the linear interpolation of
values of Fl at two adjacent grid points of T − ti.

• Log-barrier. The computation can be carried out similarly to the computation of the log-
summation term by replacing (ti, vi) with (t, v) where t ∈ Ubar,t, v ∈ V .

Least square loss. Similarly, we term the three components in objective function ((E2)) as square
integral, summation, and log-barrier, respectively. The terms of summation and log-barrier are
calculated in the same way as the log-summation and log-barrier in (E1), respectively, except for no
logarithm in the summation. Since expanding the integral after squaring the conditional intensity
function is complicated, we leverage the evaluations of the intensity function on the dense enough
grid for log-barrier penalty Ubar,t×V and use numerical integration for computing the square integral.

We provide the analysis of the computational complexity of O(n). For objective (E1), the evaluation
of {ψl}Ll=1 has a complexity ofO(Ln), while the evaluation of {φl}Ll=1 requiresO(L|Ut|) complexity.
On the other hand, {Br}Rr=1 are computed with O(1) complexity. Therefore, the total complexity of
our model computation is O(n+ |Ut|). Moreover, the grid selection in practice is flexible, striking
a balance between learning accuracy and efficiency. For instance, the number of grid points in Ut
and Ubar,t can be both chosen around O(n), leading to an overall computational complexity of O(n).
Similar analysis can be carried out for objective (E2). It is worth noting that all the evaluations of
neural networks and localized filter bases can be implemented beforehand, and both optimization
objectives are efficiently calculated using basic numerical operations. Table E1 shows the wall clock
times for model training with each loss function on all the synthetic data sets, indicating that the
computation time for NLL and LS are similar.

F Algorithm

The weight w and the lower bound b need to be adjusted accordingly during optimization to learn
the valid model. For example, non-sensible solutions (negative intensity) appear frequently at the
early stage of the training process, thus the lower bound b should be close enough to the minimum
of all the evaluations on the grid to effectively steer the intensity functions towards non-negative
values, and the weight w can be set as a small value to magnify the penalty influence. When the
solutions successfully reach the neighborhood of the ground truth and start to converge (thus no
negative intensity would appear with a proper learning rate), the b should be away from the intensity

16

Table G2: Testing log-likelihood for GraDK with different kernel ranks.
16-node graph 50-node graph Wildfire Theft

Kernel rank R = 1 R = 2 R = 3 R = 1 R = 2 R = 3 R = 1 R = 2 R = 3 R = 1 R = 2 R = 3

L = 1 −3.032(<0.001) −2.997(0.001) −2.995(0.002) −1.085(<0.001) –1.065(0.002) −1.067(0.001) −3.900(0.004) −3.654(0.009) –3.625(0.002) −3.405(0.001) −3.039(0.011) –2.980(0.003)

L = 2 −3.030(0.001) −2.992(0.002) –2.987(0.005) −1.085(0.001) −1.067(0.002) –1.065(0.002) −3.977(0.005) −3.657(0.007) −3.649(0.017) −3.396(0.008) −3.047(0.026) −3.355(0.034)
*Numbers in parentheses are standard errors for three independent runs. Grey boxes indicate the choice in the original paper.

Table G3: Predictive metrics (Time MAE and Type KLD) for GraDK with different kernel ranks.
16-node graph 50-node graph Wildfire Theft

Kernel rank R = 1 R = 2 R = 3 R = 1 R = 2 R = 3 R = 1 R = 2 R = 3 R = 1 R = 2 R = 3

L = 1 0.272/0.003 0.153/0.001 0.028/<0.001 1.912/0.004 1.023/0.004 3.118/0.006 0.943/0.107 0.358/0.024 0.207/0.006 2.787/0.097 1.052/0.082 0.640/0.079
L = 2 0.226/0.002 0.145/0.001 0.064/0.002 3.698/0.006 1.024/0.004 5.217/0.013 0.945/0.109 0.314/0.020 0.946/0.110 2.702/0.091 1.001/0.082 1.123/0.109

*Grey boxes indicate the choice in the original paper.

evaluations (e.g., upper-bounded by 0), and w should be large enough to remove the effect of the
log-barrier penalty. We provide our training algorithm using stochastic gradient descent in the
following.

Algorithm 1 Model learning
Input: Training set X , batch size M , epoch number E, learning rate γ, constant a > 1 to update
w in (E1) or (E2).
Initialization: model parameter θ0, first epoch e = 0, s = s0. Conditional intensity lower bound
b0.
while e < E do

Set btemp = 0.
for each batch with size M do

1. Compute ℓ(θ), {λ(tct , scs)}ct=1,...,|Ubar,t|,cs=1,...,|V |.

2. Compute L(θ) = −ℓ(θ) + 1
wp(θ, be).

3. Update θe+1 ← θe − γ ∂L
∂θe

.

4. Set btemp = min
{
min{{λ(tct , scs)}ct=1,...,|Ubar,t|,cs=1,...,|Ubar,s| − ϵ, btemp

}
, where ϵ is a

small value to guarantee logarithm feasibility.
end for
e← e+ 1, w ← w · a, be = btemp

end while

G Choice of kernel rank

The kernel rank can be chosen using two approaches. The first approach treats the kernel rank as a
model hyperparameter, and its selection is carried out through cross-validation. This process aims
to optimize the log-likelihood on validation datasets. Each choice of (L,R) ∈ [1, 2]× [1, 2, 3] has
been assessed for GraDK+L3net+NLL on synthetic and real-world datasets. The order of the r-th
filter is set to be r (Tables G2 and G3). The log-likelihood values in the synthetic data show only
minor differences given different hyperparameter choices once the parameters are chosen such that
they sufficiently capture temporal or multi-hop graph influence (typically requiring R > 1). In the
real-world data, L = 1 with R = 3 yields the highest log-likelihood on the validation dataset, which
are the parameters used in Section 4.2.

The rank of the kernel can also be viewed as a level of model complexity to be learned from the data.
Generally, under certain regularity assumptions of the kernel in kernel SVD, the singular values will
decay towards 0, resulting in a low-rank kernel approximation. The singular values are captured by
the coefficients αrl. The kernel rank is chosen by preserving significant coefficients while discarding
higher-order ones; we can treat each αrl as one learnable parameter without the need to choose D.
The effectiveness of this approach is showcased by the results of the wildfire data. We set L = 2 and
R = 3 at first and fit the model, and visualize the learned kernel coefficients in Figure G2, which
suggests that L = 1 and R = 3 would be an optimal choice for the kernel rank. This choice is used
in subsequent model fitting.

17

R=1 R=2 R=3

L=1

L=2

0.482

-0.018

-0.337

0.026

0.102

0.008
−0.50

−0.25

0.00

0.25

0.50

Figure G2: Learned {αrl} of GraDK with L = 2, R = 3 on wildfire data.

(a) 3-node graph (b) 16-node graph (c) 50-node graph (d) 225-node graph

Figure H3: Latent graph structures for the synthetic data sets. From left to right, the graphs correspond
to the 3-node graph, the 16-node ring graph, the 50-node graph, and the 225-noode graph in synthetic
data set 1, 2, 3, and 4, respectively.

H Experimental details and additional results

In this section, we give details regarding the experiments in Section 4, including a description of the
ground truth point process models for synthetic data, latent graph structures for real data, experimental
setup, and additional results.

H.1 Data description

Our experiments are implemented using four synthetic and three real-world data sets.

Synthetic data. We provide a detailed description of the ground truth kernels and latent graph
structures we used for synthetic data generation:

(i) 3 nodes with non-stationary temporal kernel and 1-hop (positive and negative) graph influence:

k(t′, t, v′, v) = 1.5(0.5 + 0.5 cos(0.2t′))e−2(t−t′)
(
0.5B

(0)
1 (v′, v) + 0.2B

(1)
2 (v′, v)

)
,

where B(0)
1 = diag(0.5, 0.7, 0.5), B(1)

2 (2, 1) = −0.2, and B(1)
2 (2, 3) = 0.4.

(ii) 16 nodes with non-stationary temporal kernel and 2-hop graph influence:

k(t′, t, v′, v) = 1.5(0.5+0.5 cos(0.2t′))e−2(t−t′)
(
0.2B

(0)
1 (v′, v)− 0.3B

(1)
2 (v′, v) + 0.1B

(2)
3 (v′, v)

)
,

such that (0.2B(0)
1 − 0.3B

(1)
2 +0.1B

(2)
3) = (0.2I − 0.3L̃+0.1(2L̃2− I)). Here L̃ is the scaled

and normalized graph Laplacian defined in Section 3.2. This graph influence kernel is visualized
in the top row of Figure 1 (first column).

(iii) 50 nodes with exponentially decaying temporal kernel: g(t′, t) = 2e−2(t−t′). The graph kernel is
constructed such that the influence follows a Gaussian density (with 3 modes) along the diagonal
of the graph influence kernel with random noise in addition to off-ring influence. The true graph
kernel is visualized in the first panel of Figure H6.

(iv) 225 nodes with exponentially decaying temporal kernel: g(t′, t) = 2e−2(t−t′). The true graph
kernel is visualized in the first panel of Figure H7.

The latent graph structures for these four synthetic data experiments can be found in Figure H3.

Real data. We also apply the model to three real data sets across different real-world settings.

(i) Traffic congestion data. The Georgia Department of Transportation (GDOT) provides traffic
volume data for sensors embedded on roads and highways in the state. We have access to such

18

(a) Traffic graph (b) Wildfire graph (c) Theft graph

Figure H4: Latent graph structures for the real data sets. From left to right, the graphs correspond to
the ones in Atlanta traffic congestion data, the California wildfire data, and the Valencia sustraccion
(theft) data.

Table H4: Training hyper-parameters for the baselines.
3-node

synthetic
16-node
synthetic

50-node
synthetic

225-node
synthetic Traffic Wildfire Theft

Model
Learning

Rate
Batch
Size

Learning
Rate

Batch
Size

Learning
Rate

Batch
Size

Learning
Rate

Batch
Size

Learning
Rate

Batch
Size

Learning
Rate

Batch
Size

Learning
Rate

Batch
Size

RMTPP 10−3 32 10−3 32 10−3 32 10−3 32 10−3 32 10−3 2 10−3 2
FullyNN 10−2 100 10−2 100 10−2 100 10−2 100 10−3 50 10−3 20 10−3 100
DNSK 10−1 32 10−1 32 10−1 32 10−1 32 10−1 32 10−1 2 10−1 2
THP-S 10−3 32 10−3 32 10−3 32 10−3 32 10−3 64 10−3 2 10−3 2
SAHP-G 10−4 32 10−4 32 10−4 32 10−4 32 10−4 32 10−3 2 10−3 2

data for 5 sensors at the interchange of interstates 75 and 85 in Midtown Atlanta from September
2018 to March 2019. Traffic volume is measured in 15-minute intervals, and congestion events
are detected when the traffic count exceeds the third quartile of the daily traffic volume. The
result is 3,830 events which are split into 24-hour trajectories (with an average of 24 events per
day). The latent graph connects 5 sensors based on the flow of traffic and proximity.

(ii) Wildfire data. The California Public Utilities Commission (CPUC) maintains a large-scale multi-
modal wildfire incident dataset. We extract a total of 2,428 wildfire occurrences in California from
2014 to 2019. The latitude-longitude coordinates of incidents are bounded by the rectangular
region [34.51, -123.50] × [40.73, -118.49]. Note that the majority of the region has no fire in the
5-year horizon due to the fact that fire incidents are likely to cluster in space. Therefore, we apply
the K-means algorithm to extract 25 clusters of wildfire incidents. The latent graph is constructed
such that each node represents one cluster and is connected to geographically adjacent nodes.
The entire dataset is split into one-year sequences with an average length of 436 events.

(iii) Theft data. The proprietary crime data collected by the police department in Valencia, Spain
records the crime incidents that happened from 2015 to 2019, including incident location,
crime category, and distance to various landmarks within the city. We analyze 9,372 sustraccions
(smooth thefts) that happened near 52 pubs within the Valencia city area. The graph is constructed
from the street network, with each node representing a pub. Two pubs are connected if the distance
between them along the street is less than 1 km. Each sustraccion is assigned to the closest pub.
We partition the data into quarter-year-long sequences with an average length of 469 events.

The learned latent graph structures overlaid on the real-world geography are displayed in Figure H4
for the Atlanta traffic congestion, California wildfire, and Valencia theft data.

H.2 Detailed experimental setup

We choose our temporal basis functions to be fully connected neural networks with two hidden layers
of width 32. Each layer is equipped with the softplus activation function except for the output layer.
For each data set, all the models are trained using 80% of the data and tested on the remaining 20%.
Our model parameters are estimated through objective functions in Section 3.3 using the Adam
optimizer (Kingma and Ba, 2014) with a learning rate of 10−2 and batch size of 32.

For the baseline of RMTPP, we test the dimension of {32, 64, 128} for the hidden embedding in RNN
and choose an embedding dimension of 32 in the experiments. For FullyNN, we set the embedding
dimension to be 64 and use a fully-connected neural network with two hidden layers of width 64 for

19

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

event

node

n
od

e

event

ev
en

t

time

n
od

e

event

node

n
od

e

event

ev
en

t

time

n
od

e

event

G
ra

ph
 k

er
ne

l
Ev

en
t

de
pe

nd
en

cy
In

te
ns

ity

True model GraDK+L3net+NLL GraDK+L3net+LS GraDK+GAT+NLL SAHP-G DNSK-mtpp

Figure H5: Graph kernel, inter-event dependence, and conditional intensity recovery for the 3-node-
graph synthetic data set with negative (inhibitive) graph influence. The first column reflects the
ground truth, while the subsequent columns reflect the results obtained by GraDK (our method),
SAHP-G, and DNSK, respectively.

G
ra

ph
 k

er
ne

l
Ev

en
t

de
pe

nd
en

cy
In

te
ns

ity

True model GraDK+L3net+NLL GraDK+L3net+LS GraDK+GAT+NLL SAHP-G DNSK-mtpp
node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

event

node

n
od

e

event

ev
en

t

time

n
od

e

event

node

n
od

e

event

ev
en

t

time

n
od

e

event

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

Figure H6: Graph kernel, inter-event dependence, and conditional intensity recovery for the 50-node
synthetic data set.

the cumulative hazard function, as the default ones in the original paper. The dimension of input
embedding is set to 10. For DNSK, we adopt the structure for the marked point processes and set the
rank of temporal basis and mark basis to 1 and 3. THP-S and SAHP-G use the default parameters
from their respective code implementations. The GraDK method uses a rank 1 basis for the temporal
kernel and a rank 2 basis for the graph kernel (except in the ring graph with 2-hop influence, which
uses a rank 3 basis). The ranks of the bases in our experiments correspond to zero- (self-), one-, and
two-hop influence. The temporal kernel basis functions are fully connected neural networks with two
hidden layers of size 32. Learning rate and batch size parameters are provided for each baseline and
experiment in Table H4.

20

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time
n
od

e

event

node
n
od

e
event

ev
en

t

time

n
od

e

event

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

event

node

n
od

e

event
ev

en
t

time

n
od

e
node

n
od

e

event

ev
en

t

time

n
od

e
node

n
od

e
event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time
n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

node

n
od

e

event

ev
en

t

time

n
od

e

G
ra

ph
 k

er
ne

l
Ev

en
t

de
pe

nd
en

cy
In

te
ns

ity

True model GraDK+L3net+NLL GraDK+L3net+LS GraDK+GAT+NLL SAHP-G DNSK-mtpp

Figure H7: Graph kernel, inter-event dependence, and conditional intensity recovery for the 225-node
synthetic data set.

H.3 Additional experimental results

Synthetic data. Figure H5 presents the kernel and intensity recovery results for the synthetic
data set 1 generated by a non-stationary temporal kernel and a 3-node-graph kernel with inhibitive
influence. The recovery outcomes demonstrate the efficacy of our proposed model in characterizing
the temporal and graph-based dependencies among events, as evident from the first and second rows
of the figure. Moreover, the results emphasize the capability of our model, GraDK, to effectively
capture the inhibitive effects of past events. In contrast, the event dependencies represented by
the normalized positive attention weights in SAHP solely capture the triggering intensity of past
events without accounting for inhibitive influences. Similarly, the first row of Figure H6 displays
the true graph influence kernel in the 50-node synthetic data set and the learned graph kernels by
GraDK, SAHP-G, and DNSK. While SAHP-G exaggerates the self-exciting influence of graph nodes
and DNSK only learns some semblance of the graph kernel behavior, our method accurately recovers
both self- and inter-node influence patterns, resulting in a faithful model of the true graph kernel.
The conditional intensity via each method for one testing trajectory is displayed in the third row of
Figure H6, which demonstrates the capability of our model to capture the temporal dynamics of
events.

Real data. We visualize the learned graph kernels by GraDK, SAHP, and DNSK on traffic and wildfire
data in Figure H8. Our approach is able to learn intense graph signals with complex patterns by
taking advantage of the graph structure and GNNs. While the attention structures adopted in SAHP
contribute to improved model prediction performance for future events, this approach suffers from
the limited model expressiveness and interpretability when attempting to recover the underlying
mechanism of the event generation process, indicated by the weak and noisy graph signals. DNSK
fails to uncover the intricate patterns existing in graph kernels and only provides restrictive kernels
for event modeling without considering the latent graph structures among data.

Our model not only achieves exceptional interpretability but also holds practical significance in the
context of real-world point process data modeling. This can be demonstrated through experimental
results conducted on traffic data. The five traffic sensors from which we collect data can be categorized
into two groups, northbound sites and southbound sites, according to the directions of the highway
they are monitoring. Figure H9(a) visualizes the structure of the traffic network with sensors (graph
nodes) labeled and arrows indicating the highway directions. We then investigate the conditional
intensity learned by GraDK on each traffic sensor. Figure H9(b)(c) show the conditional intensity
functions of five sensors during one single day (i.e., computed given one sequence from the testing
set) with two subgroups of northbound and southbound sites. Note that similar temporal patterns
can be found within the same subgroup, which can be attributed to the fact that the sensors in the

21

node

n
od

e

node

n
od

e

node

n
od

e

node

n
od

e

(a) Traffic data

node

n
od

e

node

n
od

e

node

n
od

e

node

n
od

e

(b) Wildfire data

Figure H8: Learned graph kernels for traffic and wildfire data set. The columns present the recovered
kernels on each data set of GraDK+L3net, GraDK+GAT, SAHP-G, and DNSK, respectively.

(a) Traffic network structure

5.0 10.0 15.0 20.0

hour

0.1

0.2

0.3

0.4

0.5

C
on

d
it

io
n

al
in

te
n

si
ty 0

2

(b) Northbound sites

5.0 10.0 15.0 20.0

hour

0.1

0.2

0.3

0.4

0.5

C
on

d
it

io
n

al
in

te
n

si
ty 1

3

4

(c) Southbound sites

Figure H9: (a) Traffic network structure. Each traffic sensor is labeled with a number. The blue
and pink arrows indicate the monitored traffic directions of sensors on northbound and southbound
highways, respectively. (b)(c) Conditional intensity of five sensors in a single day, which are
categorized into two groups according to the monitored traffic directions of the sensors.

same group are in the same direction and share the same traffic flow. Also, all the intensity functions
show a temporal pattern in which they reach pinnacles during the morning (around 8:00) and evening
(around 17:00) rush hours, with a higher possibility for traffic congestion at southbound sensors in
the afternoon.

22

	Introduction
	Background
	Point processes on graphs
	Deep temporal graph kernel
	Graph kernel with localized graph filters
	Model estimation

	Experiment
	Synthetic data
	Unobserved graph
	Observed graph

	Real data
	Ablation study
	Comparison with baselines on real-data

	Conclusion
	Related Works
	Example: Graph filter bases in L3Net
	Incorporation of localized graph filters in graph kernel
	Derivation of two loss functions
	Effiecient model computation
	Algorithm
	Choice of kernel rank
	Experimental details and additional results
	Data description
	Detailed experimental setup
	Additional experimental results

